Light

9/30/2009
Opening Discussion

- http://www.youtube.com/watch?v=hdvGSgpTQ6U
- Do you have any questions about the quiz?
- Have you seen anything interesting in the news?
- What did we talk about last class?
Minute Essays

- Theories about before the big bang?
- Projectile motion?
- Differences between types of potential energy.
- Tides
 - Tidal locking of other moons.
 - Tidal bulges, tidal friction, and angular momentum transfer.
 - Breaking SL9.
- Ocean waves, more than tides.
- Did early humans see a bigger Moon?
More Minute Essays

- Math examples in class.
- How significant is the stuff we just covered in this class?
- Is gravity a theory?
- Why we are crashing something into the Moon? No significant damage to the Moon.
- What is my favorite genre of music?
- DPS conference: English? Topics? My presentation?
- LCROSS observing?
More Minute Essays

- Using Newtonian forms of equations for gravity.
- Is it possible there is no gravity and it is all electric or magnetic forces?
- Could there have been two moons related to ocean basins and one fell and took out the dinosaurs?
- What is the gravitational constant and how do we know it?
Centrifugal Force and Circular Orbit Velocity

- Objects want to move in a straight line. When a force causes an object to move on a curved path, we often describe its tendency to want to go straight as a pseudo-force called centrifugal force.

\[F_c = \frac{mv^2}{r} \]

- Setting centrifugal force equal to gravitational force gives the circular orbit velocity.

\[v_{circular} = \sqrt{\frac{GM_1}{d}} \]
Energy and Power

- We have talked about energy, its forms, and the fact that light carries radiant energy.
- Many times we don't care so much about total energy as how fast energy is delivered. This is called power.
- The mks unit of power is a Watt. $1 \text{ W} = 1 \text{ J/s}$
- You are all familiar with this unit as it is how we grade lightbulbs.
- An average human burns energy roughly at 100 W.
Interaction of Matter and Light

- There are four ways light interacts with matter:
 - Emission – matter can give off its own light.
 - Absorption – matter can absorb light that strikes it.
 - Transmission – matter can transmit light and let it pass through.
 - Reflection/scattering – matter can reflect light back or scatter it in some other direction.

- When you look around, what you are really seeing is light that has reflected off the surfaces. Color comes from some of the light being absorbed.
What is Light?

- This question troubled science for many years.
- Newton though light was made of particles. He was the first to show that the colors of the rainbow were a property of the light, not the material splitting it.
- Later experiments showed that light behaves as a wave.
- Einstein's Nobel prize is for experiments showing light has particle characteristics.
- Turns out it is both! Quantum Mechanics!
Wavelength and Frequency

- We often care about the wave nature of light.
- Waves are characterized by wavelength, \(\lambda \), frequency, \(f \), and amplitude. We don't generally need amplitude.
- The speed of a wave is given by the product of the wavelength and the frequency.
 \[\text{speed} = \text{wavelength} \times \text{frequency} = \lambda f \]
- For light the speed is always the same, \(c \).
 \[\lambda f = c \]
Waves in What?

- Waves in a pond move energy, but not material. Locally the water just goes up and down as the wave propagates outward.
- Waves generally require a medium to propagate through, like the water or air.
- People proposed a “luminiferous ether” as a medium for light. Experiments showed there was no medium for light.
- Light is a self-propagating perpendicular electromagnetic wave. It requires no medium.
The Electromagnetic Spectrum

- **Penetrates Earth Atmosphere?**
- **Wavelength (meters):**
 - Radio: 10^3
 - Microwave: 10^{-2}
 - Infrared: 10^{-5}
 - Visible: $.5 \times 10^{-6}$
 - Ultraviolet: 10^{-8}
 - X-ray: 10^{-10}
 - Gamma Ray: 10^{-12}

- **About the size of...**
 - Buildings
 - Humans
 - Honey Bee
 - Pinpoint
 - Protozoans
 - Molecules
 - Atoms
 - Atomic Nuclei

- **Frequency (Hz):**
 - 10^4
 - 10^8
 - 10^{12}
 - 10^{15}
 - 10^{16}
 - 10^{18}
 - 10^{20}

- **Temperature of bodies emitting the wavelength (K):**
 - 1 K
 - 100 K
 - 10,000 K
 - 10 Million K
Energy of Light

• Light also behaves like a collection of particles we call photons. Each photon carries a certain amount of energy depending on its wavelength/frequency.

\[E = hf = h \times \frac{c}{\lambda} \]

• The constant \(h \) is Plank's constant and it is equal to \(6.626 \times 10^{-34} \) [J*s]. Note that this is a REALLY small number. Single photons don't carry much energy.
Minute Essay

- Did you realize that radio waves, microwaves, and X-rays were all really just light? Are you surprised by how little of the electromagnetic spectrum you can see with your eyes?

- Note that assignment #2 has been moved so you will have next week to work on it.