Administrivia

- None.

Minute Essay From Last Lecture

- If we want to have \( \{ R \} x := x + 2 \{ x < 16 \} \), what should \( R \) be?

Notice: As with logic proofs, one point of this is to replace maybe-difficult thinking with allegedly-more-reliable symbol manipulation.
Specifications and Correctness (Review)

- If we have a program $P$, and a specification consisting of precondition $Q$ and postcondition $R$, we write

\[
\{ Q \} \; P \; \{ R \}
\]

to mean that if we start in a state where $Q$ is true and run $P$, we end in a state where $R$ is true. (Also, $P$ terminates — no “infinite” loops.)

- Example:

\[
\{ x \geq 0 \} \; y := \sqrt{x} ; \; \{ y \geq 0 \land y^2 = x \}
\]

Sequential Composition (Review)

- For two programs $P_1$ and $P_2$

  If we have $\{ Q \} \; P_1 \; \{ R_1 \}$
  and $\{ R_1 \} \; P_2 \; \{ R \}$
  then we can derive $\{ Q \} \; P_1 ; P_2 \; \{ R \}$
Assignment (Review)

- We can derive \( \{ R_1 \} \ x := e \ \{ R_2 \} \)
  
  where \( R_1 \) is \( R_2 \) with all occurrences of \( x \) replaced by \( e \).

Strengthening Preconditions, Weakening Postconditions (Review)

- If we have \( \{ Q \} \ P \ \{ R \} \)
  
  then for “stronger” precondition \( Q_1 \) (i.e., \( Q_1 \rightarrow Q \))
  
  we can derive \( \{ Q_1 \} \ P \ \{ R \} \)
  
  and for “weaker” postcondition \( R_1 \) (i.e., \( R \rightarrow R_1 \))
  
  we can derive \( \{ Q \} \ P \ \{ R_1 \} \)
Conditionals (Review)

- If we have program $S$ of the form
  
  $$
  \text{if } B \text{ then } P_1 \text{ else } P_2 \text{ end if}
  $$

  and we have $f(Q \land B) \rightarrow P_1 \{ R \}$
  and $f(Q \land B') \rightarrow P_2 \{ R \}$

  then we can derive $f(Q) \rightarrow S \{ R \}$

Example

- Try an example — silly program to compute absolute value (call it $S$):
  
  $$
  \text{if } x \geq 0 \text{ then } y := x \\
  \text{else } y := -x \\
  \text{end if}
  $$

  We want to show that $\{ \text{true} \} \ S \{ y := |x| \}$

- We can do this using rules for conditionals and assignment …
Examples of Less Formal Use

- Rule for sequential composition leads to “programming with assertions” — at “interesting” points in the program, use to document/check what you know to be true at that point. Example: Program that first sorts an array, then repeatedly performs binary search. Could use assertion to document that array is sorted.

- Rule for conditionals can also be used informally: Code for “if” branch only has to work if condition is true; code for “else” branch only has to work if condition is false. Example: Function to compute root(s) of quadratic equation.

Semi-Intermezzo: A Puzzle

- Suppose you have a jar containing white marbles and black marbles, plus an unlimited supply of extra black marbles, and you do the following:
  1. Select two marbles.
  2. If they’re the same color, discard them both and put a black marble in the jar. If they’re different colors, discard the black one and put the white one back in the jar.
  3. If there are at least two marbles in the jar, repeat.

- Does this end? If it does, what if anything can you say about the marble(s) in the jar when it ends?

- (Similar ideas behind “metric” for loop termination and “invariant” for loop correctness.)
Program Correctness and Loops

- We’ll write loops in this form
  
  ```
  while \( B \) do
  \( P \)
  end while
  ```

  After the loop terminates (assuming it does), what do we know about \( B \)? True or false?

- We also need the notion of a “loop invariant” — a predicate that, if true before we execute the loop body is true again after. More formally, \( Q \) is an invariant for the above loop if

  \[
  \{ Q \land B \} \; P \; \{ Q \}
  \]

- Now we can state the rule for loops . . .

---

Program Correctness and Loops, Continued

- Our rule for loops is: If we have program \( P_1 \) as in the previous slide, and loop invariant \( Q \) for \( P_1 \), we can derive

  \[
  \{ Q \} \; P_1 \; \{ Q \land B' \}
  \]

- We could prove this using induction (on the number of trips through the loop).
Minute Essay

- Given program $P$ as follows:
  
  ```
  \textbf{if} \ x \geq 0 \ \textbf{then} \\
  \quad x := x * 2 \\
  \textbf{else} \\
  \quad x := -x \\
  \textbf{end if}
  ```

  We can show that $f \ x \neq 0 \ g$ $P$ $f \ x \neq 0 \ g$ by showing that two other Hoare triples are true — what are they? (No need to say why they’re true, just what they are.)

- Reminder: Homework 3 was due Wednesday. Turn in today if you didn’t drop it off Wednesday.

Minute Essay Answer

- The two triples we need to show true are these:
  
  $$\begin{align*}
  &\{ (x \neq 0) \land (x \geq 0) \} \ x := x * 2 \quad \{ x \neq 0 \} \\
  &\{ (x \neq 0) \land (x \geq 0) \} \ x := -x \quad \{ x \neq 0 \}
  \end{align*}$$