Opening Discussion

- What did we talk about last class?
- How did the assignment go?
Once biologists have sequences of DNA or RNA from different species, they want to be able to compare them.

This comparison can't be a simple equality comparison. The desired comparison is one of homology, could one have evolved from the other or could they have shared a common ancestor.

The details of how these comparisons are done is a bit beyond the scope of this class. However, we can speculate on it a bit to see what actually matters.
A standard problem in computer science that can give us some insight into how sequence comparisons work is the longest common subsequence problem.

You are given two strings and are asked what is the longest string that appears in proper order in both of the strings.

Let's look at some examples and consider different ways that we might go about trying to solve this problem.
The most intuitive solution to the longest common subsequence problem is a recursive one. First we can build up a recurrence relationship in mathematical terms.

Once we have it in this form we can convert it into code fairly easily.

\[
lcs(m, n) = \begin{cases}
0 & \text{if } m = 0 \lor n = 0 \\
\ lcs(m-1, n-1) + 1 & \text{if } s1(m) = s2(n) \\
\max(lcs(m-1, n), lcs(m, n-1)) & \text{otherwise}
\end{cases}
\]
What is the order of the code we just created? Will we be able to apply this to DNA sequences with many thousands of base pairs?
Quiz #5 will be next class.