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IDENTIFICATION AND CORRECTION OF A COMMON 

ERROR IN GENERAL ANNUITY CALCULATIONS 

ABSTRACT 

This article examines the conventional method of solving general annuity 

problems in which general annuities are converted into equivalent simple 

annuities, thereby enabling standard solution routines. It finds that the 

method errs when the frequency of payments exceeds the frequency of 

interest compounding and interest accrues linearly between conversion 

dates. It demonstrates, and advocates the adoption of, an alternative 

method, which achieves valid results in such circumstances. 

Keywords: general annuities. 

JEL code: G300 

INTRODUCTION 

We define a general annuity as an annuity in which the frequency of payments p 

differs from the frequency of interest compounding m. For our present purposes we 

assume that p and m are integers, of which either is a factor of the other, obtained 

from the same time interval; typically, although not necessarily, one year. Given 

these constraints, current techniques for solving general annuity problems typically 

follow a method pioneered by Hummell and Seebeck in the early 1940s. General 

annuities are converted into equivalent simple annuities, thereby enabling 

conventional solution routines [Hummell & Seebeck, 1948]. 
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In the preface to the first edition of Mathematics of Finance  the authors claim that 

their book “differs widely from existing texts in the treatment of general annuities” 

and that they have used their advocated method in classroom teaching over the 

preceding eight years with “gratifying success” [Hummell & Seebeck, 1948, v]. 

Bruck [1949, 487] comments favourably on the technique, which he describes as 

“avoiding a whole complex of complicated formulas”. 

In the preface to the second edition of Mathematics of Finance, Hummell and 

Seebeck [1956, v] claim that their approach to solving general annuity problems has 

been adopted by “several other writers”. They also profess a belief, “shared with 

many colleagues throughout the country”, that theirs is “the only teachable method of 

treating general annuities”. 

Hummell and Seebeck convert general annuities into simple annuities by 

calculating an equivalent payment per interest compounding period. Contemporary 

finance and financial mathematics textbooks [see, for example, Mathematics of 

Finance by Knox, Zima & Brown, 1999] may alternatively calculate an equivalent 

interest rate per payment period. Either way, the general annuity is converted into a 

simple annuity, thereby enabling conventional solution routines. 

Despite their provenance and unchallenged acceptance, both methods 

conventionally used to convert general annuities into simple annuities err when p > m 

and interest accrues linearly between conversion dates. This article explains that error 

and how to avoid it. 
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IDENTIFICATION, EXPLICATION & CORRECTION OF THE ERROR 

Given an ordinary general annuity and the constraints previously stated, Equations (1) 

and (2) ostensibly define an equivalent interest rate i' per payment period and an 

equivalent payment P' per interest compounding period. 

 i' = (1 + i)
m/p

 − 1 (1) 

 P' = 
'i

i
P  (2) 

 where i = interest rate per compounding period 

 P = payment. 

We can use either equivalency to convert general annuities into simple annuities 

and then use simple annuity solution methods to solve general annuity problems. For 

example, Equations (3A/B) and (4A/B) use respectively i' and P' to define the present 

and future values of an ordinary general annuity. 

 PV = P
'

11

i

i
n

 (3A) 

 FV = P
'

11

i

i
n

 (3B) 

 PV = P'
i

i
n

11
 (4A) 

 FV = P'
i

i
n

11
 (4B) 

 where n = number of interest compounding periods. 
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But if p > m and interest accrues linearly between conversion dates, Equations (1) 

and (2) are invalid. It follows that Equations (3A/B) and (4A/B) are also invalid 

unless i' and P' are correctly redefined. In this context it is more realistic to identify 

an equivalent payment per interest compounding period that an equivalent interest 

rate per payment period.
1
 We therefore use Equation (5) to provides a valid definition 

of P'. 

 P' = Pa
a

a
i

2

1
1  a > 1 (5)

2 

 where a = p/m = number of payments per interest conversion period.  

When p > m, Equation (2) gives a lower value of P' than Equation (5). Equation 

(6A) defines the relative difference . 

 = 1
11150

1 a
iai.a

i
 a > 1 (6A) 

The same relative difference applies to present and future values derived from the 

alternative definitions of P'. 

The following examples demonstrate how conventional approaches to solving 

general annuity problems err when p > m and interest accrues linearly between 

conversion dates. We use the same examples to demonstrate the advocated alternative 

approach, which correctly solves these problems.  

Example 1 

An ordinary general annuity comprises $3,000 paid quarterly for ten years at an 

annual interest rate of 8%, compounded annually. What is its future value? 
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Values of the relevant variables are therefore: 

 P = $3,000 

 i = 8% 

 m = 1 

 p = 4 

 a = p/m = 4/1 = 4 

 n = 10 

Equation (5) correctly defines the value of P' to be $12,360, as follows: 

 P' = Pa
a

a
i

2

1
1  a > 1 (5) 

 = $3,000 × 4 × 
8

14
08.01  

 = $3,000 × 4.12 

 = $12,360 

Table I confirms the foregoing figure by identifying and summing the interest 

earned by each payment between conversion dates.
3
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Table I: Summary of interest earned by four quarterly payments 

of $3,000 at an effective annual rate of 8% compounded annually 

Payment 

no. 
Amount 

Months of 

interest 

Interest earned 

Algebraic 

notation 
$ 

1 $3,000 9 Pi(3/a) 180 

2 $3,000 6 Pi(2/a) 120 

3 $3,000 3 Pi(1/a) 60 

4 $3,000 0  0 

Total interest earned 360 

Equations (1) and (2) erroneously define the value of P' as $12,354.23, which is 

approximately 0.0467% below the correct figure, as follows: 

 i' = (1 + i)
m/p

 − 1 (1) 

 = (1.08)
1/4

 − 1 

 = 1.942654691% 

 P' = 
'i

i
P  (2) 

 = $3,000 × 
10194265469.0

08.0
 

 = $12,354.23 

Table II confirms the foregoing figure by identifying and summing the interest 

incorrectly assumed to be earned by each payment between conversion dates. 
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Table II: Summary of interest earned by four quarterly payments 

of $3,000 at an effective annual rate of 8% compounded quarterly 

Payment 

no. 
Amount 

Months of 

interest 

Interest earned 

Algebraic 

notation 
$ 

1 $3,000 9 P[(1 + i)3 – 1] 178.26 

2 $3,000 6 P[(1 + i)2 – 1] 117.69 

3 $3,000 3 Pi 58.28 

4 $3,000 0  0 

Total interest earned 354.23 

Equation (6A) confirms a relative difference of −0.0467%, as follows: 

 = 1
11150

1 a
iai.a

i
 a > 1 (6A) 

 = 1
1081140404 41..

i
 

 = 1
101942654690124

080

..

.
 

 = −0.000467 

An error of less than 0.05% may seem insignificant, but present and future values 

derived from the competing methods exhibit the same relative error, the significance 

of which is thereby amplified. Using the present example, we can confirm that either 

of the conventional solution methods understates the future value by $83.61. 

 FV = P
'

11

i

i
n

 (3B) 
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 = $3,000
10194265469.0

108.1 10

 

 = $3,000 × 59.65676776 

 = $178,970.30 

 FV = P'
i

i
n

11
 (4B) 

 = $12,354.229
08.0

108.1 10

 

 = $12,354.229 × 14.48656247 

 = $178,970.30 

The correct equivalent annual payment of $12,360 correctly defines a future value 

of $179,053.91, as follows: 

  $12,360 × 14.48656247 

 = $179,053.91 

Financial Calculator Solution 

Financial calculators typically compound interest continuously when solving general 

annuity problems. This produces valid results when p < m, but not when p > m and 

interest accrues linearly between conversion dates. For example, in the current case 

the Sharp EL-738 calculator computes an incorrect future value of $178,970.30. 
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Example 2 

A loan of $1million is to be repaid in equal monthly instalments over four years. If 

the annual interest rate is 10% compounded semi-annually, how much is the monthly 

repayment? 

Conventional Solution 

 i' = (1 + i)
m/p

 − 1 (1) 

 = 1.05
2/12

 – 1 

 = 0.8164846% 

 PV = P
'

11

i

i
n

 (3A) 

   P = PV
n

i

i

11

'
 

 = $1,000,000 805.11

008164846.0
 

 = $1,000,000 × 0.025265595 

 = $25,265.60 

But if interest accrues linearly between conversion dates, monthly repayments of 

$25,265.60 over four years at an annual interest rate of 10% compounded semi-

annually will repay $193.64 more than $1million, as shown by Equation (7A) and 

confirmed in the Appendix to this article. 

 PV = P'
i

i
n

11
   (4A) 
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  = Pa
i

i

a

a
i

n
11

2

1
1  a > 1  (7A) 

 = $25,265.60 × 6 × 
05.0

05.11

12

16
5.01

8

 

 = $25,265.60 × 6.125 × 6.463212759 

 = $1,000,193.64   

In this example the conventional solution method has generated a positive error of 

0.019364%, as confirmed by Equation (6B). 

 = 1
1115.0

1

i

iaia
a

 a > 1 (6B) 

 = 1
05.0

105.116025.06 61

 

 = 1
05.0

050009682.0
 

 = 0.00019364 

Advocated Solution 

Equation (7B) correctly defines a monthly repayment of $25,260.70, as follows: 

 PV = Pa
i

i

a

a
i

n
11

2

1
1  a > 1  (7A) 

  P = PV
n

i

i

11
 ÷ a

a

a
i

2

1
1  a > 1 (7B) 

 = $1,000,000 805.11

05.0
 ÷ 6

12

5
05.01  
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 = $1,000,000 × 0.154721813 ÷ 6.125 

 = $25,260.70 

Equation (7A) and the Appendix confirm that monthly payments of $25,260.70 

over four years at an annual interest rate of 10% compounded semi-annually will 

repay exactly $1million; as follows: 

  PV = Pa
i

i

a

a
i

n
11

2

1
1  a > 1  (7A) 

  = $25,260.70 × 6 × 
12

16
05.01

05.0

05.11 8

 

 = $25,260.70 × 6.125 × 6.463212759 

 = $1,000,000 

Calculator Solution 

Applied to this example, the Sharp EL-738 calculator computes a monthly payment 

of $25,265.60, which is incorrect when interest accrues linearly between conversion 

dates. 

ERROR ANALYSIS 

Examples 1 and 2 confirm that, when p > m and interest accrues linearly between 

conversion dates, the conventional approach to solving general annuity problems 

understates the present value of a given payment stream and overstates the periodic 

amount required to repay a given loan  
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Figure 1 illustrates the relative magnitude of that understatement of present and 

future values over a range of interest rates and payments per interest conversion 

period. 

Figure 1. Percentage errors produced by conventional calculations of the present and future 

values of general annuities when p  > m and interest accrues linearly between conversion dates
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Figure 1 confirms that the periodic interest rate is the dominant factor in distorting 

present and future values when conventional solution techniques are applied to 

general annuity problems in which p > m and interest accrues linearly between 

conversion dates. Errors are invariant to the term of an annuity. They can be 

insignificant in individual cases, but acquire significance through aggregation. For 

example, a financial intermediary could gain a significant advantage when loan 

repayments are structured as general annuities in which p > m and periodic 

repayments are calculated in the conventional manner. 
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ADVOCACY FOR CHANGE 

Do these findings justify changing the way we currently conceptualise and teach the 

solving of general annuity problems when p > m? Before answering that question, we 

need to resolve a concomitant issue: how does interest actually accrue between 

conversion dates? My own research confirms that interest typically accrues linearly 

between conversion dates, as depicted in Table I, rather than exponentially, as 

depicted in Table II and subsumed in financial calculators. That being the case, the 

conventional approach to solving general annuity problems when p > m is founded 

upon a mistaken assumption. I therefore advocate a shift towards reality in our 

teaching of general annuities. Mistaken assumptions that become known pretences 

are indefensible bases for pedagogical methodologies, however well entrenched. 

SUMMARY & CONCLUSION 

This article demonstrates how the conventional approach to solving general annuity 

problems is flawed when the frequency of payments exceeds the frequency of interest 

compounding and interest accrues linearly between conversion dates. It identifies the 

source of error and proposes an alternative solution technique, which produces valid 

results. It finds that the relative errors generated by conventional solution methods are 

low (typically less than 0.2%), but contends that the use of flawed routines cannot be 

justified when more robust alternatives are available. 

*          *          *          *
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ENDNOTES

                                                 
1  When p > m and interest accrues linearly between conversion dates, we need to define i' as 

follows in order to validate Equations (3A/B): 

  i' = 

a

a
ia

i

2

1
1

 a > 1 (8) 

  where a = p/m 

 However, we should not recommend this approach, because, contrary to the implication of 

Equations (3A/B), interest is not compounded between conversion dates. Furthermore, the rate 

of interest per payment period is actually i/a. Equation (8) therefore defines a spurious value of 

i', which validates Equations (3A/B), but is unobservable.   

2  We can adapt Equation (5) to define P' for general annuities in which cash flows occur either at 

the start or in the middle of each payment period, as follows: 

  P' = Pa
a

a
i

2

1
1  a > 1 (5A) 

  P' = Pa(1 + 0.5i) a > 1 (5B) 

3
 Applied to the same example, Equations (5A) and (5B) define equivalent payments per interest 

conversion period of $12,600 and $12,480 respectively. If payments occur at the beginning of 

each quarter, the first, second, third and fourth payments attract interest of $240, $180, $120 and 

$60 respectively. Similarly, payments made in the middle of each quarter earn interest of $210, 

$150, $90 and $30 per successive payment. A continuous payment stream achieves the same 

outcome. 
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APPENDIX: EXAMPLES OF LOAN REPAYMENT SCHEDULES 

APR 10.00% m 2 p 12 EAR 10.25%

PMT Cl. bal. PMT Interest Cl. Bal. PMT Interest Cl. Bal.

0 -1,000,000.00 -1,000,193.64 -1,000,000.00 

1 25,265.60 -982,899.25 25,265.60 -8,334.95 -974,928.04 25,260.70 -8,333.33 -974,739.30 

2 25,265.60 -965,658.88 25,265.60 -8,124.40 -949,662.45 25,260.70 -8,122.83 -949,478.59 

3 25,265.60 -948,277.74 25,265.60 -7,913.85 -924,396.85 25,260.70 -7,912.32 -924,217.89 

4 25,265.60 -930,754.68 25,265.60 -7,703.31 -899,131.26 25,260.70 -7,701.82 -898,957.18 

5 25,265.60 -913,088.55 25,265.60 -7,492.76 -873,865.66 25,260.70 -7,491.31 -873,696.48 

6 25,265.60 -895,278.19 25,265.60 -7,282.21 -895,451.55 25,260.70 -7,280.80 -895,278.19 

7 25,265.60 -877,322.40 25,265.60 -7,462.10 -870,185.95 25,260.70 -7,460.65 -870,017.48 

8 25,265.60 -859,220.01 25,265.60 -7,251.55 -844,920.36 25,260.70 -7,250.15 -844,756.78 

9 25,265.60 -840,969.81 25,265.60 -7,041.00 -819,654.76 25,260.70 -7,039.64 -819,496.07 

10 25,265.60 -822,570.60 25,265.60 -6,830.46 -794,389.16 25,260.70 -6,829.13 -794,235.37 

11 25,265.60 -804,021.17 25,265.60 -6,619.91 -769,123.57 25,260.70 -6,618.63 -768,974.66 

12 25,265.60 -785,320.28 25,265.60 -6,409.36 -785,472.35 25,260.70 -6,408.12 -785,320.28 

13 25,265.60 -766,466.71 25,265.60 -6,545.60 -760,206.76 25,260.70 -6,544.34 -760,059.58 

14 25,265.60 -747,459.19 25,265.60 -6,335.06 -734,941.16 25,260.70 -6,333.83 -734,798.87 

15 25,265.60 -728,296.49 25,265.60 -6,124.51 -709,675.56 25,260.70 -6,123.32 -709,538.17 

16 25,265.60 -708,977.32 25,265.60 -5,913.96 -684,409.97 25,260.70 -5,912.82 -684,277.46 

17 25,265.60 -689,500.41 25,265.60 -5,703.42 -659,144.37 25,260.70 -5,702.31 -659,016.76 

18 25,265.60 -669,864.48 25,265.60 -5,492.87 -669,994.19 25,260.70 -5,491.81 -669,864.48 

19 25,265.60 -650,068.23 25,265.60 -5,583.28 -644,728.60 25,260.70 -5,582.20 -644,603.78 

20 25,265.60 -630,110.34 25,265.60 -5,372.74 -619,463.00 25,260.70 -5,371.70 -619,343.07 

21 25,265.60 -609,989.50 25,265.60 -5,162.19 -594,197.41 25,260.70 -5,161.19 -594,082.37 

22 25,265.60 -589,704.37 25,265.60 -4,951.65 -568,931.81 25,260.70 -4,950.69 -568,821.66 

23 25,265.60 -569,253.62 25,265.60 -4,741.10 -543,666.22 25,260.70 -4,740.18 -543,560.96 

24 25,265.60 -548,635.89 25,265.60 -4,530.55 -548,742.13 25,260.70 -4,529.67 -548,635.89 

25 25,265.60 -527,849.82 25,265.60 -4,572.85 -523,476.53 25,260.70 -4,571.97 -523,375.19 

26 25,265.60 -506,894.04 25,265.60 -4,362.30 -498,210.94 25,260.70 -4,361.46 -498,114.48 

27 25,265.60 -485,767.16 25,265.60 -4,151.76 -472,945.34 25,260.70 -4,150.95 -472,853.78 

28 25,265.60 -464,467.78 25,265.60 -3,941.21 -447,679.75 25,260.70 -3,940.45 -447,593.07 

29 25,265.60 -442,994.49 25,265.60 -3,730.66 -422,414.15 25,260.70 -3,729.94 -422,332.37 

30 25,265.60 -421,345.87 25,265.60 -3,520.12 -421,427.46 25,260.70 -3,519.44 -421,345.87 

31 25,265.60 -399,520.50 25,265.60 -3,511.90 -396,161.87 25,260.70 -3,511.22 -396,085.17 

32 25,265.60 -377,516.93 25,265.60 -3,301.35 -370,896.27 25,260.70 -3,300.71 -370,824.46 

33 25,265.60 -355,333.70 25,265.60 -3,090.80 -345,630.67 25,260.70 -3,090.20 -345,563.76 

34 25,265.60 -332,969.35 25,265.60 -2,880.26 -320,365.08 25,260.70 -2,879.70 -320,303.06 

35 25,265.60 -310,422.40 25,265.60 -2,669.71 -295,099.48 25,260.70 -2,669.19 -295,042.35 

36 25,265.60 -287,691.35 25,265.60 -2,459.16 -287,747.06 25,260.70 -2,458.69 -287,691.35 

37 25,265.60 -264,774.71 25,265.60 -2,397.89 -262,481.47 25,260.70 -2,397.43 -262,430.65 

38 25,265.60 -241,670.96 25,265.60 -2,187.35 -237,215.87 25,260.70 -2,186.92 -237,169.94 

39 25,265.60 -218,378.57 25,265.60 -1,976.80 -211,950.27 25,260.70 -1,976.42 -211,909.24 

40 25,265.60 -194,896.00 25,265.60 -1,766.25 -186,684.68 25,260.70 -1,765.91 -186,648.54 

41 25,265.60 -171,221.70 25,265.60 -1,555.71 -161,419.08 25,260.70 -1,555.40 -161,387.83 

42 25,265.60 -147,354.11 25,265.60 -1,345.16 -147,382.64 25,260.70 -1,344.90 -147,354.11 

43 25,265.60 -123,291.64 25,265.60 -1,228.19 -122,117.04 25,260.70 -1,227.95 -122,093.40 

44 25,265.60 -99,032.70 25,265.60 -1,017.64 -96,851.45 25,260.70 -1,017.45 -96,832.70 

45 25,265.60 -74,575.69 25,265.60 -807.10 -71,585.85 25,260.70 -806.94 -71,571.99 

46 25,265.60 -49,918.99 25,265.60 -596.55 -46,320.26 25,260.70 -596.43 -46,311.29 

47 25,265.60 -25,060.98 25,265.60 -386.00 -21,054.66 25,260.70 -385.93 -21,050.59 

48 25,265.60 0.00 25,265.60 -175.46 0.00 25,260.70 -175.42 0.00

Assuming continuous 

compounding
Assuming linear accrual of interest between conversion dates
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