
Information Packet
Trinity University ACM High School Programming Competition

2005

This packet contains the significant information that you need to know for the competition including the
rules, how the competition will be run, and helpful information that might aid you in some of the problems.

Rules

The competition is being run in an ACM style where teams of up to 3 members are given a packet of
problems to solve and they have 3 hours to solve as many as they can. Each team has access to one
computer, one keyboard, and one mouse. All the problems are of equal value. Teams are ranked first by
the number of problems that they solve and second by the number of points they got in answering those
problems. Teams want to have as few points as possible for the number of problems they solve. A correct
submission gets one point for every minute since the beginning of the competition and 10 points for all
extra submissions. Even if you submit two working copies of a problem you will get the 10 penalty points
for the extra submission.

The competition will be held on Trinity machines running the Knoppix Linux distribution. They will have
Eclipse set up for editing programs and have Java 1.5 installed, though Eclipse does not do proper syntax
checking for the newer features of 1.5 like generics). You can use any of the Java standard libraries as a
full Java version will be provided. The environment and program used for submission are discussed in
more detail below so you can easily get started without having any prior knowledge of Linux or Eclipse.
One thing to know about Knoppix is that it doesn't use the local disk drives. It puts things in a RAM disk.
For this reason it is strongly suggested that you NOT reboot your computer for any reason. We are
providing tools so that you can back up source files, but you should not intentionally rely on this. It will
slow you down a lot to do so.

Each team will have one computer. Teams should not bring any other computing devices, nor should they
bring anything in machine readable format. Bringing disks, CDs, thumbdrives, or any other machine
readable devices into the competition area will be grounds for disqualification. The submission application
also provides you with a mechanism for printing your code. The code will be printed in a different room
and a runner will bring it to you.

Submissions will be done electronically using an application that is provided to you. On a separate sheet
you are provided with your team login name and password. You will use these to log into the submission
program. You can use this program to submit code for problems as well as to ask clarifications about
certain problems. After you submit the source code file for a problem, the judges will compile and run the
program and reply to you to let you know whether it worked. The judge reply will be one of the three
following options.

Correct – Your submission produced acceptable output and was accepted. Don't submit it again.

Incorrect – This implies that something is wrong with your output and that it doesn't match the expected
values.

Timeout – There are two causes for this. One is that your solution simply takes too long on our input or
goes into a infinite loop. It could also mean you aren't reading the input correctly. If your program is
waiting for input after all the input has been given this could cause it to timeout.

Knoppix and Contest Environment

There really isn't much to say about the contest environment. For those who care, it is running KDE though
many of the larger applications have been stripped out (things like OpenOffice) to make room for the
development tools needed for the competition. To keep things simple, we have provided buttons on the

bottom bar for launching the three applications that you should find most useful during the competition:
Eclipse, FireFox (for the Javadocs), and the submission application. The standard menu can lead you to
many other applications should you choose to do other things. Surfing the web isn't an allowed other task
though and attempting to find code samples on the web will be grounds for disqualification. We've
attempted to make that a difficult thing to do as well.

Basics of Eclipse

The Knoppix CD that you will be booted from includes a copy of Eclipse that you can use for editing your
Java source files. Being Linux you could also feel free to use a standard text editor like vi and do command
line compiles, but we think you'll find it much more productive to use Eclipse (if for no other reason than
features like syntax highlighting, name completion, and fast importing). In this section we want to give you
a quick introduction to Eclipse so that you can quickly get over some of the early learning curve issues and
then quickly find the features that will help you most during the contest.

When you bring up Eclipse you will be asked first for a workspace location. Pick the default. You will
then be dropped into the workspace which has a number of different panels. The figure above shows a
sample Eclipse run with different areas labeled. In order to get anything done, you want to create a new
Java project. There are many ways to get a wizard or menu brought up for creating things in Eclipse
including right clicking on the “Package Explorer” on the left side of the workspace, using the “File” menu,

Project List Run Button

Editor Panel

or using the icon under the “File” menu on the toolbar. You can call the project whatever you want. The
new project will appear in the “Package Explorer”. You can expand it. When you want to create a new
program, you will right click on the project and do “New > Class”. Give the class a name, but put it in the
default package. You only get to submit a single file and that file have to be in the default package so don't
create other packages or write code for a problem that spans multiple files (use inner classes or non-public
classes if you want more than one class).

Once you have a new class file up you can simply code. Eclipse has some nice features to help speed up
coding. The syntax highlighting is dead on and you can click on the error icon on the left side of the edit
pane for certain errors and it will suggest fixes. After typing a class or object name followed by a dot, you
can pause and Eclipse will bring up a list of possibilities. It also lists Javadoc descriptions of those
functions. If you use a class in a file that you haven't imported, put the cursor on the class name and press
Ctrl-Shift-M and it will automatically add an import statement. There are lots of other features as well, but
those are the ones that are likely to be able to help you during the competition.

To run and test your program, you can use the Run menu or the run icon (green circle with arrow) on the
toolbar. The first time you run a given program select “Run As > Java Application”. After that you can
either repeat the last run by clicking on the green circle icon or pick the program from the drop down menu
by the icon. The bottom of the workspace has a console that you can provide input to and see your output.
You can also copy and paste into this console. We might recommend that you put a comment in your code
with the input that you want to run and copy that then paste it into the console so that you don't have
problems with typos or having to repeat typing stuff. Make sure to get the newline after the last line of
input so that your program will terminate. We've made sure to have it so that you never read to the end of a
file, but when you read a full line the program will typically wait until the linefeed is reached.

You can put all of your different programs in the one project in the default package so there is no need to
create multiple different projects. It should also me noted that while we are using JDK 1.5.0, Eclipse does
not do proper syntax highlighting for features of 1.5 like Generics and you might run into some problems if
you use Generics. Hopefully this will be fixed by next year.

Submission Application

We are providing you with a Java application that allows you to submit your programs to the judges and
find out the results electronically. When the competition starts you should log into the submission
application using the login name and password that your team was given. You can, and probably should,
stay logged in the entire competition to speed up the process of submitting problems. The application will
also allow you to view the current standings and to see any clarifications that the judges have posted. The
standings will stop updating for you when there are about 30 minutes left in the competition. The
application allows you to pick from 6 different operations: Login/Logout, Submit Code, Clarifications,

Print, Backup, Restore. We'll look at the functionality of each of these in turn.

The login is rather simple and will bring up a dialog box in which you can enter your team's login name and
password. Be careful not to lose the piece of paper that has your login information. Getting that
information to you during the contest will take a while and will likely slow you down. Once you are logged
in you will see the standings for the competition and have the ability to log off or select the other options. It
unlikely that you will have to log out during the competition. The standings show a grid with one school
per row and the columns have team names, school names, problems, and the totals. The problem columns
show two numbers for each team. The first number is how many times the problem has been submitted by
that team. If the problem has been answered correctly then the second number shows the number of penalty
points the team got for that problem. The total column has the sums of those values. Teams are displayed
in sorted order of the standings.

The most important use of the program for you is to submit your solutions to the problems. When you click
the submit button, a dialog box comes up that will ask you for the problem number and the file that you
want to submit as shown in the figure above. Make sure that you select the correct problem number.
Failure to do so will inevitably lead to your submission being judged incorrect, mostly likely with some
error on reading the input in. You can only submit one .java source file in a given submission so keep
everything in the solution of a problem down to a single file. After you submit you can go on to work on
another problem. When a judge has judged your submission, you will be notified of the result by a dialog
box that will pop-up on the submission application. If you put any debugging print statements in your code,
make sure to take them out before you submit because extra print statements will cause your problem to be
judged as incorrect. A suggestion for this is given below.

Also potentially of significance to you during the competition is the clarifications option. This will bring up
a window that lists the current clarifications and allows you to submit requests for clarifications. We have
tried to insure that the problem descriptions include sufficient descriptions of the problems, but it is possible
that some information has been left out. If you have questions about the intent of a question, you should
submit a clarification. Clicking the “Clarifications” button brings up the window that is shown below. It
has a button you can click to submit your own clarification with a table below that showing all the
clarifications. Clarifications that have not been replied to might not appear. Note that replies to any
clarifications will go out to all teams.

One thing that you will notice about your work area is that you do not have a printer by your computer. If
you want to print a file you can click the “print” button on the submission application. This will allow you
to select a file to print. Pleas only print the .java files. When you do a print, a message will come back to
tell you if it worked. Safeguards have been put in place to help insure you don't print binary files. After
you print, a runner will bring your printout to you.

The last two options that you have for the submission application are to provide you with some ability to
backup and recover your work. Linux is quite stable and hopefully you will never have a problem with this.
However, we want to cover things. The reason this option exists is that Knoppix isn't saving anything to the
hard drive. Everything you are doing is happening in a RAM disk. If the machine goes down, all of that is
gone. The Backup option will send all of the .java files in your workspace to the server for storage on disk.
The recover option will let you pick a file to recover and will restore that file to your machine from the
server. Be careful because any local version that you have will be overwritten in this process. As a hint, if
your machine does go down, when you restart, name your Project in Eclipse the same thing that you named
it the first time. That will make things easier for dealing with the recovery.

Some Java Information (just in case)

This competition is being run in a way that is different than most of the competitions you have likely been
in since it is modeled after the collegiate ACM competitions. As a result, it is possible that you might not
feel comfortable with some of the basic aspects of this competition. If you have seen these things before
that's fine, but we want to make sure everyone starts off with an even footing when it comes to the basics.
The thing we want to make absolutely everyone can do is reading of input from standard input. If you are
used to doing file input, reading from standard input isn't really any different, you just read from the
InputStream System.in. Personally, I like to wrap System.in in a stream that can read whole lines. This can
be quickly done with a line like the following.

BufferedReader br=new BufferedReader(new InputStreamReader(System.in));

The advantage is that BufferedReader has a readLine method that reads everything up to the next newline
character and returns the result as a string. The string will not contain the end of line. If the end of the
stream has been reached, then this method returns null.

Of course, there might be multiple pieces of information on a line that you need to get at. This just requires
breaking up the string into multiple parts, normally based on whitespace, but possibly based on other
characters. Prior to Java 1.4 this was typically done with the StringTokenizer class in the java.util package.
Since 1.4 you might find that the task can be done even more easily with the split method in the String class.
This method returns an array of Strings and takes a string that is a regular expression. So if you have the
variable br declared above, you could get the individual words on a line with the following piece of code.

String[] words=br.readLine.split(“ “);

With this invocation the array will have a length equal to the number of words on the line. If some of the
words are actually numbers remember to use Integer.parseInt and Double.parseDouble to convert the

Strings to ints or doubles. This code will have to go inside a try/catch that catches IOException.

Because we are using Java 1.5 you could also consider using the java.util.Scanner class. This can be done
with Scanner scan=new Scanner(System.in);. The Scanner class then provides methods such as next() to
read a word or nextInt() to read an integer. These methods throw only RuntimeExceptions so you don't
have to have them in a try/catch block. If you choose to use this keep in mind that if you mix calls to
nextLine() with other calls, you might have to throw in an extra nextLine() to finish a line you already got
input from. For example, if you have one line with an int followed by a full sentence a call to readInt()
followed by readLine() will get an empty string for the readLine() because it only reads the newline
following the int. To get the sentence, you need an extra call to readLine().

Since your programs are judged based on what appears in the standard output, there are suggestions for how
to put in debugging print statements in such a way that you are less likely to accidentally leave one or two in
and cause your submission to judged incorrect when you have the right algorithm. The easiest way to deal
with this is to print to System.err for debugs and only print to System.out for the problem output. The one
possible problem you might run into with this is that sometimes System.err and System.out are not
synchronized so print outs might appear out of order of when they are executed. If that causes you a
problem you could always write a method, possibly called debug, that takes a string and prints it, but only
prints it when a certain static final variable is true. That way you can remove all debug prints by just setting
that variable to false.

The next page contains a sample problem. This problem has the same general format of most of the
problems in the contest set. During the pre-contest trial time the submission program will be set up for you
to do this problem. It is suggested that during that time you write and submit a solution to it.

Problem 0 – Sample Problem

To get you started and see if you can use the programs and do some of the basics for this
competition, we want you to do a slightly more advanced version of “Hello World”. The
difference between this version and your normal version is that you will say hello to
multiple specific people instead the whole world.

Input: The input for this problem consists of a header line that tells you how many
people you will say hello, to followed by one line for each person that lists their name.

Output: For the output of this problem you should print “Hello “ followed by the name
of the person you are saying hello to for each name listed.

Sample Input:
4
Mark
Jason
Tyler
Andy

Sample Output:
Hello Mark
Hello Jason
Hello Tyler
Hello Andy

