4-27-2006
What did we talk about last class?
Go ahead and turn in the tests.
You all know that this is, but we will define it properly.

- c is divisible by b iff there exists an integer n such that $bn = c$.

- Prime numbers are numbers divisible by 1 and themselves. Composite numbers are divisible by other values.

- All numbers have a unique prime factorization, the set of primes whose product is equal to the given number.
- If two numbers are divisible by a third number, that third number is called a common divisor.
- The largest number that divides two other numbers is called the greater common divisor (gcd).
- The if gcd(a,b)=1 then a and b are said to be relatively prime.
- Euclid's algorithm provides an efficient way to calculate the gcd.
 - Euclid(a,b) for a>=b
 → if(b==0) a else Euclid(b,a mod b)
- This algorithm scales as the inverse Fibonacci numbers.
An extended form of Euclid's algorithm calculates not only \(d = \gcd(a,b) \), but also gives \(x \) and \(y \) such that \(d = ax + by \). Note that \(x \) and \(y \) can be zero or negative.

- **Extended-Euclid(a,b)**
 - if \(b == 0 \) [\(a,1,0 \) else
 - let \([d',x',y'] = \text{Extended-Euclid}(b,a \mod b) \)
 - in \([d',y',x' - ((\text{int})(a/b))y'] \)
Mod defines finite abelian groups.

We want to solve the equation \(ax=b \) (mod \(n \)). This equation either has \(d=\gcd(a,n) \) solutions or zero solutions.

Modular-Linear-Equation-Solver\((a,b,n)\)
- let \([d,x',y']\)=Extended-Euclid\((a,n)\)
- in if\((d|b)\) then
 - let \(x_0=x'(b/d) \) mod \(n \)
 - in the set \((x_0+i(n/d)) \) mod \(n \) for \(0\leq i<d \)
- else no solution
We talked about raising numbers to powers in mod space last class and how you can take a mod after each multiply because of closure.

It turns out that \(a^i \pmod{n} \) will form a repeating sequence.

Modular-Exponentiation(a,b,n)

- \(c=0, \ d=1 \)
- let \(b_k \) be the bits of \(b \)
- for \((i=k; \ i>=0; \ --i) \)
 - \(c=2c, \ d=d*d \pmod{n} \)
 - if \((b_i==1) \) \{ \(c++\); \(d=(d*a) \pmod{n} \); \}
- return \(d \)

\(c \) is not really needed. Just included because \(d=a^c \pmod{n} \)
RSA is a public key system.

Pick two distinct large primes \(p \) and \(q \) and have \(n=pq \).

Pick a small odd integer, \(e \), that is relatively prime to \((p-1)(q-1) \).

Computer \(d \) such that \(ed=1 \pmod{(p-1)(q-1)} \).

\((e,n)\) is the public key. \((d,n)\) is the private key.

Encode the message \(M \) with \(C=M^e \pmod{n} \).

Decode the message with \(M=C^d \pmod{n} \).

Note \(d \) can only be found if you know \(p \) and \(q \) which require factoring \(n \).
Remember to turn in everything you want to turn in by the 5th.