
1

Binomial Heaps

2-2-2006

2

Opening Discussion

■ Let's collect the tests. Do you have any questions
on it?

■ Do you have any questions about the reading?
■ Do you have any questions about the

assignment?

3

Review Binomial Trees

■ Last time we looked at the structure of binomial
trees. They are quite different from other trees you
might be used to. Most importantly, they are far
more limited.

■ The binomial tree Bk has 2k elements in it. The root
has k children and each child is a binomial tree of
size k-1..0.

■ The binomial tree Bk also has a root with height k.

4

Structure of a Binomial Heap

■ To build a binomial heap we will use multiple
binomial trees. Each tree will have proper heap-
ordering, just like a binary heap. For each order k,
there can be no more than 1 binomial tree of that
order.

■ To see what trees we have, simply picture the
binary representation of the number for the size of
the heap. If our heap has 10 items in it, it will have
a B1 and a B3 in it.

■ We link the binomial trees together in a linked list
from smallest to largest.

5

Heap Union

■ The primary operation on a binomial heap is the
union operation. Our other operations will be
generally defined in terms of it.

■ To merge two heaps we merge their lists in sorted
order then walk the combined list. If we ever have
two (and only two) trees of the same size, we
merge them by adding one as the child of the
other (the one with the highest priority root will be
the root of the merged tree) and we repeat the
process on that merged node. Any other situation
leads to simply stepping to the next node.

■ CLR gives nice tight code for this.

6

Structure in Memory

■ Inevitably there are many ways that we could
store binomial heaps in memory, but the form CLR
uses is optimal for keeping everything or the right
order.

■ They use a tree with the “first-child, next-sibling”
structure and keep a parent pointer in each node.
The list for the heap itself uses the next-sibling
pointer.

■ Each node also needs to store it's level, which is
equivalent to it's height.

7

Add Element

■ To add an element we simply create a “heap” with
the one element in it (a B0 tree), then do a union
between that and the heap we are adding to.

■ Since union works in O(log n) time, this will as
well.

8

Remove Element

■ To find the next element in the heap to remove (a
peek) we simply walk the list of trees and take the
root with the highest priority.

■ To remove that element we take the list of children
from it, reverse their order and set their parent
pointer to null. This turns it into a little binomial
heap. Simply union this heap with the full one
where that tree has been taken out.

■ Any element can be removed by “bubbling” that
element to the top of its tree and doing the remove
on that root.

9

Reminders

■ Remember that assignment #2 is due on Tuesday.
 We will start talking about greedy algorithms at
that time.

