Problem Set (The XKCD Set)

Trinity University ACM
High School Programming Competition
April 10", 2010

Problem O — Traffic Simulation

THIS LIGHT ALWAYS Hi. YOURE. RIGHT— I SHOULD HAVE JUST MADE
TAKES FOREVER WHO THE HELL | | THE LIGHT SHORTER! NEVER MIND THE
\ \ ARE YOU? HOURS OF SIMULATION AND TESTING I DID.
TD LIKE TO SMACK. : NEVER MIND THAT THIS INTERSECTION
THE IDIOT WHO T DESIGNED THIS INTERACTS WITH ITS NEIGHBORS IN A
DESIGNED THIS INTERSECTION. COMPUCATED WAY AND IT Took ME A
INTERSECTION. \ WEEK T0 WORK OUT" \
O TIMING SEQUENCES THAT (D
) \ B AVOIDED TOTAL. TAMS.
M—__iﬁ ' 5 . ’_/&
CLEARLY, TM A (RAPPY GET THE HELL CFF YOU CAN'T.
ENGINEER AND YOU HAVE MY HOOD BERRE T LIGHTSRED.
A BETIERl SOLUTION. %ﬁﬂ?ﬁ%% m{{)ﬂ | \ VELL, WHEN EI%L
50 ON, SHOW ME YOUR IT CHANGE
PROROSED mees. TUESDAY.
N

—O=0C_ LB

émi;}
Introduction

It is common for civic planners to run simulations of traffic lights before installing the lights. These
simulations use real or statistically generated arrival times for cars and consider different light timing
settings to see which works best. One good metric for determining how well a potential timing works is
to look at how long people have to wait at the light. For this problem, you will calculate average wait
times for a light given the length of time between green cycles, how many cars can get through on a
green, and information on arrival times of cars.

To keep this simple, make the following assumptions. Cars only get through if they arrive at or before
the green cycle begins. At the beginning of the simulation, a green cycle has just ended and there are
no cars. When the light turns green, all cars up to the number specified or the number in line get
through.

Let's go through an example. Consider a light with a green cycle time of 100 seconds that lets 2 cars
through each cycle and cars arriving at 30, 60, 90, 120, and 150 seconds. The first three cars arrive
before the light turns green at their specified times. When it turns green at 100 seconds, the first two go
through with wait times of 70 and 40 seconds respectively. The third car has to wait for the next cycle.
During the next cycle the fourth and fifth cars arrive. At 200 seconds the light turns green again and
the third and fourth cars get through with wait times of 110 and 80 seconds. When the light turns green
again at 300 seconds, the fifth car gets through with a wait time of 150 seconds. The average wait time
is therefore (704+40+110+80+150)/5=450/5=90 seconds.

Input

The first line will contain the number of sets (Integer, 1<= S<=50). Each set will have two lines. The
first line gives the green cycle time (Integer, 1<=T<=1000), the number of cars that get through each
green (Integer, 1<=N<=20), and the number of cars to consider (Integer, 1<=C<=100). The second line
of each set will have C arrival times (Integer, 0<=A<=10,000). The arrival times will be in sorted

order. It is impossible for two cars to arrive at exactly the same time.

Output
For each set you output one line that says, “The average wait time for set # is #.” The first # is the

number of the set beginning with 1. The second # is the average wait time accurate to within one
second.

Sample Input

2

100 2 5

30 60 90 120 150
200 10 4

50 200 250 300

Sample Output
The average wait time for set 1 is 90.0
The average wait time for set 2 is 100.0

Problem 1 — Sanitizing Input

HI, THIS 1S OH DEAR -DID HE | DID YOU REALLY WELL, WEVE LOST THIS
YOUR SON'G SCHOOL. | BREAK SOMETHING? | NAME YOLR SON YEAR'S STUDENT RECORDS.
WE'RE HAVING SOME IN A WAY = Robert'); DROP T HOPE YOURE HAPPY.
COMPUTER TROUBLE. TABLE Studerts;—- 7

AND I HOPE
~OH. YES UTTLE “~ YOUVE LEARNED

X R /
0 . : BOBRY TABLES, L TOSANITIZE YOUR
WE CALL HIM. DATABASE INPUTS,
Introduction

You have been hired by the local Elementary school after some unwitting teacher entered a database
command and deleted most of the student records. They’ve employed you to write a program that will
be run on any database input that will ensure that any command entered will be free of characters that
might cost them their data once again.

Input

The first line will contain the number of sets (1<=S<=50). On subsequent lines will be database inputs,
which you will need to check, clean up, and then print back out. Words will be delimited by spaces.
Data management commands are written completely in capital letters and need to be removed. Non-
letter characters are also risky and should also be removed.

Output

One output line should be printed for each line of input. The output line should not have any special
characters and all words that contain only capital letters or special characters should also be removed.
There should be one space between each of the remaining words.

Sample Input

3

Robert’);

add Robert FIND Smith ; DELETE TABLE STUDENTS;
rollProgram’); EXIT

Sample Output
Robert

add Robert Smith
rollProgram

Problem 2 — True Random Numbers

int getRondomNumber ()

return Y, // chosen by foir dice roll.
/ quaranteed to be random.

Introduction

Your boss at Reliable Programs Inc. would like you to write him a random number generator. However,
your boss is using the random number generator to test several off the company’s applications, so it
needs to reliably print out the same set of numbers over and over. A common form of random number
generators, called linear-congruential generators, work as follows:

X,1=(aX,+b) mod ¢

Where X, is the last random number generated (or seed, if one hasn’t been), X, is the next random

number, and a, b, and, c are all numerical constants. In this case, your boss has asked you to use a = 17,
b=09, and c = 253.

Input

The first line will contain the number of inputs (Integer, 1<=I<=50). On subsequent lines will be two
numbers, S and N (Integers, 0<=S=<10000, 1<=N<=25), which will indicate the seed to use for random
numbers and the number of random numbers to print out.

Output
For each input you should output the first N numbers generated.

Sample Input
4

35 8

12 2

6 1

84 4

Sample Output

35 98 157 148 248 177 235 209
12 213

6

84 172 150 29

Problem 3 — The Maze-Traveling Salesman

BRUTE-FORCE DYNAMIC .
SOL-UTTON: PROGRAMMING SELUNG ON ERAY:
0(n!) ALGORITHMS: 0(1)
n. O (n*2")
STILL WORKING
ON YOUR ROUTE?
\
~
SHUT THE
HEW UR

Introduction

Last time you were adventuring in the Maze of Terror, you met a troupe of traveling salesmen. Since the
maze is trapped, and they need to visit every shop once to sell their wares, they have trouble planning
their own routes. The salesmen have asked you to make their travels more efficient by algorithmically
finding the best route through the maze.

Input

The first line will contain the number of mazes (1<=I<=10). Each maze will be of size 10 cells long
and 20 cells wide. Input will be given as the following symbols: % is the salesman’s starting location,
“0” 1s a wall, “-” is an open area you can walk through in one time unit, “*”is a trap that takes three
time units to cross, and “1” is a shop that the salesman must visit. You can't go through walls. The
salesman must visit every shop and return to the entrance. There will be no more than 10 shops in the
maze. Note that you can walk through shops.

Output
For each maze, you will simply output the length of time it takes on the fastest route that visits every
shop and returns to the origin. It will be possible to get to all the shops from the entrance.

Sample Input

~0*00000-0-0000~---~~

~0--0--0-0-0-——————~
~000---0---0--000--~
~0-0-==0-——————————-
~0-0-==0-——————————~
~0-00-0000000000100~
___O ______________ *%

-—-0*0-0000000000100-

~1*0000000-0000~---~~
~0--0--0-0-0-—0---—~-
~0000--0---0-00---—~

~0-00--0-100-1--———~

~0-00--0---0———————~
~1-00-0000000000000~-
___O ______________ *

-00*000000000000000%

Sample Output
14
72

Problem 4 — The Game: You Just Lost It

YOU JUST WON THE GAME.

ITS OKAY! YOURE FREE!

Introduction

Let me take a few moments to explain to you The Game:
1) The object of The Game is to forget about The Game.
2) Every time you remember The Game, you must say aloud, “I just lost The Game.”
3) You are now playing the game. There is no getting out of it.

Your friends all play the game, and they are tired of losing all of the time. So, they’ve asked you to
write a program that will tell them if a given line of text will make them lose it or not before they read
it. (Really, by running the program, they have already lost The Game, but at least they won’t actively do
it.)

Input
The first line will contain the number of lines of text (1<=I<=50). The next input will be N lines each
of which you will read in.

Output
For each input, if the string contained the words “The Game” in either upper or lower case, print “You
lose”. If it does not, print ““You win”.

Sample Input

5

I just won the game.

You just lost the game.

XKCD is awesome.

Marble Cake. Also, The Game.
I just lost that chess game.

Sample Output
You lose
You lose
You win
You lose
You win

Problem 5 — The Little Virus That Could

Pﬁm ISN'T IT?

£ 1l

TVE GOT ABUNCH (F VIRTUAL WINDOWS THERE ARE MAILTROTANS WeRHOL Wores,| | YOU KNOW, GOOD MORNING,

MACHINES NETWORKED TOGETHER, HOKED UP | | AND ALLSORTS OF EXOTIC FOLYMCRPHICS. NORMAL PECRLE BLASTER. ARE

TO AN INCCHMING FIPE FROM THE NET, THEY A MONITORG SYSTEM ADDS AND WIPES JUSTHAVE YoU AND
Hauaﬁlms 1.-4’51 WELm 1A

EXECUTE EMAIL ATTACHMENTS, SHARE FILES,

MACHINES AT RANDOM. THE DISPLAY SHOUS

AND HAVE NO EECLRFFYFRW{ES. THE VIRUSES A5 THEY MOVE THROVGH THE :
NETWERK / GROWING AP ”"NG
- mEﬂ TH'EV STRUGGLING.
HAVE FRACTICALLY
EVERY VIRuS. WOS A GOOD VIRUS?

YOU ARE! YES, YQU ARE!

Introduction

You recently joined a group of malicious hackers who have taken to writing efficient viruses for fun.
Your job is to code the distribution algorithm for their latest virus, which will only bother infecting
computers that can help spread it to other computers. That is, it will only infect a computer that is
uninfected and still connected to another uninfected computer. Each infected computer will replicate to
any attached, uninfected computer that is attached to another uninfected computer. You will always start
with the first computer infected. You should determine is a computer was infected for the purposes of
spreading by its state at the beginning of each round.

Input

The first line will contain the number of infected networks (1<=I<= 50). The next input will be the
number of computers in the network (1<=N<=100). Next will follow N lines, which will have a list of
Os and 1s indicating which computers it connects to. (Note that a computer does not connect to itself
and all input matrices will be symmetric.)

Output
For each input, output the total number of computers infected and the total time spent for the

distribution.

Sample Input

OO ORRER OGN
O P O
O OoOR K
P OR PO
or ocooo

10100
01010
00101
00010

Sample Output

2 4

3 4

Problem 6 — I'm Late for a Very Important Date

THAT DATE'S
DATE (OR MOST RECENT)
(EXAMPLE) DOW OPENING

2005-05-26 - 10458.68]| [5> [d67318: 225992340 Ib672cb3054H0F47]
Id67318¢ 225492340] 0,[8b672cb30540777]

YOUR LOCATION (EXAMPLE) " bq""s‘m?jfo‘img_) b"w’sqqm

[37)421542 [122).085589 [0.857713_]

.85771 -122].544544)

DESTINATION COORDINATES
SANPLE IMPLEMENTATION: xkcd.com/gechashing

Introduction

You are a huge fan of XKCD, and so you’ve decided to explore their interest in geohashing. So, you are
going to write a small application to convert MD5 sums to GPS coordinates. However, unlike the
comic, you are not going to use your location at all, but instead take the first two digits of each part of
the hash and use those as the two digits before the decimal.

Input
The first line will contain the number of inputs, I (1 <=1 <= 50). The next input will be N lines, each
containing a single MD35 hash in hexadecimal.

Output
For each input, output the GPS coordinates it corresponds to, rounded off to 4 trailing digits.

Sample Input

2

Db9318c2259923d0 8b672cb305440£97
19574A56B4837E95 DD39E636A8548B2F

Sample Output
219.5746 139.4030
25.3410 221.2262

Problem 7 — A Whole Apartment?

i | seca vk

GROWN-UPS NOW,
oLy CRAE ey HATENED | AND 1T OUR TURN
| FILLH; i TO DECIDE WHAT
\ AR Bl THAT MEANS,
J...WHAT? WHY? /

Introduction
Imagine trying to fill your apartment with playpen balls. A cubic foot of playpen balls costs $15.00, and

you want to know how much it would cost to fill your whole apartment with them. You can only buy
balls per cubic foot. You can't buy a fraction of a cubic foot.

Input

The first line will contain the number of inputs (1<=N<=50). After that will be N lines, each line
containing S, the square footage of your apartment and H, the height you want the balls.
(0.1<=S<=100,000, 0.1<=H<=10)

Output

For each input, output the total cost of filling the apartment in playpen balls. Use normal presentation
of money with two digits after the decimal.

Sample Input
2

835.2 3.5
500.0 4.3

Sample Output
$43860.00
$32250.00

Problem 8 — The Compiling Problem

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.”

HEY! GET BACK
TOWORK!

5 A

Introduction

You are just about to start a compile on the code for a large project. That means it is time to have some
fun. The only question is, how much time do you have? For this problem you will write a little
program to help you estimate that. By careful analysis of compiling times you have figured out roughly
how the compile time scales with line counts, including variations from different types of lines. Use
this information to calculate the total compile times for projects given different line counts.

The following table gives you compile times in milliseconds as a function of line count for different
types of statements. The total compile time is the sum of all the separate times.

Line Type Time in milliseconds
Assignment 10*A

Conditional 100*C?

Loop 150*L2

Method Call 50*M?

Input

The first line will contain the number of inputs (1<=N<=50). After that will be N lines, each line
containing the number of different types of lines as the values A, C, L, and M as space separated
integers. (0<=10,000<=A, 0<=C<=1000, 0<=L<=1000, 0<=M<=100)

Output
For each input set, print the total compile time in milliseconds.

Sample Input
3
1000 0 0 O

200 50 20 10

2000 100 80 30

Sample Output
10000
362000
3330000

Problem 9 — Optimal Seating

AT THE MOVIES, | GET FRUSTRATED
WHEN WE FILE INTO OUR, ROW
HAPHAZARDLY, IGNORING THE
CompPutATIONALLY DIFFICOLT
PROBLEM OF SEATING PEOPLE
TOGETHER FDR MARIMUM ENTOYMENT.

Oam')

~——— FRIENDS
== |IN A RELATIONSHIP

——3, ONE-WAY CRUSH
----- ACQUAINTANCES

GULYs! THIS IS NOT
SOCIALLY OFTIMAL!

Introduction

The cartoon above really describes this problem better than any words could. The basic idea is that you
are given the various connections between a set of people. You need to find the idea sitting order and
the “score” for that order. A seating order gets points for each connection for which people are sitting
adjacent to one another. Different types of connections get different point values. Relationships are
worth 10 points, one way crushes are worth 5, friendships are 3, and acquaintances are worth 1. People
sitting next to one another who have no connection are worth zero points.

Input

The first line will contain the number of inputs sets (1<=I<=50). For each set there will be a line that
has the names of all the people separated by commas (there can be spaces before or after the commas
and names can have multiple words). After that is a line with a number (0<=C<=100) giving the
number of connections between people. That is followed by C lines where each line has a connection.

The connections are given as two names and a type of connection. The values are comma separated,
like the original names. The connection type will be one of the following: relationship, crush,
friendship, or acquaintance. There will not be more than 16 people. The order of names in a
connection does not matter. There will never be more than one type of relationship between any two
people.

Output

For each input set, you will output one line. That line will give the score for the best arrangement,
followed by a comma separated list of names specifying the arrangement. If there is a tie between
arrangements for score, you should pick the one that is first alphabetically when all the names are put in
the comma separated list.

Sample Input

2

John Doe, Jane Clark, Jeff L. Robinson
2

John Doe, Jane Clark, relationship
John Doe, Jeff L. Robinson, friendship
Boris, Annie, Katarina, Fred

4

Annie, Katarina, friendship

Boris, Fred, acquaintance

Boris , Annie , acquaintance
Katarina, Boris, relationship

Sample Output
13 Jane Clark, John Doe, Jeff L. Robinson
14 Annie, Katarina, Boris, Fred

