
1

Greedy Algorithms

2-7-2006

2

Opening Discussion

■ Do you have any questions about the
assignment?

■ Do you have any questions about the reading?

3

Searching Solution Space: Issues

■ We already talked about how one could approach
the solving of many different problems with
algorithms that search through the full solution
space looking for the ideal solution. Often this is
done with recursive algorithms.

■ The primary problem with this is that solution
space could be quite large and that might take an
intractable amount of time.

■ For some problems we can do things more
efficiently. The real trick is figuring out what the
most efficient method is for a particular problems.

4

Greedy Algorithms

■ Greedy algorithms are some of the least general
algorithms for solving optimization problems.
However, when they can be used they are
extremely fast, often taking only O(n) time.

■ The general idea of greedy algorithms is that at
every step they pick the option that is most ideal
and they never look back to reconsider that
decision. This is what makes them both so fast
and so inflexible.

5

Event Scheduling

■ Also called interval scheduling, the problem starts
with an input of a number of intervals of time that
you need to schedule. You can't schedule
overlapping events/intervals.

■ In this case our objective is to schedule as many
of the events as possible. What algorithm might
we use for doing this? What would it look like to
search the solution space? What order would that
be?

6

Greedy Solution

■ We can solve this problem in a greedy way by
selecting events in order of the time they finish
without taking overlapping events. First sort the list
by finishing time and pick the first element, then
proceed down the list taking the first event you
come to that doesn't overlap the previous one.

■ This is O(n log n) because of the sort at the
beginning. The processing after the sort is O(n).

■ You can show that this is optimal by noting that
any optimal solution can't have more events taking
up less total time starting at the beginning.

7

Interval Partitioning

■ This is a very similar problem to the event
scheduling. Only now we have multiple resources
and we are going to schedule everything. The
question here is, what is the fewest number of
resources we can use.

■ This problem is also called interval coloring. We
want to know the minimal number of colors we
have to use so that no overlapping intervals have
the same color.

■ This problem can be solved with an O(n2) greedy
algorithm. We sort the intervals by starting time
and run through each one. At each one we find a
value that hasn't been used in and overlapping
partition and give it the minimum such value.

8

Scheduling on Deadlines

■ A slightly different problem is one where we go
back to having a single resource, but now our
tasks can float. We know how long each task
takes and we have a deadline for each task. Our
objective is to minimize the maximum lateness
while completing all tasks. We could pick other
goals, but they wouldn't have greedy solutions.

■ The solution is simply to order the tasks by their
deadline time and do them in that order. This
simple solution produces an ideal result, but
proving it does so is a more complex issue.

9

Cache Maintenance

■ The idea for this problem is that you have a cache,
like on a computer, and you know exactly the
sequence that items will be requested. You want
to figure out what you place back in cache each
time there is a miss to minimize the total number
of misses.

■ Given this situation, it turns out that an optimal
solution can be found by always evicting the items
that will be needed at the furthest time in the
future.

10

Huffman Codes

■ One of the most common examples of a greedy
algorithm is that of Huffman codes. The idea is
that you want to encode a message in a more
compact form than standard encoding.

■ For example, normal text in a machine uses 8 bit
chars, but we don't really use 256 options, end
even if we did, some things, like 'e', occur so much
more than others that it would be better to use
fewer bits for their representation.

■ Huffman codes are optimal variable bit codes for
messages. Each symbol has a set of bits of
variable length. Common symbols require fewer
bits. It is optimal in that the full message takes the
fewest bits possible.

11

Generating Huffman Codes

■ So given a message, how does one produce the
Huffman code for it? First, count the frequency of
each symbol and make a set of “trees” where
each symbol is a single node.

■ Repeatedly you pick the two roots whose
probability is lower and merge them into a single
tree. When you get to one tree you have a
Huffman code. It is a binary tree where going left
is a 0 and going right is a 1.

12

Greedy Approximations

■ Some problems can't be solved optimally with
greedy algorithms, but we can use greedy
algorithms to get approximate solutions and we
can often prove bounds on how close that will be
to the optimal solution.

■ TSP

13

Reminders

■ Remember to turn in assignment #2 today at
some point.

