Administrivia

- Reminder: Homework 4 due today.
- Homework 5 on Web, due Monday after spring break.
- Midterm rescheduled for Wednesday after spring break. This means we need a firm deadline for Homework 5 (so I can make a solution available). Monday at 5pm, or Tuesday at noon?
- How many people will still be in town Friday at class time?

Solving Recurrence Relations, Review

- Idea is to come up with “closed-form” (non-recursive) equivalent of recursive definition of sequence. Two approaches:
 - “Expand, guess, verify”.
 - Formula (equation (8) on p. 134) — but works for first-order linear recurrence relations only.
- One more example — section 2.4 problem 80.
Often there's more than one way to solve a given problem, i.e., more than one algorithm. Which one is “best”? Depends on what “best” means. If we mean “fastest”:

- A useful measure of approximate execution time is worst-case (or sometimes average-case) execution time expressed as a function of “problem size” (e.g., for operations on array, size of array) — “time complexity” of algorithm.
 (Another measure is “space complexity”.)

- Customary to skip over housekeeping operations and count only “important stuff” — arithmetic operations, comparisons, etc.

Also customary to “round off” the estimate to an “order of magnitude” — for a problem of size N, we say an algorithm is $O(f(N))$ if execution time is $f(N)$.

Example — computing a sum of N numbers. How many additions?

Example — sequential search of array of size N. How many comparisons (worst case)?

Example — binary search of sorted array of size N. How many comparisons (worst case)?
Analysis of Algorithms, Longer Example

- Look at several algorithms for computing a^b, for b a positive integer. First version:

  ```c++
  double exp(double a, int b) {
    double temp = a;
    for (int i = 1; i < b; ++i)
      temp *= a;
    return temp;
  }
  ```

 First, does this work? Yes, and notice we could argue that it does using a loop invariant (what?).

- How many multiplications needed?

Analysis of Algorithms, Longer Example Continued

- We could also express this recursively:

  ```c++
  double exp(double a, int b) {
    if (b == 1)
      return a;
    else
      return a * exp(a, b-1);
  }
  ```

 Does this work? (Yes. Why?)

- How to figure out how many multiplications? Define and solve a recurrence relation.
Analysis of Algorithms, Longer Example Continued

- We could also express this recursively another way:

  ```java
  double exp(double a, int b) {
      if (b == 1)
          return a;
      else {
          double temp = exp(a, b/2);
          if (b % 2 == 0) return temp * temp;
          else return temp * temp * a;
      }
  }
  ```

 Does this work? (Yes. Why?)

- How to figure out how many multiplications? Define and solve a recurrence relation. (To be continued.)

Minute Essay

- Given a simpler recurrence relation:

 \[
 \begin{align*}
 P(1) &= 500 \\
 P(n) &= P(n-1) \times 1.1, \quad \text{for } n > 1
 \end{align*}
 \]

 What is a closed-form solution? (Okay to guess.)
Minute Essay Answer

- $P(n) = 500 \times (1.1)^{(n-1)}$