
1

Fibonacci Heaps

2-14-2006

2

Opening Discussion

■ What did we talk about last class?
■ Do you have any questions about the the test?
■ Do you have any questions about the

assignment?

3

Fibonacci Heaps

■ In many ways a Fibonacci heap is like a binomial
heap. The primary difference is that the Fibonacci
heap is lazy. It intentionally pushes off work until
the last possible instant. Unlike with your classes,
this can lead to better efficiency for data
structures.

■ Like the binomial heap, the Fibonacci heap is a
collection of trees. In this case it is a collection of
trees that are close to being unordered binomial
trees.

■ An unordered binomial tree is like a binomial tree
other than the children to not have to be ordered
by degree.

4

Other Differences

■ For various reasons, the lists in a Fibonacci heap
are circular doubly linked and the heap keeps
track of the minimum root and number of
elements.

■ The nodes are also enhanced with a bit more
data. Obviously more pointers are needed for the
doubly linked list aspect. Each node also stored its
degree and a boolean marker that is used for
some operations.

5

Adding

■ Adding to a Fibonacci heap is quite simple. We do
nothing more than add a new node with our data
to the root list of the heap. If the new node has a
lower value than our current min we make it the
min. This operation is O(1).

■ Basically, we are adding a U0 tree to our heap.
■ Obviously, a long string of adds will produce

nothing more than a linked list where we are
keeping track of the smallest one.

6

Find Minimum and Union

■ The peek operation to look at the next item that
will come off the heap simply returns the data in
the minimum node, which our heap stores a
reference to. This is O(1).

■ To union to Fibonacci heaps we just connect their
root lists together into a single root list and make
the minimum be the smaller minimum of the two.
Here the fact that we use a doubly linked circular
list comes into play to give us O(1) performance.

7

Extract Minimum

■ This is where the real work comes in. Basically the
Fibonacci heap has been avoiding work with the
other operations and it needs to clean things up a
bit here.

■ First we act like a binomial heap and add all the
children of the min node into the root list while
setting their parent pointers to null. Next we
remove the minimum node from the root list.

■ If our root list is empty we set min to null.
Otherwise we set min to the element on the right
of the old min and call a consolidate. That is the
function that will do the real work. That function in
O(log n)

8

Consolidate

■ Obviously at some point we have to bring some of
the trees in our forest together. This is where that
happens. We begin with an array of node pointers,
A, that has log2n elements in it.

■ We walk through the root list and check the
degree of each root. While A[degree] is not null
merge the two trees together preserving heap
order. We set A[degree] to null and continue the
while loop. After all mergers we set A[degree] to
the degree of the node we ended up with.

■ Last we walk through our array and set min to
point to the root with the smallest value.

9

Decreasing Keys and Deleting

■ This is where we get to use our marker. Up to this
point we have just set markers to false at creation
and every time we make a node a child of a
different node.

■ To decrease a key we set the new key and see if it
has violated heap order. If it has we cut that node
out and put it in the root list. We also do a
“cascading-cut” on the parent. If the parent is not
marked we simply mark it. If it is marked, we cut it
and recursively go to its parent. This turns out to
be O(1).

■ A delete can be done by decreasing the key to a
minimum value and then doing extract-min.

10

Performance in Java

■ I spent the weekend doing some Java code and
trying to get the most performance out of it as
possible. I want to look at some of the subtle
changes that were made to try to cut seconds off
of a runtime.

11

Reminders

■ Remember to turn in your test on Thursday.
■ We will talk about dynamic programming next

class.
■ I will get you timings for my Fibonacci heaps as

soon as possible.

