
1

Heaps (Binary Heaps)

1-31-2006

2

Opening Discussion

■ Do you have any questions about the reading?
■ Do you have any questions about the test?
■ Do you have any questions about the

assignment?

3

Heaps

■ We are now switching our attention over to the
data structure of a heap. Heaps are efficient data
structures for repeatedly finding the min or max of
a set of elements.

■ All heap implementations we will discuss have at
least O(log n) performance for adding, peeking,
and removing. They also have similar
performance for adjusting an element or removing
and element if you know where the element is.

4

Binary Heaps

■ The heap that you should all be familiar with it the
standard binary heap. This type of heap can be
viewed as a complete binary tree with proper heap
ordering.

■ Unlike a BST, heap ordering saying nothing about
relative values of children, all it says is that
parents have a higher priority than children so the
root is always the element that will be taken off
next.

■ For simplicity, we represent these in arrays
instead of as linked trees. Being complete means
there are no holes and if the root is at index 1,
children are always at 2*n and 2*n+1.

5

Adding to a Binary Heap

■ When you add to a binary heap you put the new
element at the end of the array and let it “bubble
up”. It keeps moving up until it either gets to the
root or it hits a parent with a higher priority.

■ CLR and most other books do swaps for this
process. You can get better performance by
keeping the new element in a temporary and only
putting it in the array once you have found the
place it belongs. This matters less in Java than it
might in C++ because you are only copying a
reference in Java.

6

Removing from a Binary Heap

■ To take off the highest priority element of a heap
we simply pull off the root, then take the last
element off the end and sink it down from the root
to where ever it stops. Each time the higher
priority child moves up assuming that child is
higher priority than the last element.

7

Binomial Trees

■ Next class we will talk about binomial heaps.
These are a neat alternative to the binary heap in
which we can merge to heaps in O(log n) time.

■ Binomial heaps are made from binomial trees so
lets discuss those for a bit today.

■ Binomial trees are NOT binary. A level 0 binomial
tree has only a single element in it. Recursively
we define a level n binomial tree as two level n-1
trees where the root of one is added as the first
child of the other.

■ This leads to trees with a size equal to 2level.

8

Reminders

■ The second test is due on Thursday.
■ The second assignment is due a week from today.

I'll have a larger input and sample outputs up
soon. At that time I'll also tell you the timing results
for my trees with each of the heap types.

