Administrivia

- Homework 6 (on chapter 3) on Web. Due next Friday.
- Reminder: Quiz 4 Friday.

Counting, Recap/Review

- Multiplication principle — if there are N ways to do one thing, and M ways to do another, there are $N \times M$ ways to do first one and then the other.
- Addition principle — if there are N ways to do one thing, and M ways to do another, there are $N + M$ ways to do one or another.
- Can combine these in interesting and effective ways. Recall examples from last time.
- Decision trees also sometimes useful. Recall example from earlier class (sequences of heads and tails).
Principle of Inclusion/Exclusion

- Motivating(?) example:
 You take a poll of how many people support propositions A and B. You find that 10 of them support A, 20 support B, and 5 support both A and B. How many support either A or B?

- Using set notation, with $|S|$ meaning the number of elements in S:
 Given $|A| = 10$, $|B| = 20$, and $|A \cap B| = 5$,
 what is $|A \cup B|$?

- We can use the addition principle to derive
 $$|A \cup B| = |A| + |B| - |A \cap B|$$

 (Intuitive idea is that we count everything in both sets, and in doing that we count some things twice, so we must correct.)

Principle of Inclusion/Exclusion, Continued

- What if there were three propositions/sets? Can we derive a rule?
- Sure ... (next slide).
Principle of Inclusion/Exclusion, Continued

- Rule for three sets is
 \[|A \cup B \cup C| = |A| + |B| + |C| - |B \cap C| - |A \cap B| - |A \cap C| + |A \cap B \cap C|\]

- Intuitive idea:
 Count all the A’s, all the B’s, all the C’s.
 A&B’s, B&C’s, and A&C’s have been counted twice; A&B&C’s have been counted three times.
 Subtract counts of A&B’s, B&C’s, and A&C’s; now A&B&C’s have been counted zero times.
 Add count of A&B&C’s.

- Formally, derive from rule for two sets and rules for set operations.

Principle of Inclusion/Exclusion, Continued

- There’s a pattern, captured in general form of rule (p. 205). (In another textbook — “A Ghastly Formula”.)

- For more interesting examples (most beyond the scope of this course, Google “inclusion/exclusion principle”).
Pigeonhole Principle

- Idea is that if you have \(n \) items placed in \(k \) bins, and \(n > k \), then at least one bin has more than one item.
- Converse is that if no bin contains more than one item, \(n \) can be at most — what?
- More general version — if you have \(k \) bins and more than \(mk \) items, there’s at least one bin with more than \(m \) items.
- Example — section 3.3 problem 17.

Pigeonhole Principle, Continued

- Another example (discovered on a Web page at Stanford):
 If \(A \) is a set of 10 integers in the range 1 to 100, show that there are at least two distinct and disjoint subsets of \(A \) that have the same sum.
 (Idea is to count number of possible subsets and also figure out range of potential sums. If more subsets than possible sums . . .)
Minute Essay

- If you have six integers in the range from 1 to 10 inclusive, can you be sure that at least two of them have an odd sum? (E.g., it's true for the integers 1 through 6, since 1 plus 2 is odd.)

Minute Essay Answer

- Yes — there are 5 even numbers in the range 1 through 10 and 5 odd numbers, so if you pick 6 numbers you'll have at least one of each, guaranteeing a pair with an odd sum.