
1

Searching Solution Space/D&C

1-24-2006

2

Opening Discussion

■ Do you have any questions about the
assignment?

■ Do you have any questions about the reading?
(Ch. 2 from the other book.)

■ What do you know about searching through
solution space for an answer?

■ What do you know about divide and conquer
algorithms?

■ In recent reading I found that HashMap is
preferred over Hashtable in newer versions of
Java.

■ Let's make sure everyone can get into the grading
application.

3

Solution Spaces

■ There are lots of problems where our goal is to
find a particular solution to some problem from a
large set of potential solutions.

■ With these types of problems the typical approach
is to search through all of the solutions until you
find one that is suitable. There are numerous ways
to do this and some are more optimized than
others.

■ Some nice sample problems for this are the
shortest path through a maze and the 0/1
knapsack problem.

4

Recursion/Depth First

■ The most straightforward method of searching a
solution space is with a recursive function. This
produces a depth first search. Sometimes this
method is referred to as backtracking. To see why
one need only look at the maze problem.

■ Depth first searching is ideal if all solutions are at
the same depth or if valid solutions are all deep in
the solution tree. There is also the advantage that
it is easy to write.

■ Depth first searches typically don't require that
much memory either because the solution trees
are typically much broader than they are deep.

■ Sort things beginning with smallest branching
factor for speed.

5

Breadth First

■ Recursion implicitly uses a stack. If we use a
queue instead then we get a breadth first search.
This runs across each level of the solution tree in
turn.

■ When trees can be very deep and solutions can
be higher in them, breadth first can be beneficial. It
is harder to write because you have to put in the
queue yourself.

■ Memory can be a major issue. Solution trees can
get very wide and breadth first must store an
entire row at a time.

6

Iteration

■ In some situations, you might be able to figure out
a way to iterate through the possible final
solutions. Not all problems led themselves to this.

■ An example where this can work well is 0/1
knapsack where we can solve the problem by
counting in binary.

7

Pruning Trees

■ Solution trees are very often exponential in size.
As a result, searching the entire tree is not
acceptable. We want to find ways to prune off
paths.

■ With a depth first approach we can often terminate
certain recursive paths early by keeping extra
information. One approach to this is memoization.
Other approaches can be made that are more
specific to the problem.

8

Divide and Conquer

■ Divide and conquer is a common algorithm design
technique. The basic idea is that we take a large
subset and split it into smaller pieces, solve the
pieces, and return the combine the answers.

■ The trick in doing this is figuring out how to split
things up and then how to put the answers back
together.

■ What are some common divide and conquer
algorithms that you know of?

9

Counting Inversions

■ How different are two lists of numbers? Simply
number them in sorted order by one and count the
number of inversions.

■ We can do this with an augmented version of the
merge sort.

10

Integer Multiplication

■ Divide and conquer can also be used to give us a
multiplication algorithm that is faster than O(n2).

11

Other Algorithms

■ Later in the semester we will be doing other divide
and conquer algorithms for computational
geometry and Fourier transforms.

12

Reminders

■ We have canceled class for Thursday. I'm putting
the finishing touches on the description for
assignment #2 and it will be posted soon.

