i

PALM |
COMPUTING
PLATFORM

Palm OS® SDK
Reference

Document Number 3003-002
Print Date 3/00

CONTRIBUTORS

Written by Christopher Bey, Elly Freeman, Dwayne Mulder, and Jean Ostrem

Production by <dot >PS document production services

Engineering contributions by David Fedor, Roger Flores, Steve Lemke, Bob Ebert, Ken Krugler, Bruce
Thompson, Jesse Donaldson, Tim Wiegman, Gavin Peacock, Ryan Robertson, and Waddah Kudaimi

Copyright © 1996 - 2000, Palm, Inc. All rights reserved. This documentation may be printed and copied
solely for use in developing products for Palm OS software. In addition, two (2) copies of this documenta-
tion may be made for archival and backup purposes. Except for the foregoing, no part of this documenta-
tion may be reproduced or transmitted in any form or by any means or used to make any derivative work
(such as translation, transformation or adaptation) without express written consent from Palm, Inc.

Palm, Inc. reserves the right to revise this documentation and to make changes in content from time to
time without obligation on the part of Palm, Inc. to provide notification of such revision or changes.
PALM, INC. MAKES NO REPRESENTATIONS OR WARRANTIES THAT THE DOCUMENTATION IS
FREE OF ERRORS OR THAT THE DOCUMENTATION IS SUITABLE FOR YOUR USE. THE DOCUMEN-
TATION IS PROVIDED ON AN “ASIS” BASIS. PALM, INC. MAKES NO WARRANTIES, TERMS OR
CONDITIONS, EXPRESS OR IMPLIED, EITHER IN FACT OR BY OPERATION OF LAW, STATUTORY
OR OTHERWISE, INCLUDING WARRANTIES, TERMS, OR CONDITIONS OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND SATISFACTORY QUALITY.

TO THE FULL EXTENT ALLOWED BY LAW, PALM, INC. ALSO EXCLUDES FOR ITSELF AND ITS SUP-
PLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT (INCLUDING NEGLIGENCE),
FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE DAMAGES OF
ANY KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF BUSINESS, LOSS OF INFORMATION
OR DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF OR IN CONNECTION WITH THIS DOCU-
MENTATION, EVEN IF PALM, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Palm Computing, Palm OS, Graffiti, HotSync, and Palm Modem are registered trademarks, and Palm III,
Palm Ille, Palm IIIx, Palm V, Palm Vx, Palm VII, Palm, More connected., Simply Palm, the Palm Comput-
ing platform logo, Palm III logo, Palm IlIx logo, Palm V logo, and HotSync logo are trademarks of Palm,
Inc. or its subsidiaries. All other product and brand names may be trademarks or registered trademarks of
their respective owners.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISK, THE OTHER SOFTWARE AND
DOCUMENTATION ON THE COMPACT DISK ARE SUBJECT TO THE LICENSE AGREEMENT AC-
COMPANYING THE COMPACT DISK.

Palm OS SDK Reference Palm, Inc.

Document Number 3003-002 5400 Bayfront Plaza

March 16, 2000 Santa Clara, CA 95052
USA

www.palm.com/devzone

Document Number 3003-002

Table of Contents

About This Document 49
Palm OS SDK Documentation 49
What This Volume Contains 49
Conventions Used in ThisGuide 50

Part I: User Interface

1 Application Launch Codes 53
LaunchCodes 55
sysAppLaunchCmdAddRecord 55
sysAppLaunchCmdAlarmTriggered 58
sysAppLaunchCmdCountryChange 59
sysAppLaunchCmdDisplayAlarm 59
sysAppLaunchCmdExgAskUser 60
sysAppLaunchCmdExgReceiveData 62
sysAppLaunchCmdFind 63
sysAppLaunchCmdGoto 65
sysAppLaunchCmdGoToURL 66
sysAppLaunchCmdInitDatabase 66
sysAppLaunchCmdLookup 67
sysApplLaunchCmdNotify 68
sysAppLaunchCmdOpenDB. 68
sysAppLaunchCmdPanelCalledFromApp. 69
sysAppLaunchCmdReturnFromPanel. 69
sysAppLaunchCmdSaveData 70
sysAppLaunchCmdSyncNotify 70
sysAppLaunchCmdSystemLock 71
sysAppLaunchCmdSystemReset 71
sysAppLaunchCmdTimeChange 72
sysAppLaunchCmdURLParams 72
LaunchFlags. 73

Palm OS SDK Reference 3

2 Palm OS Resources 75

System Resources. 4
The ‘code’ #1 Resource 75
The ‘code’” #0 and ‘data’ #0 Resources 76
The ‘pref” #0 Resource 76

Resource Types. 4
Catalog Resources 77
Project Resources.78

AlertResource e e e 079

Button Resource L. 81

Check Box Resource.283

Field Resource P -

Form Resource 86

Form Bitmap Resource 89

GadgetResourceo 90

Graffiti Shift Indicator Resource 91

Label Resource. X |

List Resource. N 2

Menus and MenuBars 9%
Popup Trigger Resource9

Push Button Resource. 97
Repeating Button Resource. 99
Scroll Bar Resource 100
Selector Trigger Resource 101
String Resource.00 103
Table Resource O (0
3 Palm OS Events 105
Event Data Structures 106
eventsEnum.o L0 L. 106
Eventlype. e (04
EventPtr T (0
Event Reference 109
appStopEvent o000 0L . 109
ctlEnterEvent P (0

4 Palm OS SDK Reference

ctlExitEvent
ctlRepeatEvent.

ctlSelectEvent . .

daySelectEvent.

fldChangedEvent . . .
fldEnterEvent

fldHeightChangedEvent

frmCloseEvent.

frmGadgetEnterEvent

frmGadgetMiscEvent . .

frmGotoEvent
frmLoadEvent
frmOpenEvent.
frmSaveEvent
frmTitleEnterEvent . . .

frmTitleSelectEvent.

frmUpdateEvent
inetSockReadyEvent . .
inetSockStatusChangeEvent
keyDownEvent

IstEnterEvent . .

IstExitEvent

IstSelectEvent . .

menuCloseEvent. . . .
menuCmdBarOpenEvent .

menuEvent
menuOpenEvent. . . .

nilEvent.
penDownEvent
penMoveEvent.
penUpEvent.
popSelectEvent
sclEnterEvent
sclExitEvent
sclRepeatEvent.

tblEnterEvent . .

Palm OS SDK Reference 5

tblExitEvent 131

tblSelectEvent o000 132
winEnterEvent.00 000000 133
winExitEvent00 00000000 133

4 Categories 135
Category Data Structures 135
AppInfolypeo 135
Category Constants 136
Category Functions 137
CategoryCreateList. 137
CategoryCreateListV10 139
CategoryEdit 139
CategoryEditv20. 140
CategoryEditV10. 141
CategoryFind 142
CategoryFreeList. 142
CategoryFreeListV10 143
CategoryGetName 144
CategoryGetNext. 144
Categorylnitialize 145
CategorySelect. 146
CategorySelectV10 147
CategorySetName 148
CategorySetTriggerLabel 149
CategoryTruncateName. 149

5 Clipboard 151
Clipboard Data Structures 151
ClipboardFormatType 151
Clipboard Functions 152
ClipboardAddItem 152
ClipboardAppendItem 153
ClipboardGetltem 154

6 Palm OS SDK Reference

6 Controls 155

Control Data Structures 155
ButtonFrameType 155
ControlAttrType L. 156
ControlPtr.0 157
ControlStyleType. 157
ControlType. L. 159
GraphicControlType 160
SliderControlType 162

Control Resources 164

Control Functions. 165
CtlDrawControl 165
CtlEnabled 165
CtlEraseControl 166
CtlGetLabel 166
CtlGetSliderValues 167
CtlGetValue 168
CtlHandleEvent 168
CtlHideControl 169
CtlHitControl 170
CtINewControl 170
CtINewGraphicControl 172
CtiINewSliderControl 174
CtlSetEnabled 175
CtlSetGraphics.o L. 176
CtlSetLabel 177
CtlSetSliderValues 178
CtlSetUsable. 179
CtlSetvalue 179
CtlShowControl 180
CtlValidatePointer 181

7 Date and Time Selector 183

Date and Time Selections Data Structures 183
SelectDayType. 183
DaySelectorType 183

Palm OS SDK Reference 7

HMSTime 184

Date and Time Selection Functions 184
DayHandleEvent. 184
SelectDay 185
SelectDayV10o 186
SelectOneTime. 186
SelectTime 187
SelectTimeV33. 188

8 Fields 191

Field Data Structures 191
FieldAttrType 191
FieldPtr. 193
FieldType0 194
LinelnfoPtr ... 197
LinelnfoType 198

Field Resources. 198

Field Functions. 199
FldCalcFieldHeight. 199
FldCompactText 199
FldCopy oo 200
FIdCuto 201
FldDelete 201
FldDirty00 202
FldDrawField 203
FldEraseField 203
FldFreeMemory 204
FldGetAttributes. 205
FldGetBounds 205
FldGetFont ... 206
FldGetInsPtPosition 206
FldGetMaxChars. 207
FldGetNumberOfBlankLines 207
FldGetScrollPosition 208
FldGetScrollValues 208
FldGetSelection 209

8 Palm OS SDK Reference

FldGetTextAllocatedSize 210

FldGetTextHandle 210
FldGetTextHeight 212
FldGetTextLength 212
FldGetTextPtr 212
FldGetVisibleLines 213
FldGrabFocus 213
FldHandleEvent 214
FldInsert 215
FldMakeFullyVisible 216
FldNewField 217
FldPaste 219
FldRecalculateField. 219
FldReleaseFocus 220
FldScrollable. 221
FldScrollField .. 221
FldSendChangeNotification 222
FldSendHeightChangeNotification 223
FldSetAttributes 223
FldSetBounds 224
FldSetDirty L. 225
FldSetFont 225
FldSetInsertionPoint 226
FldSetInsPtPosition. 226
FldSetMaxChars 227
FldSetScrollPosition 228
FldSetSelection. 228
FldSetText. 229
FldSetTextAllocatedSize. 231
FldSetTextHandle 231
FldSetTextPtr 233
FldSetUsable 234
FlIdUndo 234
FldWordWrap 235

Palm OS SDK Reference 9

10 Forms

Find Functions C e e e . 237
FindDrawHeader 237
FindGetLineBounds i V4
FindSaveMatch 238
FindStrInStr 239

241

Form Data Structures 241
FormAttrType Coe . 241
FormBitmapType. 242
FormFrameType 243
FormGadgetAttrType. . C e e e e oo 243
FormGadgetType. 244
FormLabelType 245
FormLineType C e e e oo 2406
FormObjAttrType 246
FormObjectKind 247
FormObjectType 248
FormObjListType. 249
FormPopuplype. 250
FormPtr. 250
FormRectangleType i) |
FormTitleType 251
FormType. 251
FrmGraffitiStateType 253

Form Constants 253

Form Resources 254

Form Functions.00 255
FrmAlert 255
FrmCloseAllForms25
FrmCopyLabel. 256
FrmCopyTitle 257
FrmCustomAlert. 257
FrmCustomResponseAlert 258
FrmDeleteForm 259

10 Palm OS SDK Reference

FrmDispatchEvent 260
FrmDoDialog 260
FrmDrawForm.261

FrmEraseForm.262
FrmGetActiveForm. 262
FrmGetActiveFormID.262
FrmGetControlGroupSelection. 263
FrmGetControlValue 263
FrmGetFirstForm. 264
FrmGetFocus265
FrmGetFormBounds 265
FrmGetFormId.266
FrmGetFormPtr 266
FrmGetGadgetData. 266
FrmGetLabel267
FrmGetNumberOfObjects 268
FrmGetObjectBounds.268
FrmGetObjectld 269
FrmGetObjectIndex. 269
FrmGetObjectPosition270
FrmGetObjectPtr. 270
FrmGetObjectType 271
FrmGetTitle27
FrmGetWindowHandle. 272
FrmGotoForm 272
FrmHandleEvent. 273
FrmHelp C e e e e o276
FrmHideObject 277
FrmInitForm.277
FrmNewBitmap 278
FrmNewForm279
FrmNewGadget 280
FrmNewGsi28
FrmNewLabel 282
FrmPointInTitle 283

Palm OS SDK Reference 11

FrmPopupForm

FrmRemoveObject
FrmRestoreActiveState
FrmReturnToForm
FrmSaveActiveState

FrmSaveAllForms . . .

FrmSetActiveForm
FrmSetCategoryLabel.

FrmSetControlGroupSelection .

FrmSetControlValue
FrmSetEventHandler
FrmSetFocus.

FrmSetGadgetData
FrmSetGadgetHandler

FrmSetMenu.
FrmSetObjectBounds
FrmSetObjectPosition.
FrmSetTitle

FrmShowObject

FrmUpdateForm
FrmUpdateScrollers

FrmValidatePtr.

FrmVisible
Application-Defined Functions.
FormCheckResponseFunc.

FormEventHandler.

FormGadgetHandler . .

11 Graffiti Shift
GraffitiShift Functions.

GsiEnable.
GsiEnabled L.
Gsilnitialize

GsiSetLocation.

GsiSetShiftState

12 Palm OS SDK Reference

12 Insertion Point 307
Insertion Point Functions 307
InsPtEnable 307
InsPtEnabled 308
InsPtGetHeight 308
InsPtGetLocation. 308
InsPtSetHeight.30
InsPtSetLocation 309
13 Lists 311
List Data Structures. 311
ListAttrlype. R v
Listlype312
List Resources 313
List Functions314
LstDrawList. G 1
LstEraselist 314
LstGetNumberOfltems 315
LstGetSelection 315
LstGetSelectionText. 315
LstGetVisibleltems 316
LstHandleEvent 316
LstMakeltemVisible 317
LstNewlist 318
LstPopupList 319
LstScrollList ... 319
LstSetDrawFunction 320
LstSetHeight.32
LstSetListChoices 321

LstSetPosition321
LstSetSelection.32
LstSetTopltem 322

Application-Defined Function 323

Palm OS SDK Reference 13

14 Menus 325

Menu Data Structures325
MenuBarAttrlypeo 325
MenuCmdBarButtonType. 326
MenuCmdBarResultType 327
MenuCmdBarType. 328
MenuBarPtr.o L0 330
MenuBarType I X L0
MenultemType. S . 2332
MenuPullDownPtr 333
MenuPullDownType 333

Menu Constants G 1 7

Menu Resources334

Menu Functions 335
MenuAddltem. 335
MenuCmdBarAddButton 336
MenuCmdBarDisplay. 339
MenuCmdBarGetButtonData 340
MenuDispose 341
MenuDrawMenu.342
MenuEraseStatus.343
MenuGetActiveMenu. 344
MenuHandleEvent.346
MenuHideltem 348
Menulnit G 1 T
MenuSetActiveMenu 349
MenuSetActiveMenuRscID 349
MenuShowltem 350

15 Private Records 351

Private Record Data Structures 351
privateRecordViewEnum 351

Private Record Functions 352
SecSelectViewStatus 352
SecVerifyPWo 353

14 Palm OS SDK Reference

16 Progress Manager 355

Progress Manager Functions 355
PrgHandleEvent 355
PrgStartDialog. 356
PrgStartDialogV31 357
PrgStopDialog L. 358
PrgUpdateDialog. 359
PrgUserCancel. 360

Application-Defined Functions. 361
PrgCallbackFunc. 361

17 Scroll Bars 365

Scroll Bar Data Structures 365
ScrollBarAttrType 365
ScrollBarPtro 366
ScrollBarType 366

Scroll Bar Resources. L. 368

Scroll Bar Functions.00 L. 368
SclDrawScrollBar.o oL 368
SclGetScrollBaro oL 369
SclHandleEvent 370
SclSetScrollBar.00 371

18 System Dialogs 373

System Dialog Functions 373
SysAppLauncherDialog. 373
SysFatalAlert 374
SysGraffitiReferenceDialog 374

19 Tables 375

Table Data Structures 375
TableAttrType 375
TableColumnAttrType 376
TableltemPtr. 378
TableltemType 378
TablePtr.o 382

Palm OS SDK Reference 15

TableRowAttrType 383

TableType 384
Table Constants 387
Table Resource 387
Table Functions. 388

TblDrawTable 388

TblEditing.o 389

TblEraseTable 390

TblFindRowData. 390

TblFindRowlID. 391

TblGetBounds .. 391

TblGetColumnSpacing 392

TblGetColumnWidth 392

TblGetCurrentField. 393

TblGetltemBounds 393

TblGetltemFont 394

TblGetltemInt .. 394

TblGetltemPtr 395

TblGetLastUsableRow 396

TblGetNumberOfRows 396

TblGetRowData 397

TblGetRowHeight 397

TblGetRowlID 398

TblGetSelection 398

TblGrabFocus 399

TblHandleEvent 400

TblHasScrollBar 401

TbllnsertRow 402

TblMarkRowInvalid 402

TblMarkTableInvalid 403

TblRedrawTable 403

TblReleaseFocus 404

TblRemoveRow 405

TblRowInvalid. 406

TblRowMasked 406

16 Palm OS SDK Reference

TblRowSelectable 407

TblRowUsable. 407
TblSelectltem 408
TblSetBounds 409
TblSetColumnEditIndicator 409
TblSetColumnMasked 410
TblSetColumnSpacing 411
TblSetColumnUsable 411
TblSetColumnWidth 412
TblSetCustomDrawProcedure 412
TblSetltemFont 413
TblSetltemInt 414
TblSetltemPtr 415
TblSetltemStyle 415
TblSetLoadDataProcedure. 417
TblSetRowData 417
TblSetRowHeight 418
TblSetRowID 418
TblSetRowMasked 419
TblSetRowSelectable 420
TblSetRowStaticHeight 421
TblSetRowUsable 421
TblSetSaveDataProcedure 422
TblUnhighlightSelection 422
Application-Defined Functions. 423
TableDrawltemFuncType 423
TableLoadDataFuncType 424
TableSaveDataFuncType 425
20 Ul Color List 427
Ul Color Data Types 427
UlColorTableEntries 427
Ul Color Functions 431
UlColorGetTableEntrylndex. 431
UlColorGetTableEntryRGB 432
UlColorSetTableEntry 433

Palm OS SDK Reference 17

21 Ul Controls 435

Ul Control Functions 435
UlBrightnessAdjust.435

UlContrastAdjust436

UlPickColor. Y 1.0

22 Miscellaneous User Interface Functions 439
Miscellaneous User Interface Functions 439
PhoneNumberLookup 439

ResloadConstant440

ResLoadForm 441

ResLoadMenu 441

Part ll: System Management

23 Alarm Manager 445
Alarm Manager Functions 445
AlmGetAlarm00 445
AlmGetProcAlarm 446
AlmSetAlarmo 446
AlmSetProcAlarm 447
Application-Defined Functions. 449
AlmAlarmProcPtr00 0L 449
24 Bitmaps 451
Bitmap Data Structures 151 !
BitmapCompressionType 451
BitmapFlagsType.45
BitmapPtr.00 o0 453
BitmapType o000 454
ColorTableType45
RGBColorType. - o 74
Bitmap Constants. C e e e458
Bitmap Resources. e 35
Bitmap Functions. <110
BmpBitsSize. ey o1
BmpColortableSize.460

18 Palm OS SDK Reference

BmpCompress.461

BmpCreate 462
BmpDelete00 00000 464
BmpGetBitso 00000 L 464
BmpGetColortableo L. 465
BmpSize 465
ColorTableEntries 466
25 Character Attributes 467
Character Attribute Functions 467
ChrHorizEllipsis467
ChrlsHardKey 468
ChrNumericSpace468
GetCharAttr.469
GetCharCaselessValue 470
GetCharSortValue 471
26 Data and Resource Manager 473
Data Manager Data Structures 473
DmOpenRef.473
DmResID473
DmResType.474
SortRecordInfoType L. 474
Data Manager Constants. 474
Category Constants. e V£
Record Attribute Constants 475
Database Attribute Constants475
ErrorCodes477
OpenMode Constants 480
Data Manager Functions. 481
DmArchiveRecord 481
DmAttachRecord. 482
DmAttachResource. 483
DmCloseDatabase 484
DmCreateDatabase. 485
DmCreateDatabaseFromImage.486
DmDatabaselnfo. 487

Palm OS SDK Reference 19

DmDatabaseProtect
DmbDatabaseSize.
DmDeleteCategory e e
DmDeleteDatabase
DmbDeleteRecord.
DmDetachRecord
DmDetachResource.
DmFindDatabase.
DmFindRecordByID
DmFindResource.
DmFindResourceType
DmFindSortPosition e e e e e
DmFindSortPositionV10
DmGetAppInfolD00 0L
DmGetDatabase
DmGetDatabaseLockState.
DmGetLastErr. e e
DmGetNextDatabaseByTypeCreator
DmGetRecord L.,
DmGetResource L.,
DmGetResourcelndex.
DmGetlResource.
DmlinsertionSort
DmMoveCategory
DmMoveRecord L.
DmNewHandle
DmNewRecord

DmNewResource
DmNextOpenDatabase
DmNextOpenResDatabase
DmNumDatabases
DmNumRecords.
DmNumRecordsInCategory
DmNumResources
DmOpenDatabase

20 Palm OS SDK Reference

DmOpenDatabaseByTypeCreator

DmOpenDatabaselnfo
DmOpenDBNoOverlay .

DmPositionInCategory

DmQueryNextInCategory. . . .
DmQueryRecord.

DmQuickSort
DmRecordInfo . .
DmReleaseRecord
DmReleaseResource
DmRemoveRecord
DmRemoveResource

DmRemoveSecretRecords
DmResizeRecord.

DmResizeResource .
DmResourcelnfo .

DmSearchRecord.
DmSearchResource.

DmSeekRecordInCategory
DmSet
DmSetDatabaselnfo
DmSetRecordInfo
DmSetResourcelnfo
DmStrCopy
DmWrite
DmWriteCheck

Application-Defined Functions .
DmComparF

27 Time Manager
Time Manager Data Structures

TimeFormatType.

DaylightSavingsTypes

DateFormatType

DateTimeType . .
Timelype

Palm OS SDK Reference 21

DateType 545

Time Manager Constants 546
Time Manager Functions 546
DateAdjusto 546
DateDaysToDate 547
DateSecondsToDate 547
DateTemplateToAscii 548
DateToAsciio 550
DateToDays 551
DateToDOWDMFormat. 551
DayOfMonth 552
DayOfWeek00 553
DaysInMonth 553
TimAdjust.00 553
TimDateTimeToSeconds. 554
TimGetSecondso 554
TimGetTicks.o 555
TimSecondsToDateTime. 555
TimSetSeconds.o oL 556
TimeToAscii. 557
28 Error Manager 559
ERROR_CHECK_LEVEL Define 559
Error Manager Functions 560
ErrAlert.00 o 0oL 560
ErrDisplay 561
ErrDisplayFileLineMsg 561
ErrFatalDisplaylf. 562
ErrNonFatalDisplayIf. 562
ErrThrowo 563
29 Feature Manager 565
Feature Manager Functions 565
FtrGet oL 565
FtrGetByIndex. oL 566
FtrPtrFree.00 566

22 Palm OS SDK Reference

FtrPtrNew. 567

FtrPtrResize00 568
FtrSet. o000 569
FtrUnregister 570
30 File Streaming 571
File Streaming Constants 571
Primary Open Mode Constants 571
Secondary Open Mode Constants 572
File Streaming Functions. 573
FileClearerr 573
FileClose 573
FileControl 574
FileDeleteo L. 578
FileDmRead 578
FileEOF. 579
FileError oo 580
FileFlush 580
FileGetLastError 581
FileOpen 582
FileRead 584
FileRewind 585
FileSeek. o000 585
FileTell 586
FileTruncate 587
FileWrite00 oo 587
File Streaming Error Codes. 588
31 Float Manager 591
Float Manager Functions 591
FplAdd00 591
FplAToF. 592
FplBaselOInfo 592
FplDivo 593
FplFloatToLong 593
FplFloatToULong. 594

Palm OS SDK Reference 23

FplFToA.o 594
Fpllnit00 595
FplLongToFloat 595
FpIMul00 596
FplSub o000 596
32 Fonts 597
Font Functions 597
FntAverageCharWidth 597
FntBaseLine 597
FntCharHeight. 598
FntCharsInWidth. 598
FntCharsWidth 599
FntCharWidth 599
FntDefineFont .. 599
FntDescenderHeight 601
FntGetFont 601
FntGetFontPtr 601
FntGetScrollValues 602
FntLineHeight. 602
FntLineWidth 602
FntSetFont 603
FntWidthToOffset 603
FntWordWrapo 604
FntWordWrapReverseNLines 605
FontSelect. 605
33 Graffiti Manager 607
Graffiti Manager Functions 607
GrfAddMacro 607
GrfAddPoint L. 608
GrfCleanState 608
GrfDeleteMacro 608
GrfFilterPoints. 609
GrfFindBranch. 609

24 Palm OS SDK Reference

34 Key Manager

GrfFlushPoints.

GrfGetAndExpandMacro

GrfGetGlyphMapping . . .
GrfGetMacro
GrfGetMacroName
GrfGetNumPoints
GrfGetPoint
GrfGetState
GrfInitState
GrfMatch
GrfMatchGlyph
GrfProcessStroke.
GrfSetState

Key Manager Functions
KeyCurrentState
KeyRates
KeySetMask

35 Memory Manager

Memory Manager Functions

MemCardInfo
MemCmp.
MemDebugMode
MemHandleCardNo

MemHandleDataStorage

MemHandleFree
MemHandleHeapID
MemHandleLock.
MemHandleNew.
MemHandleResize
MemHandleSetOwner . . .
MemHandleSize
MemHandleToLocallD . . .
MemHandleUnlock

Palm OS SDK Reference 25

MemHeapCheck627
MemHeapCompact.627

MemHeapDynamic. 628
MemHeapFlags628
MemHeapFreeBytes 629
MemHeapID A ¢ Y4
MemHeapScramble.00 L 630
MemHeapSize.o 631
MemLocallDKind631
MemLocallDToGlobal 631
MemLocallDToLockedPtr 632
MemLocallDToPtr632
MemMove I X 6.
MemNumCards 0L 633
MemNumHeaps 634
MemNumRAMHeaps 634

MemPtrCardNo63
MemPtrDataStorage635

MemPtrFree. e e e e e e e 636
MemPtrHeapID636
MemPtrNew. e e e e e e63
MemPtrRecoverHandle 637
MemPtrResize Y < 6 V4
MemPtrSetOwner 638
MemPtrSize 638
MemPtrToLocallD639
MemPtrUnlock63
MemSet.o 639
MemSetDebugMode640
MemStorelnfo 641
36 Notification Manager 643
Notification Data Structures 643
SleepEventParamType 643

SysNotifyDisplayChangeDetailsType.644
SysNotifyParamType.64

26 Palm OS SDK Reference

Notification Constants. 646

Notification Manager Event Constants646
Miscellaneous Constants 649
Notification Functions. 649
SysNotifyBroadcast. 649
SyvsNotifyBroadcastDeferred. 651
SysNotifyRegister 652
SysNotifyUnregister 654
Application-Defined Functions. 655
SysNotifyProcPtr. 655
37 Overlay Manager 657
Overlay Manager Data Structures.657
OmlocaleType. 657
OmOverlayRscType 658
OmOverlaySpecType. 659
Overlay Manager Constants 660
Overlay Manager Functions 661
OmGetCurrentlocale. 661
OmGetIndexedl.ocale. 662
OmGetRoutineAddress 663
OmGetSystemlocale 663
OmlocaleToOverlayDBName 664
OmOverlayDBNameTolocale 665
OmSetSysteml.ocale 666
38 Password 669
Password Functions. 669
PwdExists. 669
PwdRemove. N o o))
PwdSet 670
PwdVerify.670
39 Pen Manager 671
Pen Manager Functions 671
PenCalibrate. 671
PenResetCalibration 672

Palm OS SDK Reference 27

40 Preferences

Preferences Functions
PrefGetAppPreferences . . .
PrefGetAppPreferencesV10 .
PrefGetPreference
PrefGetPreferences
PrefOpenPreferenceDBV10 .
PrefSetAppPreferences . . .
PrefSetAppPreferencesV10 .
PrefSetPreference.
PrefSetPreferences

41 Rectangles

Rectangle Functions.
RctCopyRectangle
RctGetIntersection
RctInsetRectangle
RctOffsetRectangle
RctPtInRectangle.
RctSetRectangle

42 Sound Manager

Sound Manager Data Structures

SndCallbackInfoType
SndCmdIDType
SndCommandType.
SndMidiListltemType. . . .
SndMidiRecHdrType
SndMidiRecType.
SndSmfCallbacksType . . .
SndSmfChanRangeType. . .
SndSmfOptionsType
Sound Manager Functions . . .
SndCreateMidilist
SndDoCmd
SndGetDefaultVolume . . .

28 Palm OS SDK Reference

SndPlaySmfo o000 694

SndPlaySmfResource L. 696
SndPlaySystemSound. 697
Application-Defined Functions. 697
SndComplFuncType 698
SndBlockingFuncType 698
43 Standard 10 701
Standard IO Functions 701
fgetco oL 701
fgets oL 702
fprintf o000 702
fputco oo 703
fputso oo 703
getcharo 000 704
gets. L L L Lo 704
printf.o 705
putco 705
putcharo oo Lo 706
puts Lo oL 706
SioAddCommand00 0L 706
sprintf L oL 0oL o oL 707
system Lo 707
viprintf00 000000000 708
vsprintf oL Lo oL 709
Standard 1O Provider Functions 709
SioClearScreen. 710
SioExecCommand L. 710
SioFreeo 00 711
SioHandleEvent 711
Siolmito oL 711
Application-Defined Function 712
SioMain.o 712

Palm OS SDK Reference 29

44 String Manager 713

String Manager Functions 713
StrATol 713
StrCaselessCompare 714
StrCat. 714
StrChro 715
StrCompare 715
StrCopy. 716
StrDelocalizeNumber. 717
StrlToA N V4
StrflToH. e £
Strleno 718
StrLocalizeNumber. 718
StrNCaselessCompare 719
StrNCat. Ce e oo .. 720
StrNCompare VA |
StrNCopy e e e e e 722
StrPrintF L. Lo oL 722
StrStr. L. N X6 |
StrToLower 2
StrVPrintF.o Lo 724

45 System Event Manager 729

System Event Manager Data Structures729
System Event Manager Functions.729

EvtAddEventToQueue 729
EvtAddUniqueEventToQueue730
EvtCopyEvent. 730
EvtDequeuePenPoint. 731
EvtDequeuePenStrokelnfo. 731
EvtEnableGraffiti. 732
EvtEnqueueKey00 00732
EvtEventAvail00 0L 733
EvtFlushKeyQueue.733
EvtFlushNextPenStroke. 734

30 Palm OS SDK Reference

EvtFlushPenQueue. 734

EvtGetEvent.00 735
EvtGetPen. 735
EvtGetPenBtnList 736
EvtGetSilkscreenAreaList 736
EvtKeydownlsVirtual. 737
EvtKeyQueueEmpty 737
EvtKeyQueueSizeo L 738
EvtPenQueueSize 738
EvtProcessSoftKeyStroke 738
EvtResetAutoOffTimer 739
EvtSetAutoOffTimer 739
EvtSetNullEventTick 740
EvtSysEventAvail 741
EvtWakeupo oo 741
46 System Manager 743
System Functions.00 743
SysAppLauncho 743
SysBatteryInfo.o 0L 744
SysBatteryInfoV20 0000 L 746
SysBinarySearcho 747
SysBroadcastActionCode 749
SysCopyStringResource. 749
SysCreateDataBaseList 749
SysCreatePanelList 750
SysCurAppDatabase 751
SysErrString.o 751
SysFormPointerArrayToStrings 752
SysGetOSVersionString 752
SysGetROMToken 753
SysGetStackInfoo 00 754
SysGetTrapAddress. 754
SysGraffitiReferenceDialog 755
SysGremlins. 755

Palm OS SDK Reference 31

47 Text Manager

SysHandleEvent 756

SyslnsertionSort00 L 757
SysKeyboardDialog 758
SysKeyboardDialogV10. 759
SysLibFind 0L 759
SysLibLoad 760
SysLibRemove. 761
SysQSorto 761
SysRandomo 00000 762
SysReset 762
SysSetAutoOffTime. 763
SysSetTrapAddress. 763
SysStringByIndex 0oL 764
SysTaskDelay 765
SysTicksPerSecond 765
SysUIAppSwitch. 765
767

Text Manager Data Structures 767
CharEncodingType. 767
Text Manager Functions 769
TxtByteAttr o000 769
TxtCaselessCompare 770
IxtCharAttr.o 0oL 771
TxtCharBounds 772
TxtCharEncoding 773
TxtCharlsAINum. 774
TxtCharlsAlpha 774
TxtCharlsCntrl. 775
TxtCharlsDelim 775
TxtCharlsDigit. 775
TxtCharlsGraph 776
TxtCharlsHardKey 776
TxtCharlsHex 777
TxtCharlsLower 777

32

Palm OS SDK Reference

48 Windows

TxtCharlsPrint. 778

TxtCharlsPunct 778
TxtCharlsSpace 779
TxtCharlsUpper 779
TxtCharlsValid. 4 < 4]
TxtCharSize780
TxtCharWidth 781
TxtCharXAttr00 781
TIxtCompare. 782
TxtEncodingName 783

TxtFindString784
TxtGetChar78

TxtGetNextChar 786
TxtGetPreviousChar 787
TxtGetTruncationOffset 788
TxtMaxEncoding. 789
TxtNextCharSize. 790
IxtParamStringo 790
TxtPreviousCharSize 791
TxtReplaceStr C e e e e s 792
TxtSetNextChar 793
TxtStrEncodingo 00 794
TxtTransliterate 795
TxtWordBounds 797
799

Window Data Structures. 799
CustomPatternType 799
DrawStateType 799
FrameBitsType. 801
Framelype 802
IndexedColorType 803
PatternTypeo 803
UnderlineModeType 804
WindowFlagsType 804

WindowType806

Palm OS SDK Reference 33

WinDrawQOperation C e e e e
WinHandle
WinLineType
WinPtr

Window Functions
WinClipRectangle . . .
WinCopyRectangle.
WinCreateBitmapWindow
WinCreateOffscreenWindow . Coe e
WinCreateWindow
WinDeleteWindow
WinDisplayToWindowPt
WinDrawBitmap00 0L
WinDrawChar00 0L
WinDrawChars00 0000
WinDrawGrayLine
WinDrawGrayRectangleFrame.
WinDrawInvertedChars.

WinDrawline
WinDrawPixel

WinDrawRectangle.
WinDrawRectangleFrame
WinDrawTruncChars
WinEraseChars

WinEraseLine
WinErasePixel

WinEraseRectangle . . .
WinEraseRectangleFrame
WinEraseWindow

WinFillLine Ce e e
WinFillRectangle. Coe e
WinGetActiveWindow
WinGetBitmap.
WinGetClip
WinGetDisplayExtent.
WinGetDisplayWindow.

34 Palm OS SDK Reference

WinGetDrawWindow. 832

WinGetFirstWindow 832
WinGetFramesRectangle 833
WinGetPattern. 833
WinGetPatternType 834
WinGetPixel.o L0 834
WinGetWindowBounds 835
WinGetWindowExtent 835
WinGetWindowFrameRect 836
WinIndexToRGB. 836
WinlnvertChars 837
WinlnvertLine 837
WinlnvertPixel. 838
WinInvertRectangle 838
WinInvertRectangleFrame. 839
WinModal. oL 840
WinPaintBitmap00 840
WinPaintChar 841
WinPaintChars. 842
WinPaintline 843
WinPaintlines. 844
WinPaintPixel 844
WinPaintPixels. 845
WinPaintRectangleo L. 846
WinPaintRectangleFrame 846
WinPalette 847
WinPopDrawState o000 849
WinPushDrawState. 850
WinResetClip 850
WinRestoreBits. 851
WinRGBTolndex. 851
WinSaveBits. L. 852
WinScreenlock 853
WinScreenMode oL 854
WinScreenUnlock 857
WinScrollRectangle.o L. 857
WinSetActiveWindow 858
WinSetBackColor 859

Palm OS SDK Reference 35

WinSetClip 859

WinSetDrawMode 860
WinSetDrawWindow 860
WinSetForeColor. 861
WinSetPattern L. 861
WinSetPatternType. 862
WinSetTextColor. 863
WinSetUnderlineMode 864
WinSetWindowBounds 864
WinValidateHandle. 865
WinWindowToDisplayPt 865
49 Miscellaneous System Functions 867
Crcl6CalcBlocko 867
IntlGetRoutineAddress 868
LocGetNumberSeparators. 868

Part lll: Communications

50 Connection Manager 873
Connection Manager Functions. 873

CncAddProfile. 873

CncDeleteProfile 875

CncGetProfileInfo 876

CncGetProfileList 877

51 Exchange Manager 879
Exchange Manager Data Structures 879

ExgAskResultType 879

ExgGoToType 880

ExgSocketType.00 880

Exchange Manager Functions 883

ExgAccept.o 000 883

ExgDBRead 884

ExgDBWriteo 885

ExgDisconnect. 886

36 Palm OS SDK Reference

ExgDoDialog . . 888
ExgPut 890
ExgReceive 891
ExgRegisterData . C e e e e 892
ExgSendo 894
Application-Defined Functions. 895
DeleteProco o000 895
ReadProco 896
WriteProc 896
52 IR Library 899
IR Library Data Structures 899
IrfConnect 899
IrPacket.o Lo 901
IrTIASObjecto . 902
IrlasQuery coe903
IrCallbackParms 905
IR Stack Callback Events. 906
LEVENT_DATA_IND. C e e e oo o906
LEVENT_DISCOVERY_CNF 906
LEVENT_LAP_CON_CNF . 906
LEVENT_LAP_CON_IND. C e e e o907
LEVENT_LAP_DISCON_IND 907
LEVENT_LM_CON_CNEF . . 907
LEVENT_LM_CON_IND . (14
LEVENT_LM_DISCON_IND907
LEVENT PACKET_HANDLED 907
LEVENT_STATUS_IND. ., (14
LEVENT_TEST. CNF. 908
LEVENT TESTIND 908
IR Library Functions 909
IrAdvanceCredit. 909
IrBindo . 909
IrClose Coe . 910
IrConnectlrLap 911
Palm OS SDK Reference 37

IrConnectReq . .
IrConnectRsp . .
IrDataReq. . . .
IrDisconnectIrLap
IrDiscoverReq . .

IrIsIrLapConnected. . .

IrlsMediaBusy . .
IrIsNoProgress. .

IrIsRemoteBusy

IrLocalBusy . . .
IrMaxRxSize.
IrMaxTxSize. . .
IrOpen
IrSetConTypeLMP
IrSetConTypeTTP
IrSetDevicelnfo
IrTestReq
IrUnbind

IAS Functions . . .

IrTAS_Add
IrIAS_GetInteger .
IrTAS_GetIntLsap
IrTIAS_GetObjectID

. 913

914
915

. 916
.917

917

. 917
. 918
. 918

919

. 919

920
920
921

. 921

IrIAS_GetOctetString

IrIAS_GetOctetStringLen .

IrTAS_GetType . .

IrIAS_GetUserString

IrTAS_GetUserStringCharSet.

IrIAS_GetUserStringlen

IrTAS Next .
IrIAS_Query. . .

IrIAS SetDeviceName

IrIAS_ StartResult.

IrlasQueryCallBack

Application-Defined Functions.
. 931

922

. 923
. 923

924
925
925
926
926
926
927
927

. 928

928
928
929
930
931
931

38

Palm OS SDK Reference

53 Modem Manager 933

Modem Manager Functions 933
MdmDial 000000 933
MdmHangUp00 934

54 Net Library 935

Net Library Data Structures 935
NetHostInfoBufType 935
NetHostInfoType. 936
NetServInfoBufType 937
NetServInfoType. 937
NetSocketAddrEnum. 938
NetSocketAddrINType 938
NetSocketAddrRawType 939
NetSocketAddrType 939
NetSocketRef 940
NetSocketTypeEnum 940

Net Library Constants. 941
I/OFlags 941
Tracing Bits00 941

Net Library Functions. 942
NetHToNL 942
NetHToNS 942
NetLibAddrAToIN 943
NetLibAddrINToA 943
NetLibClose. 944
NetLibConnectionRefresh 945
NetLibDmReceive 946
NetLibFinishCloseWait 948
NetLibGetHostByAddr 948
NetLibGetHostByName. 950
NetLibGetMailExchangeByName 952
NetLibGetServByName 954
NetLibIFAttach 955
NetLibIFDetach 956

Palm OS SDK Reference 39

NetLibIFDown. 957

NetLibIFGet. 958
NetLibIFSettingGet. 959
NetLibIFSettingSet 965
NetLibIFUp 966
NetLibMaster .. 967
NetLibOpen. 971
NetLibOpenCount 972
NetLibReceive 973
NetLibReceivePB. 974
NetLibSelect. 977
NetLibSend 979
NetLibSendPB. 982
NetLibSettingGet. 984
NetLibSettingSet 988
NetLibSocketAccept 989
NetLibSocketAddr 991
NetLibSocketBind 992
NetLibSocketClose 994
NetLibSocketConnect. 995
NetLibSocketListen. 996
NetLibSocketOpen 998
NetLibSocketOptionGet. 1000
NetLibSocketOptionSet 1002
NetLibSocketShutdown. 1005
NetLibTracePrintF 1006
NetLibTracePutS. 1007
NetNToHL 1008
NetNToHS 1009
55 Network Utilities 1011
Network Utility Functions 1011
NetUReadN 1011
NetUTCPOpen. 1012
NetUWriteN. 1013

40 Palm OS SDK Reference

56 New Serial Manager 1015

New Serial Manager Data Structures 1015
DevicelnfoType 1015
SrmCtlIEnumo L0 Lo 1016
SrmCallbackEntryType 1018

New Serial Manager Constants. 1019
Serial Capabilities Constants. 1019
Serial Settings Constants 1019
StatusConstants 1020

New Serial Manager Functions 1021
SrmClearErr.00 1021
SrmClose oL 1021
SrmControl o000 1022
SrmGetDeviceCount 1024
SrmGetDevicelnfo o000 0oL 1024
SrmGetStatus 000000 0oL 1025
StmOpeno 1026
SrmOpenBackground. 1027
SrmPrimeWakeupHandler. 1028
SrmReceiveo L0000 0L 1028
SrmReceiveCheck00 1029
SrmReceiveFlush. o000 0oL 1030
SrmReceiveWaito 0000 L 1031
SrmReceiveWindowClose 1031
SrmReceiveWindowOpen 1032
StrmSend L0000 oo 1033
SrmSendCheck. o000 1034
SrmSendFlush o000 1035
SrmSendWaito o000 0L 1035
SrmSetReceiveBuffero 000 L 1036
SrmSetWakeupHandler 1036

New Serial Manager Application-Defined Function 1037
WakeupHandlerProc L. 1037

Palm OS SDK Reference 41

57 Script Plugin 1039

Script Plugin Data Types. 1039
PluginCallbackProcType 1039
PluginCmdPtr 1040
PluginCmdType 1040
PluginExecCmdType 1040
PluginInfoPtr 1041
PluginInfoType 1042
ScriptPluginLaunchCodesEnum 1042

Script Plugin Constants 1043
Command Constants 1043
SizeConstants 1045

Script Plugin Functions 1045
ScriptPluginSelectorProc 1045

58 Serial Manager 1049

Serial Manager Data Structures. 1049
SerCtlEnum 1049
SerSettingsType 1050

Serial Manager Functions 1051
SerClearErr 1051
SerClose 1052
SerControl. 1052
SerGetSettingso 1053
SerGetStatus. o000 0L 1054
SerOpen 1055
SerReceive 1056
SerReceivel0o 1057
SerReceiveCheck. 1058
SerReceiveFlush 1058
SerReceiveWait 1059
SerSend.o 1060
SerSend10.o 1061
SerSendFlush 1062
SerSendWait.00 1062

42 Palm OS SDK Reference

SerSetReceiveBuffer 1063
SerSetSettings 1063

59 Serial and Virtual Drivers 1065
Driver Data Structures. 1065

DrvrInfoType 1065

DrvrRevQType. 1067

DrvrStatusEnum00 0L 0L L 1068
SdrvAPIType L 1068
SdrvCtlOpCodeEnum 1069
VdrvAPIType00 1072
VdrvCtlOpCodeEnum 1072
DriverConstants 1075
Port Feature Constants 1075
Serial Driver-Defined Functions 1075
DrvEntryPoint.00 L . 1075
SdrvClose. [/4
SdrvControl 1077
SdrvISP.o 1079

SdrvOpen. 1080
SdrvReadChar. 1082
SdrvStatus ..1083

SdrvWriteChar. 1083
Virtual Driver-Defined Functions 1084
DrvEntryPoint.00 0L 1084

VdrvClose. 1085
VdrvControl. 108
VdrvOpen. o000 1087
VdrvStatus 1088
VdrvWrite. 1089

Serial Manager Queue Functions 1089
GetSize C e e e e oo 1089
GetSpaceo 1090
WriteBlocko 000000 1090
WriteByte o000 L 1091

Palm OS SDK Reference 43

60 Serial Link Manager 1093

Serial Link Manager Functions 1093
SlkClose 1093
SlkCloseSocket. 1094
SlkFlushSocket. 1094
SIkOpen 1095
SlkOpenSocket. 1095
SlkReceivePacket. 1096
SlkSendPacket 1097
SlkSetSocketListener 1098
SlkSocketPortID 1099
SlkSocketSetTimeout 1100

Part IV: Libraries

61 Internet Library 1103
Internet Library Data Structures 1104
INetCompressionTypeEnum. 1104
INetConfigNameType 1104
INetContentIypeEnum 1105
INetHTTPAttrEnum 1106
INetSchemeEnum 1108
INetSettingEnum. 1110
INetSockSettingEnum 1112
INetStatusEnum 1114
Internet Library Constants 1116
Configuration Aliases. 1116
URL Info Constants. 1117
URLOpenConstants 1117
Internet Library Functions 1118
INetLibCacheGetObject. 1118
INetLibCacheList 1120
INetLibCheckAntennaState 1122
INetLibClose 1122
INetLibConfigAliasGet 1123

44 Palm OS SDK Reference

INetLibConfigAliasSet 1124

INetLibConfigDelete 1125
INetLibConfigIndexFromName 1126
INetLibConfigList 1127
INetLibConfigMakeActive 1128
INetLibConfigRename 1129
INetLibConfigSaveAs. 1130
INetLibGetEvent. 1131
INetLibOpen 1132
INetLibSettingGet 1134
INetLibSettingSet 1135
INetLibSockClose 1136
INetLibSockConnect 1136
INetLibSockHTTPAttrGet 1137
INetLibSockHTTPAttrSet 1138
INetLibSockHTTPReqCreate. 1139
INetLibSockHTTPReqSend 1140
INetLibSockOpen 1142
INetLibSockRead. 1143
INetLibSockSettingGet 1144
INetLibSockSettingSet 1145
INetLibSockStatus 1146
INetLibURLCrack 1147
INetLibURLGetInfo 1149
INetLibURLOpen 1150
INetLibURLsAdd 1151
INetLibWiCmd 1152
62 PalmOSGilue Library 1155
PalmOSGlue Functions 1155
FntGlueGetDefaultFontID. 1158
TxtGlueCharlsVirtual 1159
TxtGlueGetHorizEllipsisChar 1160
TxtGlueGetNumericSpaceChar 1161
TxtGlueLowerChar. 1161

Palm OS SDK Reference 45

TxtGlueLowerStr. A b [

IxtGluePrepFindString 1163
TxtGlueStripSpaces. 164
TxtGlueUpperChar. 164
TxtGlueUpperStr. 1165

A System Use Only Functions 1167
B Compatibility Guide 1173
2.0New FeatureSet. 1174
LaunchCodes 1174
Functions I £
Existing Functions that Changed 1175
Other Changes. R b V(&
3.0 New FeatureSet. 1176
LaunchCodes 1177
Font e V44
Functions R V44
Existing Functions that Changed 1179
Other Changes. Ce 1180
3.1 New FeatureSet. 1180
Functions T b k21
Changes to the Character Encodlng 1181
Other Changesin3.1 1182
32 New FeatureSet. 1183
Functions coe o oo oo 1183
Existing Functions that Changed 1184
Other Changesin3.2 1184
International Feature Set. 1184
Functions e V£
Japanese FeatureSet 1186
Wireless Internet Feature Set 1187
LaunchCodes 1187
Events e ¢ V4
Functions Y W kot
New Serial Manager Feature Set 1188

46 Palm OS SDK Reference

Functions 118

3.5 New FeatureSet. 1190

LaunchCodes 1190

Events § 0]

Functions 19

Existing Functions that Changed 1192

New DataTypes 1193

ChangestoEvents 1193

Other Changes. I

Notification FeatureSet 1195

Index 1197

Palm OS SDK Reference 47

- About This
Document

iz

Palm OS SDK Reference is part of the Palm OS® Software
Development Kit. This introduction provides an overview of SDK
documentation, discusses what materials are included in this
document, and what conventions are used.

Palm OS SDK Documentation

The following documents are part of the SDK:

Document Description
Palm OS SDK An API reference document that contains descriptions of all
Reference Palm OS function calls and important data structures.

Palm OS Programmer’s A guide to application programming for the Palm OS. This
Companion volume contains conceptual and “how-to” information that
complements the Reference.

CodeWarrior A guide to using CodeWarrior Constructor to create Palm
Constructor for the OS resource files.

Palm OS Platform

Palm OS Programming A guide to writing and debugging Palm OS applications
Development Tools with the various tools available.

Guide

What This Volume Contains

This section provides an overview of this volume.

e Part], “User Interface,” documents the API contained in the
header files in the \Incs\Core\UI\ folder. This part contains
chapters covering subjects such as application launch codes,

Palm OS SDK Reference 49

About This Document
Conventions Used in This Guide

user interface resources, events, and all window, form, and
tield object managers.

¢ Partll, “System Management,” documents the API contained
in the header files in the \Incs\Core\System\ folder. This
part contains chapters covering subjects such as the alarm
manager, data and resource manager, feature manager, float
manager, graffiti manager, key manager, memory manager,
preferences manager, sound manager, string manager, and
system manager.

e Part III, “Communications,” documents the API related to
communications, such as the exchange manager, IR library,
net library, serial manager, and serial drivers.

e PartIV, “Libraries,” documents the API contained in the
header files in the \Incs\Libraries\ folder. This part contains
chapters covering the Internet Library and the Palm OS Glue
library.

Conventions Used in This Guide

This guide uses the following typographical conventions:

This style... Is used for...

fixed width font Code elements such as function,
structure, field, bitfield.

fixed width underline Emphasis (for code elements).

bold Emphasis (for other elements).
blue and underlined Hot links.
black and underlined New function in one of the current

releases (headings only)

red and underlined New function in one of the current
releases (Table of Contents only)

50 Palm OS SDK Reference

Part I: User Interface

iz

1

- Application Launch
Codes

This chapter provides detailed information about the predefined
application launch codes. Launch codes are declared in the header
tile SystemMgr . h. The associated parameter blocks are declared in
AppLaunchCmd.h, AlarmMgr . h, ExgMgr.h, and Find.h.

Table 1.1 lists all Palm OS® standard launch codes. More detailed
information is provided immediately after the table:

e Launch Codes
¢ Launch Flags

To learn what a launch code is and how to use it, see the chapter
titled “Application Startup and Stop” in the Palm OS Programmer’s

Companion.

Table 1.1 Palm OS Launch Codes

Code

Request

scptLaunchCmdExecuteCmd

scptLaunchCmdListCmds

syvsAppLaunchCmdAddRecord

sysAppLaunchCmdAlarmTriggered

sysAppLaunchCmdCountryChange

sysAppLaunchCmdDisplayAlarm

Execute the specified Network login
script plugin command.

Provide information about the
commands that your Network script
plugin executes.

Add a record to a database.

Schedule next alarm or perform quick
actions such as sounding alarm tones.

Respond to country change.

Display specified alarm dialog or
perform time-consuming alarm-related
actions.

Palm OS SDK Reference 53

Application Launch Codes

Table 1.1

Palm OS Launch Codes (continued)

Code

Request

sysAppLaunchCmdExgAskUser

syvsAppLaunchCmdExgReceiveData

sysAppLaunchCmdFind
sysAppLaunchCmdGoto

sysAppLaunchCmdGoToURL

sysAppLaunchCmdInitDatabase

sysAppLaunchCmdlL.ookup

sysAppLaunchCmdNormalLaunch

sysAppLaunchCmdNotify

sysAppLaunchCmdOpenDB

svsApplLaunchCmdPanelCalledFromAp

o]

sysAppLaunchCmdReturnFromPanel

sysAppLaunchCmdSaveData

Let application override display of
dialog asking user if they want to
receive incoming data via the exchange
manager.

Notify application that it should receive
incoming data via the exchange
manager.

Find a text string.

Go to a particular record, display it, and
optionally select the specified text.

Launch Clipper application and open a
URL.

Initialize database.

Look up data. In contrast to
sysAppLaunchCmdFind, a level of
indirection is implied. For example, look
up a phone number associated with a
name.

Launch normally.
Notify about an event.

Launch application and open a
database.

Tell preferences panel that it was
invoked from an application, not the
Preferences application.

Tell an application that it’s restarting
after preferences panel had been called.

Save data. Often sent before find
operations.

54 Palm OS SDK Reference

Application Launch Codes

Launch Codes
Table 1.1 Palm OS Launch Codes (continued)
Code Request
sysAppLaunchCmdSyncNotify Notify applications that a HotSync has
been completed.
sysAppLaunchCmdSystemLock Sent to the Security application to
request that the system be locked down.
sysAppLaunchCmdSystemReset Respond to system reset. No Ul is
allowed during this launch code.
sysAppLaunchCmdTimeChange Respond to system time change.
sysApplLaunchCmdURLParams Launch an application with parameters
from Clipper.

Launch Codes

This section provides supplemental information about launch
codes. For some launch codes, it lists the parameter block, which in
some cases provides additional information about the launch code.

sysAppLaunchCmdAddRecord
Add a record to an application’s database.

This launch code is used to add a message to the Mail or
iMessenger (on the Palm VII" organizer) application’s outbox. You
pass information about the message such as address, body text, etc.
in the parameter block. For iMessenger, you can set the edit field of
the parameter block to control whether or not the iMessenger editor
is displayed. Set it to t rue to display the editor or false not to
display it.

For more information on sending messages via iMessenget, see
“Sending Messages” on page 312 in the Palm OS Programmer’s
Companion.

Palm OS SDK Reference 55

Application Launch Codes
Launch Codes

IMPORTANT: Implemented for iMessenger only if Wireless
Internet Feature Set is present. Implemented for Mail only on OS
version 3.0 or later.

sysAppLaunchCmdAddRecord Parameter Block for Mail
Application

Prototype typedef enum
mailPriorityHigh,
mailPriorityNormal,
mailPriorityLow

} MailMsgPriorityType;

typedef struct {
Boolean secret;
Boolean signature;
Boolean confirmRead;
Boolean confirmDelivery;
MailMsgPriorityType priority;
UInt8 padding
Char* subject;
Char* from;
Char* to;
Char* cc;
Char* bcc;
Char* replyTo;
Char* body;

} MailAddRecordParamsType;

Fields secret True means that the message should be
marked secret.

signature True means that the signature from the Mail
application’s preferences should be attached to
the message.

confirmRead True means that a confirmation should be sent
when the message is read.

56 Palm OS SDK Reference

Application Launch Codes
Launch Codes

Prototype

confirmbDelivery

priority

padding

subject

from

to

ccC

bcc

replyTo

body

True means that a confirmation should be sent
when the message is delivered.

Message priority. Specify one of the
MailMsgPriorityType enumerated types.

Reserved for future use.

Message’s subject, a null-terminated string
(optional).

Message’s sender, a null-terminated string (not
used on outgoing mail).

Address of the recipient, a null-terminated
string (required).

Addresses of recipients to be copied, a null-
terminated string (optional).

Addresses of recipients to be blind copied, a
null-terminated string (optional).

Reply to address, a null-terminated string
(optional).

The text of the message, a null-terminated
string (required).

sysAppLaunchCmdAddRecord Parameter Block for
iMessenger Application

typedef struct {
UIntlé category;
Boolean edit;
Boolean signature;

Char
Char
Char
Char
Char

*gubject;
*from;
*to;
*replyTo;
*body;

} MsgAddRecordParamsType;

Palm OS SDK Reference 57

Application Launch Codes
Launch Codes

Fields category

edit

signature

subject

from

to

replyTo

body

Category in which to place the message.
Specify one of the following categories:

MsgInboxCategory
MsgOutboxCategory
MsgDeletedCategory
MsgFiledCategory
MsgDraftCategory

True means that the message should be
opened in the editor. False means that the
message should simply be placed into the
outbox and the editor not opened. You can
specify true only if the category is set to
MsgOutboxCategory.

True means that the signature from the
iMessenger application preferences should be
attached to the message.

Message’s subject, a null-terminated string
(optional).

Message’s sender, a null-terminated string (not
used on outgoing mail).

Address of the recipient, a null-terminated
string (required).

Reply to address, a null-terminated string
(optional).

The text of the message, a null-terminated
string (required).

sysAppLaunchCmdAlarmTriggered

Performs quick action such as scheduling next alarm or sounding

alarm.

This launch code is sent as close to the actual alarm time as possible.
An application may perform any quick, non-blocking action at this
time. Multiple alarms may be pending at the same time for multiple
applications, and one alarm display shouldn’t block the system and

58 Palm OS SDK Reference

Application Launch Codes
Launch Codes

prevent other applications from receiving their alarms in a timely
fashion. An opportunity to perform more time-consuming actions
will come when sysAppLaunchCmdDisplayAlarm is sent.

sysAppLaunchCmdAlarmTriggered Parameter Block

Prototype typedef struct SysAlarmTriggeredParamType {
UInt32 ref;
UInt32 alarmSeconds;
Boolean purgeAlarm;
UInts8 padding;
} SysAlarmTriggeredParamType;

Fields -> ref The caller-defined value specified when the
alarm was set with AlmSetAlarm.

-> alarmSecondsThe date/time specified when the alarm was
set with AlmSetAlarm. The value is given as
the number of seconds since 1/1/1904.

<- purgeAlarm Upon return, set to true if the alarm should be
removed from the alarm table. Use this as an
optimization to prevent the application from
receiving sysAppLaunchCmdDisplayAlarm
if you don’t wish to perform any other
processing for this alarm. If you do want to
receive the launch code, set this field to false.

padding Not used.

sysAppLaunchCmdCountryChange
Responds to country change.

Applications should change the display of numbers to use the
proper number separators. To do this, call
LocGetNumberSeparators, StrLocalizeNumber, and
StrDelocalizeNumber.

sysAppLaunchCmdDisplayAlarm
Performs full, possibly blocking, handling of alarm.

Palm OS SDK Reference 59

Application Launch Codes

Launch Codes

Prototype

Fields

This is the application’s opportunity to handle an alarm in a lengthy
or blocking fashion. Notification dialogs are usually displayed
when this launch code is received. This work should be done here,
not when sysApplaunchCmdAlarmTriggered is received.
Multiple alarms may be pending at the same time for multiple
applications, and one alarm display shouldn’t block the system and
prevent other applications from receiving their alarms in a timely
tashion.

sysAppLaunchCmdDisplayAlarm Parameter Block

typedef struct SysDisplayAlarmParamType
UInt32 ref;
UInt32 alarmSeconds;
Boolean soundAlarm;
UInts padding;
} SysDisplayAlarmParamType;

-> ref The caller-defined value specified when the
alarm was set with AlmSetAlarm.

-> alarmSecondsThe date/time specified when the alarm was
set with AlmSetAlarm. The value is given as
the number of seconds since 1/1/1904.

-> soundAlarm true if the alarm should be sounded, false
otherwise. This value is currently not used.

padding Not used.

sysAppLaunchCmdExgAskUser

Exchange manager sends this launch code to the application when
data has arrived for that application. This launch code lets the
application tell the exchange manager whether or not to display a
dialog asking the user if they want to accept the data. If the
application chooses not to handle this launch code, the default
course of action is that the exchange manager displays a dialog
asking the user if they want to accept the incoming data.

Prior to Palm OS release 3.5, most applications didn’t need to
handle this launch code, since the default action was the preferred

60 Palm OS SDK Reference

Application Launch Codes
Launch Codes

Prototype

alternative. On Palm OS 3.5, you can have the dialog display a
category pop-up list from which the user can choose a category in
which to file the incoming data. To do so, you must handle
sysAppLaunchCmdExgAskUser to call the ExghoDialog
function. See the description of that function for more information.
If you don’t handle the launch code, the exchange manager displays
the dialog without the category pop-up list.

If an application responds to this launch code, it must set the
result field in the parameter to the appropriate value. Possible
values are:

exgAskDialog Display the dialog without the category pop-up
list (the default).

exgAskOk Accept the incoming data.
exgAskCancel Reject the incoming data.

For example, if your entire response to this launch code is to set the
result field to exgAskCancel, your application always rejects all
incoming data without displaying the dialog. If it is to set the result
field to exgAskOk, it always accepts all incoming data without
displaying the dialog.

On Palm OS 3.5 or higher if you are calling ExgDoDialog in your
handler, return exgaAskOk if ExgDoDialog was successful, or
exgAskCancel if it failed. If you don’t set the result field on
Palm OS 3.5, the dialog is displayed twice.

If the application sets the result field to exgAskOk, or the dialog
is displayed and the user presses the OK button, then the exchange
manager sends the application the next launch code,
sysAppLaunchCmdExgReceiveData, so that it can actually
receive the data.

IMPORTANT: Implemented only if 3.0 New Feature Set is
present.

sysAppLaunchCmdExgAskUser Parameter Block

typedef struct {
ExgSocketPtr socketP;

Palm OS SDK Reference 61

Application Launch Codes

Launch Codes
ExgAskResultTyperesult;
UInts8 reserved;
} ExgAskParamType;
Fields <-> socketP Socket pointer
<- result Show dialog, auto-confirm, or auto-cancel
-> reserved Reserved for future use

sysAppLaunchCmdExgReceiveData

Following the launch code sysAppLaunchCmdExgAskUser, the
exchange manager sends this launch code to the application to
notify it that it should receive the data (assuming that the
application and/or the user has indicated the data should be
received).

The application should use exchange manager functions to receive
the data and store it or do whatever it needs to with the data.

Note that the application may not be the active application, and
thus may not have globals available when it is launched with this
launch code. You can check if you have globals by using this code in
the PilotMain routine:

Boolean appIsActive = launchFlags & sysAppLaunchFlagSubCall;

The appIsActive value will be true if your application is active
and globals are available; otherwise, you won't be able to access any
of your global variables during the receive operation.

The parameter block sent with this launch code is of the
ExgSocketPtr data type. It is a pointer to the ExgSocketType
structure corresponding to the exchange manager connection via
which the data is arriving. You will need to pass this pointer to the
ExgAccept function to begin receiving the data. For more details,
refer to the “Exchange Manager” chapter.

IMPORTANT: Implemented only if 3.0 New Feature Set is
present.

62

Palm OS SDK Reference

Application Launch Codes
Launch Codes

Prototype

sysAppLaunchCmdFind

This launch command is used to implement the global find. It is sent
by the system whenever the user enters a text string in a Find
dialog. At that time, the system queries each application whether it
handles this launch code and returns any records matching the find
request.

The system sends this launch code with the FindParamsType
parameter block to each application. The system displays the results
of the query in the Find dialog.

Most applications that use text records should support this launch
code. When they receive it, they should search all records for
matches to the find string and return all matches.

An application can also integrate the find operation in its own user
interface and send the launch code to a particular application.

Applications that support this launch code should support
sysAppLaunchCmdSaveData and sysAppLaunchCmdGoto as
well.
sysAppLaunchCmdFind Parameter Block

typedef struct {

// These fields are used by the applications.

UlIntle dbAccesMode;

UIntleé recordNum;

Boolean more;

Char strAsTyped
[maxFindStrLen+1] ;

Char strToFind
[maxFindStrLen+1] ;

// These fields are private to the Find routine
//and should NOT be accessed by applications.

UInts reservedl;

UIntleé numMatches;
UIntleé lineNumber;
Boolean continuation;
Boolean searchedCaller;
LocalID callerAppDbID;

Palm OS SDK Reference 63

Application Launch Codes

Launch Codes
UIntle callerAppCardNo;
LocallID appDbID;
UIntle appCardNo;
Boolean newSearch;
UInts8 reserved?2;
DmSearchStateType searchState;
FindMatchType match [maxFinds];
} FindParamsType;
Fields dbAccesMode Read mode. May be “show secret.”
recordNum Index of last record that contained a match.
more true if more matches to display:.

strAsTyped [maxFindStrLen+1]
Search string as entered.

strToFind [maxFindStrLen+1]
Search string in lower case.

reservedl Reserved for future use.
numMatches System use only.
lineNumber System use only.

continuation System use only.
searchedCaller System use only.

callerAppDbID System use only.

callerAppCardNo

System use only.
appDbID System use only.
appCardNo System use only.
newSearch System use only.
reserved?2 Reserved for future use.
searchState System use only.

match [maxFinds]
System use only.

64 Palm OS SDK Reference

Application Launch Codes
Launch Codes

Prototype

Fields

sysAppLaunchCmdGoto

Sent in conjunction with sysAppLaunchCmdFind or
sysAppLaunchCmdExgReceiveData to allow users to actually
inspect the record that the global find returned or that was received
by the exchange manager.

Applications should do most of the normal launch actions, then
display the requested item. The application should continue
running unless explicitly closed.

An application launched with this code does have access to global
variables, static local variables, and code segments other than
segment 0 (in multi-segment applications).

sysAppLaunchCmdGoto Parameter Block

typedef struct ({
Intle searchStrLen;
UIntlé dbCardNo;
LocalID dbID;
UIntlé recordNum;
UIntlé matchPos;
UIntlé matchFieldNum;
UInt32 matchCustom;
} GoToParamsType;

searchStrLen Length of search string.

dbCardNo Card number of the database.
dbID Local ID of the database.
recordNum Index of record containing a match.
matchPos Position of the match.

matchFieldNum Field number string was found in.

matchCustom Application-specific information.

Palm OS SDK Reference 65

Application Launch Codes

Launch Codes

Prototype

sysAppLaunchCmdGoToURL

You can send this launch code to the Clipper application to launch
the application and cause it to retrieve and display the specified
URL.

The parameter block for this launch command is simply a pointer to
a string containing the URL.

For more information and an example of how to use this launch

code, see “Using Clipper to Display Information” on page 310 in the
Palm OS Programmer’s Companion.

IMPORTANT: Implemented only if Wireless Internet Feature Set
is present.

sysAppLaunchCmdInitDatabase

This launch code is sent by the Desktop Link server in response to a
request to create a database. It is sent to the application whose
creator ID matches that of the requested database.

The most frequent occurrence of this is when a 'data' database is
being installed or restored from the desktop. In this case, HotSync®
creates a new database on the device and passes it to the application
via a sysAppLaunchCmdInitDatabase command, so that the
application can perform any required initialization. HotSync will
then transfer the records from the desktop database to the device
database.

When a Palm OS application crashes while a database is installed
using HotSync, the reason may be that the application is not
handling the sysAppLaunchCmdInitDatabase command
properly. Be especially careful not to access global variables.

The system will create a database and pass it to the application for
initialization. The application must perform any initialization
required, then pass the database back to the system, unclosed.

sysAppLaunchCmdinitDatabase Parameter Block

typedef struct ({
DmOpenRef dbPp;

66 Palm OS SDK Reference

Application Launch Codes
Launch Codes

Fields

UInt32 creator;
UInt32 type;
UIntleé version;

} SysAppLaunchCmdInitDatabaseType;

dbP Database reference.
creator Database creator.
type Database type.
version Database version.

sysAppLaunchCmdLookup

The system or an application sends this launch command to retrieve
information from another application. In contrast to Find, there is a
level of indirection; for example, this launch code could be used to
retrieve the phone number based on input of a name.

This functionality is currently supported by the standard Palm OS
Address Book.

Applications that decide to handle this launch code must search
their database for the string the user entered and perform the match
operation specified in the launch code’s parameter block.

If an application wants to allow its users to perform lookup in other
applications, it has to send it properly, including all information
necessary to perform the match. An example for this is in
Address.c and AppLaunchCmd. h, which are included in your
SDK.

sysAppLaunchCmdLookup Parameter Block

The parameter block is defined by the application that supports this
launch code. See AppLaunchCmd. h for an example.

IMPORTANT: Implemented only if 2.0 New Feature Set is
present.

Palm OS SDK Reference 67

Application Launch Codes
Launch Codes

Prototype

Fields

sysAppLaunchCmdNotify

The system or an application sends this launch code to notify
applications that an event has occurred. The parameter block
specifies the type of event that occurred, as well as other pertinent
information. To learn which notifications are broadcast by the

system, see “Notification Manager Event Constants” in the
“Notification Manager” chapter.

IMPORTANT: Implemented only if Notification Feature Set is
present.

sysAppLaunchCmdNotify Parameter Block

The SysNotifyParamType structure declared in NotifyMgr.h
defines the format of this launch code’s parameter block. See its
description in the “Notification Manager” chapter.

sysAppLaunchCmdOpenDB

You can send this launch code to the Clipper application to launch
the application and cause it to open and display a Palm query
application stored on the device. This is the same mechanism that
the Launcher uses to launch query applications.

IMPORTANT: Implemented only if Wireless Internet Feature Set
is present.

sysAppLaunchCmdOpenDB Parameter Block

typedef struct ({
UIntlé cardNo;
LocalID dbID;
} SysAppLaunchCmdOpenDBType ;

cardNo Card number of database to open.

dbID Database id of database to open.

68

Palm OS SDK Reference

Application Launch Codes
Launch Codes

sysAppLaunchCmdPanelCalledFromApp

sysAppLaunchCmdPanelCalledFromApp and
sysAppLaunchCmdReturnFromPanel allow an application to let
users change preferences without switching to the Preferences
application. For example, for the calculator, you may launch the
Formats preferences panel, set up a number format preference, then
directly return to the calculator that then uses the new format.

sysAppLaunchCmdPanelCalledFromApp lets a preferences
panel know whether it was switched to from the Preferences
application or whether an application invoked it to make a change.
The panel may be a preference panel owned by the application or a
system preferences panel.

Examples of these system panels that may handle this launch code
are:

¢ Network panel (called from network applications)
* Modem panel (called if modem selection is necessary)

All preferences panels must handle this launch code. If a panel is
launched with this command, it should:

* Display a Done button.

* Not display the panel-switching pop-up trigger used for
navigation within the preferences application.

IMPORTANT: Implemented only if 2.0 New Feature Set is
present.

sysAppLaunchCmdReturnFromPanel

This launch code is used in conjunction with
sysAppLaunchCmdPanelCalledFromApp. It informs an
application that the user is done with a called preferences panel. The
system passes this launch code to the application when a
previously-called preferences panel exists.

IMPORTANT: Implemented only if 2.0 New Feature Set is
present.

Palm OS SDK Reference 69

Application Launch Codes

Launch Codes

Prototype

Fields

sysAppLaunchCmdSaveData

Instructs the application to save all current data. For example,
before the system performs a Find operation, an application should
save all data.

Any application that supports the Find command and that can have
buffered data should support this launch code. Generally, an
application only has to respond if it’s the currently running
application. In that case, all buffered data should be saved when the
launch code is received.

sysAppLaunchCmdSaveData Parameter Block

typedef struct ({
Boolean uiComing;
UInts reservedl;
} SysAppLaunchCmdSaveDataType;

uiComing true if system dialog is displayed before
launch code arrives.

reservedl Reserved for future use.

sysAppLaunchCmdSyncNotify

This launch code is sent to applications to inform them that a
HotSync operation has occurred.

This launch code is sent only to applications whose databases were
changed during the HotSync operation. (Installing the application
database itself is considered a change.) The record database(s) must
have the same creator ID as the application in order for the system
to know which application to send the launch code to.

This launch code provides a good opportunity to update, initialize,
or validate the application’s new data, such as resorting records,
setting alarms, and so on.

Because applications only receive sysAppLaunchCmdSyncNotify
when their databases are updated, this launch code is not a good
place to perform any operation that must occur after every HotSync
operation. Instead, you may register to receive the
sysNotifySyncFinishEvent on systems that have the

70 Palm OS SDK Reference

Application Launch Codes
Launch Codes

Prototype

Fields

Notification Feature Set. This notification is sent at the end of a
HotSync operation, and it is sent to all applications registered to
receive it, whether the application’s data changed or not. Note that
there is also a sysNotifySyncStartEvent notification.

sysAppLaunchCmdSystemLock

Launch code sent to the system-internal security application to lock
the device.

As arule, applications don’t need to do respond to this launch code.
If an application replaces the system-internal security application, it
must handle this launch code.

IMPORTANT: Implemented only if 2.0 New Feature Set is
present.

sysAppLaunchCmdSystemReset
Launch code to respond to system soft or hard reset.

Applications can respond to this launch code by performing
initialization, indexing, or other setup that they need to do when the
system is reset. For more information about resetting the device, see
“System Boot and Reset” in the Palm OS Programmer’s Companion.

sysAppLaunchCmdSystemReset Parameter Block

typedef struct {
Boolean hardReset;
Boolean createDefaultDB;
} SysAppLaunchCmdSystemResetType;

hardReset true if system was hardReset. false if
system was softReset.

createDefaultDBIf true, application has to create default
database.

Palm OS SDK Reference 71

Application Launch Codes

Launch Codes

sysAppLaunchCmdTimeChange
Launch code to respond to a time change initiated by the user.

Applications that are dependent on the current time or date need to
respond to this launch code. For example, an application that sets
alarms may want to cancel an alarm or set a different one if the
system time changes.

On systems that have the Notification Feature Set, applications
should register to receive the sysNotifyTimeChangeEvent
notification instead of responding to this launch code. The
sysAppLaunchCmdTimeChange launch code is sent to all
applications. The sysNot ifyTimeChangeEvent notification is
sent only to applications that have specifically registered to receive
it, making it more efficient than sysAppLaunchCmdTimeChange.

sysAppLaunchCmdURLParams

This launch code is sent from the Clipper application to launch
another application.

The parameter block consists of a pointer to a special URL string,
which the application must know how to parse. The string is the
URL used to launch the application and may contain encoded
parameters. For more information, see “Launching Other
Applications from Clipper” on page 311 in the Palm OS
Programmer’s Companion.

An application launched with this code may or may not have access
to global variables, static local variables, and code segments other
than segment 0 (in multi-segment applications). It depends on the
URL that caused Clipper to send this launch code. If this launch
code results from a palm URL, then globals are available. If the
launch code results from a palmcall URL, then globals are not
available.

The best way to test if you have global variable access is to test the
sysAppLaunchFlagNewGlobals launch flag sent with this
launch code. If this is flag is set, then you have global variable
access.

72 Palm OS SDK Reference

Application Launch Codes
Launch Flags

IMPORTANT:
is present.

Implemented only if Wireless Internet Feature Set

Launch Flags

When an application is launched with any launch command, it also
is passed a set of launch flags.

An application may decide not to handle the flags even if it handles
the launch code itself. For applications that decide to include this
launch code, the following table provides additional information:

Table 1.2 Launch Flags

Flag

Functionality

sysAppLaunchFlagNewThread

sysAppLaunchFlagNewStack

sysAppLaunchFlagNewGlobals

sysAppLaunchFlagUIApp

sysAppLaunchFlagSubCall

Creates a new thread for the application.
Implies sysAppLaunchFlagNewStack.

Creates a separate stack for the application.

Creates and initializes a new globals world for
the application. Implies new owner ID for
memory chunks.

Notifies launch routine that this is a UI
application being launched.

Notifies launch routine that the application is
calling its entry point as a subroutine call. This
tells the launch code that it's OK to keep the A5
(globals) pointer valid through the call. If this
flag is set, it indicates that the application is
already running as the current application.

Generally, the system sends launch flags along with all launch
codes. Applications should just pass 0 (zero) when sending a launch
code to another application.

Palm OS SDK Reference 73

2

3= Palm OS Resources

t

Palm OS® User Interface resources are the elements of an
application’s GUI (graphical user interface). This chapter provides
reference material you can use when creating user interface
resources in Metrowerks Constructor. It provides detailed
guidelines for using each resource, and it provides descriptions of
the attributes you set in Metrowerks Constructor.

NOTE: For more information see the following manuals:

The_Palm OS Tutorial provides more detailed instruction on how to
create a GUI using the Constructor tool.

The Constructor for Palm OS manual in the CodeWarrior
Documentation folder provides detailed reference-style
documentation as well as information on how to use each
individual resource.

System Resources

Every application running under Palm OS must have certain
minimum system (not UI) resources defined to be recognized by the
Palm OS system software. These required resources are created for
your application by the development environment. You may find
that you need additional, application-specific resources. The
required resources are 'code' #1, 'code’ #0, and 'data' #0. All other
system resources are optional. This section describes both the
required and optional resources.

The ‘code’ #1 Resource

The system creates a ' code' #1 resource for every application. This
resource is the entry point for the application and is where

Palm OS SDK Reference 75

Palm OS Resources
System Resources

application initialization is performed. When the Palm OS device
launches an application, it starts executing at the first byte of the

‘code’ #1 resource. All of the application code that you provide is
included in this resource as well.

Typically, some startup code provided with the Palm OS
development environment is linked in with your application code.
This startup code works as follows:

¢ The startup code performs application setup and
initialization.

¢ The startup code calls your main routine.

* When your main routine exits, control is returned to the
startup code, which performs any necessary cleanup of your

application and returns control to the Palm OS system
software.

The ‘code’ #0 and ‘data’ #0 Resources

The 'code' #0 and 'data' #0 resources contain the required size
of your global data and an image of the initialized area of that global
data. When your application is launched, the system allocates a
memory chunk in the dynamic heap that’s big enough to hold all
your globals. The 'data #0 resource is then used to initialize those
globals.

The ‘pref’ #0 Resource

The system creates a' pref ' #0 resource for every application. This
resource contains startup information for launching your
application. The resource includes

* Required stack size
* Dynamic heap space required (not currently used)
* Task priority (not currently used)

This resource applies only to Palm OS 3.0 and higher. It is ignored
on older versions of Palm OS.

76 Palm OS SDK Reference

Palm OS Resources
Resource Types

Resource Types

Metrowerks Constructor divides resources into two types: catalog
resources and project resources.

Catalog Resources

Catalog resources are available in Constructor’s Catalog window
and can be dragged directly on a form. Table 2.1 lists the available
catalog resources. The Macintosh ResEdit resource name is included
for reference only; it’s not needed by developers who use
Constructor exclusively, and not relevant for Windows developers.

Table 2.1 Catalog Resources
Name Resource Resource
tBTN Button Resource [Ol]
tCBX Check Box Resource
 ‘Show Due Dates
11 Show Priorities
tFLD Field Resource
Lok Up: Texd
tFBM Form Bitmap Resource (container for
Bitmap resource)
tGDT Gadget Resource (application
defined)
tGSI Graffiti Shift Indicator Resource -I-
tLBL Label Resource (container for a
String)

Palm OS SDK Reference 77

Palm OS Resources
Resource Types

Table 2.1 Catalog Resources (continued)

Name Resource Resource

tLST List Resource

Edit Cateqaries._
tPUT Po Trigger Resource
PUPLES 4 w Unfiled
tPBN Push Button Resource
:
tREP Repeating Button Resource
4T RIT[F]=]p
Scroll Bar Resource (see below)
tSLT Selector Trigger Resource _
Selector
tTBL Table Resource _
A R

Project Resources
Project resources are instantiated from the projects window.

Table 2.2 lists the project resources. The Macintosh ResEdit resource
name is included for reference only; it’s not needed by developers
who use Constructor exclusively, and not relevant for Windows
developers.

78 Palm OS SDK Reference

Palm OS Resources
Alert Resource

Table 2.2 Project Resources

Name Resource Ul Name
Talt Alert Resource Alert
tFRM Form Resource Form
Menu Resource Menu
Menu bar Resource Menu bar
tSTR String Resource String
Icons
Bitmaps

Alert Resource

Example

Overview

flems Delete

Lo you really want to
dele te this memo ¥

[ok) (Cancal)

The alert resource defines a modal dialog that displays a message,

an icon, and one or more buttons.

A small icon indicates the category of the dialog box; for example,
an exclamation mark for an error message. The icon appears on the
left side of the dialog. The text is justified left but placed to the right

of the dialog icon.

Palm OS SDK Reference 79

Palm OS Resources
Alert Resource

Type Icon Definition Button Example
Information i Lowest-level warning. OK An alarm setting
Action shouldn’t or can’t be must be between 1
completed but doesn’t and 99.
generate an error or risk
data loss.
Confirmation ? Confirm an action or OK, Change settings
suggest options. Cancel before switching

applications? (For
example, when
pressing an
application key with
an open dialog box.)

Warning ! Ask if user wishes to OK, Are you sure you
continue a potentially Cancel want to delete this
dangerous action. entry?

Error (stop Attempted action OK Disk full.

sign) generated error and/or
cannot be completed.

The Alert resource has the following attributes.

Attributes

Alert Type Determines the sound played and the icon displayed
when the alert is drawn. There are four possible icons:

¢ InformationAlert (Alert Number 0)
e ConfirmationAlert (Alert Number 1)
* WarningAlert (Alert Number 2)

e ErrorAlert (Alert Number 3)

Help ID The ID of a String resource that’s the help text for the
alert dialog box. If you provide a value, the system
displays an “i” in the top right corner of the alert box.

80 Palm OS SDK Reference

Palm OS Resources
Button Resource

Default
Button ID

Title
Message

Button Text

Button Resource

Ul Structure

Overview

Examples

Attributes

The number of a button that the system assumes is
selected if the user switches to another application,
forcing the form to go away without making a
selection.

Title of the alert form.

Message displayed by the alert dialog. May contain
N1, N2, A3 as substitution variables for use in
conjunction with FrmCustomAlert.

Text of the button (e.g. OK or Cancel), determined by
an entry in the resource of each button.
To add a button, select Item Text 0, and type Cmd-K.

ControlType

A button is a clickable Ul object, often used to trigger events in an
application. A button displays as a text label surrounded by a
rectangular frame. The frame has rounded corners. The label may be
regular text or a glyph from one of the symbol fonts provided with
your development environment, for example, an arrow.

[ok][Cancel] [Delete..] [Mote

Object
Identifier

Button ID
Left Origin

Top Origin

Name of the object. Assigned by developer and used
by Constructor during header file generation and
update.

ID of the object (assigned by Constructor).

Form-relative position of left side of button.
Valid values: 0 — 159

Form-relative position of top of object.
Valid values: 0 - 159

Palm OS SDK Reference 81

Palm OS Resources
Button Resource

Width

Height

Usable

Anchor Left

Frame

Non-bold
Frame

Font

Label

Width of button in pixels. Size the buttons to allow 3-6
pixels of white space at each end of the label.
Valid values: 0 — 160

Height of the button in pixels. Should be 3 pixels
larger than the font size, for example, height =12 for 9-
point labels.

Valid values: 1 - 160

A nonusable object is not considered part of the
application’s interface and doesn’t draw. Nonusable
object can programmatically be set to usable.

If checked, the object is usable.

Controls how the object resizes itself when its text
label is changed. If checked, the left bound of the
object is fixed; if unchecked, the right bound is fixed.

If checked, a rectangular frame with rounded corners
is drawn around the button. Most buttons have
frames. Buttons whose labels are single symbol
characters such as scroll buttons don’t have frames.

If checked, a one-pixel-wide rectangular frame with
rounded corners is drawn around the button. If

unchecked, a bold frame (two pixels wide) is drawn
around the button. Non-bold frames are the default.

Font used to draw the text label of the button. Choose
from the pop-up menu to select one of the fonts.

Text displayed inside the button: one line of text or a
single character from a symbol font to create an
increment arrow.

Comments The label is centered in the button. If the label text is wider than the
button, the whole label is centered and both the right and left sides

are clipped.

Place command buttons at the bottom of table views and dialog
boxes. Leave three pixels between the dialog bottom and buttons.

Increment arrows are a special case; they are buttons that let users
increment the value displayed in a data field.

82

Palm OS SDK Reference

Palm OS Resources
Check Box Resource

Tip

To create an increment arrow, use an arrow character from the
Symbol font as a label. Several arrow styles and sizes are available.

Making a Button with a Bitmap Label

It’s not possible to make a bitmap the label of a button; the label
always has to be a text string. However, the same effect can be
achieved by

* Creating a bitmap the same size of a button
¢ Placing them at the same location.
Make sure the bitmap is a Form Bitmap, selected from the catalog.

When the user selects the button, the system inverts the bitmap
graphic as well.

Check Box Resource

Ul Structure

Overview

Example

Attributes

ControlType

A check box is a small, square UI object with an optional text label to
the right.

The figure below shows a checked and an unchecked check box
with a label to the right (the default).

& Show bue Dates.

01 _Show Prigrities

Object Name of the object. Assigned by developer and
Identifier used by Constructor during header file generation
and update.

Check Box ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of object.
Valid values: 0 — 159

Top Origin Form-relative position of top of object.
Valid values: 0 — 159

Palm OS SDK Reference 83

Palm OS Resources
Field Resource

Width

Height

Usable

Selected

Group ID

Font

Label

Width of the picking area around the check box.
Valid values: 0 — 160

Height of the picking area around the check box.
Valid values: 1- 160

If this box is checked, the object is usable.

A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

Initial selection state of the checkbox. If the box is
checked (the default), the checkbox is initially
checked.

Group ID of a check box that is part of an exclusive
group. Ungrouped (nonexclusive) check boxes
have 0 as a group ID.

Valid values: 0 — 65535

Font used to draw the text label of the button.
Choose from the pop-up menu to select one of the
fonts.

Text displayed to the right of the check box. This
text is part of the activation area. To create a
(nonactive) label to the left of the check box, leave
this attribute blank and create a separate Label
resource.

Comments Make sure that only one check box in a group is initially checked.

All check boxes are the same size. The Height and Width determine
the toggle area, which is the screen area the user needs to press to
check or uncheck the box.

If a label attribute is defined, it’s part of the activation area.

Field Resource

Ul Structure FieldType

84 Palm OS SDK Reference

Palm OS Resources
Field Resource

Overview

Attributes

The field Ul object is for user data entry in an application. It displays
one or more lines of text. A field can be underlined, justified left or
right, and editable or uneditable.

Text fields can be located anywhere except in menus and in the
command button area.

The following is an underlined, left-justified field containing data:

Object
Identifier

Field ID
Left Origin

Top Origin
Width
Height

Usable

Editable

Underline

Name of the object. Assigned by developer and used
by Constructor during header file generation and
update.

ID of the object (assigned by Constructor).

Form-relative position of left side of object.
Valid values: 0 - 159

Form-relative position of top of object.
Valid values: 0 — 159

Width of the object in pixels.
Valid values: 0 — 160

Height of the object in pixels.
Valid values: 1- 160

If this box is checked, the object is usable.

A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

If this box is checked, the field is editable. Noneditable
tields don’t accept user input but can be changed
programmatically. Noneditable text fields are useful
when you want to display text on a form but don’t
want users to edit it.

If set, each line of text is underlined with a gray line.

Palm OS SDK Reference 85

Palm OS Resources
Form Resource

Single Line

Dynamic
Size

If checked, the field doesn’t scroll horizontally and
doesn’t accept Return or Tab characters. Only a single
line of text is displayed. If the user attempts to enter
text beyond this, the system beeps.

Multiline text fields expand. An empty field may
display one or more blank lines; for example, records
in a To Do list or a text page.

If checked, the height of the field is expanded or
compressed as characters are added or removed. Set
this attribute to false if the Single Line attribute is set.

Left Justified Text justification. Supported only for fields that have

Max
characters

Font

Auto-Shift

the Single Line attribute checked.
Valid values: checked (left-justified)—recommended
unchecked (right-justified)

Maximum number of characters the field accepts. This
is a limit on the number of characters a user can enter,
but not on what can be displayed. All fields can
display up to 32,767 characters regardless of this
setting.

Valid values: 0 — 32767

Font used to draw the text label of the button. Choose
from the pop-up menu to select one of the fonts.

If checked, 2.0 (and later) auto-shift rules are applied.

Has Scrollbarlf checked, the field has a scroll bar. The system sends

Numeric

Form Resource

more frequent £1dHeightChangedEvents so the
application can adjust the height appropriately.

If checked, only the characters 0 through 9 are allowed
to be entered in the field.

Overview A form is a container for one or more of the Catalog Resources.

86 Palm OS SDK Reference

Palm OS Resources
Form Resource

Example

Attributes

Applications usually contain several different forms that the user
triggers by tapping buttons or other control UI objects. Most Ul
objects are displayed only if they are contained within a form.

The example below shows a modal form. A form can also be as large
as the screen.

Address Entry Details §

Show in List: + Work

Cateqory: w Perzonal
Private: [

[ok :I [{unn:el:I I:Delete...:l [Nu:-tejl

Left Origin
Top Origin
Width
Height

Usable
Modal

Window-relative position of left side of form.
Valid values: 0 - 159

Window-relative position of top of form.
Valid values: 0 - 159

Width of the form in pixels.
Valid values: 0 - 160

Height of the form in pixels.
Valid values: 1- 160

Not currently supported for forms.

If checked, form is modal. Modal forms ignore pen
events outside their boundaries. Used for dialogs.

Save Behind If checked, the region obscured by the form is saved

Form ID
Help ID

when it’s drawn and restored when it’s erased. Used
for dialogs.

Form ID assigned by Constructor.

ID number of a string that’s displayed when the user
taps the “i” icon. The system adds the icon to the form
when you provide a value for this property. Currently,
only modal dialogs have help resources.

Palm OS SDK Reference 87

Palm OS Resources
Form Resource

Menu Bar IDContains the ID of a menu bar resource to be
associated with this form.

Default ID number of a button that the system assumes is

Button ID selected if the user switches to another application,
forcing the form to go away without making a
selection.

Form Title Title of that form. Use titles for dialogs, menu bars for
views. By convention, the name of the application and
the name of the screen, if possible, for example
Address List or Address Edit.

The title must be one line; it uses about 13 pixels of the
top of the form.

Palm OS Version of the device for which this form is created.
Version

Comments The total display on the Palm device is 160 pixels by 160 pixels. If
you want your whole form to be seen, make sure it fits within this
display area. For pop-up dialogs, you can make the form smaller.
Align a popup dialog with the bottom of the screen.

Here are some general design guidelines:

¢ Each form should have a title that displays the name or view
of the application, or both.

¢ Scroll bars in fields and tables appear and disappear
dynamically if you've selected that option for that Ul
element. Place them to the right of command buttons.

* Modal dialogs always occupy the full width of the screen and
are justified to the bottom of the screen. They hide the
command buttons of the base application but don’t obscure
the title bar of the base application if possible. There should
be a minimum of three pixels between the top of the modal
dialog title bar and the bottom of the application title bar. If
the dialog is too large to accommodate this, the entire
application title bar should be obscured.

¢ Screen command buttons should always be at the bottom of
the screen.

88

Palm OS SDK Reference

Palm OS Resources
Form Bitmap Resource

¢ Dialog command buttons appear four pixels above the
bottom of the dialog box frame. Two-pixel default ring is
three pixels above the bottom, and the baseline of the text
within the buttons should be aligned.

¢ Command buttons should be centered so that the spaces
between the buttons are twice the width of the spaces
between the edges and the border (see diagram below).

If possible, all buttons should be the same width. At a
minimum, they should be spaced equidistant, as illustrated

below.
. " ra ™, ' ™,
A B A E [& E Q I
" — Y, L J__f ;E A_u:j
Ome hutton Two huktons Three burtons
Distance 4 = B Distance BE=2 xh=2xC Distamee BE=C=2xd=2xD

Form Bitmap Resource

Overview Places predefined bitmaps on a given form. Used for icons in Alert
dialogs to indicate a warning, error, information, and so on. You
have to associate a Bitmap with the Form Bitmap to actually make a
picture appear.

Attributes
Object Name of the object. Assigned by developer and
Identifier used by Constructor during header file generation
and update.
Left Origin. Left bounds of bitmap.

Top Origin Top bounds of bitmap.

Palm OS SDK Reference 89

Palm OS Resources

Gadget Resource

Bitmap Resource ID of a PICT resource containing the graphic. You

ID

Usable

Gadget Resource

Name

Ul Name

Overview

Attributes

tGDT

Gadget

can also assign an ID number, then click on Create
and draw the picture in the bitmap editor that
appears.

Checked if the bitmap should be drawn.

A gadget object lets developers implement a custom Ul gadget. The
gadget resource contains basic information about the custom
gadget, which is useful to the gadget writer for drawing and
processing user input.

Object
Identifier

Gadget ID
Left Origin

Top Origin

Width

Name of the object. Assigned by developer and used
by Constructor during header file generation and
update.

ID of the object (assigned by Constructor).

Form-relative position of left side of object.
Valid values: 0 - 159

Form-relative position of top of object.
Valid values: 0 - 159

Width of the gadget in pixels.
Valid values: 0 — 160

90 Palm OS SDK Reference

Palm OS Resources
Graffiti Shift Indicator Resource

Height Height of the gadget in pixels.
Valid values: 1- 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

Graffiti Shift Indicator Resource

Overview The Graffiti® Shift Indicator resource specifies the window-relative
or form-relative position of the Graffiti shift state indicator. The
different shift states are punctuation, symbol, uppercase shift, and
uppercase lock. These indicators will appear at the position of the
Graffiti Shift resource.

Note: By convention, Graffiti Shift indicators are placed at the
bottom-right of every form that has an editable text field.

Attributes
Object Name of the object. Assigned by developer and used
Identifier by Constructor during header file generation and
update.

Left Origin ~ Form-relative position of left side of object.
Valid values: 0 — 159

Top Origin Form-relative position of top of object.
Valid values: 0 — 159

Object ID ID of the object (assigned by Constructor).

Label Resource

Overview The label resource displays noneditable text or labels on a form
(dialog box or full-screen). It’s used, for example, to have text
appear to the left of a checkbox instead of the right.

Palm OS SDK Reference 91

Palm OS Resources
List Resource

Comments

Attributes

Ul Structure

Example

Overview

Pressing Return in a label wraps the text to the next line.

Object
Identifier

Label ID
Left Origin

Top Origin

Usable

Font

Text

List Resource

ListType

Business
Fersona

Infiled

Name of the object. Assigned by developer and used
by Constructor during header file generation and
update.

ID of the object (assigned by Constructor).

Form-relative position of left side of object.
Valid values: 0 — 159

Form-relative position of top of object.
Valid values: 0 — 159

If this box is checked, the object is usable.

A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

Font used to draw the text label of the button. Choose
from the pop-up menu to select one of the fonts.

Text of the label.

A list provides a box with a list of choices to the user. The list is
scrollable if the choices don’t all fit in the box.

The list box appears as a vertical list of choices surrounded by a
rectangular frame. The current selection of the list is inverted.
Arrows for scrolling the list appear in the right margin if necessary.

Palm OS SDK Reference

Palm OS Resources
List Resource

Attributes

Comments

Lists can appear as popup lists when used with popup triggers. See
Popup Trigger Resource.

Object Name of the object. Assigned by developer and used

Identifier = by Constructor during header file generation and
update.

List ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of object.
Valid values: 0 — 159

Top Origin Form-relative position of top of object.
Valid values: 0 - 159

Width Width of the list.
Valid values: 0 - 160
Usable If this box is checked, the object is usable.

A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

Font Font used to draw the text label of the button. Choose
from the pop-up menu to select one of the fonts.

Visible items Height of the list box, in items (choices). For example,
if the list has six items but only four fit, specify four.

Items Items in the list.

Errors may occur if the number of visible items is greater than the
actual number of items. An item’s text is not clipped against the list
box’s borders. Set a list to not usable if it’s linked to a popup trigger.

Use a list to let users choose between items of data; use a menu to
activate a command.

If a list becomes too tall to fit below the trigger, it’s justified up. If it
becomes to large for the screen, it scrolls.

Palm OS SDK Reference 93

Palm OS Resources
Menus and Menu Bars

Menus and Menu Bars

Overview
Menu name —m] — Menubar
Undo « L
. Cut -
Menu item ——— | copy "¢ |—— Shortcut
Faste « F
Separator —|3electhAll . S
Keyboard « K
GraffitiHelp G

A menu assembly consists of a menu bar, menu names indicating
the available menus, and the menus themselves with their
commands:

* Menu bar. The menu bar at the top of the screen contains the
names of the available menus. Each application has different
sets of menu names; within an application, different views
may have different menus.

* Menu name. Each menu is displayed below the menu name.
The following menu names are commonly found:

— Record—Place Record to the left of Edit (if applicable).

— Edit—Screens that allow editing need an Edit menu.
Note, however, that most editing is edit-in-place.

— Options—Typically, the last menu. The About command,
which provides version and creator information, should
always be an Options command under Palm OS.

* Menu. The menus themselves consist of menu items and
optional shortcuts. Under Palm OS, menu items should not
duplicate functionality available via command buttons.
Menus justify left with the active heading of the menu name
when invoked. If the menu doesn't fit, it’s justified to the
right border of the screen.

NOTE: For each menu, provide shortcuts for all commands or
for none at all. Don’t assign the same shortcut twice within one
application.

94 Palm OS SDK Reference

Palm OS Resources
Menus and Menu Bars

Menu Bar and Menu Resources

The only information provided for the menu and menu bar resource
is the resource name and resource ID.

Menu User Interaction

¢ Default Menu and Menu Item. A pen-up on the menu icon
displays the menu bar. The first time a menu is invoked after
an application is launched, no menus are displayed unless
there is only one menu available. Afterwards the menu and
menu item of the last command executed from the menu are
displayed. Graffiti command equivalents are ignored.

For example, if the user selects Edit > Copy, the Edit menu is
popped down and the Copy command is highlighted the
next time the menu bar is displayed. This expedites execution
of commonly used commands or of grouped commands (e.g.,
Copy/Paste). The last menu heading is not saved if the user
switches to a different view or a different application.

* View-specific Menus. Each view within an application can
have a unique menu, that is, different menu headings and
items.

* Menu Display. As a rule, a Palm OS application should try
to have the menu visible on screen as rarely as possible:

— After a menu command is executed, the menu bar is
dismissed.

— The menu bar is active when the menu headings in it are
active. When not active, the menu bar is not visible.

— There are no grayed-out menu headings or grayed-out
menu items. A command not accessible in a certain mode
doesn’t appear at all.

¢ Size. The vertical active area of menu headings is 2 pixels
beyond the ascender and 1 pixel below a potential descender
of the menu heading text. The horizontal active area covers
half the distance to the next menu heading, leaving no gaps
between the headings. If the menu headings aren’t as wide as
the menu bar, part of the menu bar may be inactive.

* Active Area. The entire area of the menu, excluding the
border, is active. Divider lines and status items on the

Palm OS SDK Reference 95

Palm OS Resources
Popup Trigger Resource

launcher menu are inactive; that is, they do not highlight
when tapped.

Popup Trigger Resource

Ul structure ControlType

Overview The popup trigger shows the selection of a list. The user can press
the popup trigger to pop up the list and change the selection.

A popup trigger displays a text label and a triangle to the left of the

label that indicates the object is a popup trigger.

When the user selects a popup trigger, a list of items pops up.

w Wark

Attributes
Object
Identifier

Popup ID
Left Origin

Top Origin
Width
Height

Usable

Name of the object. Assigned by developer and used
by Constructor during header file generation and
update.

ID of the object (assigned by Constructor).

Form-relative position of left side of button.
Valid values: 0 - 159

Form-relative position of top of button.
Valid values: 0 - 159

Width of the button’s picking area in pixels.
Valid values: 1 - 160

Height of the button’s picking area in pixels.
Valid values: 1 - 160

If this box is checked, the object is usable.

A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

96 Palm OS SDK Reference

Palm OS Resources
Push Button Resource

Left anchor Controls how the object resizes itself when its text
label is changed.
Valid values:

¢ checked (left bound fixed)
¢ unchecked (right bound fixed)

Font Font used to draw the text label of the button. Choose
from the pop-up menu to select one of the fonts.

Label Text displayed in the popup trigger (right of the
arrow).

List ID ID of the List object that pops up when the user taps

the pop-up trigger.

Push Button Resource

Ul Structure

Overview

ControlType

Push buttons allow users to select an option from a group of items.
The choices should have few characters; if the choices are long;
check boxes are preferable.

Push buttons display a text label surrounded by a 1-pixel-wide
rectangular frame. They appear in a horizontal or vertical row with
no pixels between the buttons. The buttons share a common border
so there appears to be a one pixel line between two controls. The
current selection is highlighted.

Priority: gl 2 |2 4|5
Sort by: QEETaLs

The List By dialog of the Address Book and the Details dialog of the
ToDo List contain examples of rows of push buttons.

Palm OS SDK Reference 97

Palm OS Resources
Push Button Resource

Attributes
Object
Identifier

Button ID
Left Origin

Top Origin

Width

Height

Usable

Group ID

Font

Label

Name of the object. Assigned by developer and used
by Constructor during header file generation and
update.

ID of the object (assigned by Constructor).

Form-relative position of left side of button.
Valid values: 0 — 159

Form-relative position of top of button.
Valid values: 0 — 159

Width of the button in pixels. Should be size of label
plus two pixels at each end.
Valid values: 1 - 160

Height of the button in pixels. Should be font size plus
two pixels.
Valid values: 1 - 160

If this box is checked, the object is usable.

A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

Group ID of a push button that is part of an exclusive
group. Only one push button in an exclusive group
may be depressed at a time. Ungrouped
(nonexclusive) push buttons have zero as a group ID.
This feature must be enforced by the application.
Valid values: 0 — 65535

Font used to draw the text label of the button. Choose
from the pop-up menu to select one of the fonts.

Text displayed inside the push button.

Comment To create a row of push buttons, create a number of individual push
button resources with the same height and align them by specifying
the same top position for each button.

98

Palm OS SDK Reference

Palm OS Resources
Repeating Button Resource

Repeating Button Resource

Overview

Attributes

The repeating button object is identical to the button object in its
appearance. The repeating button is used for buttons that need to be
triggered continuously by holding the pen down on them.

A good example for a repeating button is the scroll arrow, which
moves text as long as it’s held down.

Object
Identifier

Button ID
Left Origin

Top Origin
Width
Height

Usable

Anchor Left

Frame

Name of the object. Assigned by developer and used
by Constructor during header file generation and
update.

ID of the object (assigned by Constructor).

Form-relative position of left side of button.
Valid values: 0 — 159

Form-relative position of top of button.
Valid values: 0 — 159

Width of the button in pixels.
Valid values: 1 - 160

Height of the button in pixels.
Valid values: 1 - 160

If this box is checked, the object is usable.

A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

Controls how the object resizes itself when its text
label is changed. If checked, the left bound of the
object is fixed; if unchecked, the right bound is fixed.

If checked, a rectangular frame with rounded corners
is drawn around the button.

Palm OS SDK Reference 99

Palm OS Resources
Scroll Bar Resource

Non-bold
Frame

Font

Label

Determines the width of the rectangular frame drawn
around the object.
Valid values:

¢ checked (1-pixel-wide frame)

¢ unchecked (2-pixel-wide frame)

Font used to draw the text label of the button. Choose
from the pop-up menu to select one of the fonts.

Text displayed inside the button.

Comments The attributes match those of the Button Resource (tBTN); the
behavior differs.

You can also use repeating buttons to create increment arrows. See
Button Resource for more information.

Scroll Bar Resource

Overview The scroll bar resource helps developers to provide scrolling
behavior for fields and tables.

Example

Edit MMemo

w» Unfiled

............................... SCro” Car

[Done][Detals..)

100 Palm OS SDK Reference

Palm OS Resources
Selector Trigger Resource

Attributes
Object
Identifier

Scrollbar ID
Left Origin

Top Origin
Width
Height

Usable

Value
Min Value

Max Value

Page Size

Name of the object. Assigned by developer and used
by Constructor during header file generation and
update.

ID of the object (assigned by Constructor).

Form-relative position of left side of the scroll bar.
Valid values: 0 — 159

Form-relative position of top of the scroll bar.
Valid values: 0 — 159

Width of the scroll bar in pixels.
7 (the default) is strongly recommended.

Height of the scroll bar in pixels.
Valid values:1 - 160

If this box is checked, the object is usable.

A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

Current top value of the scroll bar’s car (movable
piece).

Position of the scroll car when the scroll bar is at the
top. Default should usually be 0.

Position of the scroll car when the scroll bar is at the
bottom. To compute this value, use the formula:
Number of lines — Page size + Overlap.

Number of lines to scroll at one time.

Selector Trigger Resource

Ul Structure ControlType

Overview Users can tap a selector trigger to pop up a dialog that lets them
select an item. The selected item becomes the label of the selector

Palm OS SDK Reference 101

Palm OS Resources
Selector Trigger Resource

trigger. For example, a selector trigger for time pops up a time
selector. The selected time is entered into the selector trigger.

A selector trigger displays a text label surrounded by a gray
rectangular frame, as shown below:

Sebe'-:tm*
Attributes

Object
Identifier
Selector
Trigger ID
Left Origin
Top Origin

Width

Height

Usable

Anchor Left

Name of the object. Assigned by developer and used
by Constructor during header file generation and
update.

ID of the object (assigned by Constructor).

Form-relative position of the left side of the object.
Valid values: 0 — 159

Form-relative position of top of object.
Valid values: 0 — 159

Width of the object in pixels.
Valid values: 1- 160

Height of the object in pixels. Height extends two
pixels above and one pixel below the 9-point plain
font. Height is one pixel above command buttons to
accommodate the gray frame.

Valid values: 1- 160

If this box is checked, the object is usable.

A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

Controls how the object resizes itself when its text
label is changed. If checked, the left bound of the
object is fixed, if unchecked, the right bound is fixed.
Valid values:

¢ checked (left bound fixed)
¢ unchecked (right bound fixed)

102

Palm OS SDK Reference

Palm OS Resources
String Resource

Font Font used to draw the text label of the button. Choose
from the pop-up menu to select one of the fonts.

Label Text in the selector trigger.

String Resource

Name

Overview

Attributes

Comments

Strings

Stores data strings used by the program. String resources may be
entered as text strings or as a series of hexadecimal characters.

String The text string to be stored, in decimal ASCIL

The string resource uses either the string or data. If both are entered,
they are concatenated.

Table Resource

Overview

Comments

Example

Attributes

The table object allows the developer to organize a collection of
objects on the display. For example, a table might contain a column
of labels that correspond to a column of fields. Under some
circumstances, a one-column table may be preferable to a list.

Since tables are scrollable, they may be larger than the display.

Object Name of the object. Assigned by developer, used by
Identifier = Constructor during header file generation/update.

Table ID ID of the object (assigned by Constructor).

Palm OS SDK Reference 103

Palm OS Resources
Table Resource

Left Origin Form-relative position of left side of the object.
Valid values: 0 — 159

Top Origin Form-relative position of top of object.
Valid values: 0 — 159

Width Width of the object in pixels.
Valid values: 1- 160

Height Height of the object in pixels.
Valid values: 1-160

Editable If the user can modify the table.
Rows Number of rows in the table.
Columns Number of columns in the table.

Column Width of the nth column.
width

104 Palm OS SDK Reference

3> Palm OS Events

t

Palm OS® events are structures (defined in the header files
Event.h, SysEvent .h, and INetMgr.h) that the system passes to
the application when the user interacts with the graphical user
interface. Chapter 4, “Event Loop” on page 65 in the Palm OS
Programmer’s Companion discusses in detail how this works. This
chapter provides reference-style information about each event. First
it shows the types used by Palm OS events. Then it discusses the

following events in alphabetical order:

Event

Ul Object

appStopEvent

ctlEnterEvent, ctlExitEvent, ctlRepeatEvent,
ctlSelectEvent

davSelectEvent

fldChangedEvent, fldEnterEvent,
fldHeightChangedEvent

frmCloseEvent, frmGotoEvent, frmLoadEvent,
frmOpenEvent, frmSaveEvent, frmUpdateEvent,
frmTitleEnterEvent, frmTitleSelectEvent

frmGadgetEnterEvent, frmGadgetMiscEvent

inetSockReadyEvent, inetSockStatusChangeEvent

kevDownEvent

lstEnterEvent, lstExitEvent, lstSelectEvent

menuEvent, menuOpenEvent, menuCloseEvent,
menuCmdBarOpenEvent

nilEvent

penDownEvent, penMoveEvent, penUpEvent

N.A.

Control

N.A.
Field

Form

Extended gadget
N.A. (INetLib)
N.A.

List

Menu

N.A.
N.A. (pen)

Palm OS SDK Reference 105

Palm OS Events
Event Data Structures

Event

Ul Object

popSelectEvent

sclEnterEvent, sclRepeatEvent, sclExitEvent
tblEnterEvent, tblExitEvent, tblSelectEvent
winEnterEvent, winExitEvent

Popup (Control)
Scroll bar

Table

Window

Event Data Structures

eventsEnum

The event sEnum enum specifies the possible event types.

enum events {

nilEvent = 0,
penDownEvent,
penUpEvent,
penMoveEvent,
keyDownEvent,
winEnterEvent,
winExitEvent,
ctlEnterEvent,
ctlExitEvent,
ctlSelectEvent,
ctlRepeatEvent,
lstEnterEvent,
lstSelectEvent,
lstExitEvent,
popSelectEvent,
fldEnterEvent,
fldHeightChangedEvent,
fldChangedEvent,
tblEnterEvent,
tblSelectEvent,
daySelectEvent,
menuEvent,
appStopEvent = 22,
frmLoadEvent,

106 Palm OS SDK Reference

Palm OS Events
Event Data Structures

frmOpenEvent,
frmGotoEvent,
frmUpdateEvent,
frmSaveEvent,
frmCloseEvent,
frmTitleEnterEvent,
frmTitleSelectEvent,
tblExitEvent,
sclEnterEvent,
sclExitEvent,
sclRepeatEvent,
tsmFepModeEvent,

menuCmdBarOpenEvent = 0x0800,
menuOpenEvent,
menuCloseEvent,
frmGadgetEnterEvent,
frmGadgetMiscEvent,

firstINetLibEvent = 0x1000,
firstWebLibEvent = 0x1100,

firstUserEvent = 0x6000
} eventsEnum;

Each of these event types is discussed in alphabetical order below.

EventType

The Event Type structure contains all the data associated with a
system event. All event types have some common data. Most events
also have data specific to those events. The specific data uses a
union that is part of the Event Type data structure. The union can
have up to 8 words of specific data.

The common data is documented below the structure. The Event
Reference section gives details on the important data associated
with each type of event.

typedef struct {
eventskEnum eType;
Boolean penDown ;

Palm OS SDK Reference 107

Palm OS Events
Event Data Structures

UInt8 tapCount;
Intleé screenX;
Intleé screenY;
union{
} data;

} EventType;

Common Field Descriptions

eType One of the event sEnum constants. Specifies the type
of the event.

penDown true if the pen was down at the time of the event,
otherwise false.

tapCount The number of taps received at this location. This
value is used mainly by fields. When the user taps in a
text field, two taps selects a word, and three taps
selects the entire line.

screenX Window-relative position of the pen in pixels (number
of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels (number
of pixels from the top left of the window).

data The specific data for an event, if any. The data is a
union, and its exact contents depend on the eType
tield. The Event Reference section in this chapter
shows what the data field contains for each event.

NOTE: Remember that the data field is part of the access path
to an identifier in the EventType structure. As an example, the
code to access the controlID field of a ct 1EnterEvent would

be:

EventType *event;

//...

if (event->data.ctlEnter.controlID ==

MyAppLockButton)

108 Palm OS SDK Reference

Palm OS Events
Event Reference

Compatibility

The tapCount field is only defined if 3.5 New Feature Set is
present. Because of the tapCount field, it’s particularly important
that you clear the event structure before you use it to add a new
event to the queue in Palm OS 3.5 and higher. Otherwise, the
tapCount value may be incorrect for the new event.

EventPtr
The EventPtr defines a pointer to an EventType.
typedef EventType *EventPtr;

Event Reference

appStopEvent

When the system wants to launch a different application than the
one currently running, the event manager sends this event to
request the current application to terminate. In response, an
application has to exit its event loop, close any open files and forms,
and exit.

If an application doesn’t respond to this event by exiting, the system
can’t start the other application.

ctlEnterEvent

The control routine Ct1HandleEvent sends this event when it
receives a penDownEvent within the bounds of a control.

For this event, the data field contains the following structure:

struct ctlEnter {

UIntlé controlID;

struct ControlType *pControl;
} ctlEnter;

Palm OS SDK Reference 109

Palm OS Events
Event Reference

Field Descriptions
controlID Developer-defined ID of the control.

pControl Pointer to a control structure (ControlType).

ctlExitEvent

The control routine Ct 1HandleEvent sends this event. When
CtlHandleEvent receives a ct1EnterEvent, it tracks the pen
until the pen is lifted from the display. If the pen is lifted within the
bounds of a control, a ct1SelectEvent is added to the event
queue; if not, a ct LExitEvent is added to the event queue.

The following data is passed with the event:

Field Descriptions

penDown true if the pen was down at the time of the event,
otherwise false.

screenX Window-relative position of the pen in pixels (number of
pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels (number of
pixels from the top left of the window).

ctiRepeatEvent

The control routine Ct 1HandleEvent sends this event. When
CtlHandleEvent receives a ct1EnterEvent in a repeating
button (tREP) or a feedback slider control (tslf), it sends a
ctlRepeatEvent. When Ct1HandleEvent receives a
ct1lRepeatEvent in a repeating button, it sends another
ct1RepeatEvent if the pen remains down within the bounds of
the control for 1/2 second beyond the last ct LIRepeatEvent.

When Ct1HandleEvent receives a ct1RepeatEvent in a
feedback slider control, it sends a ct1RepeatEvent each time the
slider’s thumb moves by at least one pixel. Feedback sliders do not
send ct IRepeatEvents at regular intervals like repeating buttons
do.

110 Palm OS SDK Reference

Palm OS Events
Event Reference

If you return true in response to a ct LRepeatEvent, it stops the
ct1lRepeatEvent loop. No further ct 1IRepeatEvents are sent.

For this event, the data field contains the following structure:

struct ctlRepeat ({
UIntlé controlID;
struct ControlType *pControl;
UInt32 time;
UIntlée value;
} ctlRepeat;

Field Descriptions

controlID Developer-defined ID of the control.

pControl Pointer to a control structure (ControlType).

time System-ticks count when the event is added to the
queue.

value Current value if the control is a feedback slider.

Compatibility

The value field is only present if 3.5 New Feature Set is present.

ctiSelectEvent

The control routine Ct 1HandleEvent sends this event. When
CtlHandleEvent receives a ct1EnterEvent, it tracks the pen
until the pen is lifted. If the pen is lifted within the bounds of the
same control it went down in, a cltSelectEvent is added to the
event queue; if not, a ct 1IExitEvent is added to the event queue.

For this event, the data field contains the following structure:

struct ctlSelect {
UIntlé controllID;
struct ControlType *pControl;
Boolean on;
UInts reservedl;
UIntle wvalue;
} ctlSelect;

Palm OS SDK Reference 111

Palm OS Events
Event Reference

Field Descriptions

controlID Developer-defined ID of the control.

pControl Pointer to a control structure (ControlType).

on true when the control is depressed; otherwise,
false.

reservedl Unused.

value Current value if the control is a slider.

Compatibility

The value field is only present if 3.5 New Feature Set is present.

daySelectEvent

The system-internal DayHandleEvent routine, which handles
events in the day selector object, handles this event. When the day
selector object displays a calendar month, the user can select a day
by tapping on it.

This event is sent when the pen touches and is lifted from a day
number.

For this event, the data field contains the following structure:

struct daySelect ({
struct DaySelectorType *pSelector;
Intlé selection;
Boolean useThisDate;
UInt8 reservedl;
} daySelect;

Field Descriptions

pSelector Pointer to a day selector structure
(DaySelectorType).
selection Not used.

useThisDate Setto true to automatically use the selected date.

reservedl Unused.

112 Palm OS SDK Reference

Palm OS Events
Event Reference

fldChangedEvent

The field routine F1dHandleEvent sends this event when the text
of a field has been scrolled as a result of drag-selecting. When
FldHandleEvent receives a f1dEnterEvent, it positions the
insertion point and tracks the pen until it’s lifted. Text is selected
(highlighted) appropriately as the pen is dragged.

For this event, the data field contains the following structure:

struct fldChanged {

UIntlé fieldID;

struct FieldType *pField;
} £ldChanged;

Field Descriptions
fieldID Developer-defined ID of the field.

pField Pointer to a field structure (FieldType).

fldEnterEvent

The field routine F1dHandleEvent sends this event when the field
receives a penDownEvent within the bounds of a field. For this
event, the data field contains the following structure:

struct fldEnter (

UIntlé fieldID;

struct FieldType *pField;
} fldEnter;

Field Descriptions
fieldID Developer-defined ID of the field.

pField Pointer to a field structure (FieldType).

fldHeightChangedEvent

The field routine F1dHandleEvent sends this event. The field API
supports a feature that allows a field to dynamically resize its visible
height as text is added or removed from it. Functions in the field API
send a f1dHeightChangedEvent to change the height of a field.

Palm OS SDK Reference 113

Palm OS Events
Event Reference

If the field is contained in a table, the table’s code handles the
fldHeightChangedEvent. If the field is directly on a form, your
application code should handle the f1dHeightChangedEvent
itself. The form code does not handle the event for you.

For this event, the data field contains the following structure:

struct fldHeightChanged ({
UIntlé fieldID;
struct FieldType *pField;
Intlé newHeight;
UIntlé currentPos;

} fldHeightChanged;

Field Descriptions

fieldID Developer-defined ID of the field.
pField Pointer to a field structure (FieldType).
newHeight New visible height of the field, in number of lines.

currentPos Current position of the insertion point.

frmCloseEvent

The form routines FrmGotoForm and FrmCloseAllForms send
this event. FrmGotoFormsends a frmCloseEvent to the currently
active form; FrmCloseAllForms sends a frmCloseEvent to all
forms an application has loaded into memory. If an application
doesn’t intercept this event, the routine FrmHandleEvent erases
the specified form and releases any memory allocated for it.

For this event, the data field contains the following structure:

struct frmClose ({
UIntlé formID;
} frmClose;

Field Descriptions

formID Developer-defined ID of the form.

114 Palm OS SDK

Reference

Palm OS Events
Event Reference

frmGadgetEnterEvent

The function FrmHandleEvent sends this event when there is a
penDownEvent within the bounds of an extended gadget. The
gadget handler function (see FormGadgetHandler) should handle
this event.

For this event, the data field contains the following structure:

struct gadgetEnter (

UIntl6é gadgetID;

struct FormGadgetType *gadgetP;
} gadgetEnter;

Field Descriptions
gadgetID Developer-defined ID of the gadget.

gadgetP Pointer to the FormGadgetType object
representing this gadget.

Compatibility

Implemented only if 3.5 New Feature Set is present.

frmGadgetMiscEvent

An application may choose to send this event when it needs to pass
information to an extended gadget. The FrmHandleEvent function
passes frmGadgetMiscEvents on to the extended gadget’s
handler function (see FormGadgetHandler).

For this event, the data field contains the following structure:

struct gadgetMisc {
UIntlé gadgetID;
struct FormGadgetType *gadgetP;
UIntlé selector;
void *dataP;
} gadgetMisc;

Palm OS SDK Reference 115

Palm OS Events
Event Reference

Field Descriptions
gadgetID Developer-defined ID of the gadget.

gadgetP Pointer to the FormGadgetType object
representing this gadget.

selector Any necessary integer value to pass to the gadget
handler function.

dataP A pointer to any necessary data to pass to the
gadget handler function.
Compatibility

Implemented only if 3.5 New Feature Set is present.

frmGotoEvent

An application may choose to send itself this event when it receives
a sysAppLaunchCmdGoto launch code. sysAppLaunchCmdGoto
is generated when the user selects a record in the global find facility.
Like frmOpenEvent, frmGotoEvent is a request that the
application initialize and draw a form, but this event provides extra
information so that the application may display and highlight the
matching string in the form.

The application is responsible for handling this event.
For this event, the data field contains the following structure:

struct frmGoto ({
UIntlé formID;
UIntlé recordNum;
UIntlé matchPos;
UIntlé matchLen;
UIntlé matchFieldNum;
UInt32 matchCustom;

} frmGoto;

Field Descriptions
formID Developer-defined ID of the form.

recordNum Index of record containing the match string.

116 Palm OS SDK Reference

Palm OS Events
Event Reference

matchPos Position of the match.

matchLen Length of the matched string.

matchFieldNum Number of the field the matched string was
found in.

matchCustom Application-specific information. You might use

this if you need to provide extra information to
locate the matching string within the record.

frmLoadEvent

The form routines FrmGotoForm and FrmPopupForm send this
event. It’s a request that the application load a form into memory.

The application is responsible for handling this event.
For this event, the data field contains the following structure:

struct frmLoad {
UIntlé formID;
} frmLoad;

Field Descriptions

formID Developer-defined ID of the form.

frmOpenEvent

The form routines FrmGotoForm and FrmPopupForm send this
event. It is a request that the application initialize and draw a form.

The application is responsible for handling this event.
For this event, the data field contains the following structure:

struct frmOpen {
UIntlé formID;
} frmOpen;

Field Descriptions

formID Developer-defined ID of the form.

Palm OS SDK Reference 117

Palm OS Events
Event Reference

frmSaveEvent

The form routine FrmSaveAllForms sends this event. It is a
request that the application save any data stored in a form.

The application is responsible for handling this event.

No data is passed with this event.

frmTitleEnterEvent

The control routine FrmHandleEvent sends this event when it
receives a penDownEvent within the bounds of the title of the form.
Note that only the written title, not the whole title bar is active.

For this event, the data field contains the following structure:

struct frmTitleEnter (
UIntlé formID;
} frmTitleEnter;

Field Descriptions

formID Developer-defined ID of the form.

frmTitleSelectEvent

The control routine FrmHandleEvent sends this event.
FrmHandleEvent receives a frmTitleEnterEvent, it tracks the
pen until the pen is lifted. If the pen is lifted within the bounds of
the active same title bar region, a frmTitleSelectEvent is added
to the event queue.

For this event, the data field contains the following structure:

struct frmTitleSelect {
UIntlé formID;
} frmTitleSelect;

Field Descriptions

formID Developer-defined ID of the form.

118 Palm OS SDK Reference

Palm OS Events
Event Reference

Compatibility

In Palm OS version 3.5 and higher, FrmHandleEvent responds to
frmTitleSelectEvent. Its response is to enqueue a
keyDownEvent with a vehrMenu character to display the form’s
menu.

frmUpdateEvent

The form routine FrmUpdateForm, or in some cases the routine
FrmEraseForm, sends this event when it needs to redraw the
region obscured by the form being erased.

Generally, the region obscured by a form is saved and restored by
the form routines without application intervention. However, in
cases where the system is running low on memory, the form’s
routine may not save obscured regions itself. In that case, the
application adds a frmUpdateEvent to the event queue. The form
receives the event and redraws the region using the updateCode
value.

An application can define its own updateCode and then use this
event to also trigger behavior in another form, usually when
changes made to one form need to be reflected in another form.

For this event, the data field contains the following structure:

struct frmUpdate ({
UIntlé formID;
UIntlé updateCode;
} frmUpdate;

Field Descriptions
formID Developer-defined ID of the form.

updateCode The reason for the update request. FrmEraseForm
sets this code to frmRedrawUpdateCode, which
indicates that the entire form needs to be redrawn.
Application developers can define their own
updateCode. The updateCode is passed as a
parameter to FrmUpdateForm.

Palm OS SDK Reference 119

Palm OS Events
Event Reference

inetSockReadyEvent

This event is returned only by INetLibGetEvent (not
EvtGetEvent) when the Internet library determines that a socket
has data ready for an INetLibSockRead.

For this event, the data field contains the following structure:

struct {
MemHandle sockH;
UInt32 context;
Boolean inputReady;
Boolean outputReady;
} inetSockReady;

Field Descriptions

sockH Socket handle of the socket that this event refers
to.
context Not used.

inputReady true when the socket has data ready for the
INetLibSockRead call.

outputReady Not used.

The penDown, tapCount, screenX and screenY fields are not
valid for Internet library events and should be ignored.

Compatibility

Implemented only if Wireless Internet Feature Set is present.

inetSockStatusChangeEvent

This event is returned only by INetLibGetEvent (not
EvtGetEvent) when the Internet library determines that a socket
has data ready for an INetLibSockRead.

For this event, the data field contains the following structure:

struct {
MemHandle sockH;
UInt32 context;
UIntlé status;

120 Palm OS SDK Reference

Palm OS Events
Event Reference

Err sockErr;
}inetSockStatusChange;

Field Descriptions

sockH Socket handle of the socket that this event refers
to.

context Not used.

status Current status of the socket. This is one of the

INetStatusEnum constants.

sockErr Reason for failure of the last operation, if any. The
current socket error can be cleared by calling
INetLibSockStatus.

The penDown, tapCount, screenX and screenY fields are not
valid for Internet library events and should be ignored.

Compatibility

Implemented only if Wireless Internet Feature Set is present.

keyDownEvent

This event is sent by the system when the user enters a Graffiti®
character, presses one of the buttons below the display, or taps one
of the icons in the icon area; for example, the Find icon.

For this event, the data field contains the following structure:

struct KeyDownEventType {
WChar chr;
UIntlée keyCode;
UIntlé modifiers;

}i

Field Descriptions

chr The character code.
keyCode Unused.
modifiers 0, or one or more of the following values:

Palm OS SDK Reference 121

Palm OS Events
Event Reference

shiftKeyMask Graffiti is in case-shift mode.
capsLockMask Graffiti is in cap-shift mode.
numLockMask Graffiti is in numeric-shift mode.
commandKeyMask The Graffiti glyph was the menu
command glyph or a virtual key code.
optionKeyMask Not implemented. Reserved.
controlKeyMask Not implemented. Reserved.

autoRepeatKeyMask Event was generated due to auto-repeat.
doubleTapKeyMask Notimplemented. Reserved.

poweredOnKeyMask The key press caused the system to be
powered on.

appEvtHookKeyMask System use only.

libEvtHookKeyMask System use only.

IstEnterEvent

The list routine LstHandleEvent sends this event when it receives
a penDownEvent within the bounds of a list object.

For this event, the data field contains the following structure:

struct lstEnter (
UIntlé 1listID;
struct ListType *pList;
Intlé selection;

} lstEnter;

Field Descriptions

1listID Developer-defined ID of the list.
pList Pointer to a list structure (List Type).

selection Unused.

122 Palm OS SDK Reference

Palm OS Events
Event Reference

IstExitEvent

The list routine LstHandleEvent sends this event. When
LstHandleEvent receives a 1stEnterEvent, it tracks the pen
until the pen is lifted. If the pen is lifted within the bounds of a list, a
lstSelectEvent is added to the event queue; if not, a
lstExitEvent is added to the event queue.

For this event, the data field contains the following structure:

struct lstExit {

UIntlé 1listID;

struct ListType *plList;
} lstExit;

Field Descriptions
1listID Developer-defined ID of the list.

pList Pointer to a list structure (ListType).

IstSelectEvent

The list routine LstHandleEvent sends this event. When
LstHandleEvent receives a lstEnterEvent, it tracks the pen
until the pen is lifted. If the pen is lifted within the bounds of a list, a
lstSelectEvent is added to the event queue; if not, a
lstExitEvent is added to the event queue.

For this event, the data field contains the following structure:

struct lstSelect
UIntlé 1listID;
struct ListType *pList;
Intlé selection;

} lstSelect;

Field Descriptions

1listID Developer-defined ID of the list.
pList Pointer to a list structure (ListType).

selection Item number (zero-based) of the new selection.

Palm OS SDK Reference 123

Palm OS Events
Event Reference

menuCloseEvent

This event is not currently used.

menuCmdBarOpenEvent

The menu routine MenuHandleEvent sends this event when the
user enters the menu shortcut keystroke, causing the command
toolbar to be displayed at the bottom of the screen. Applications
might respond to this event by calling MenuCmdBarAddButton to
add custom buttons to the command toolbar. Shared libraries or
other non-application code resources can add buttons to the toolbar
by registering to receive the sysNotifyMenuCmdBarOpenEvent
notification. (See Chapter 36, “Notification Manager.”)

For this event, the data field contains the following structure:

struct menuCmdBarOpen {
Boolean preventFieldButtons;
UInts8 reserved;

} menuCmdBarOpen;

Field Descriptions

preventFieldButtons If true, the field manager does not add
the standard cut, copy, paste, and undo
buttons when the focus is on a field. If
false, the field adds the buttons.

reserved Unused.

To prevent the command toolbar from being displayed, respond to
this event and return true. Returning true prevents the form
manager from displaying the toolbar.

Compatibility

Implemented only if 3.5 New Feature Set is present.

menuEvent

The menu routine MenuHandl eEvent sends this event:

* When the user selects an item from a pull-down menu

124 Palm OS SDK Reference

Palm OS Events
Event Reference

* When the user selects a menu command using the Graffiti
command keystroke followed by an available command; for
example, Command-C for copy

* When the user taps one of the buttons on the command
toolbar and the button is set up to generate a menuEvent.

For this event, the data field contains the following structure:

struct menu {
UIntlé itemID;
} menu;

Field Descriptions

itemID Item ID of the selected menu command.

menuOpenEvent

The menu routine MenuHandleEvent sends this event when a new
active menu has been initialized. A menu becomes active the first
time the user taps the Menu silk-screen button or taps the form’s
titlebar, and it might need to be re-initialized and reactivated several
times during the life of an application.

A menu remains active until one of the following happens:
* A FrmSetMenu call changes the active menu on the form.

* A new form, even a modal form or alert panel, becomes
active.

Suppose a user selects your application’s About item from the
Options menu then clicks the OK button to return to the main form.
When the About dialog is displayed, it becomes the active form,
which causes the main form’s menu state to be erased. This menu
state is not restored when the main form becomes active again. The
next time the user requests the menu, it must be initialized again, so
menuOpenEvent is sent again.

Applications might respond to this event by adding, hiding, or
unhiding menu items using the functions MenuAddItem,
MenuHideItem, or MenuShowItem.

A menuCloseEvent is defined by the system, but it is not currently
sent. If you need to perform some cleanup (such as closing a

Palm OS SDK Reference 125

Palm OS Events
Event Reference

resource) after the menu item you added is no longer needed, do so
in response to frmCloseEvent.

For this event, the data field contains the following structure:

struct menuOpen {
UIntl6é menuRscID;
Intle cause;

} menuOpen;

Field Descriptions
menuRscID Resource ID of the menu.

cause Reason for opening the menu. If menuButtonCause,
the user tapped the Menu silkscreen button or tapped
the form’s titlebar, and the menu is going to be
displayed. If nenuCommandCause, the user entered
the command keystroke, so the menu is becoming
active without being displayed.

Compatibility

Implemented only if 3.5 New Feature Set is present.

nilEvent
A nilEvent is useful for animation, polling, and similar situations.

The event manager sends this event when there are no events in the
event queue. This can happen if the routine Evt Get Event is passed
a time-out value (a value other than evtWaitForever, -1). If
EvtGetEvent is unable to return an event in the specified time, it
returns a nilEvent. Different Palm OS versions and different
devices can send nilEvents under different circumstances, so you
might receive a nilEvent even before the timeout has expired.

penDownEvent

The event manager sends this event when the pen first touches the
digitizer.

The following data is passed with the event:

126 Palm OS SDK

Reference

Palm OS Events
Event Reference

Field Descriptions
penDown Always true.
tapCount The number of taps received at this location.

screenX Window-relative position of the pen in pixels (number
of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels (number
of pixels from the top left of the window).

penMoveEvent

The event manager sends this event when the pen is moved on the
digitizer. Note that several kinds of UI objects, such as controls and
lists, track the movement directly, and no penMoveEvent is
generated.

The following data is passed with the event:

Field Descriptions
penDown Always true.
tapCount The number of taps received at this location.

screenX Window-relative position of the pen in pixels (number
of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels (number
of pixels from the top left of the window).

penUpEvent

The event manager sends this event when the pen is lifted from the
digitizer. Note that several kinds of UI objects, such as controls and
lists, track the movement directly, and no penUpEvent is
generated.

For this event, the data field contains the following structure:

struct PenUpEventType {
PointType start;
PointType end;

Palm OS SDK Reference 127

Palm OS Events
Event Reference

}i
Field Descriptions
start Display-relative start point of the stroke.
end Display-relative end point of the stroke.
In addition, the following data is passed with this event:
penDown Always false.
tapCount The number of taps received at this location.

screenX Window-relative position of the pen in pixels
(number of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels
(number of pixels from the top left of the window).

popSelectEvent

The form routine FrmHandleEvent sends this event when the user
selects an item in a popup list.

For this event, the data field contains the following structure:

struct popSelect ({
UIntlé controlID;
struct ControlType *controlPp;
UIntlé 1listID;
struct ListType *1istPp;
Intlé selection;
Intle priorSelection;
} popSelect;

Field Descriptions
controlID Developer-defined ID of the resource.

controlP Pointer to the control structure
(ControlType) of the popup trigger object.

1listID Developer-defined ID of the popup list object.

128 Palm OS SDK

Reference

Palm OS Events
Event Reference

listP Pointer to the list structure (ListType) of the
popup list object.

selection Item number (zero-based) of the new list
selection.

priorSelection Item number (zero-based) of the prior list
selection.

sclEnterEvent

The routine Sc1HandleEvent sends this event when it receives a
penDownEvent within the bounds of a scroll bar.

Applications usually don’t have to handle this event.
For this event, the data field contains the following structure:

struct sclEnter {

UIntlé scrollBarID;

struct ScrollBarType *pScrollBar;
} sclEnter;

Field Descriptions

scrollBarID Developer-defined ID of the scroll bar resource.
pScrollBar Pointer to the scroll bar structure.
sclExitEvent

The routine Sc1HandleEvent sends this event when the user lifts
the pen from the scroll bar.

Applications that want to implement non-dynamic scrolling should
wait for this event, then scroll the text using the values provided in
value and newvalue.

Note that this event is sent regardless of previous
sclRepeatEvents. If, however, the application has implemented
dynamic scrolling, it doesn’t have to catch this event.

For this event, the data field contains the following structure:

struct sclExit ({
UIntlé scrollBarID;

Palm OS SDK Reference 129

Palm OS Events
Event Reference

struct ScrollBarType *pScrollBar;
Intlée value;
Intlé newValue;

} sclExit;

Field Descriptions

scrollBarID Developer-defined ID of the scroll bar
resource.

pScrollBar Pointer to the scroll bar structure.

value Initial position of the scroll bar

newvalue New position of the scroll bar. Given value

and newValue, you can actually tell how
much you have scrolled.

sclRepeatEvent

The routine Sc1HandleEvent sends this event when the pen is
continually held within the bounds of a scroll bar.

Applications that implement dynamic scrolling should watch for
this event. In dynamic scrolling, the display is updated as the user
drags the scroll bar (not after the user releases the scroll bar).

For this event, the data field contains the following structure:

struct sclRepeat ({
UIntlé scrollBarID;
struct ScrollBarType *pScrollBar;
Intlée value;
Intlé newValue;
Int32 time;
} sclRepeat;

Field Descriptions

scrollBarID Developer-defined ID of the scroll bar
resource.

pScrollBar Pointer to the scroll bar structure.

value Initial position of the scroll bar.

130 Palm OS SDK Reference

Palm OS Events
Event Reference

newValue New position of the scroll bar. Given value
and newValue, you can actually tell how
much you have scrolled.

time System-ticks count when the event is added to
the queue to determine when the next event
should occur.

tblEnterEvent

The table routine TblHandleEvent sends this event when it
receives a penDownEvent within the bounds of an active item in a
table object.

For this event, the data field contains the following structure:

struct tblEnter (
UIntlé tablelD;
struct TableType *pTable;
Intlée row;
Intlé column;
} tblEnter;

Field Descriptions

tableID Developer-defined ID of the table.
pTable Pointer to a table structure (TableType).
row Row of the item.

column Column of the item.

tbIExitEvent

The table routine Tb1HandleEvent sends this event. When
TblHandleEvent receives a tblEnterEvent, it tracks the pen
until it’s lifted from the display. If the pen is lifted within the bounds
of the same item it went down in, a tblSelectEvent is added to
the event queue; if not, a tb1ExitEvent is added to the event
queue.

For this event, the data field contains the following structure:

Palm OS SDK Reference 131

Palm OS Events
Event Reference

struct tblExit ({
UIntlé tablelID;
struct TableType *pTable;
Intlée row;
Intlé column;
} tblExit;

Field Descriptions

tableID Developer-defined ID of the table.
pTable Pointer to a table structure (TableType).
row Row of the item.

column Column of the item.

tbiSelectEvent

The table routine Tb1HandleEvent sends this event. When
TblHandleEvent receives a tblEnterEvent, it tracks the pen
until the pen is lifted from the display. If the pen is lifted within the
bounds of the same item it went down in, a tblSelectEvent is
added to the event queue; if not, a tb1ExitEvent is added to the
event queue.

For this event, the data field contains the following structure:

struct tblSelect ({
UIntlé tablelID;
struct TableType *pTable;
Intlée row;
Intlé column;
} tblSelect;

Field Descriptions

tableID Developer-defined ID of the table.
pTable Pointer to a table structure (TableType).
row Row of the item.

column Column of the item.

132 Palm OS SDK

Reference

Palm OS Events
Event Reference

winEnterEvent

The event manager sends this event when a window becomes the
active window. This can happen in two ways: a call to
WinSetActiveWindow is issued (FrmSetActiveForm calls this
routine), or the user taps within the bounds of a window that is
visible but not active. All forms are windows, but not all windows
are forms; for example, the menu bar is a window but not a form.

For this event, the data field contains the following structure:

struct WinEnterEventType {
WinHandle enterWindow;
WinHandle exitWindow;

}i
Field Descriptions

enterWindow Handle to the window we are entering. If the
window is a form, then this is a pointer to a
FormType structure; if not, it’s a pointer to a
WindowType structure.

exitWindow Handle to the window we are exiting, if there is
currently an active window, or zero if there is no
active window. If the window is a form, then this
is a pointer to a FormType structure; if not, it’s a
pointer to a WindowType structure.

winExitEvent

This event is sent by the event manager when a window is
deactivated. A window is deactivated when another window
becomes the active window (see winEnterEvent).

For this event, the data field contains the following structure:

struct WinExitEventType
WinHandle enterWindow;
WinHandle exitWindow;

}i

Palm OS SDK Reference 133

Palm OS Events
Event Reference

Field Descriptions

enterWindow Handle to the window we are entering. If the
window is a form, then this is a pointer to a
FormType structure; if not, it’s a pointer to a

WindowType structure.

exitWindow Handle to the window we are exiting. If the
window is a form, then this is a pointer to a
FormType structure; if not, it’s a pointer to a

WindowType structure.

134 Palm OS SDK Reference

4

- Categories

iz

This chapter describes the categories API as declared in the header
tile Category . h. It discusses the following topics:

¢ Category Data Structures

¢ Category Constants

¢ Category Functions

For more information on categories see the section “Categories” on
page 107 in the Palm OS Programmer’s Companion.

Category Data Structures

An AppInfo block can hold any data at all. The category APIs
provide a way to implement categories and use the AppInfo block
as the storage area. An application could implement the category
popup on its own without this API and use the Data Manager
category routines, and /or the AppInfo block, as it chooses.

This API requires that the AppInfo block be used like this:

AppinfoType

typedef struct ({

UIntlé renamedCategories;

Char categorylLabels
[dmRecNumCategories]
[dmCategoryLength] ;

UInts categoryUniqgIDs
[dmRecNumCategories] ;

UInts8 lastUnigID;

UInts padding;

} AppInfoType;

typedef AppInfoType *AppInfoPtr;

Palm OS SDK Reference 135

Categories
Category Constants

Field Descriptions

renamedCategories

categoryLabels

dmRecNumCategories
dmCategoryLength

categoryUniqgIDs

lastUniqgID

Category Constants

The following category constants are defined:

Used by CategorySetName as a
bit field indicating which
categories have been renamed.
Usually cleared by a conduit.

An array of strings containing the
category names.

Number of categories in the list.
Length of the category names.

Category IDs used for
synchronization. Unique IDs
generated by the device are
between 0 - 127. Those from the
PC are 128 - 255.

Used for sorting and assigning
unique IDs.

Constant

Value Description

categoryHideEditCategory

categoryDefaultEditCategoryString

10000 Used as an argument to

CategoryCreateList
to suppress adding the
“Edit Categories” item to
the list.

10001 Used as an argument to

CategoryCreateliist
to show the default “Edit
Categories” item in the
list.

136 Palm OS SDK Reference

Categories
Category Functions

Compatibility

The functionality of the constants categoryHideEditCategory
and categoryDefaultEditCategoryString is present only if
the 3.5 New Feature Set is present.

Category Functions

Purpose

Prototype

Parameters

CategoryCreateList
Read a database’s categories and store them in a list.

void CategoryCreatelList (DmOpenRef db,
ListType *1listP, Uintlé currentCategory,
Boolean showAll, Boolean showUneditables,
UInt8 numUneditableCategories,

UInt32 editingStrID, Boolean resizelist)

->db Opened database containing category info.
<-1listP A pointer to the list of category names. See
ListType.
->currentCategory
Category to select.
->showAll true to have an “All” category.
->showUneditables

true to show uneditable categories.

->numUneditableCategories
This is the number of categories, starting with
the first one at zero, that may not have their
names edited by the user. For example, it’s
common to have an “Unfiled” category at
position zero which is not editable.

->editingStrID The resource ID of a string to use with the “Edit
Categories” list item.

If you don’t want users to edit categories, pass
the categoryHideEditCategory constant.

Palm OS SDK Reference 137

Categories
Category Functions

If you want to allow users to edit categories,
pass the
categoryDefaultEditCategoryString
constant.

To display an alternate string, pass a tSTR
resource ID of your own string.

->resizelist true to resize the list to the number of
categories. Set to true for pop-ups, false
otherwise.

Result A memory block is allocated containing the list of categories. The
ListType in 1istP must be allocated outside this function.
However, this function allocates some structs that are stored INSIDE
the ListType, so CategoryFreeList must be called when you
are done with the list to free the memory block.

Comments You use this function to create a list of categories to display in your
application’s user interface, usually by calling LstDrawList or
LstPopupList. The category list is obtained from the
AppInfoType structure of the database specified by the db
parameter.

If the showAll parameter is true, the “All” item is first in the list,
followed by the editable categories in the database and then the
categories that cannot be edited. The option to edit categories is last
in the list and can be suppressed if desired. If the current selection is
not in any category, it is marked “Unfiled”.

Compatibility Implemented only if 2.0 New Feature Set is present.

The functionality of the constants
categoryDefaultEditCategoryString and
categoryHideEditString is available only if 3.5 New Feature
Set is present. In earlier versions, you can suppress the Edit
Categories string by passing 0 for the editingStrID parameter, or
include the item by passing categoryEditStrID.

See Also CategorvCreatelListV10

138 Palm OS SDK Reference

Categories
Category Functions

Purpose

Prototype

Parameters

Result

Compatibility

See Also

Purpose

CategoryCreateListV10

Read a database’s categories and set the category list.
This function is obsolete and should not be used.

void CategoryCreatelListV10 (DmOpenRef db,

ListType *1st, UIntlé currentCategory,
Boolean showAll)

->db Database containing categories to extract.
<-1lst List object to load categories into.
- >currentCategory
Set as the current selection in the resulting list.
->showAll true if an “All” category should be included in
the list.

Returns nothing.

This function corresponds to the Palm OS® 1.0 version of
CategoryCreatelList.

NOTE: Obsolete functions are provided ONLY for backward
compatibility; for example, so a 1.0 application will work on 3.x OS
releases. New code should not call these routines!

CategoryCreatelist

CategoryEdit

Event handler for the “Edit Categories” dialog. Called by
CategorySelect if the user chooses the Edit Category line. (If
the Edit Category line is present)

->db Database containing the categories to be edited.

Palm OS SDK Reference 139

Categories
Category Functions

<-categoryP Set to the category selected when the dialog is
done.

->titleStrID Title of the dialog bar.

->numUneditableCategories
This is the number of categories (starting with
the first one at zero) that may not have their
names edited by the user. For example, it’s
common to have an “Unfiled” category at
position zero which is not editable.

Result Returns true if any of the following conditions are true:
* The current category is renamed.
* The current category is deleted.

* The current category is merged with another category.

Compatibility This function was revised for Palm OS 2.0, and Palm OS 3.0. In Palm
0OS 3.0, the numUneditableCategories parameter was added.

NOTE: This enhancement is implemented only if 3.0 New
Feature Set is present.

See Also CategoryEditV20, CategorvyEditVio

CategoryEditV20

Purpose Event handler for the Edit Categories dialog.Called by
CategorySelect if the user chooses the Edit Category line. (If the Edit
Category line is present.)

This function is obsolete and should not be used.

Prototype Boolean CategoryEdit (DmOpenRef db,
UIntlé *categoryP, UInt32 titleStrID)

Parameters ->db Database containing the categories to be edited.

140 Palm OS SDK Reference

Categories
Category Functions

Result

Compatibility

See Also

Purpose

Prototype

Parameters

Result

<-categoryP Set to the category selected when the dialog is
done.

->titleStrID Title of the dialog bar.

Returns true if any of the following conditions are true:
® The current category is renamed.
* The current category is deleted.

* The current category is merged with another category.

This function corresponds to the Palm OS 2.0 version of
CategoryEdit. Implemented only if 3.0 New Feature Set is
present.

NOTE: Obsolete functions are provided ONLY for backward
compatibility. For example, so a 1.0 application will work on 3.x
OS releases. New code should not call these routines!

CategorvEdit, CategoryEditVi10

CategoryEditV10

Event handler for the Edit Categories dialog. Called by
CategorySelect if the user chooses the “Edit Category” line. (If
the Edit Category line is present.)

This function is obsolete and should not be used.

Boolean CategoryEditV10 (DmOpenRef db,
UIntlé *categoryP)

->db Database containing the categories to be edited.

<-categoryP Current category (index into the database).

Returns true if any of the following conditions are true:

* The current category is renamed.

Palm OS SDK Reference 141

Categories
Category Functions

Compatibility

See Also

Purpose

Prototype

Parameters

Result

Purpose

Prototype

Parameters

* The current category is deleted.

* The current category is merged with another category.

This function corresponds to the Palm OS 1.0 version of
CategoryEdit.

NOTE: Obsolete functions are provided ONLY for backward
compatibility; for example, so a 1.0 application will work on 3.x OS
releases. New code should not call these routines!

CategoryEdit, CategoryEditV20
CategoryFind
Return the unique ID of the category that matches the name passed.

UIintlé CategoryFind (DmOpenRef db, const
Char *name)

->db Database to search for the passed category.

->name Category name.

Returns the category index.

CategoryFreelList

This routine unlocks or frees memory locked or allocated by
CategoryCreatelist.

void CategoryFreeList (DmOpenRef db, const
ListType *1listP, Boolean showAll,
UInt32 editingStrID)

->db Categories database.
->1istP Pointer to the category list.

142 Palm OS SDK Reference

Categories
Category Functions

Result

Comments

Compatibility

See Also

Purpose

Prototype

Parameters

Result

Compatibility

->showAll true if the list was created with an “All”
category.

->editingStrID The editingStrID should be the same as that
passed to CategoryCreateList. The
function will unlock the resource.

Returns nothing.

Calling this function doesn’t remove the categories from the passed
database. It frees the items in the list. The developer must manage
the ListType structure.

Implemented only if 2.0 New Feature Set is present.

CategoryFreeListV10

CategoryFreeListV10

Unlock or free memory locked or allocated by
CategoryCreatelistV10 which was attached to the passed list
object.

This function is obsolete and should not be used.

void CategoryFreeListV10 (DmOpenRef db, const
ListType *1lst)

->db Database containing the categories.

->1st Pointer to the category list containing the
memory to be freed.

Returns nothing.

This function corresponds to the Palm OS 1.0 version of
CategoryFreelList.

Palm OS SDK Reference 143

Categories
Category Functions

See Also

Purpose

Prototype

Parameters

Result

Purpose

Prototype

Parameters

Result

NOTE: Obsolete functions are provided ONLY for backward
compatibility; for example, so a 1.0 application will work on 3.x OS
releases. New code should not call these routines!

CategoryFreelist

CategoryGetName
Return the name of the specified category.

void CategoryGetName (DmOpenRef db, UIntlé index,
Char *name)

->db Database that contains the categories.
->index Category index.
<-name Buffer to hold category name. Buffer should be

dmCategoryLength in size

Stores the category name in the name bulffer passed.

CategoryGetNext

Given a category index, this function returns the index of the next
category. Note that categories are not stored sequentially.

UIntlé CategoryGetNext (DmOpenRef db,
UIntlé index)

->db Database that contains the categories.

->index Category index.

Category index of next category.

144 Palm OS SDK Reference

Categories
Category Functions

Comments

Compatibility

Purpose

Prototype

Parameters

Result

Comments

Compatibility

Don’t use this function to search for a category. Instead, use it to
allow your users to cycle through categories, for example, using the
hard-button scroll bars on the device.

In Palm OS 1.0, the system chose Unfiled as one category.

In Palm OS 2.0 and later, the system skips both Unfiled and
empty records. That is, if a category contains no records, then its
index will not be returned by this function.

Categorylnitialize
Initialize the category names, IDs, and flags.

void CategoryInitialize (AppInfoPtr appInfoP,
UIntlé localizedAppInfoStrID)

->appInfoP Application info pointer. See AppInfoType.

->localizedAppInfoStrID
Resource ID of the localized category names.
This must be a resource of the type
appInfoStringsRsc.

Returns nothing.

Used to make sure the first field in your application info block is of
type AppInfoType, and to initialize category names.

Implemented only if 2.0 New Feature Set is present.

Palm OS SDK Reference 145

Categories
Category Functions

CategorySelect

Purpose Process the selection and editing of categories.Usually you call this
when the user taps the category pop-up trigger.

Prototype Boolean CategorySelect (DmOpenRef db, const
FormType *frm, UIntlé ctlID, UIntlé 1lstID,
Boolean title, UIntlé *categoryP,
char *categoryName, UInt8 numUneditableCategories,
UInt32 editingStrID)

Parameters ->db Database that contains the categories.
->frm Form that contains the category popup list.
->ctlID ID of the popup trigger.
->1stID ID of the popup list.
->title true if the popup trigger is on the title line,

which means that an “All” choice should be
added to the list. Pass false if the popup
trigger appears in a form where a specific
record is being modified or any where else the
“All” choice should not appear.

<->categoryP Current category (pointer into db structure).

<->categoryName
Name of the current category.

->numUneditableCategories
This is the number of categories, starting with
the first one at zero, that may not have their
names edited by the user. For example, it’s
common to have an “Unfiled” category at
position zero which is not editable.

->editingStrID
The resource ID of a string to use with the “Edit
Categories” list item.

If you don’t want users to edit categories, pass
the categoryHideEditCategory constant.

146 Palm OS SDK Reference

Categories
Category Functions

Result

Comments

Compatibility

See Also

Purpose

Prototype

Parameters

If you want to allow users to edit categories,
pass the
categoryDefaultEditCategoryString
constant.

To display an alternate string, pass a tSTR
resource ID of your own string.

Returns true if any of the following conditions are true:
* The current category is renamed.
* The current category is deleted.

* The current category is merged with another category.

This function calls CategoryEdit if the user selects the Edit
Categories option in the list.

Implemented only if 2.0 New Feature Set is present.

CategorySelectV10

CategorySelectV10

Process the selection and editing of categories.

This function is obsolete and should not be used.

Boolean CategorySelectV10 (DmOpenRef db, const
FormType *frm, UIntlé ctlID, UIntlé 1lstID,
Boolean title, UIntlé *categoryP,

Char *categoryName)

->db Database that contains the categories.
->frm Form that contains the category popup list.
->ctlID ID of the popup trigger.

->1stID ID of the popup list.

->title true if the popup trigger is on the title line.

Palm OS SDK Reference 147

Categories
Category Functions

Result

Compatibility

Purpose

Prototype

Parameters

Result

Compatibility

<->categoryP Current category (index into db structure).

<->categoryName
Name of the current category.

Returns true if any of the following conditions are true:
® The current category is renamed.
® The current category is deleted.

* The current category is merged with another category.

This function corresponds to the Palm OS 1.0 version of
CategorySelect.

NOTE: Obsolete functions are provided ONLY for backward
compatibility; for example, so a 1.0 application will work on 3.x OS
releases. New code should not call these routines!

CategorySetName

Set the category name and rename bits. A NULL pointer removes the
category name.

void CategorySetName (DmOpenRef db, UIntlé index,
const Char nameP)

->db Database containing the categories to change.
->index Index of category to set.
->nameP A category name (null-terminated) or NULL

pointer to remove the category.
Returns nothing.

Implemented only if 2.0 New Feature Set is present.

148 Palm OS SDK Reference

Categories
Category Functions

Purpose

Prototype

Parameters

Result

Purpose

Prototype

Parameters

Result

CategorySetTriggerLabel

Set the label displayed by the category trigger. The category name is
truncated if it is larger than the system default maximum width.
CategorySetTrigger calls CategoryTruncateName, with a
default (system-provided) width.

void CategorySetTriggerLabel (ControlType *ctl,
Char *name)

->ctl Pointer to control object to relabel.

->name Pointer to the name of the new category.

Does not copy the string. Ct1 points to the passed string when
done. See Ct1SetLabel.

CategoryTruncateName

Truncate a category name so that it’s short enough to display. The
category name is truncated if it’s longer than maxwidth.

void CategoryTruncateName (Char *name,
UIntlé maxWidth)

->name Category name to truncate.
->maxWidth Maximum size, in pixels, of truncated category
(including ellipsis).

Returns nothing. Stores the changed category in name

Palm OS SDK Reference 149

- Clipboard

This chapter provides reference material for the clipboard API
defined in Clipboard.h. It covers:

iz

¢ Clipboard Data Structures

* Clipboard Functions

Clipboard Data Structures

ClipboardFormatType

The ClipboardFormatType enum specifies the type of data to
add to the clipboard or retrieve from the clipboard.

enum clipboardFormats
clipboardText,
clipboardInk,
clipboardBitmap };

typedef enum clipboardFormats
ClipboardFormatType;

Value Descriptions

clipboardText Textual data. This is the most commonly
used clipboard.
clipboardInk Reserved.

clipboardBitmap Bitmap data.

Clipboards for each type of data are separately maintained. That is,
if you add a string of text to the clipboard, then add a bitmap, then

ask to retrieve a clipboardText item from the clipboard, you will
receive the string you added before the bitmap; the bitmap does not
overwrite textual data and vice versa.

Palm OS SDK Reference 151

Clipboard
Clipboard Functions

Clipboard Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

ClipboardAddltem

Add the item passed to the specified clipboard. Replaces the current
item (if any) of that type.

void ClipboardAddItem
(const ClipboardFormatType format,
const void *ptr, UIntlé length)

-> format Text, ink, bitmap, etc. See
ClipboardFormatType.

->ptr Pointer to the item to place on the clipboard.

-> length Size in bytes of the item to place on the
clipboard.

Returns nothing.

The clipboard makes a copy of the data that you pass to this
function. Thus, you may free any data that you've passed to the
clipboard without destroying the contents of the clipboard. You may
also add constant data or stack-based data to the clipboard.

FldCut, FldCopy

152 Palm OS SDK Reference

Clipboard
Clipboard Functions

Purpose

Prototype

Parameters

Result

Comments

Compatibility

ClipboardAppenditem
Append data to the item on the clipboard.

Err ClipboardAppendItem
(const ClipboardFormatType format,
const void *ptr, UIntleé length)

-> format Text, ink, bitmap, etc. See
ClipboardFormatType. This function is
intended to be used only for the
clipboardText format.

->ptr Pointer to the data to append to the item on the
clipboard.

-> length Size in bytes of the data to append to the
clipboard.

0 upon success or memErrNot EnoughSpace if there is not enough
space to append the data to the clipboard.

This function differs from ClipboardAddItem in that it does not
overwrite data already on the clipboard. It allows you to create a
large text item on the clipboard from several small disjointed pieces.
When other applications retrieve the text from the clipboard, it’s
retrieved as a single unit.

This function simply appends the specified item to the item already
on the clipboard without attempting to parse the format. It’s
assumed that you'll call it several times over a relatively short
interval and that no other application will attempt to retrieve text
from the clipboard before your application is finished appending.

Implemented only if 3.2 New Feature Set is present.

Palm OS SDK Reference 153

Clipboard
Clipboard Functions

Purpose

Prototype

Parameters

Result

Comments

ClipboardGetltem

Return the handle of the contents of the clipboard of a specified type
and the length of a clipboard item.

MemHandle ClipboardGetItem
(const ClipboardFormatType format, UIntlé *length)

-> format Text, ink, bitmap, etc. See
ClipboardFormatType.

<- length The length in bytes of the clipboard item is
returned here.

Handle of the clipboard item.

The handle returned is a handle to the actual clipboard chunk. It is
not suitable for passing to any API that modifies memory (such as
FldSetTextHandle). Consider this to be read-only access to the
chunk. Copy the contents of the clipboard to your application’s own
storage as soon as possible and use that reference instead of the
handle returned by this function.

Don’t free the handle returned by this function; it is freed when a
new item is added to the clipboard.

Text retrieved from the clipboard does not have a NULL terminator.
You must use the 1length parameter to determine the length in
bytes of the string you've retrieved.

154 Palm OS SDK Reference

* Controls

iz

This chapter describes the control object API as declared in the
header file Control . h. It discusses the following topics:

e Control Data Structures

e Control Resources

e Control Functions

For more information on controls, see the section “Controls” in the
Palm OS Programmer’s Companion.

Control Data Structures

ButtonFrameType

The But tonFrameType enum specifies the border style for the
button. It defines values for the frame field of ControlAttrType.

enum buttonFrames {noButtonFrame,
standardButtonFrame, boldButtonFrame,
rectangleButtonFrame} ;

typedef enum buttonFrames ButtonFrameType;

Value Descriptions
noButtonFrame The button has no border.

standardButtonFrame Standard button rectangular border
with rounded corners.

boldButtonFrame Bolded rectangular border with
rounded corners.

rectangleButtonFrame Rectangular border with square
corners.

Palm OS SDK Reference 155

Controls
Control Data Structures

ControlAttrType

The ControlAttrType bit field specifies the control’s visible
characteristics. It is defined as follows:

typedef
UInts8
UInts8
UInts
UInts8
UInts
UInts
UInts8
UInts
UInts

struc
usabl
enabl
visib
on

leftAnchor:

frame

£ {
e 1
ed 1
le :1;
:1
1

drawnAsSelected : 1;
graphical :1;

verti

cal :1;

} ControlAttrType;

Your code should treat the ControlAt trType structure as opaque.
Use the functions specified in the descriptions below to retrieve and
set each value. Do not attempt to change structure member values

directly.

Field Descriptions

usable

enabled

visible

on

If 0, the control is not considered to be part of
the interface of the current application, and it
doesn’t appear on screen. You can use
CtlSetUsable, CtlShowControl, or
CtlHideControl to set or clear this value.

If 0, the control is visible but doesn’t respond to
the pen. This value is set by Ct 1Set Enabled
and returned by Ct 1Enabled.

Set and cleared internally when the control is
drawn (Ct1DrawControl) and erased
(CtlEraseControl).

If set, the control has the value “on.” For
example, a check box that has the on value has
a check mark displayed in it. Use
CtlGetValue and Ct1SetValue to retrieve
and set this value.

156 Palm OS SDK Reference

Controls
Control Data Structures

leftAnchor Used by controls that expand and shrink their
width when the label is changed. If this
attribute is set, the left bound of the control is
fixed.

frame The type of frame drawn around the button
controls. See But tonFrameType for possible
values. Only button controls use this attribute;
for all other controls, the ControlStyleType
determines the frame.

drawnAsSelected Used on Palm OS® release 3.5 for button
controls that contain no text (indicating that the
button is displayed on top of a bitmap). If set,
the button is drawn as inverted. If clear, the
button is drawn normally.

graphical If set, the control is a graphical control, slider,
or feedback slider.

vertical Not currently used.

Compatibility

The drawnAsSelected, graphical,and vertical attributes are
only present if 3.5 New Feature Set is present.

ControlPtr

The ControlPtr is a pointer to a ControlType structure.

typedef ControlType* ControlPtr;

ControlStyleType

The ControlsStyleType enum specifies values for the
ControlType style field, which specifies the type of the control
(button, push button, and so on).

enum controlStyles {buttonCtl, pushButtonCtl,
checkboxCtl, popupTriggerCtl,
selectorTriggerCtl, repeatingButtonCtl,
sliderCtl, feedbackSliderCtl};

Palm OS SDK Reference 157

Controls
Control Data Structures

typedef enum controlStyles ControlStyleType;

Value Descriptions

buttonCtl

pushButtonCtl

checkboxCtl

popupTriggerCtl

selectorTriggerCtl

repeatingButtonCtl

Button. Buttons display a text label in a
box. The ButtonFrameType specifies
the type of box.

Push button. Selecting a push button
inverts its display so that it appears
highlighted.

Check box. Check boxes display a
setting of either on (checked) or off
(unchecked)

Popup trigger. Popup triggers display a
graphic element followed by a text label.
They are used to display popup lists.

Selector trigger. Selector triggers display
a text label surrounded by a gray
rectangular frame. The control expands
or contracts to the width of the new
label.

Repeating button. Repeating buttons
look like buttons; however, a repeating
button is repeatedly selected if the user
holds the pen on it.

158

Palm OS SDK Reference

Controls
Control Data Structures

slidercCtl Slider. Sliders display two bitmaps: one
representing the current value (the
thumb), and another representing the
scale of available values. The user can
slide the thumb to the left or the right to
change the value.

feedbackSliderCtl Feedback slider. A feedback slider looks
like a slider; however, a feedback slider
sends events each time the thumb moves
while the pen is still down. A regular
slider sends an event only when the user
releases the pen.

Compatibility

The slidercCtl and feedbackSliderCt1l values are only
defined if 3.5 New Feature Set is present.

ControlType

The ControlType structure defines the type and characteristics of
a control. It is defined as follows:

typedef struct ({

UIntle id;
RectangleType bounds;
Char * text;

ControlAttrType attr;
ControlStyleType style;

FontID font;
UInt8 group;
UInts reserved;

} ControlType;

Your code should treat the ControlType structure as opaque. The
tields in the struct are set by values you specify when you create the
control resource, and they typically do not change. Use the

functions specified in the descriptions below to retrieve and set the
values. Do not attempt to change structure member values directly.

Palm OS SDK Reference 159

Controls
Control Data Structures

Field Descriptions

id

bounds

text

attr
style
font

group

ID value you specified when you created the control
resource.

Bounds of the control, in window-relative coordinates.
The control’s text label is clipped to the control’s
bounds. The control’s frame is drawn around (outside)
the bounds of the control. FrmGetObjectBounds and
FrmSetObjectBounds retrieve and set this value.

Pointer to the control’s label. If text is NULL, the control
has no label. Use Ct1GetLabel and Ct1lSetLabel to
retrieve and set this value.

Control attributes. See ControlAttrType.

Style of the control. See ControlStyleType.

Font to use to draw the control’s label.

Group ID of a push button or a check box that is part of
an exclusive group. The control routines don’t
automatically turn one control off when another is
selected. It’s up to the application or a higher-level
object, like a dialog box, to manage this.

reserved Reserved for future use.

GraphicControlType

The GraphicControlType struct defines a graphical control. A
graphical control is like any other control except that it displays a
bitmap in place of the text label.

typedef struct GraphicControlType ({

UIntle id;

RectangleType bounds;

DmResID bitmapID;

DmResID selectedBitmapID;

ControlAttrType attr;

ControlStyleType style;
FontID unused;
UInt8 group;

160 Palm OS SDK Reference

Controls
Control Data Structures

UInt8

reserved;

} GraphicControlType;

Your code should treat the GraphicControlType structure as
opaque. The fields in the struct are set by values you specify when
you create the control resource, and they typically do not change.
Use the functions specified in the descriptions below to retrieve and
set the values. Do not attempt to change structure member values

directly.

Field Descriptions

id

bounds

bitmapID

ID value you specified when you created the
control resource.

Bounds of the control, in window-relative
coordinates. The control’s frame is drawn
around (outside) the bounds of the control.
FrmGetObjectBounds and
FrmSetObjectBounds retrieve and set this
value.

Resource ID of the bitmap to display in the
button. You can use Ct1SetGraphics to
change this value.

selectedBitmapID If the button should show a different bitmap

attr

style

unused

when selected, this field contains the
resource ID of that bitmap. You typically use
this field for push buttons or repeating
buttons. Ct1SetGraphics can change this
value.

Control attributes. See ControlAttrType.
For a graphical control, the graphical
attribute must be set.

Style of the control. See
ControlStyleType. A graphical control
can be any type of control other than
checkboxCt1.

Unused.

Palm OS SDK Reference 161

Controls
Control Data Structures

group

reserved

Group ID of a push button that is part of an

exclusive group. The control routines don’t
automatically turn one control off when
another is selected. It’s up to the application
or a higher-level object, like a dialog box, to
manage this.

Compatibility

Reserved for future use.

This struct is defined only if 3.5 New Feature Set is present.

SliderControlType

The S1liderControlType struct defines a slider control or a
feedback slider control.

UIntle
RectangleType
DmResID
DmResID
ControlAttrType
ControlStyleType
UInts8
Intlé
Intlé
Intleé
Intlé
MemPtr

} SliderControlType;

typedef struct SliderControlType {

id;

bounds;
thumbID;
backgroundID;
attr;

style;
reserved;
minvValue;
maxValue;
pageSize;
value;
activeSliderpP;

Your code should treat the S1iderControlType structure as
opaque. The fields in the struct are set by values you specify when
you create the control resource, and they typically do not change.
You can use Ct1SetSliderValues to set new minimum,
maximum, page size, and current values, and
CtlGetSliderValues to retrieve these values. Do not attempt to

change structure member values directly.

162

Palm OS SDK Reference

Controls
Control Data Structures

Field Descriptions

id

bounds

thumbID

backgroundID

attr

style

reserved

minValue

maxValue

pageSize

ID value you specified when you created the
control resource.

Bounds of the control, in window-relative
coordinates. FrmGetObjectBounds and
FrmSetObjectBounds retrieve and set this
value.

Resource ID of the bitmap to use for the
slider knob (called the “thumb”). If NULL, the
default bitmap is used.

Resource ID of the bitmap to use for the
slider background. If NULL, the default
bitmap is used.

Control attributes. See ControlAttrType.
For a slider, the graphical attribute is set.

Style of the control. See
ControlStyleType. Mustbe sliderCtl
or feedbackSliderCtl.

Reserved for future use.

Value of the slider when the thumb is all the
way to the left.

Value of the slider when the thumb is all the
way to the right.

Amount by which to increase or decrease the
slider value when the user taps to the right or
left of the thumb.

Palm OS SDK Reference 163

Controls
Control Resources

value Current value represented by the slider. Use

CtlGetValue and CtlSetValue to
retrieve and set this value.

activeSliderP Pointer to a memory location used when the

slider is active. A slider is active if it is
currently being drawn or if it is tracking the
pen. If the slider is inactive, this pointer is
NULL.

Compatibility

This struct is defined only if 3.5 New Feature Set is present.

Control Resources

Different resources are associated with different controls, as follows:

Button—Button Resource (tBTN)

Popup trigger— Popup Trigger Resource (tPUT)
Selector trigger—Selector Trigger Resource (tSLT)

Repeat control—Repeating Button Resource (tREP)
Push button—Push Button Resource (tPBN)

Check box—Check Box Resource (tCBX)

Slider— Slider Resource (tsld)

Feedback slider— Feedback Slider Resource (tslf)

164 Palm OS SDK Reference

Controls
Control Functions

Control Functions

Purpose
Prototype

Parameters

Result

Comments

Compatibility

See Also

Purpose
Prototype
Parameters

Result

CtiDrawControl
Draw a control object (and the text or graphic in it) on screen.
void CtlDrawControl

(ControlType *controlP)

-> controlP Pointer to the control object to draw. (See

ControlType.)

Returns nothing.

The control is drawn only if its usable attribute is t rue. This
function sets the visible attribute to true.

In releases prior to Palm OS® 3.5, it is common to create graphical
buttons by drawing a button with no text label on top of a bitmap. If
3.5 New Feature Set is present, you should use graphical controls
instead. (See GraphicControlType.) Ct1DrawControl attempts
to provide backward compatibility for the old-style graphical
buttons.

CtlSetUsable, CtlShowControl

CtlEnabled

Return true if the control responds to the pen.
Boolean CtlEnabled (const ControlType *controlP)

-> controlP Pointer to control object. (See ControlType.)

Returns true if the controls object responds to the pen; false if
not.

Palm OS SDK Reference 165

Controls
Control Functions

Comments

See Also

Purpose

Prototype

Parameters

Comments

Purpose

Prototype

Parameters

Result

This function provides no indication of whether the control is
visible on the screen. A control that doesn’t respond to the pen may
be visible, and if so, its appearance is no different from controls that
do respond to the pen. You might use such a control to display some
state of your application that cannot be modified.

CtlSetEnabled

CtiEraseControl

Erase a usable and visible control object and its frame from the
screen.

void CtlEraseControl (ControlType *controlP)

-> controlP Pointer to control object to erase. (See

ControlType.)

This function sets the visible attribute to false. If 3.5 New
Feature Set is present, it also sets the drawnAsSelected attribute
to false.

Don’t call this function directly; instead, use FrmHideObject,
which calls this function.

CtiGetLabel

Return a character pointer to a control’s text label.

const Char *CtlGetLabel
(const ControlType *controlP)

-> controlP Pointer to control object. (See ControlType.)

Returns a pointer to a null-terminated string.

166 Palm OS SDK Reference

Controls
Control Functions

Comments

See Also

Purpose

Prototype

Parameters

Result

Comments

Compatibility

See Also

Make sure that controlP is not a graphical control or a slider
control. The graphical control and slider control structures do not
contain a text label field.

CtlSetlabel

CtiGetSliderValues

Return current values used by a slider control.

void CtlGetSliderValues (const ControlType *ctlP,
UIntlé *minValueP, UIntlé *maxValueP,
UIntlé *pageSizeP, UIntlé *valueP)

->ctlP Pointer to a control object. (See ControlType.)

<-minValueP The slider’s minimum value. Pass NULL if you
don’t want to retrieve this value.

<-maxValueP The slider’s maximum value. Pass NULL if you
don’t want to retrieve this value.

<- pageSizeP The slider’s page size value. Pass NULL if you
don’t want to retrieve this value.

<-valueP The slider’s current value. Pass NULL if you
don’t want to retrieve this value.

Returns nothing. The slider’s values are returned in the parameters
to this function.

If ct1Pis not a slider or a feedback slider, this function immediately
returns.

Implemented only if 3.5 New Feature Set is present.

CtlSetSliderValues, SliderControlType

Palm OS SDK Reference 167

Controls
Control Functions

Purpose
Prototype
Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

Comments

CtiGetValue

Return the current value of the specified control.
Intl6 CtlGetValue (const ControlType *controlP)

-> controlP Pointer to a control object. (See ControlType.)

Returns the current value of the control. For most controls the return
value is either 0 (off) or 1 (on). For sliders, this function returns the
value of the value field.

CtlSetValue, FrmGetControlGroupSelection,
FrmSetControlGroupSelection, FrmGetControlValue,
FrmSetControlValue

CtlHandleEvent
Handle event in the specified control object.

Boolean CtlHandleEvent (ControlType *controlP,
EventType pEvent)

-> controlP Pointer to control object. (See ControlType.)

-> pEvent Pointer to an EventType structure.

Returns true if an event is handled by this function. Events that are
handled are:

* penDownEvent — If the pen is within the bounds of the
control

e ctlEnterEvent, ctlRepeatEvent, and
ct1ExitEvent— If the control ID in the event data matches
the control’s ID.

The control object must be usable, visible, and respond to the pen
for this function to handle the event.

168 Palm OS SDK Reference

Controls
Control Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

When this routine receives a penDownEvent, it checks if the pen
position is within the bounds of the control object. If it is, a
ctlEnterEvent is added to the event queue and the routine exits.

When this routine receives a ct 1IEnterEvent, the control object is
redrawn as necessary as either selected or deselected, depending on
its previous state.

When this routine receives a ct 1IEnterEvent or
ct1lRepeatEvent, it checks that the control ID in the passed event
record matches the ID of the specified control. If they match, this
routine tracks the pen until it comes up or until it leaves the object’s
bounds. When that happens, ct 1SelectEvent is sent to the event
queue if the pen came up in the bounds of the control. If the pen
exits the bounds, a ct1ExitEvent is sent to the event queue.

CtiHideControl

Set a control’s usable attribute to £alse and erase the control from
the screen.

void CtlHideControl (ControlType *controlP)

-> controlP Pointer to the control object to hide. (See
ControlType.)

Returns nothing.

A control that is not usable doesn’t draw and doesn’t respond to the
pen.

This function is the same as Ct 1EraseControl except that it also
sets usable to false (in addition to setting visible to false).

Don’t call this function directly; instead, use FrmHideObject,
which performs the same function and works for all user interface
objects.

CtlShowControl

Palm OS SDK Reference 169

Controls
Control Functions

Purpose

Prototype
Parameters
Result

Comments

Purpose

Prototype

Parameters

CtiHitControl

Simulate tapping a control. This function adds a ct1SelectEvent
to the event queue.

void CtlHitControl (const ControlType *controlP)

-> controlP Pointer to a control object. (See ControlType.)

Returns nothing.

Useful for testing.

CtiINewControl

Create a new control object dynamically and install it in the
specified form.

ControlType *CtlNewControl (void **formPP,

UIntlée ID, ControlStyleType style,

const Char *textP, Coord x, Coord y, Coord width,
Coord height, FontID font, UInt8 group,

Boolean leftAnchor)

<-> formPP Pointer to the pointer to the form in which the
new control is installed. This value is not a
handle; that is, the formPP value may change if
the object moves in memory. In subsequent
calls, always use the new formPP value
returned by this function.

-> ID Symbolic ID of the control.

-> style A ControlStyleType value specifying the
kind of control to create: button, push button,
repeating button, check box, popup trigger, or
popup selector. To create a graphical control or
slider control dynamically, use
CtlNewGraphicControl or
Ct1NewSliderControl, respectively.

170 Palm OS SDK Reference

Controls
Control Functions

->

textP

width

height

font

group

Pointer to the control’s label text. If textP is
NULL, the control has no label. Only buttons,
push buttons, and text boxes have text labels.
Because the contents of this pointer are copied
into their own buffer, you can free the textP
pointer any time after the Ct INewControl
function returns. The buffer into which this
string is copied is freed automatically when
you remove the control from the form or delete
the form.

Horizontal coordinate of the upper-left corner
of the control’s boundaries, relative to the
window in which it appears.

Vertical coordinate of the upper-left corner of
the control’s boundaries, relative to the
window in which it appears.

Width of the control, expressed in pixels. Valid
values are 1-160. If the value of either of the
width or height parameters is 0, the control is
sized automatically as necessary to display the
text passed as the value of the text parameter.

Height of the control, expressed in pixels. Valid
values are 1-160. If the value of either of the
width or height parametersis 0, the control is
sized automatically as necessary to display the
text passed as the value of the text parameter.

Font used to draw the control’s label.

Group ID of a push button or a check box that
is part of an exclusive group. The control
routines don’t turn one control off
automatically when another is selected. It's up
to the application or a higher-level object, such
as a dialog box, to manage this.

Palm OS SDK Reference 171

Controls
Control Functions

Result
Compatibility

See Also

Purpose

Prototype

Parameters

-> leftAnchor true specifies that the left bound of this control
is fixed. This attribute is used by controls that
resize dynamically in response to label text
changes.

Returns a pointer to the new control.

Implemented only if 3.0 New Feature Set is present.

CtlValidatePointer, FrmRemoveObject

CtiINewGraphicControl

Create a new graphical control dynamically and install it in the
specified form.

GraphicControlType *CtlNewGraphicControl

(void **formPP, UIntlé ID, ControlStyleType style,
DmResID bitmapID, DmResID selectedBitmapID,

Coord x, Coord y, Coord width, Coord height,
UInt8 group, Boolean leftAnchor)

<-> formPP Pointer to the pointer to the form in which the
new control is installed. This value is not a
handle; that is, the formPP value may change if
the object moves in memory. In subsequent
calls, always use the new formPP value
returned by this function.

-> ID Symbolic ID of the control.

-> style A ControlStyleType value specifying the
kind of control to create: button, push button,
popup trigger, repeating button, or popup
selector. Graphic controls cannot be check
boxes.

-> bitmapID Resource ID of the bitmap to display on the
control.

172 Palm OS SDK Reference

Controls
Control Functions

Result

Compatibility

See Also

-> selectedBitmapID
Resource ID of the bitmap to display when the
control is selected, if different from bitmapID.

-> X Horizontal coordinate of the upper-left corner
of the control’s boundaries, relative to the
window in which it appears.

-> y Vertical coordinate of the upper-left corner of
the control’s boundaries, relative to the
window in which it appears.

-> width Width of the control, expressed in pixels. Valid
values are 1-160.

-> height Height of the control, expressed in pixels. Valid
values are 1-160.

-> group Group ID of a push button that is part of an
exclusive group. The control routines don’t
turn one control off automatically when
another is selected. It’s up to the application or
a higher-level object, such as a dialog box, to
manage this.

-> leftAnchor true specifies that the left bound of this control
is fixed.

Returns a pointer to the new graphical control. See
GraphicControlType.

Implemented only if 3.5 New Feature Set is present.

CtlNewSliderControl, CtlNewControl,
CtlvValidatePointer, FrmRemoveObject

Palm OS SDK Reference 173

Controls
Control Functions

CtiINewSliderControl

Purpose Create a new slider or feedback slider dynamically and install it in

the specified form.

Prototype SliderControlType *CtlNewSliderControl

(void **formPP,

UIntlée ID, ControlStyleType style,

DmResID thumbID, DmResID backgroundID, Coord X,
Coord y, Coord width, Coord height,
UIntlé minValue, UIntlé maxValue, UIntlé pageSize,

UIntlé wvalue)

Parameters <-> formPP

-> 1D

-> style

-> thumbID

-> backgroundID

Pointer to the pointer to the form in which the
new control is installed. This value is not a
handle; that is, the formPP value may change if
the object moves in memory. In subsequent
calls, always use the new formPP value
returned by this function.

Symbolic ID of the slider.

Fither sliderCtl or feedbackSliderCtl.
See ControlStvleType.

Resource ID of the bitmap to display as the
slider thumb. The slider thumb is the knob that
the user can drag to change the slider’s value.
To use the default thumb bitmap, pass NULL for
this parameter.

Resource ID of the bitmap to display as the
slider background. To use the default
background bitmap, pass NULL for this
parameter.

Horizontal coordinate of the upper-left corner
of the slider’s boundaries, relative to the
window in which it appears.

Vertical coordinate of the upper-left corner of
the slider’s boundaries, relative to the window
in which it appears.

174 Palm OS SDK Reference

Controls
Control Functions

Result

Compatibility

See Also

Purpose

Prototype

Parameters

Result

->width Width of the slider, expressed in pixels. Valid
values are 1-160.
->height Height of the slider, expressed in pixels. Valid

values are 1-160.

Value of the slider when its thumb is all the
way to the left.

Value of the slider when its thumb is all the
way to the right.

->minValue
->maxValue

->pageSize Amount by which to increase or decrease the
slider’s value when the user clicks to the right

or left of the thumb.

->value The initial value to display in the slider.

Returns a pointer to the new slider control. See
SliderControlType.

Implemented only if 3.5 New Feature Set is present.

CtlNewGraphicControl, Ct1NewControl,
CtlvValidatePointer, FrmRemoveObject

CtiSetEnabled

Set a control as enabled or disabled. Disabled controls do not
respond to the pen.

void CtlSetEnabled
Boolean enable)

(ControlType *controlP,

-> controlP Pointer to a control object. (See ControlType.)

true to enable the control; false to disable
the control.

-> enable

Returns nothing.

Palm OS SDK Reference 175

Controls
Control Functions

Comments

See Also

Purpose

Prototype

Parameters

Result
Comments
Compatibility

See Also

If you disable a visible control, the control is still displayed, and its
appearance is no different from controls that do respond to the pen.
You might use such a control to inform your users of some state of
your application that cannot be modified.

CtlEnabled

CtiSetGraphics

Set the bitmaps for a graphical control and redraw the control if it is
visible.

void CtlSetGraphics (ControlType *ctlP,
DmResID newBitmapID, DmResID newSelectedBitmapID)

->ctlP Pointer to a graphical control object. (See
GraphicControlType.)

->newBitmapID Resource ID of a new bitmap to display on the
control, or NULL to use the current bitmap.

->newSelectedBitmapID
Resource ID of a new bitmap to display when
the control is selected, or NULL to use the
current selected bitmap.

Returns nothing.
If ct1P is not a graphical control, this function immediately returns.

Implemented only if 3.5 New Feature Set is present.

GraphicControlType

176 Palm OS SDK Reference

Controls
Control Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

CtiSetLabel

Set the current label for the specified control object and redraw the
control if it is visible.

void CtlSetLabel (ControlType *controlP,
const Char *newLabel)

-> controlP Pointer to a control object. (See ControlType.)

-> newlLabel Pointer to the new text label. Must be a NULL-
terminated string.

Returns nothing.

This function resizes the width of the control to the size of the new
label.

This function stores the newLabel pointer in the control’s data
structure. It doesn’t make a copy of the string that is passed in.
Therefore, if you use Ct1SetLabel, you must manage the string
yourself. You must ensure that it persists for as long as it is being
displayed (that is, for as long as the control is displayed or until you
call ctlsetLabel with a new string), and you must free the string
after it is no longer in use (typically after the form containing the
control is freed).

If you never use Ct1SetLabel, you do not need to worry about
freeing a control’s label.

Make sure that controlP is not a graphical control or a slider
control. The graphical controls and slider control structures do not
contain a text label field, so attempting to set one will crash your
application.

CtlGetlabel

Palm OS SDK Reference 177

Controls
Control Functions

Purpose

Prototype

Parameters

Result

Comments

Compatibility

See Also

CtiSetSliderValues

Change a slider control’s values and redraw the slider if it is visible.

void CtlSetSliderValues (ControlType *ctlp,
const UIntlé *minValueP, const UIntlé *maxValueP,
const UIntlé *pageSizeP, const UIntlé *valueP)

->ctlP Pointer to an inactive slider or feedback slider
control. (See SliderControlType.)

->minValueP Pointer to a new value to use for the slider’s
minimum or NULL if you don’t want to change
this value.

->maxValueP Pointer to a new value to use for the slider’s
maximum, or NULL if you don’t want to change
this value.

-> pageSizeP Pointer to a new value to use for the slider’s
page size, or NULL if you don’t want to change
this value.

->valueP Pointer to a new value to use for the current
value, or NULL if you don’t want to change this
value.

Returns nothing.

The control’s style must be sliderCtl or feedbackSliderCtl,
and it not be currently tracking the pen. If the slider is currently
tracking the pen, use Ct1SetValue to set the value field.

Implemented only if 3.5 New Feature Set is present.

CtlGetSliderValues, SliderControlType

178 Palm OS SDK Reference

Controls
Control Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

CtiSetUsable

Set a control to usable or not usable.

void CtlSetUsable (ControlType *controlP,
Boolean usable)

-> controlP Pointer to a control object. (See ControlType.)

-> usable true to have the control be usable; false to
have the control be not usable.

Returns nothing.

A control that is not usable doesn’t draw and doesn’t respond to the
pen.

This function doesn’t usually update the control.

CtlEraseControl, CtlHideControl, CtlShowControl

CtiSetValue

Set the current value of the specified control. If the control is visible,
it’s redrawn.

void CtlSetValue (ControlType *controlP,
Intl6 newValue)

-> controlP Pointer to a control object. (See ControlType.)

-> newValue New value to set for the control. For sliders,
specify a value between the slider’s minimum
and maximum. For graphical controls, push
buttons, or check boxes, specify 0 for off,
nonzero for on.

Returns nothing.

Palm OS SDK Reference 179

Controls
Control Functions

Comments

Compatibility

See Also

Purpose

Prototype
Parameters
Result

Comments

See Also

This function works only with graphical controls, sliders, push
buttons, and check boxes. If you set the value of any other type of
control, the behavior is undefined.

Sliders and graphical controls are only supported if 3.5 New Feature

Set is present.

CtlGetValue, FrmGetControlGroupSelection,
FrmSetControlGroupSelection, FrmGetControlValue,
FrmSetControlValue

CtiIShowControl

Set a control’s usable attribute to t rue and draw the control on
the screen. This function calls Ct1DrawControl.

void CtlShowControl (ControlType *controlP)

-> controlP Pointer to a control object. (See ControlType.)

Returns nothing.

If the control is already usable, this function is the functional
equivalent of Ct 1DrawControl.

Sets the visible and the usable attributes to true. (See
ControlAttrType.)

Don’t use this function directly; instead use FrmShowObject,
which does the same thing.

CtlHideControl

180 Palm OS SDK Reference

Controls
Control Functions

Purpose

Prototype

Parameters

Result

Comments

Compatibility

See Also

CtlValidatePointer

Returns true if the specified pointer references a valid control
object.

Boolean CtlValidatePointer
(const ControlType *controlP)

-> controlP Pointer to a control. (See ControlType.)

Returns true when passed a valid pointer to a control; otherwise,
returns false.

For debugging purposes; do not include this function in commercial
products. In debug builds, this function displays a dialog and waits
for the debugger when an error occurs.

Implemented only if 3.0 New Feature Set is present.

FrmValidatePtr, WinValidateHandle

Palm OS SDK Reference 181

 Date and Time
Selector

iz

The Palm OS® UI provides two system resources for accepting date
and time input values. These resources are dialog boxes that contain
Ul gadgetry for entering dates and times. The Palm OS Ul also
provides routines to manage the interaction with these resources.
This chapter describes those functions.

The API described in this chapter is declared in the header files
Day.h, SelDay.h,and SelTime.h.

Date and Time Selections Data Structures

SelectDayType

typedef enum

{

selectDayByDay,// return d/m/y

selectDayByWeek, // return d/m/y with d as
same day of the week

selectDayByMonth// return d/m/y with d as
same day of the month

} SelectDayType;

DaySelectorType

typedef struct DaySelectorType
{
RectangleTypebounds;
Booleanvisible;
UInt8 reservedl;
IntlévisibleMonth;// month actually displayed
IntlévisibleYear;// year actually displayed

Palm OS SDK Reference 183

Date and Time Selector
Date and Time Selection Functions

DateTimeTypeselected;
SelectDayTypeselectDayBy;
UInt8 reserved2;

} DaySelectorType;

HMSTime

typedef struct ({
UInt8 hours;
UInt8 minutes;
UInt8 seconds;
UInt8 reserved;
} HMSTime;

Date and Time Selection Functions

DayHandleEvent

Purpose Handle event in the specified control. This routine handles two
types of events, penDownEvent and ct1EnterEvent.

Prototype Boolean DayHandleEvent
(const DaySelectorPtr pSelector,
const EventType *pEvent)

Parameters -> pSelector Pointer to control object.

-> pEvent Pointer to an Event Type structure.

Result true if the event was handled or false if it was not.

Posts a daySelectEvent with information on whether to use the
date.

Comments A date is used if the user selects a day in the visible month.

184 Palm OS SDK Reference

Date and Time Selector
Date and Time Selection Functions

Purpose

Prototype

Parameters

Result

Compatibility

See Also

When this routine receives a penDownEvent, it checks if the pen
position is within the bounds of the control object. If it is, a
dayEnterEvent is added to the event queue and the routine exits.

When this routine receives a dayEnterEvent, it checks that the
control id in the event record matches the id of the control specified.
If they match, this routine will track the pen until it comes up in the
bounds in which case daySelectEvent is sent.

If the pen exits the bounds a dayExitEvent is sent.

SelectDay
Display a form showing a date; allow user to select a different date.

Boolean SelectDay
(const SelectDayType selectDayBy, Intlé *month,
Intlé *day, Intlé *year, const Char *title)

selectDayBy The method by which the user should choose
the day. Possible values are selectDayByDay,
selectDayByWeek, and
selectDayByMonth. See SelectDayType

<-> month, day, year
Month, day, and year selected.

-> title String title for the dialog.

true if the OK button was pressed. If true, month, day, and year
contain the new date.

Implemented only if 2.0 New Feature Set is present.

SelectDayV10

Palm OS SDK Reference 185

Date and Time Selector
Date and Time Selection Functions

Purpose

Prototype

Parameters

Result

Compatibility

See Also

Purpose

Prototype

Parameters

Result

SelectDayV10

Display a form showing a date, allow user to select a different date.

Boolean SelectDay (Intlé *month, Intlé *day,
Intl6é *year, const Char title)

<-> month, day, year
Month, day, and year selected. The initial

values passed in these parameters must be
valid.

-> title String title for the dialog.

Returns true if the OK button was pressed. In that case, the
parameters passed are changed.

This function corresponds to the 1.0 version of SelectDay.

SelectDay

SelectOneTime

Display a form showing the time and allow the user to select a
different time.

Boolean SelectOneTime (Intlé *hour, Intlé *minute,
const Char *titleP)

<-> hour The hour selected in the form.
<-> minute The minute selected in the form.
-> titleP A pointer to a string to display as the title.

Doesn’t change as the function executes.

Returns true if the user selects OK and false otherwise. If true is
returned, the values in hour and minute have probably been
changed.

186 Palm OS SDK Reference

Date and Time Selector
Date and Time Selection Functions

Comments

Compatibility

See Also

Purpose

Prototype

Parameters

Use this function instead of SelectTime if you want to display a
dialog that specifies a single point in time, not a range of time from
start to end.

Implemented only if 3.1 New Feature Set is present.

SelectTimeV33

SelectiTime

Display a form showing a start and end time. Allow the user to
select a different time.

Boolean SelectTime (TimeType * startTimeP,
TimeType * endTimeP, Boolean untimed, const Char *
titleP, Intlé startOfDay, Intlé endOfDay,

Intlé startOfDisplay)

<-> startTimeP, endTimeP
Pointers to values of type TimeType. Pass
values to display in these two parameters. If the
user makes a selection and taps the OK button,
the selected values are returned here.

-> untimed Pass in true to indicate that no time is selected.
If the user sets the time to no time then
startTimeP and EndTimeP are both set to the
constant noTime (-1).

-> titleP A pointer to a string to display as the title.
Doesn’t change as the function executes.

-> startOfDay The hour that the hour list displays at its top. To
see earlier hours, the user can scroll the list up.
The value must be between 0 to 12, inclusive.

-> endOfDay The hour used when the “All Day” button is
selected.

Palm OS SDK Reference 187

Date and Time Selector
Date and Time Selection Functions

Result

Comments

Compatibility

See Also

Purpose

Prototype

Parameters

->startOfDisplay
First hour initially visible.

Returns true if the user selects OK and false otherwise. If t rue is
returned, the values in hour and minute have probably been
changed.

This version of SelectTime adds the endOofDay and
startOfDisplay functionality.

Implemented if 3.5 New Feature Set is present.

SelectDay, SelectOneTime

SelectTimeV33

Display a form showing the time and allow the user to select a
different time.

This function is obsolete and should not be used.

Boolean SelectTimeV33 (TimeType *startTimeP,
TimeType *EndTimeP, Boolean untimed, Char *title,
Intle startOfDay)

<-> gtartTimeP, EndTimeP
Pointers to values of type TimeType. Pass
values to display in these two parameters. If the
user makes a selection and taps the OK button,
the selected values are returned here.

-> untimed Pass in true to indicate that no time is selected.
If the user sets the time to no time then
startTimeP and EndTimeP are both set to the
constant noTime (-1).

-> title A pointer to a string to display as the title.
Doesn’t change as the function executes.

188 Palm OS SDK Reference

Date and Time Selector
Date and Time Selection Functions

-> startOfDay The hour that the hour list displays at its top. To
see earlier hours, the user can scroll the list up.
The value must be between 0 to 12, inclusive.

Result Returns true if the user selects OK and false otherwise. If t rue is
returned, the values in hour and minute have probably been
changed.

Comments NOTE: Obsolete functions are provided ONLY for backward
compatibility; for example, so a 1.0 application will work on 3.x OS
releases. New code should not call these routines!

See Also SelectDay, SelectOneTime

Palm OS SDK Reference 189

8

3= Fields

t

This chapter provides the following information about field objects:
¢ Field Data Structures

¢ Field Resources

e Field Functions

The header file Field.h declares the API that this chapter
describes. For more information on fields, see the section “Fields” in
the Palm OS Programmer’s Companion.

Field Data Structures

FieldAttrType

The FieldAttrType bit field defines the visible characteristics of
the field. The functions F1dGetAttributes and
FldSetAttributes return and set these values. There are other
functions that retrieve or set individual attributes defined here.
Those functions are noted below.

typedef struct {
UIntleée usable
UIntlé visible
UIntlé editable
UIntlé singleline
UIntlé hasFocus
UIntlé dynamicSize
UIntlé insPtVisible
UIntlée dirty
UIntlé underlined
UIntlé justification:
UIntlé autoShift
UIntlé hasScrollBar
UIntlé numeric

Ne Ne Ne Ne o~

o~

Ne Ne Ne Ne N~

HRE R NNRRRRRRPR R R

~

Palm OS SDK Reference 191

Fields
Field Data Structures

} FieldAttrType;

Field Descriptions

usable

visible

editable

singleLine

hasFocus

dynamicSize

insPtVisible

If not set, the field object is not considered part
of the current interface of the application, and it
doesn’t appear on screen. The function
FldSetUsable sets this value, but it is better
to use FrmShowObject.

Set or cleared internally when the field object is
drawn or erased with Fl1dDrawField or
FrmShowObject.

If not set, the field object doesn’t accept

Graffiti® input or editing commands and the
insertion point cannot be positioned with the
pen. The text can still be selected and copied.

If set, the field is a single line of text high and
doesn’t expand to accommodate more text. If
not set, the field can grow to multiple lines.

Set internally when the field has the current
focus. The blinking insertion point appears in
the field that has the current focus. Use the
function FrmSetFocus and
FldReleaseFocus to set this value.

If set, the height of the field expands as
characters are entered into the field and

contracts as characters are deleted from the
field.

Note that a scrolling multiline field with
dynamicSize set to false will expand the
tield height as necessary, but it does not
contract as you delete characters.

If set, the insertion point is scrolled into view.
This attribute is set and cleared internally.

192 Palm OS SDK Reference

Fields
Field Data Structures

dirty

underlined

justification

autosShift

hasScrollBar

numeric

FieldPtr

If set, the user has modified the field. The
functions F1dDirty and F1dSetDirty
retrieve this field’s value.

If set each line of the field, including blank
lines, is underlined. Possible values are defined
by the UnderlineModeType defined in
Window. h:

noUnderline
grayUnderline
solidUnderline

Editable text fields generally use
grayUnderline as the value.

The solidUnderline value is only valid for
Palm OS 3.1 and higher.

Specifies the text alignment. Possible values are
leftAlignand rightAlign. (left or right
justification only; centerAlignjustification is
not supported).

If set, Graffiti auto-shift rules are applied.

If set, the field has a scrollbar. The system
sends more frequent £1dChangedEvents so
the application can adjust the height
appropriately.

If set, only characters in the range of 0 through
9 are allowed in the field. Exactly one decimal
separator (either . or ,) is also allowed per
numeric field.

The FieldPtr type defines a pointer to a FieldType structure.

Palm OS SDK Reference 193

Fields
Field Data Structures

typedef FieldType* FieldPtr;

You pass the FieldPtr as an argument to all field functions. You
can obtain the FieldPtr using the function FrmGetObjectPtr in
this way:

fldPtr = FrmGetObjectPtr (frm,
FrmGetObjectIndex (frm, f£1d4ID));

where £1d1ID is the resource ID assigned when you created the
field.

FieldType
The FieldType structure represents a field.

typedef struct {

UIntleé id;
RectangleType rect;
FieldAttrType attr;

Char *text;
MemHandle textHandle;
LineInfoPtr lines;
UIntlé textLen;
UIntleé textBlockSize;
UlIntle maxChars;
UIntleé selFirstPos;
UIntleé sellastPos;
UIntleé insPtXPos;
UIntlé insPtYPos;
FontID fontID;
UInts reserved;

} FieldType;

Your code should treat the FieldType structure as opaque. Use the
functions specified in the descriptions below to retrieve and set each
value. Do not attempt to change structure member values directly.

194 Palm OS SDK Reference

Fields
Field Data Structures

Field Descriptions

id

rect

attr

text

textHandle

ID value you specified when you created the
tield resource. This ID value is included as part
of the event data of f1dEnterEvent.

Position and size of the field object. The
functions F1dGetBounds,
FrmGetObjectBounds, F1dSetBounds, and
FrmSetObjectBounds retrieve and set this
value.

Field object attributes. (See FieldAttrType.)

Pointer to the NULL-terminated string that is
displayed by the field object. The functions
F1dGetTextPtr and FldSetTextPtr
retrieve and set this value (see below). Never
set the value of this field directly using a
function such as StrCopy.

Handle to the stored text or to a database
record containing the stored text. The functions
FldGetTextHandle and
FldSetTextHandle retrieve and set this
value.

If textHandle is defined, the field calculates
the text pointer when it locks the handle. In
general, you should only use F1dGetTextPtr
and FldSetTextPtr on text fields that aren’t
editable. On editable text fields, use
FldGetTextHandle and
FldSetTextHandle.

Also note that editable text fields allocate the
text handle as necessary. If a user starts typing
in a field that doesn’t have a text handle
allocated, the field will allocate one. The field
also resizes the text’s memory block as
necessary when the user adds more text.

Palm OS SDK Reference 195

Fields
Field Data Structures

lines

textLen

textBlockSize

maxChars

Pointer to an array of LineInfoType
structures. There is one entry in this array for
each visible line of the text. (See
LineInfoType.) The field code maintains this
array internally; you should never change the
lines array yourself.

Length in bytes of the string currently
displayed by the field object; the null
terminator is excluded. You can retrieve this
value with F1dGetTextLength.

Allocated size of the memory block that holds
the field object’s text string. You can retrieve
this value with F1dGetTextAllocatedSize.

Fields allocate memory for the field text as
needed, several bytes at a time.

Note that textBlockSize may be different
from the size of the chunk pointed to by
textHandle. The textHandle may point to
a database record that contains, in part, the text
displayed by the field. If you called
MemHandleSize on such a textHandle, the
number returned may be greater than
textBlockSize.

Maximum number of bytes the field object
accepts. The functions F1dGetMaxChars and
FldSetMaxChars retrieve and set this value.

Note the difference between textLen,
textBlockSize, and maxChars. textLen is
the size of the characters that text actually
holds. textBlockSize is the amount of
memory currently allocated for the text (which
must be greater than or equal to textLen),
and maxChars sets the maximum value that
textBlockSize and textLen can expand to.

196 Palm OS SDK Reference

Fields
Field Data Structures

selFirstPos

sellastPos

insPtXPos

insPtYPos

fontID

reserved

LinelnfoPtr

For example, if you've created a text field for
users to enter their first names in, you might
specify that the maximum length of this field is
20 characters. If a user enters “John” in this
field, textLenis 4, textBlockSize is 16,
and maxChars is 20.

Starting character offset in bytes of the current
selection. Use F1dGetSelection and
FldSetSelection to retrieve and set this
value and the selLastPos value.

Ending character offset in bytes of the current
selection. When selFirstPos equals
sellLastPos, there is no selection.

Horizontal location of the insertion point,
given as the offset in bytes into the line
indicated by insPtYPos. The functions
F1dGetInsPtPosition and
FldSetInsPtPosition retrieve and set this
value.

Vertical location of the insertion point, given as
the display line where the insertion point is
positioned. The first display line is zero. The
tirst display line may be different from the first
line of text in the field if the field has been
scrolled.

Font ID for the field. See Font . h for more
information. The functions F1dGetFont and
FldSetFont retrieve and set this value.

Reserved for future use.

The LineInfoPtr type defines a pointer to the LineInfoType.

Palm OS SDK Reference 197

Fields
Field Resources

typedef LineInfoType* LineInfoPtr;

LinelnfoType

The LineInfoType structure defines an element in the field’s
lines array. The 1ines array contains the field’s word wrapping
information. There is one element in the array per visible line in the
tield, including visible lines that contain no text. The field code
maintains this array internally; you should never change the 1ines
array yourself.

The functions F1dCalcFieldHeight, F1dGetVisiblelines,
FldRecalculateField, and F1dGetNumberOfBlanklLines
retrieve or set information in this structure. The scrolling functions
F1dGetScrollPogsition, F1dGetScrollValues,
FldScrollField, and FldSetScrollPosition also retrieve or
set information in this structure.

typedef struct ({
UIntle start;
UIntleé length;
} LineInfoType;

Field Descriptions

start The byte offset into the FieldType’s text field of the
tirst character displayed by this line. If the line is blank,
start is equal to textLen and lengthis 0.

length The length in bytes of the portion of the string displayed
on this line. If the line is blank, the length is 0.

Field Resources

The Field Resource (tFLD) represents a field on screen.

198 Palm OS SDK Reference

Fields
Field Functions

Field Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype
Parameters

Result

FldCalcFieldHeight

Determine the height of a field for a string.

UIntlé FldCalcFieldHeight (const Char* chars,
UIntlée maxWidth)

-> chars Pointer to a null-terminated string.

->maxWidth Maximum line width in pixels.
Returns the total number of lines needed to draw the string passed.

The width of a field is contained in the rect member of the
FieldType structure. You can retrieve this value in the following
way:
FrmGetObjectBounds (frm,
FrmGetObjectIndex (frm, £1d4ID),
&myRect) ;
fieldWidth = myRect.extent.x;
FldCalcFieldHeight (myString, fieldwWidth) ;

FldWordWrap

FldCompactText

Compact the memory block that contains the field’s text to release
any unused space.

void FldCompactText (FieldType* £1dP)
-> f1dp Pointer to a field object (FieldType structure).

Returns nothing.

Palm OS SDK Reference 199

Fields
Field Functions

Comments

See Also

Purpose
Prototype
Parameters
Result

Comments

See Also

As characters are added to the field’s text, the block that contains the
text is grown. The block is expanded several bytes at a time so that it
doesn’t have to expand each time a character is added. This
expansion may result in some unused space in the text block.

Applications should call this function on field objects that edit data
records in place before the field is unlocked, or at any other time
when a compact field is desirable; for example, before writing to the
storage heap.

FldGetTextAllocatedSize, F1dSetTextAllocatedSize

FldCopy

Copy the current selection to the text clipboard.

void FldCopy (const FieldType* £f£1dP)

-> f1dp Pointer to a field object (FieldType structure).
Returns nothing.

This function leaves the current selection highlighted.

This function replaces anything previously in the text clipboard if
there is text to copy. If no text is selected, the function beeps and the
clipboard remains intact.

FldCut, F1dPaste

200 Palm OS SDK Reference

Fields
Field Functions

Purpose

Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype

Parameters

FldCut

Copy the current selection to the text clipboard, delete the selection
from the field, and redraw the field.

void FldCut (FieldType* £1dP)

-> f1dp Pointer to a field object (FieldType structure).
Returns nothing.

If text is selected, the text is removed from the field, the field’s dirty

attribute is set, and anything previously in the text clipboard is
replaced by the selected text.

If there is no selection or if the field is not editable, this function
beeps.

F1dCopy, F1dPaste, F1dUndo

FildDelete

Delete the specified range of characters from the field and redraw
the field.

void FldDelete (FieldType* £f£1dP, UIntlé start,
UIntlée end)

-> £1dP Pointer to the field object (FieldType
structure) to delete from.

-> start The beginning of the range of characters to
delete given as a valid byte offset into the field’s
text string.

Palm OS SDK Reference 201

Fields
Field Functions

Result

Comments

See Also

Purpose

Prototype
Parameters

Result

See Also

->end The end of the range of characters to delete
given as a valid byte offset into the field’s text
string. On systems that support multi-byte
characters, this position must be an inter-
character boundary. That is, it must not point to
a middle byte of a multi-byte character.

Returns nothing.

This function deletes all characters from the starting offset up to the
ending offset and sets the field’s dirty attribute. It does not delete
the character at the ending offset.

If start or end point to an intra-character boundary, F1ldDelete
attempts to move the offset backward, toward the beginning of the
text, until the offset points to an inter-character boundary (i.e., the

start of a character).

FldDelete posts a f£1dChangedEvent to the event queue. If you
call this function repeatedly, you may overflow the event queue
with £1dChangedEvents. An alternative is to remove the text
handle from the field, change the text, and then set the field’s handle
again. See F1dGetTextHandle for a code example.

FldInsert, Fl1dEraseField, TxtCharBounds

FldDirty

Return true if the field has been modified since the text value was
set.

Boolean FldDirty (const FieldType* f£1dP)
-> f1dPp Pointer to a field object (FieldType structure).

Returns true if the field has been modified either by the user or
through calls to certain functions such as FldInsert and
FldDelete, false if the field has not been modified.

FldSetDirty,FieldAttrType

202

Palm OS SDK Reference

Fields
Field Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype
Parameters
Result

Comments

FldDrawField

Draw the text of the field.
void FldDrawField (FieldType* £1dP)
-> f1dP Pointer to a field object (FieldType structure).

Returns nothing.

The field’s usable attribute must be true or the field won’t be
drawn.

This function doesn’t erase the area behind the field before drawing.

If the field has the focus, the blinking insertion point is displayed in
the field.

FldEraseField

FidEraseField

Erase the text of a field and turn off the insertion point if it’s in the
field.

void FldEraseField (FieldType* £f1dP)
-> f1dp Pointer to a field object (FieldType structure).
Returns nothing.

You rarely need to call this function directly. Instead, use
FrmHideObject, which calls F1dEraseField for you.

This function visibly erases the field from the display, but it doesn’t
modify the contents of the field or free the memory associated with
it.

If the field has the focus, the blinking insertion point is turned off.

Palm OS SDK Reference 203

Fields
Field Functions

See Also

Purpose

Prototype
Parameters

Result

Comments

This function sets the visible attribute to false. (See
FieldAttrType.)

FldDrawField

FiIdFreeMemory

Release the handle-based memory allocated to the field’s text and
the associated word-wrapping information.

void FldFreeMemory (FieldType* £1dP)
-> f1dP Pointer to a field object (FieldType structure).

Returns nothing. May raise a fatal error message if the text
associated with the field is actually a record in a database.

This function releases

* The memory allocated to the text of a field—the memory
block that the textHandle member of the FieldType data
structure points to.

If the field’s textHandle is NULL but there is a text string
associated with that field (which is often the case with
noneditable text fields), the text string is not freed.

* The memory allocated to hold the word-wrapping
information—the memory block that the 1ines member of
the FieldType data structure points to.

This function doesn’t affect the display of the field. Fields allocate
memory for the text string as needed, so it is not an error to call this
function while the field is still displayed. That is, if text is NULL
and the user starts typing in the field, the field simply allocates
memory for text and continues.

204 Palm OS SDK Reference

Fields
Field Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

FldGetAttributes
Return the attributes of a field.

void FldGetAttributes
FieldAttrPtr attrP)

(const FieldType* f£1dP,

-> f1dP Pointer to a FieldType structure.
<-attrP Pointer to the FieldAttrType structure.

Returns the field’s attributes in the at t rP parameter.

FldSetAttributes

FildGetBounds

Return the current bounds of a field.

void FldGetBounds
RectanglePtr rect)

(const FieldType* £f1dP,

-> f1dp Pointer to a field object (FieldType structure).
<-rect Pointer to a RectangleType structure.

Returns nothing. Stores the field’s bounds in the RectangleType
structure reference by rect.

Returns the rect field of the FieldType structure

FldSetBounds, FrmGetObjectBounds

Palm OS SDK Reference 205

Fields
Field Functions

Purpose
Prototype
Parameters
Result

See Also

Purpose
Prototype
Parameters
Result

Comments

See Also

FldGetFont

Return the ID of the font used to draw the text of a field.
FontID FldGetFont (const FieldType* £1dP)
-> f1dPp Pointer to a field object (FieldType structure).
Returns the ID of the font.

FldSetFont

FldGetinsPtPosition

Return the insertion point position within the string.

UIntlé FldGetInsPtPosition (const FieldType* £1dP)

-> f1dp Pointer to a field object (FieldType structure).

Returns the byte offset of the insertion point.

The insertion point is to the left of the byte offset that this function
returns. That is, if this function returns 0, the insertion point is to the
left of the first character in the string. In multiline fields, line feeds
are counted as a single character in the string, and the byte offset
after the line feed character is the beginning of the next line.

FldSetInsPtPosition

206 Palm OS SDK Reference

Fields
Field Functions

Purpose
Prototype
Parameters

Result

See Also

Purpose

Prototype

Parameters
Result

Comments

Compatibility

FldGetMaxChars

Return the maximum number of bytes the field accepts.
UIntlée FldGetMaxChars (const FieldType* £1dP)
-> f1dP Pointer to a field object (FieldType structure).

Returns the maximum length in bytes of characters the user is
allowed to enter. This is the maxChars field in FieldType.

FldSetMaxChars

FldGetNumberOfBlankLines

Return the number of blank lines that are displayed at the bottom of
a field.

UIntlé FldGetNumberOfBlankLines
(const FieldType* £f1dP)

-> f1dP Pointer to a FieldType structure.

Returns the number of blank lines visible.

This routine is useful for updating a scroll bar after characters have
been removed from the text in a field. See the NotevViewScroll
function in the Address sample application for an example.

Implemented only if 2.0 New Feature Set is present.

Palm OS SDK Reference 207

Fields
Field Functions

Purpose

Prototype

Parameters
Result

See Also

Purpose

Prototype

Parameters

Result

Comments

FildGetScrollPosition

Return the offset of the first character in the first visible line of a
field.

UIntlé FldGetScrollPosition
(const FieldType* £1dP)

-> f1dP Pointer to a field object (FieldType structure).
Returns the offset of the first visible character.

FldSetScrollPosition, LineInfoType

FldGetScrollValues

Return the values necessary to update a scroll bar.

void FldGetScrollValues (const FieldType* £f1dP,
UIntlé* scrollPosP, UIntlé* textHeightP,
UIntle* fieldHeightP)

-> f1d4dp Pointer to a FieldType structure.

<-scrollPosP The line of text that is the topmost visible line.
Line numbering starts with 0.

<-textHeightP The number of lines needed to display the
tield’s text, given the width of the field.

<-fieldHeightP The number of visible lines in the field.

Returns nothing. Stores the position, text height, and field height in
the parameters passed in.

Use the values returned by this function to calculate the values you
send to SclSetScrollBar to update the scroll bar. For example:

F1dGetScrollValues (f1dP, &scrollPos,
&textHeight, &fieldHeight);

208 Palm OS SDK Reference

Fields
Field Functions

Compatibility

See Also

Purpose

Prototype

Parameters

Result

Comments

if (textHeight > fieldHeight)
maxValue = textHeight - fieldHeight;
else if (scrollPos)

maxValue = scrollPos;
else
maxValue = 0;

SclSetScrollBar (bar, scrollPos, 0, maxValue,
fieldHeight-1) ;
}

Implemented only if 2.0 New Feature Set is present.

FldSetScrollPosition

FldGetSelection

Return the current selection of a field.

void FldGetSelection (const FieldType* £14P,
UIntlé* startPosition, UIntlé* endPosition)

-> f1dp Pointer to a field object (FieldType structure).

<- startPosition
Pointer to the start of the selected characters
range, given as the byte offset into the field’s
text.

<-endPosition Pointer to end of the selected characters range
given as the byte offset into the field’s text.

Returns the starting and ending byte offsets in startPosition
and endPosition.

The first character in a field is at offset zero.

Palm OS SDK Reference 209

Fields
Field Functions

See Also

Purpose

Prototype

Parameters

Result

See Also

Purpose
Prototype
Parameters

Result

Comments

If the user has selected the first five characters of a field,
startPosition will contain the value 0 and endPosition the
value 5, assuming all characters are a single byte long.

FldSetSelection

FldGetTextAllocatedSize

Return the number of bytes allocated to hold the field’s text string.
Don’t confuse this number with the actual length of the text string
displayed in the field.

UIntlé FldGetTextAllocatedSize
(const FieldType* f£1dP)
-> f1dP Pointer to a field object.

Returns the number of bytes allocated for the field’s text. This is the
textBlockSize field in FieldType.

FldSetTextAllocatedSize

FldGetTextHandle

Return a handle to the block that contains the text string of a field.

MemHandle FldGetTextHandle (const FieldType* f£1dP)

-> f1dP Pointer to a field object (FieldType structure).
Returns the handle to the text string of a field or NULL if no handle
has been allocated for the field pointer.

The handle returned by this function is not necessarily the handle to
the start of the string. If you've used F1dSetText to set the field’s
text to a string that is part of a database record, the text handle
points to the start of that record. You'll need to compute the offset
from the start of the record to the start of the string. You can either

210 Palm OS SDK Reference

Fields
Field Functions

store the offset that you passed to F1dSetText or you can compute
the offset by performing pointer arithmetic on the pointer you get
by locking this handle and the pointer returned by
FldGetTextPtr.

If you are obtaining the text handle so that you can edit the field’s
text, you must remove the handle from the field before you do so. If
you change the text while it is being used by a field, the field’s
internal structures specifying the text length, allocated size, and
word wrapping information can become out of sync. To avoid this
problem, remove the text handle from the field, change the text, and
then set the field’s text handle again. For example:

/* Get the handle for the string and unlock */
/* it by removing it from the field. */

textH = FldGetTextHandle (£1dP) ;
FldSetTextHandle (f1dP, NULL) ;

/* Insert code that modifies the string here.*/
/* The basic steps are: */

/* resize the chunk if necessary, */

/* lock the chunk, write to it, and then */

/* unlock the chunk. If the text is in a */

/* database record, use Data Manager calls. */

/* Update the text in the field. */

FldSetTextHandle (f1dP, textH) ;
FldDrawField (£1dP) ;

See Also FldSetTextHandle, F1dGetTextPtr

Palm OS SDK Reference 211

Fields
Field Functions

Purpose
Prototype
Parameters

Result

Comments

See Also

Purpose
Prototype
Parameters

Result

Purpose
Prototype
Parameters

Result

FldGetTextHeight

Return the height in pixels of the number of lines that are not empty.
UIntlé FldGetTextHeight (const FieldType* £1dP)
-> f1dPp Pointer to a field object (FieldType structure).

Returns the height in pixels of the number of lines that are not
empty.

Empty lines are all of the lines in the field following the last byte of
text. Note that lines that contain only a linefeed are not empty.

FldCalcFieldHeight

FldGetTextLength

Return the length in bytes of the field’s text.
UIntlé FldGetTextLength (const FieldType* £1dP)
-> f1dp Pointer to a field object (FieldType structure).

Returns the length in bytes of a field’s text, not including the
terminating null character. This is the textLen field of FieldType.

FldGetTextPtr

Return a locked pointer to the field’s text string.
Char* FldGetTextPtr (FieldType* £1dP)
-> f1dp Pointer to a field object (FieldType structure).

Returns a locked pointer to the field’s text string or NULL if the field
is empty.

212

Palm OS SDK Reference

Fields
Field Functions

Comments

See Also

Purpose

Prototype
Parameters

Result

See Also

Purpose

Prototype
Parameters
Result

Comments

The pointer returned by this function can become invalid if the user
edits the text after you obtain the pointer.

Do not modify the contents of the pointer yourself. If you change
the text while it is being used by a field, the field’s internal
structures specifying the text length, allocated size, and word
wrapping information can become out of sync. To avoid this
problem, follow the instructions given under F1dGetTextHandle.

FldSetTextPtr, F1dGetTextHandle

FldGetVisibleLines

Return the number of lines that can be displayed within the visible
bounds of the field.

UIntlé FldGetVisibleLines (const FieldType* £f1dP)
-> f1dp Pointer to a field object (FieldType structure).

Returns the number of lines the field displays. (This is the size of the
lines array in the FieldType structure.)

F1dGetNumberOfBlanklLines, F1dCalcFieldHeight

FildGrabFocus

Turn the insertion point on (if the specified field is visible) and
position the blinking insertion point in the field.

void FldGrabFocus (FieldType* f£1dP)
-> f1dP Pointer to a field object (FieldType structure).

Returns nothing.

You rarely need to call this function directly. Instead, use
FrmSetFocus, which calls F1dGrabFocus for you.

Palm OS SDK Reference 213

Fields
Field Functions

One instance where you need to call F1dGrabFocus directly is to
programmatically set the focus in a field that is contained in a table
cell.

This function sets the field attribute hasFocus to true. (See
FieldAttrType.)

See Also FrmSetFocus, F1dReleaseFocus

FidHandleEvent

Purpose Handles events that affect the field, including the following:
keyDownEvent, penDownEvent, and £1dEnterEvent.

Prototype Boolean FldHandleEvent (FieldType* £1dP,
EventType* eventP)

Parameters ->f1dpP Pointer to a field object (FieldType structure).
-> eventP Pointer to an event (Event Type data
structure).

Result Returns true if the event was handled.

Comments When a keyDownEvent occurs in an editable text field, the
keystroke appears in the field if it's a printable character or
manipulates the insertion point if it'’s a “movement” character. The
tield is automatically updated.

When a penDownEvent occurs, the field sends a f1dEnterEvent
to the event queue.

When a f1dEnterEvent occurs, the field grabs the focus. If the
user has tapped twice in the current location, the word at that
location is selected. If the user has tapped three times, the entire line
is selected. Otherwise, the insertion point is placed in the specified
position.

When a menuCmdBarOpenEvent occurs, the field adds paste, copy,
cut, and undo buttons to the command toolbar. These buttons are

only added if they make sense in the current context. That is, the cut
button is only added if the field is editable, the paste button is only

214 Palm OS SDK Reference

Fields
Field Functions

Compatibility

Purpose

Prototype

Parameters

Result

added if there is text on the clipboard and the field is editable, and
the undo button is only added if there is an action to undo.

If the event alters the contents of the field, this function visually
updates the field.

This function doesn’t handle any events if the field is not editable or
usable.

Double-tapping to select a word and triple-tapping to select a line
are only supported if 3.5 New Feature Set is present.

FldHandleEvent only handles the menuCmdBarOpenEvent if 3.5
New Feature Set is present.

Fildinsert

Replace the current selection if any with the specified string and
redraw the field.

Boolean FldInsert (FieldType* £f1dP,
const Char* insertChars, UIntlé insertLen)

-> f1dP Pointer to the field object (FieldType
structure) to insert to.

-> insertChars Text string to be inserted.

-> insertLen Length in bytes of the text string to be inserted,
not counting the trailing null character.

Returns true if string was successfully inserted. Returns false if:
® The insertLen parameter is 0.
¢ The field is not editable.

¢ Adding the text would exceed the field’s size limit (the
maxChars value).

* More memory must be allocated for the field, and the
allocation fails.

Palm OS SDK Reference 215

Fields
Field Functions

Comments

See Also

Purpose

Prototype
Parameters

Result

Comments

See Also

If there is no current selection, the string passed is inserted at the
position of the insertion point.

This function sets the field’s dirty attribute and posts a
fldchangedEvent to the event queue. If you call this function
repeatedly, you may overflow the event queue with
fldChangedEvents. An alternative is to remove the text handle
from the field, change the text, and then set the field’s handle again.
See F1dGetTextHandle for a code example.

FldPaste, FldDelete, F1dCut, F1dCopy

FldMakeFullyVisible

Cause a dynamically resizable field to expand its height to make its
text fully visible.

Boolean FldMakeFullyVisible (FieldType* £1dP)
-> f1dP Pointer to a field object (FieldType structure).

Returns true if the field is dynamically resizable and was not fully
visible; false otherwise.

Use this function on a field whose dynamicSize attribute is true
(see FieldAttrType).

This function does not actually resize the field. Instead, it computes
how big the field should be to be fully visible and then posts this
information to the event queue in a f1dHeightChangedEvent.

If the field is contained in a table, the table’s code handles the
fldHeightChangedEvent. If the field is directly on a form, your
application code should handle the f1dHeightChangedEvent
itself. The form code does not handle the event for you. Note that
the constant maxFieldLines defines the maximum number of
lines a field can expand to if the field is using the standard font.

TblHandleEvent

216 Palm OS SDK Reference

Fields
Field Functions

Purpose

Prototype

Parameters

FldNewField

Create a new field object dynamically and install it in the specified
form.

FieldType *FldNewField (void **formPP, UIntlé id,
Coord x, Coord y, Coord width, Coord height,
FontID font, UInt32 maxChars, Boolean editable,
Boolean underlined, Boolean singleline,

Boolean dynamicSize,

JustificationType justification,

Boolean autoShift, Boolean hasScrollBar,

Boolean numeric)

<-> formPP Pointer to the pointer to the form in which the
new field is installed. This value is not a handle;
that is, the old form pointer value is not
necessarily valid after this function returns. In
subsequent calls, always use the new form
pointer value returned by this function.

->1id Symbolic ID of the field, specified by the
developer. By convention, this ID should match
the resource ID (not mandatory).

->x Horizontal coordinate of the upper-left corner
of the field’s boundaries, relative to the
window in which it appears.

>y Vertical coordinate of the upper-left corner of
the field’s boundaries, relative to the window
in which it appears.

->width Width of the field, expressed in pixels.
->height Height of the field, expressed in pixels.

-> font Font to use to draw the field’s text.
->maxChars Maximum number of bytes held by the field

this function creates.

Palm OS SDK Reference 217

Fields
Field Functions

Compatibility

-> editable

->underlined

-> singleLine

->dynamicSize

->justification

-> autoShift

-> hasScrollBar

-> numeric

Pass true to create a field in which the user can
edit text. Pass false to create a field that
cannot be edited.

Pass noUnderline for no underline, or
grayUnderline to have the field underline
the text it displays. On Palm OS® version 3.1
and higher, pass solidUnderline to usea
solid underline instead of a dotted underline.

Pass true to create a field that can display only
a single line of text.

Pass true to create a field that resizes
dynamically according to the amount of text it
displays.

Pass either of the values leftAlign or
rightAlign to specify left justification or
right justification, respectively. The
centerAlign value is not supported.

Pass true to specify the use of Palm OS 2.0
(and later) auto-shift rules.

Pass true to attach a scroll bar control to the
field this function creates.

Pass true to specify that only characters in the
range of 0 through 9 are allowed in the field.

Result Returns a pointer to the new field object or NULL if there wasn’t
enough memory to create the field. Out of memory situations could
be caused by memory fragmentation.

Implemented only if 3.0 New Feature Set is present.

See Also FrmvValidatePtr, WinValidateHandle,

CtlValidatePointer, FrmRemoveObject

218

Palm OS SDK Reference

Fields
Field Functions

Purpose

Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype

Parameters

Result

FldPaste

Replace the current selection in the field, if any, with the contents of
the text clipboard.

void FldPaste (FieldType* £1dP)
-> f1dp Pointer to a field object (FieldType structure).
Returns nothing

The function performs these actions:
e Scrolls the field, if necessary, so the insertion point is visible.

¢ Inserts the clipboard text at the position of the insertion point
if there is no current selection.

¢ Positions the insertion point after the last character inserted.

e Doesn’t delete the current selection if there is no text in the
clipboard.

FldInsert, FldDelete, F1dCut, F1dCopy F1dUndo

FldRecalculateField

Update the structure that contains the word-wrapping information
for each visible line.

void FldRecalculateField (FieldType* £14dP,
Boolean redraw)

-> f1dp Pointer to a field object (FieldType structure).
-> redraw If true, redraws the field. Currently, this

parameter must be set to t rue to update the
word-wrapping information.

Returns nothing.

Palm OS SDK Reference 219

Fields
Field Functions

Comments

Purpose

Prototype
Parameters
Result

Comments

See Also

If necessary, this function reallocates the memory block that
contains the displayed lines information, the LineInfoType
structure pointed to by the 1ines member of the FieldType data
structure.

Call this function if the field’s data structure is modified in a way
that invalidates the visual appearance of the field (for example, if
you update a field’s text with F1dSet Text Ptr). However, many of
the field functions, such as F1dSetTextHandle, FldInsert, and
FldDelete, recalculate the word-wrapping information for you.

FldReleaseFocus

Turn the blinking insertion point off if the field is visible and has the
current focus, reset the Graffiti state, and reset the undo state.

void FldReleaseFocus (FieldType* £f1dP)
-> f1dp Pointer to a field object (FieldType structure).
Returns nothing.

This function sets the field attribute hasFocus to false. (See
FieldAttrType.)

Usually, you don’t need to call this function. If the field is in a form
or in a table that doesn’t use custom drawing functions, the field
code releases the focus for you when the focus changes to some
other control. If your field is in any other type of object, such as a
table that uses custom drawing functions or a gadget, you must call
FldReleaseFocus when the focus moves away from the field.

Fl1dGrabFocus

220 Palm OS SDK Reference

Fields
Field Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

Comments

FildScrollable

Return true if the field is scrollable in the specified direction.

Boolean FldScrollable (const FieldType* f£1dP,
WinDirectionType direction)

-> f1dp Pointer to a field object (FieldType structure).
->direction The direction to test. DirectionType is

defined in Window. h. It is an enum defining
the constants up and down.

Returns true if the field is scrollable in the specified direction;
false otherwise.

FldScrollField

FldScrollField

Scroll a field up or down by the number of lines specified.

void FldScrollField (FieldType* £f1dP,
UIntlé linesToScroll, WinDirectionType direction)

-> f1dp Pointer to a field object (FieldType structure).

-> linesToScroll
Number of lines to scroll.

->direction The direction to scroll. DirectionType is
defined in Window. h. It is an enum defining
the constants up and down.

Returns nothing.

This function can’t scroll horizontally, that is, right or left.

The field object is redrawn if it’s scrolled; however, the scrollbar is
not updated. Use SclSetScrollBar to update the scrollbar. For
example:

Palm OS SDK Reference 221

Fields
Field Functions

See Also

Purpose

Prototype

Parameters
Result

Comments

FldScrollField (f1dP, linesToScroll,
direction) ;

// Update the scroll bar.
SclGetScrollBar (bar, &value, &min, &max,

&pageSize) ;
if (direction == up)
value -= linesToScroll;
else

value += linesToScroll;

SclSetScrollBar (bar, value, min, max,
pageSize) ;

If the field is not scrollable in the direction indicated, this function
returns without performing any work. You can use
FldScrollable before calling this function to see if the field can
be scrolled.

FldScrollable, F1dSetScrollPosition

FldSendChangeNotification

Send a f1dChangedEvent to the event queue.

void FldSendChangeNotification
(const FieldType* £f£1dP)

-> f1dP Pointer to a field object.
Returns nothing.

This function is used internally by the field code. You normally
never call it in application code.

222 Palm OS SDK Reference

Fields
Field Functions

Purpose

Prototype

Parameters

Result

Comments

Purpose

Prototype

Parameters

Result

Comments

FldSendHeightChangeNotification

Send a £1dHeightChangedEvent to the event queue.

void FldSendHeightChangeNotification
(const FieldType* f1dP, UIntlé pos,
Intl6 numLines)

-> f1dp Pointer to a field object.
-> pos Character position of the insertion point.
->numLines New number of lines in the field.

Returns nothing.

This function is used internally by the field code. You normally
never call it in application code.

FildSetAttributes
Set the attributes of a field.

void FldSetAttributes (FieldType* £f1dP,
const FieldAttrPtr attrP)

-> f1d4p Pointer to a FieldType structure.
->attrPp Pointer to the attributes.

Returns nothing.

This function does not do anything to make the new attribute values
take effect. For example, if you use this function to change the value
of the underline attribute, you won't see its effect until you call
FldDrawField.

Palm OS SDK Reference 223

Fields
Field Functions

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

You usually do not have to modify field attributes at runtime, so
you rarely need to call this function.

FldGetAttributes, FieldAttrType

FldSetBounds

Change the position or size of a field.

void FldSetBounds (FieldType* f1dP,
const RectangleType* rP)

-> f1dP Pointer to a field object (FieldType structure).
->rP Pointer to a RectangleType structure that

contains the new bounds of the display.

Returns nothing. May raise a fatal error message if the memory
block that contains the word-wrapping information needs to be
resized and there is not enough space to do so.

If the field is visible, the field is redrawn within its new bounds.

NOTE: You can change the height or location of the field while
it’s visible, but do not change the width.

The memory block that contains the word-wrapping information
(see LineInfoType) will be resized if the number of visible lines is
changed. The insertion point is assumed to be off when this routine
is called.

Make sure that rect is at least as tall as a single line in the current
font. (You can determine this value by calling FntLineHeight.) If
it’s not, results are unpredictable.

F1dGetBounds, FrmSetObjectBounds

224 Palm OS SDK Reference

Fields
Field Functions

Purpose
Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

See Also

FldSetDirty
Set whether the field has been modified.
void FldSetDirty

(FieldType* £f1dP, Boolean dirty)

-> f1dP Pointer to a field object (FieldType structure).
->dirty true if the text is modified.

Returns nothing.

You typically call this function when you want to clear the dirty
attribute. The dirty attribute is set when the user enters or deletes
text in the field. It is also set by certain field functions, such as
FldInsert and FldDelete.

FldDirty

FldSetFont

Set the font used by the field, update the word-wrapping
information, and draw the field if the field is visible.

void FldSetFont (FieldType* f1dP, FontID fontID)

-> f1dp Pointer to a field object (FieldType structure).

-> fontID ID of new font.
Returns nothing.

FldGetFont, FieldAttrType

Palm OS SDK Reference 225

Fields
Field Functions

Purpose

Prototype

Parameters

Result

Comments

Compatibility

See Also

Purpose

Prototype

Parameters

FldSetIinsertionPoint

Set the location of the insertion point based on a specified string
position.

void FldSetInsertionPoint (FieldType* £14dP,
UIntlé pos)

-> f£1dP Pointer to a FieldType structure.
-> pos New location of the insertion point, given as a

valid offset in bytes into the field’s text. On
systems that support multi-byte characters, you
must make sure that this specifies an inter-
character boundary (does not specify the
middle or end bytes of a multi-byte character).

Nothing.

This routine differs from F1dSet InsPtPosition in thatit doesn’t
make the character position visible. F1dSet InsertionPoint also
doesn’t make the field the current focus of input if it was not
already.

Implemented only if 2.0 New Feature Set is present.

TxtCharBounds

FldSetInsPtPosition

Set the location of the insertion point for a given string position.

void FldSetInsPtPosition (FieldType* £14dP,
UIntlé pos)

-> f1dp Pointer to a field object (FieldType structure).

226 Palm OS SDK Reference

Fields
Field Functions

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

-> pos New location of the insertion point, given as a
valid offset in bytes into the field’s text. On
systems that support multi-byte characters, you
must make sure that this specifies an inter-
character boundary (does not specify the
middle or end bytes of a multi-byte character).

Returns nothing.

If the position is beyond the visible text, the field is scrolled until the
position is visible.

FldGetInsPtPosition, TxtCharBounds

FldSetMaxChars

Set the maximum number of bytes the field accepts (the maxChars
value).

void FldSetMaxChars (FieldType* £f1dP,
UIntl6é maxChars)

-> f1dP Pointer to a field object (FieldType structure).
->maxChars Maximum size in bytes of the characters the

user may enter. You may specify any value up
to maxFieldTextLen.

Returns nothing.

Line feed characters are counted when the length of characters is
determined.

FldGetMaxChars

Palm OS SDK Reference 227

Fields
Field Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

FildSetScrollPosition

Scroll the field such that the character at the indicated offset is the
tirst character on the first visible line. Redraw the field if necessary.

void FldSetScrollPosition (FieldType* £14P,
UIntlé pos)

-> f1dP Pointer to a field object (FieldType structure).
-> pos Byte offset into the field’s text string of first

character to be made visible. On systems that
support multi-byte characters, you must make
sure that this specifies an inter-character
boundary (does not specify the middle or end
bytes of a multi-byte character).

Returns nothing.

This function scrolls the field but does not update the field’s
scrollbar. You should update the scrollbar after calling this function.
To do so, first call F1dGetScrollValues to determine the values
to use, and then call Sc1SetScrollBar.

FldGetScrollPosition, F1dScrollField, TxtCharBounds

FildSetSelection

Set the current selection in a field and highlight the selection if the
field is visible.

void FldSetSelection (FieldType* £f1dP,
UIntlé startPosition, UIntlé endPosition)

-> f1dPp Pointer to a field object (FieldType structure).

-> startPosition
Starting offset of the character range to
highlight, given as a byte offset into the field’s
text.

228 Palm OS SDK Reference

Fields
Field Functions

Result

Comments

See Also

Purpose

Prototype

Parameters

->endPosition Ending offset of the character range to
highlight. The ending offset should be greater
than or equal to the starting offset. On systems
that support multi-byte characters, this position
must be an inter-character boundary. That is, it
must not point to a middle byte of a multi-byte
character.

Returns nothing.

To cancel a selection, set both startPosition and endPosition
to the same value. If startPosition equals endPosition, then
the current selection is unhighlighted.

If either startPosition or endPosition point to an intra-
character boundary, F1dSetSelection attempts to move that
offset backward, toward the beginning of the string, until the offset
points to an inter-character boundary (i.e., the start of a character).

TxtCharBounds

FldSetText

Set the text value of the field without updating the display.

void FldSetText (FieldType* £f1dP,
MemHandle textHandle, UIntlé offset, UIntlé size)

-> f1dp Pointer to a field object (FieldType structure).

-> textHandle Unlocked handle of a block containing a null-
terminated text string. Pass NULL for this
parameter to remove the association between
the field and the string it is currently displaying
so that the string is not freed with the field
when the form is deleted.

-> offset Offset from start of block to start of the text
string.

Palm OS SDK Reference 229

Fields
Field Functions

Result

Comments

-> size Allocated size of text string, not the string
length.

Returns nothing.

This function allows applications to perform editing in place in
memory. You can use it to point the field to a string in a database
record so that you can edit that string directly using field routines.

The handle that you pass to this function is assumed to contain a
null-terminated string starting at of £set bytes in the memory
chunk. The string should be between 0 and size - 1 bytes in length.
The field does not make a copy of the memory chunk or the string
data; instead, it stores the handle to the record in its structure.

FldSetText updates the word-wrapping information and places
the insertion point after the last visible character, but it does not
update the display. You must call F1ldDrawField after calling this
function to update the display.

FldSetText increments the lock count for textHandle and
decrements the lock count of its previous text handle (if any).

Because F1dSetText (and FldSetTextHandle) may be used to
edit database records, they do not free the memory associated with
the previous text handle. If the previous text handle points to a
string on the dynamic heap and you want to free it, use
FldGetTextHandle to obtain the handle before using
FldSetText and then free that handle after using F1dSetText.
(See F1dSetTextHandle for a code example.)

If the field points to a database record, you want the memory
associated with the text handle to persist; however, this memory
and all other memory associated with the field is freed when the
tield itself is freed, which happens when the form is closed. If you
don’t want the memory associated with the text handle freed when
the field is freed, use F1dSetText and pass NULL for the text
handle immediately before the form is closed. Passing NULL
removes the association between the field and the text handle that
you want retained. That text handle is unlocked as a result of the

230 Palm OS SDK Reference

Fields
Field Functions

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

FldSetText call, and when the field is freed, there is no text
handle to free with it.

FldSetTextPtr, F1dSetTextHandle

FildSetTextAllocatedSize

Set the number of bytes allocated to hold the field’s text string.
Don’t confuse this with the actual length of the text string displayed
in the field.

void FldSetTextAllocatedSize (FieldType* £f1dP,
UIntlé allocatedSize)

-> f1dp Pointer to a field object (FieldType structure).

->allocatedSize
Number of bytes to allocate for the text.

Returns nothing.

This function generally is not used. It does not resize the field’s
allocated memory for the text string; it merely sets the
textBlockSize field of the FieldType structure. The value of
this field is computed and maintained internally by the field, so you
should not have to call F1dSetTextAllocatedSize directly.

FldGetTextAllocatedSize, F1dCompactText

FldSetTextHandle

Set the text value of a field to the string associated with the specified
handle. Does not update the display.

void FldSetTextHandle (FieldType* £f1dP,
MemHandle textHandle)

-> f1dP Pointer to a field object (FieldType structure).

Palm OS SDK Reference 231

Fields
Field Functions

-> textHandle Unlocked handle of a field’s text string. Pass
NULL for this parameter to remove the
association between the field and the string it is
currently displaying so that the string is not
freed with the field when the form is deleted.

Result Returns nothing.

Comments This function differs from F1dSetText in that it uses the entire
memory chunk pointed to by textHandle for the string. In fact,
this function simply calls F1dSetText with an offset of 0 and a size
equal to the entire length of the memory chunk. Use it to have the
field edit a string in a database record if the entire record consists of
that string, or use it to have the field edit a string in the dynamic
heap.

FldSetTextHandle updates the word-wrapping information and
places the insertion point after the last visible character, but it does
not update the display. You must call F1dDrawField after calling
this function to update the display.

FldSetTextHandle increments the lock count for textHandle
and decrements the lock count of its previous text handle (if any).

Because F1dSetTextHandle (and F1dSetText) may be used to
edit database records, they do not free the memory associated with
the previous text handle. If the previous text handle points to a
string on the dynamic heap and you want to free it, use
F1ldGetTextHandle to obtain the handle before using
FldSetText and then free that handle after using F1dSetText.
For example:

/* get the old text handle */
0ldTxtH = FldGetTextHandle (£1dP) ;

/* change the text and update the display */
FldSetTextHandle (£1dP, txtH) ;
FldDrawField (£1dP) ;

/* free the old text handle */
if (o0oldTxtH != NULL)
MemHandleFree (01ldTxtH) ;

232 Palm OS SDK Reference

Fields
Field Functions

See Also

Purpose
Prototype

Parameters

Result

Comments

If the field points to a database record, you want the memory
associated with the text handle to persist; however, this memory
and all other memory associated with the field is freed when the
tield itself is freed, which happens when the form is closed. If you
don’t want the memory associated with the text handle freed when
the field is freed, use F1dSetTextHandle and pass NULL for the
text handle immediately before the form is closed. Passing NULL
removes the association between the field and the text handle that
you want retained. That text handle is unlocked as a result of the
FldSetTextHandle call, and when the field is freed, there is no
text handle to free with it.

FldSetTextPtr, F1dSetText

FldSetTextPtr

Set a noneditable field’s text to point to the specified text string.

void FldSetTextPtr (FieldType* f1dP, Char* textP)

-> f1dp Pointer to a field object (FieldType structure).
-> textP Pointer to a null-terminated string.

Returns nothing. May display an error message if passed an editable
text field.

Do not call F1dSetTextPtr with an editable text field. Instead, call
FldSetTextHandle for editable text fields. F1dSetTextPtr is
intended for displaying noneditable text in the user interface.

If the field has more than one line, use F1dRecalculateField to
recalculate the word wrapping.

This function does not visually update the field. Use
FldDrawField to do so.

The field never frees the string that you pass to this function, even
when the field itself is freed. You must free the string yourself.
Before you free the string, make sure the field is not still displaying
it. Set the field’s string pointer to some other string or call

Palm OS SDK Reference 233

Fields
Field Functions

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

See Also

FldSetTextPtr (£1dP, NULL) before freeing a string you have
passed using this function.

FldSetTextHandle, F1dGetTextPtr

FildSetUsable

Set a field to usable or nonusable.

void FldSetUsable
Boolean usable)

(FieldType* £1dP,

£f1d4p Pointer to a FieldType structure.
usable true to set usable; false to set nonusable.

Returns nothing.

A nonusable field doesn’t display or accept input.

Use FrmHideObject and FrmShowObject instead of using this
function.

FldEraseField, F1dDrawField, FieldAttrType

FidUndo

Undo the last change made to the field object, if any. Changes
include typing, backspaces, delete, paste, and cut.
void FldUndo (FieldType* £1dP)

fldp Pointer to the field (FieldType structure) that

has the focus.

Returns nothing.

FldPaste, F1dCut, FldDelete, FldInsert

234 Palm OS SDK Reference

Fields
Field Functions

Purpose

Prototype

Parameters

Result

See Also

FldWordWrap

Given a string and a width, return the number of bytes of characters
that can be displayed using the current font.

UIntlé FldWordWrap (const Char* chars,
Intl6 maxWidth)

-> chars Pointer to a null-terminated string.

->maxWidth Maximum line width in pixels.
Returns the length in bytes of the characters that can be displayed.

FntWordWrap

Palm OS SDK Reference 235

9
" Find

This chapter provides reference material for the global find facility.
The API for the find facility is defined in the header file Find.h.

iz

Find Functions

FindDrawHeader

Purpose Draw the header line that separates, by database, the list of found
items.

Prototype Boolean FindDrawHeader (FindParamsPtr findParams,
Char const* title)

Parameters findParams Handle of FindParamsPtr.
title Description of the database (for example
Memos).

Result Returns true if Find screen is filled up. Applications should exit
from the search if this occurs.

FindGetLineBounds

Purpose Returns the bounds of the next available line for displaying a match
in the Find Results dialog.

Prototype void FindGetLineBounds
(const FindParamsType *findParams, RectanglePtr r)

Parameters findParams Handle of FindParamsPtr.

Palm OS SDK Reference 237

Find
Find Functions

Result

Purpose

Prototype

Parameters

Result

Comments

r Pointer to a structure to hold the bounds of the
next results line.

Returns nothing.

FindSaveMatch

Saves the record and position within the record of a text search
match. This information is saved so that it’s possible to later
navigate to the match.

Boolean FindSaveMatch (FindParamsPtr findParams,
UIntl6é recordNum, UIntlée pos, UIntlé fieldNum,
UInt32 appCustom, UIntlé cardNo, LocalID dbID)

findParams Handle of FindParamsPtr.

recordNum Record index.

pos Offset of the match string from start of record.

fieldNum Field number the string was found in.

appCustom Extra data the application can save with a
match.

cardNo Card number of the database that contains the
match.

dbID Local ID of the database that contains the
match.

Returns true if the maximum number of displayable items has
been exceeded

Called by application code when it gets a match.

238 Palm OS SDK Reference

Find
Find Functions

Purpose

Prototype

Parameters

Result

Comment

FindStrInStr

Perform a case-blind partial word search for a string in another
string. This function assumes that the string to find has already been
normalized for searching.

Boolean FindStrInStr (Char const *strToSearch,
Char const *strToFind, UIntlé *posP)

strToSearch String to search.

strToFind Normalized version of the text string to be
found.

posP Pointer to offset in search string of the match.

Returns true if the string was found. FindStrInStr matches the
beginnings of words only; that is, st rToFind must be a prefix of
one of the words in strToSearch for FindStrInStr to return
true.

Don’t use this function on systems that support the Text Manager.
Instead, use Txt FindString, which performs searches on strings
that contain multi-byte characters and returns the length of the
matching text.

On systems that don’t support the Text Manager, use
TxtGlueFindString, found in the PalmOSGlue library. For more
information, see Chapter 62, “PalmOSGlue Library.”

The method by which a search string is normalized varies
depending on the version of Palm OS® and the character encoding
supported by the device. The string passed to your application in
the strToFind field of the sysAppLaunchCmdFind launch code
parameter block has already been normalized. It can be passed
directly to FindStrInStr, TxtFindString, or
TxtGlueFindString. If you have to create your own normalized
search string, use TxtGluePrepFindString, also in the
PalmOSGlue library.

Palm OS SDK Reference 239

10

3= Forms

t

This chapter provides the following information about form objects:

¢ Form Data Structures

¢ Form Constants

e Form Resources

e Form Functions

* Application-Defined Functions

The header file Form.h declares the API that this chapter describes.
For more information on forms, see the section “Forms, Windows,
and Dialogs” in the Palm OS Programmer’s Companion.

Form Data Structures

FormAttrType

The FormAttrType bit field defines the visible characteristics of
the form.

typedef struct ({
UIntlé usable
UIntlé enabled
UIntlé visible
UIntlée dirty ;
UIntlé saveBehind :1;
UIntle graffitiShift:1;
UIntlé globalsAvailable : 1;
UIntlé doingDialog : 1;
UIntlé exitDialog : 1;
UIntlé reserved :7;
UIntlé reserved2;

} FormAttrType;

PR

.~

Palm OS SDK Reference 241

Forms
Form Data Structures

Your code should treat the FormAttrType bit field as opaque. Do
not attempt to change bit field member values directly.

Field Descriptions

usable

enabled

visible

dirty

saveBehind

graffitishift

globalsAvailable

doingDialog
exitDialog
reserved

reserved?2

Compatibility

Not set if the form is not considered part
of the current interface of the application,
and it doesn’t appear on screen.

Not used.

Set or cleared internally when the field
object is drawn or erased.

Not used.

Set if the bits behind the form are saved
when the form is drawn.

Set if the graffiti shift indicator is
supported.

System use only.

System use only.
System use only.
Reserved for system use.

Reserved for system use.

The globalsAvailable, doingDialog, and exitDialog flags
are present only if 3.5 New Feature Set is present.

FormBitmapType

The FormBitmapType structure defines the visible characteristics

of a bitmap on a form.

typedef struct

FormObjAttrType attr;

PointType

pos;

242 Palm OS SDK

Reference

Forms
Form Data Structures

UIntlé rsclD;
} FormBitmapType;

Field Descriptions

attr See FormObjAttrType.
pos Location of the bitmap.
rscID Resource ID of the bitmap. If you use

DmGetResource with this value as the resource ID,
it returns a pointer to a BitmapType structure.

FormFrameType

The FormFrameType structure defines a frame that appears on the
form.

typedef struct ({
UIntle id;
FormObjAttrType attr;
RectangleType rect;
UIntleé frameType;
} FormFrameType;

Field Descriptions

id ID of the frame.
attr See FormObjAttrType.
rect Location and size of the frame.

frameType The type of frame.

FormGadgetAttrType
The FormGadgetAttrType bit field defines a gadget’s attributes.

typedef struct ({
UIntlé usable : 1;
UIntlé extended : 1;
UIntlé visible : 1;
UIntlé reserved : 13;
} FormGadgetAttrType;

Palm OS SDK Reference 243

Forms
Form Data Structures

Your code should treat the FormGadgetAttrType structure as
opaque. Use the functions specified in the descriptions below to
retrieve and set each value. Do not attempt to change structure
member values directly.

Field Descriptions

usable Not setif the gadget is not considered part of the current
interface of the application, and it doesn’t appear on
screen. This is set by FrmShowObject and cleared by
FrmHideObject.

extended If set, the gadget is an extended gadget. Extended
gadgets are supported if 3.5 New Feature Set is present.
An extended gadget has the handler field defined in its
FormGadgetType. If not set, the gadgets is a standard
gadget compatible with all releases of Palm OS®.

visible Setor cleared when the gadget is drawn or erased.
FrmHideObject clears this value. You should set it
explicitly in the gadget’s callback function (if it has one)
in response to a draw request.

reserved Reserved for future use.

Compatibility
This type is defined only if 3.5 New Feature Set is present.

FormGadgetType

The FormGadget Type structure defines a gadget object that
appears on a form.

typedef struct(

UIntle id;

FormGadgetAttrType attr;

RectangleType rect;

const void * data;

FormGadgetHandlerType *handler;
} FormGadgetType;

Your code should treat the FormGadget Type structure as opaque.
Use the functions specified in the descriptions below to retrieve and

244 Palm OS SDK Reference

Forms
Form Data Structures

set each value. Do not attempt to change structure member values
directly.

Field Descriptions

id ID of the gadget resource.

attr See FormGadgetAttrType.

rect Location and size of the object.

data Pointer to any specific data that needs to be stored.

You can set and retrieve the value of this field with
FrmGetGadgetData and FrmSetGadgetData.

handler Pointer to a callback function that controls the
gadget’s behavior and responds to events. You can
set this field with FrmSetGadgetHandler.

Compatibility

In Palm OS® releases prior to 3.5, the attr field was of type
FormObjAttrType and the handler field did not exist.

FormLabelType

The FormLabelType structure defines a label that appears on a
form.
typedef struct {

UIntlé id;
PointType pos;
FormObjAttrType attr;
FontID fontID;
UInt8 reserved;
Char * text;

} FormLabelType;

Your code should treat the FormLabel1Type structure as opaque.
Do not attempt to change structure member values directly.

Palm OS SDK Reference 245

Forms
Form Data Structures

Field Descriptions

id Resource ID of the label.

pos Location of the label.

attr See FormObjAttrType.

fontID Font ID of the font used for the label.

reserved Reserved for future use.

text Text of the label.

FormLineType
The FormLineType structure defines a line appearing on a form.

typedef struct {
FormObjAttrType attr;
PointType pointl;
PointType point2;
} FormLineType;

Your code should treat the FormLineType structure as opaque. Do
not attempt to change structure member values directly.

Field Descriptions

attr See FormObjAttrType.
pointl Starting point of the line.
point2 Ending point of the line.
FormODbjAttrType

The FormObjAttrType bit field defines a form object’s attributes.

typedef struct {
UIntlé usable : 1;
UIntlé reserved : 15;
} FormObjAttrType;

Your code should treat the FormObjAt trType structure as opaque.
Do not attempt to change structure member values directly.

246 Palm OS SDK Reference

Forms
Form Data Structures

Field Descriptions

usable Not set if the object is not considered part of the
current interface of the application, and it doesn’t
appear on screen.

reserved Reserved for future use.

FormObjectKind

The FormObjectKind enum specifies values for the objectType
field of the FormObjListType. It specifies how to interpret the
object field.

enum formObjects
frmFieldObj,
frmControlObj,
frmListObj,
frmTableObj,
frmBitmapObij,
frmLineObj,
frmFrameObj,
frmRectangleObj,
frmLabelObj,
frmTitleObj,
frmPopupObij,
frmGraffitiStateObj,
frmGadgetObj,
frmScrollbarObj,

}i

typedef enum formObjects FormObjectKind;

Value Descriptions

frmFieldObj Text field
frmControlObj Control
frmListObj List
frmTableObj Table
frmBitmapObj Form bitmap

Palm OS SDK Reference 247

Forms
Form Data Structures

frmLineObj
frmFrameObj
frmRectangleObj
frmLabelObj
frmTit1leObj
frmPopupOb]j
frmGraffitiStateObj
frmGadgetObj

frmScrollbarObj

FormObjectType

Line

Frame

Rectangle

Label

Form title

Popup list

Graffiti® state indicator
Gadget (custom object)
Scrollbar

The FormObjectType union points to the C structure for a user
interface object that appears on the form.

typedef union {

void * ptr;
FieldType* field;
ControlType* control;
GraphicControlType * graphicControl;
SliderControlType * sliderControl;
ListType* list;
TableType* table;
FormBitmapType* bitmap;
FormLabelType * label;
FormTitleType* title;
FormPopupType* popup;
FormGraffitiStateType* grfState;
FormGadgetType* gadget;
ScrollBarType* scrollBar;

} FormObjectType;

Your code should treat the FormObjectType structure as opaque.
Do not attempt to change structure member values directly.

248 Palm OS SDK Reference

Forms
Form Data Structures

Field Descriptions

ptr Used when the object’s type is not one of those
specified below.

field Text field’s structure. See FieldType.

control Control’s structure. See ControlType.

graphicControl Graphic button structure. See
GraphicControlType.

sliderControl Slider control structure. See
SliderControlType.

list List object’s structure. See ListType.

table Table structure. See TableType.

bitmap Form bitmap’s structure. See
FormBitmapType.

label Label’s structure. See FormLabelType.

title Form title’s structure. See FormTitleType.

popup Popup list’s structure. See FormPopupType.

grfState Graffiti shift indicator’s structure. See

FrmGraffitiStateType.

gadget Gadget (custom Ul resource) structure. See
FormGadgetType.

scrollbar Scroll bar’s structure. See ScrollBarType.

Compatibility

The graphicControl and sliderControl fields are only
defined if 3.5 New Feature Set is present.

FormObijListType

The FormObjectListType structure specifies a user interface
object that appears on the form.

Palm OS SDK Reference 249

Forms
Form Data Structures

typedef struct ({
FormObjectKind objectType;
UInts8 reserved;
FormObjectType object;

} FormObjListType;

Your code should treat the FormObjListType structure as opaque.
Do not attempt to change structure member values directly.

Field Descriptions

objectType Specifies the type of the object (control, field, etc.).
See FormObjectKind.

reserved Reserved for future use.

object The C data structure that defines the object. See
FormObjectType.

FormPopupType

The FormPopupType structure defines a popup list that appears on
a form.

typedef struct
UIntle controlID;
UIntlé listID;

} FormPopupType;

Your code should treat the FormPopupType structure as opaque.
Do not attempt to change structure member values directly.

Field Descriptions

controlID Resource ID of the popup trigger control that
triggers the list’s display.

1listID Resource ID of the list object that defines the popup
list.

FormPtr
The FormPtr type defines a pointer to a FormType structure.

250 Palm OS SDK Reference

Forms
Form Data Structures

typedef FormType * FormPtr;

FormRectangleType

The FormRectangleType structure defines a rectangle that
appears on the form.

typedef struct {
FormObjAttrType attr;
RectangleType rect;
} FormRectangleType;

Your code should treat the FormRectangleType structure as
opaque. Do not attempt to change structure member values directly.

Field Descriptions

attr See FormObjAttrType.
rect Location and size of the rectangle.
FormTitleType

The FormTitleType structure defines the title of the form.

typedef struct {
RectangleType rect;
char * text;
} FormTitleType;

Your code should treat the FormTitleType structure as opaque.
Do not attempt to change structure member values directly.

Field Descriptions

rect The location and size of the title area.
text Text of the title.
FormType

The FormType structure and supporting structures are defined as
follows:

Palm OS SDK Reference 251

Forms
Form Data Structures

typedef struct ({

WindowType window;

UIntleé formId;
FormAttrType attr;
WinHandle bitsBehindForm;
FormEventHandlerType * handler;
UIntle focus;

UIntleé defaultButton;
UIntleé helpRscId;
UIntle menuRscId;
UIntleé numObjects;
FormObjListType * objects;

} FormType;

Your code should treat the FormType structure as opaque. Do not
attempt to change structure member values directly.

Field Descriptions

window

formId

attr

bitsBehindForm

handler

focus

Structure of the window object that
corresponds to the form. See WindowType.

ID number of the form, specified by the
application developer. This ID value is part of
the event data of frmOpenEvent. The ID
should match the form’s resource ID.

Form object attributes. See FormAt trType.

Used to save all the bits behind the form so
the screen can be properly refreshed when the
form is closed. Use this attribute for modal
forms.

Routine called when the form needs to handle
an event. You typically set this in your
application’s event handling function.

Index of a field or table object within the form
that contains the focus. Any keyDownEvent
is passed to the object that has the focus. Set to
noFocus if no object has the focus.

252 Palm OS SDK

Reference

Forms
Form Constants

defaultButton

helpRscId

menuRscId

numObjects

objects

Resource ID of the object defined as the
default button. This value is used by the
routine FrmDoDialog.

Resource ID number of the help resource. The
help resource is a String resource (type tSTR).

ID number of a menu bar to use if the form
has a menu, or zero if the form doesn’t have a
menu.

Number of objects contained within the form.

Pointer to the array of objects contained
within the form. See FormObjListType.

FrmGraffitiStateType

The FrmGraffitiStateType structure defines the graffiti shift

indicator.

typedef struct/{

PointerType

pos;

}FrmGraffitiStateType;

Your code should treat the FrmGraffitiStateType structure as
opaque. Do not attempt to change structure member values directly.

Field Descriptions

pos Location of the graffiti shift indicator.

Form Constants

The following form constants are defined:

Constant Value Description
noFocus Oxffff No form object has the focus
frmRedrawUpdateCode 0x8000 Indicates that the form should be

redrawn; flag in a frmUpdateEvent.

Palm OS SDK Reference 253

Forms
Form Resources

Constant Value Description

frmNoSelectedControl Oxff Returned by
FrmGetControlGroupSelection if
no control is selected.

frmResponseCreate 1974 Passed to FormCheckResponseFunc to
indicate that the function should perform
initialization.

frmResponseQuit OxBEEF Passed to FormCheckResponseFunc to

indicate that the function should perform
cleanup.

Form Resources

The following resources are associated with forms and with the
objects on a form whose data structures are defined above:

Form—Form Resource (tFRM)

Alert dialog— Alert Resource (Talt)
Bitmap—Form Bitmap Resource (tFBM)
Button—Button Resource (tBTN)

Check box—Check Box Resource (tCBX)
Field—Field Resource (tFLD)

Gadget (custom object)— Gadget Resource (tGDT)

Graffiti shift indicator —Gralffiti Shift Indicator Resource
(tGSI)

Label—Label Resource (tLBL)
List—List Resource (tLST)

Popup trigger—Popup Trigger Resource (tPUT)
Push button—Push Button Resource (tPBN)

Repeating button—Repeating Button Resource (tREP)
Scrollbar—Scroll Bar Resource (tSCL)

Selector trigger—Selector Trigger Resource (tSLT)
Table—Table Resource (tTBL)

254 Palm OS SDK Reference

Forms
Form Functions

Form Functions

Purpose

Prototype
Parameters

Result

See Also

Purpose
Prototype
Parameters
Result

Comments

See Also

FrmAlert

Create a modal dialog from an alert resource and display it until the
user selects a button in the dialog.

UIntlé FrmAlert (UIntlé alertId)
->alertId ID of the alert resource.

Returns the item number of the button the user selected. A button’s
item number is determined by its order in the alert dialog; the first
button has the item number 0 (zero).

FrmDoDialog, FrmCustomAlert, FrmCustomResponselAlert

FrmCloseAllForms

Send a frmCloseEvent to all open forms.

void FrmCloseAllForms (void)
None.

Returns nothing.

Applications can call this function to ensure that all forms are closed
cleanly before exiting PilotMain () ; that is, before termination.

FrmSaveAllForms

Palm OS SDK Reference 255

Forms
Form Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

FrmCopyLabel

Copy the passed string into the data structure of the specified label
object in the active form.

void FrmCopyLabel (FormType *formP,
UIntlé labelID, const Char * newLabel)

-> formP Pointer to the form object (FormType
structure).

-> labellD ID of form label object.

->newLabel Pointer to a NULL-terminated string.

Returns nothing.

The size of the new label must not exceed the size of the label
defined in the resource. When defining the label in the resource,
specify an initial size at least as big as any of the strings that will be
assigned dynamically. This function redraws the label if the form’s
usable attribute and the label’s visible attribute are set.

This function redraws the label but does not erase the old one first.
If the new label is shorter than the old one, the end of the old label
will still be visible. To avoid this, you can hide the label using
FrmHideObject, then show it using FrmShowObject, after using
FrmCopyLabel.

FrmGetLabel

256 Palm OS SDK Reference

Forms
Form Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

Comments

FrmCopyTitle

Copy a new title over the form’s current title. If the form is visible,
the new title is drawn.

void FrmCopyTitle (FormType *formP,
const Char *newTitle)

-> formP Pointer to the form object (FormType
structure).

->newTitle Pointer to the new title string.

Returns nothing.

The size of the new title must not exceed the title size defined in the
resource. When defining the title in the resource, specify an initial
size at least as big as any of the strings to be assigned dynamically.

FrmGetTitle, FrmSetTitle

FrmCustomAlert

Create a modal dialog from an alert resource and display the dialog
until the user taps a button in the alert dialog.

UIntlé FrmCustomAlert
const Char *sl,

(UIntlé alertId,
const Char *s2, const Char *s3)

->alertId Resource ID of the alert.

->sl, s2, s3 Strings to replace M1, A2, and "3 (see

Comments).

Returns the number of the button the user tapped (the first button is
Z€ero).

A button’s item number is determined by its order in the alert
template; the first button has the item number zero.

Palm OS SDK Reference 257

Forms
Form Functions

See Also

Purpose

Prototype

Parameters

Result

Up to three strings can be passed to this routine. They are used to
replace the variables 1, A2 and /3 that are contained in the message
string of the alert resource.

If the variables 71, A2, and ~3 occur in the message string, do not
pass NULL for the arguments s1, s2, and s3. If you want an
argument to be ignored, pass the empty string (" "). In Palm OS 2.0
or below, pass a string containing a space (" ") instead of the empty
string.

FrmAlert, FrmDoDialog, FrmCustomResponselAlert

FrmCustomResponseAlert

Create a modal dialog with a text field from an alert resource and
display it until the user taps a button in the alert dialog.

UIntlé FrmCustomResponseAlert (UIntlé alertId,
const Char *sl, const Char *s2,

const Char *s3, Char *entryStringBuf,

Intle entryStringBuflength,
FormCheckResponseFuncPtr callback)

->alertId Resource ID of the alert.

->sl, s2, s3 Strings to replace 71, A2, and 3. See the
Comments in FrmCustomAlert for more
information.

<-entryStringBuf
The string the user entered in the text field.

-> entryStringBufLength
The maximum length for the string in
entryStringBuf.

-> callback A callback function that processes the string.
See FormCheckResponseFunc. Pass NULL if
there is no callback.

Returns the number of the button the user tapped (the first button is
Z€ero).

258

Palm OS SDK Reference

Forms
Form Functions

Comments

Compatibility

See Also

Purpose

Prototype

Parameters

Result
Comments

Compatibility

See Also

This function differs from FrmCustomAlert in these ways:

¢ The dialog it displays contains a text field for user entry. The
text that the user enters is returned in the entryStringBuf
parameter.

¢ When the user taps a button, the callback function is called
and is passed the button number and entryStringBuf.
The dialog is only dismissed if the callback returns true.
This behavior allows you to perform error checking on the
string that the user entered and give the user a chance to re-
enter the string.

The callback function is also called with special constants
when the alert dialog is being initialized and when it is being
deallocated. This allows the callback to perform any
necessary initialization and cleanup.

Implemented only if 3.5 New Feature Set is present.

FrmAlert, FrmDoDialog

FrmDeleteForm

Release the memory occupied by a form. Any memory allocated to
objects in the form is also released.

void FrmDeleteForm (FormType *formP)

-> formpP Pointer to the form object (FormType
structure).

Returns nothing.
This function doesn’t modify the display.

If 3.5 New Feature Set is present and the form contains an extended
gadget, this function calls the gadget’s callback with
formGadgetDeleteCmd. See FormGadgetHandler.

FrmInitForm, FrmReturnToForm

Palm OS SDK Reference 259

Forms
Form Functions

Purpose
Prototype
Parameters

Result

Comments

Purpose
Prototype

Parameters

Result

See Also

FrmDispatchEvent

Dispatch an event to the application’s handler for the form.
Boolean FrmDispatchEvent (EventType *eventP)
-> eventP Pointer to an event.

Returns the Boolean value returned by the form’s event handler or
FrmHandleEvent . (If the form’s event handler returns false, the
event is passed to FrmHandleEvent.) This function also returns
false if the form specified in the event is invalid.

The event is dispatched to the current form’s handler unless the
form ID is specified in the event data, as, for example, with
frmOpenEvent or frmGotoEvent. A form’s event handler
(FormEventHandler) is registered by FrmSetEventHandler.

Note that if the form does not have a registered event handler, this
function causes a fatal error.

FrmDoDialog
Display a modal dialog until the user taps a button in the dialog.
UIntlé FrmDoDialog (FormType *formP)

-> formpP Pointer to the form object (FormType
structure).

Returns the resource ID of the button the user tapped.

FrmInitForm, FrmCustomAlert, FrmCustomResponselAlert

260 Palm OS SDK Reference

Forms
Form Functions

Purpose
Prototype

Parameters

Result

Comments

Compatibility

See Also

FrmDrawForm
Draw all objects in a form and the frame around the form.
void FrmDrawForm (FormType *formP)

-> formP Pointer to the form object (FormType
structure).

Returns nothing.

If the saveBehind form attribute is set and the form is visible, this
function saves the bits behind the form using the bit sBehindForm
field in the FormType structure.

You should call this function in response to a frmOpenEvent.

If you do any custom drawing, you should do so after you call this
function not before. If you do custom drawing, respond to
frmUpdateEvent as well as frmOpenEvent, and be sure to return
true to specify that the frmUpdateEvent was handled. The default
event handler for frmUpdateEvent calls FrmDrawForm, so if you
allow the event to fall through by returning false, your custom
drawing is erased.

If 3.5 New Feature Set is present, FrmDrawForm erases the form’s
window before performing any drawing. Thus, it is especially
important to do any custom drawing after this function call on Palm
OS 3.5 and higher.

If 3.5 New Feature Set is present and the form contains an extended
gadget, this function calls the gadget’s callback with
formGadgetDrawCmd. See FormGadgetHandler.

FrmEraseForm, FrmInitForm

Palm OS SDK Reference 261

Forms
Form Functions

FrmEraseForm
Purpose Erase a form from the display.
Prototype void FrmEraseForm (FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns nothing.

Comments If the region obscured by the form was saved by FxrmDrawForm, this
function restores that region.

FrmGetActiveForm
Purpose Return the currently active form.
Prototype FormType *FrmGetActiveForm (void)
Parameters None.
Result Returns a pointer to the form object of the active form.

See AlsO FrmGetActiveFormID, FrmSetActiveForm

FrmGetActiveFormiD
Purpose Return the ID of the currently active form.
Prototype UIntlé FrmGetActiveFormID (void)
Parameters None.
Result Returns the active form’s ID number.

See Also FrmGetActiveForm

262 Palm OS SDK Reference

Forms
Form Functions

Purpose

Prototype

Parameters

Result

Comments

Compatibility

See Also

Purpose

Prototype

Parameters

FrmGetControlGroupSelection

Return the item number of the control selected in a group of
controls.

UIntlé FrmGetControlGroupSelection
(FormType *formP, UInt8 groupNum)

-> formP Pointer to the form object (FormType
structure).
-> groupNum Control group number.

Returns the item number of the selected control; returns
frmNoSelectedControl if no item is selected.

The item number is the index into the form object’s data structure.

NOTE: FrmSetControlGroupSelection sets the selection
in a control group based on an object ID, not its index, which
FrmGetControlGroupSelection returns.

On versions prior to 3.5, this function returned a Byte instead of
UIntle.

FrmGetObjectId, FrmGetObjectPtr,
FrmSetControlGroupSelection

FrmGetControlValue
Return the current value of a control.

Intl6 FrmGetControlValue (const FormType *formP,
UIntlé controlID)

-> formpP Pointer to the form object (FormType
structure).

Palm OS SDK Reference 263

Forms
Form Functions

Result

Comments

See Also

Purpose
Prototype
Parameters
Result

Comments

-> controlID Index of the control object in the form object’s
data structure. You can obtain this by using
FrmGetObjectIndex.

Returns the current value of the control. For most controls the return
value is either 0 (off) or 1 (on). For sliders, this function returns the
value of the value field.

The caller must specify a valid index. This function is valid only for
push button and check box control objects.

FrmSetControlValue

FrmGetFirstForm

Return the first form in the window list.

FormType *FrmGetFirstForm (void)

None.

Returns a pointer to a form object, or NULL if there are no forms.

The window list is a LIFO stack. The last window created is the first
window in the window list.

264 Palm OS SDK Reference

Forms
Form Functions

Purpose
Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

FrmGetFocus
Return the item (index) number of the object that has the focus.
UIntl6é FrmGetFocus (const FormType *formP)

-> formP Pointer to the form object (FormType
structure).

Returns the index of the object (Ul element) that has the focus, or
returns noFocus if none does. To convert the object index to an ID,
use FrmGetObjectId.

FrmGetObjectPtr, FrmSetFocus

FrmGetFormBounds

Return the visual bounds of the form; the region returned includes
the form’s frame.

void FrmGetFormBounds (const FormType *formP,
RectangleType *rP)

-> formpP Pointer to the form object (FormType
structure).
<-rP Pointer to a RectangleType structure where

the bounds is returned.

Returns nothing. The bounds of the form are returned in r.

Palm OS SDK Reference 265

Forms
Form Functions

FrmGetFormid
Purpose Return the resource ID of a form.
Prototype UIntlé FrmGetFormId (FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns form resource ID.

See AlsO FrmGetFormPtr

FrmGetFormPtr
Purpose Return a pointer to the form that has the specified ID.
Prototype FormType *FrmGetFormPtr (UIntlé formId)
Parameters -> formId Form ID number.

Result Returns a pointer to the form object, or NULL if the form is not in
memory.

See Also FrmGetFormId

FrmGetGadgetData
Purpose Return the value stored in the data field of the gadget object.

Prototype void *FrmGetGadgetData (const FormType *formP,
UIntlé objIndex)

Parameters -> formP Pointer to the form object (FormType
structure).

266 Palm OS SDK Reference

Forms
Form Functions

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

-> objIndex Index of the gadget object in the form object’s
data structure. You can obtain this by using
FrmGetObjectIndex.

Returns a pointer to the custom gadget’s data.

Gadget objects provide a way for an application to attach custom
gadgetry to a form. In general, the data field of a gadget object
contains a pointer to the custom object’s data structure.

FrmSetGadgetData, FrmSetGadgetHandler

FrmGetLabel

Return pointer to the text of the specified label object in the specified
form.

const Char *FrmGetLabel (FormType *formP,
UIntlé labelID)

-> formpP Pointer to the form object (FormType
structure).
-> labelID ID of the label object.

Returns a pointer to the label string.

Does not make a copy of the string; returns a pointer to the string.
The object must be a label.

FrmCopyLabel

Palm OS SDK Reference 267

Forms
Form Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

See Also

FrmGetNumberOfObjects

Return the number of objects in a form.

UIntlé FrmGetNumberOfObjects
(const FormType *formP)

-> formpP Pointer to the form object (FormType
structure).

Returns the number of objects in the specified form.

FrmGetObjectPtr, FrmGetObjectId

FrmGetObjectBounds
Retrieve the bounds of an object given its form and index.

void FrmGetObjectBounds (const FormType *formP,
UIntlé ObjIndex, RectangleType *rP)

-> formpP Pointer to the form object (FormType
structure).
-> ObjIndex Index of an object in the form. You can obtain

this by using FrmGetObjectIndex.

<-rP Pointer to a RectangleType structure where
the object bounds are returned. The bounds are
in window-relative coordinates.

Returns nothing. The object’s bounds are returned in r.

FrmGetObjectPosition, FrmSetObjectPosition

268 Palm OS SDK Reference

Forms
Form Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

Comments

FrmGetObijectid
Return the ID of the specified object.

UIntl6é FrmGetObjectId (const FormType *formP,
UIntlé objIndex)

-> formpP Pointer to the form object (FormType
structure).
-> objIndex Index of an object in the form. You can obtain

this by using FrmGetObjectIndex.

Returns the ID number of an object or frmInvalidObjectIdif the
objIndex parameter is invalid.

FrmGetObjectPtr

FrmGetObjectindex
Return the index of an object in the form’s objects list.

UIntlé FrmGetObjectIndex (const FormType *formpP,
UIntlé objID)

-> formpP Pointer to the form object (FormType
structure).
->objID ID of an object in the form.

Returns the index of the object (the index of the first object is 0).

Bitmaps use a different mechanism for IDs than the rest of the form
objects. When finding a bitmap with FrmGetObjectIndex, you
need to pass the bitmap's resource ID, not the ID of the form bitmap
object. (Passing the ID of the form bitmap object may or may not
give you the right object back, depending on how you created the
objects.)

Palm OS SDK Reference 269

Forms
Form Functions

This means that if you've got the same bitmap in two different form
bitmap objects on the same form, you won't be able to use
FrmGetObjectIndex to get at the second one; it'll always return
the first.

See AlsO FrmGetObijectPtr, FrmGetObijectId

FrmGetObjectPosition
Purpose Return the coordinates of the specified object relative to the form.

Prototype void FrmGetObjectPosition (const FormType *formP,
UIntlé objIndex, Coord *x, Coord *y)

Parameters -> formP Pointer to the form object (FormType
structure).
-> objIndex Index of an object in the form. You can obtain

this by using FrmGetObjectIndex.

<X, Vv Pointers where the window-relative x and y
positions of the object are returned. These
locate the top-left corner of the object.

Result Returns nothing.

See Also FrmGetObijectBounds, FrmSetObjectPosition

FrmGetObjectPtr

Purpose Return a pointer to the data structure of an object in a form.

Prototype void *FrmGetObjectPtr (const FormType *formP,
UIntlé objIndex)

Parameters -> formP Pointer to the form object (FormType
structure).

270 Palm OS SDK Reference

Forms
Form Functions

Result

See Also

Purpose

Prototype

Parameters

Result

Purpose
Prototype

Parameters

Result

Comments

See Also

-> objIndex Index of an object in the form. You can obtain

this by using FrmGetObject Index.

Returns a pointer to an object in the form.

FrmGetObjectld

FrmGetObjectType
Return the type of an object.

FormObjectKind FrmGetObjectType
(const FormType *formP, UIntlé objIndex)

-> formP Pointer to the form object (FormType

structure).

-> objIndex Index of an object in the form. You can obtain

this by using FrmGetObject Index.

Returns FormObjectKind of the item specified. See
FormObjectKind.

FrmGetTitle

Return a pointer to the title string of a form.
const Char *FrmGetTitle (const FormType *formP)

-> formP Pointer to the form object (FormType

structure).

Returns a pointer to title string, or NULL if there is no title string or
there is an error finding it.

This is a pointer to the internal structure itself, not to a copy.

FrmCopyTitle, FrmSetTitle

Palm OS SDK Reference 271

Forms
Form Functions

Purpose

Prototype

Parameters

Result

Purpose

Prototype
Parameters
Result

Comments

See Also

FrmGetWindowHandle

Return the window handle of a form.

WinHandle FrmGetWindowHandle
(const FormType *formP)

-> formpP Pointer to the form object (FormType
structure).

Returns the handle of the memory block that contains the form data
structure. Since the form structure begins with the WindowType,
this is also a WinHandle.

FrmGotoForm

Send a frmCloseEvent to the current form; send a
frmloadEvent and a frmOpenEvent to the specified form.

void FrmGotoForm (UIntlé formId)
-> formId ID of the form to display:.
Returns nothing.

The default form event handler (FrmHandleEvent) erases and
disposes of a form when it receives a frmCloseEvent.

FrmPopupForm

272 Palm OS SDK Reference

Forms
Form Functions

Purpose

Prototype

Parameters

Result

Comments

FrmHandleEvent
Handle the event that has occurred in the form.

Boolean FrmHandleEvent (FormType *formP,
EventType *eventP)

-> formpP Pointer to the form object (FormType
structure).

-> eventP Pointer to the event data structure
(EventType).

Returns true if the event was handled.

Never call this function directly. Call FxrmDispatchEvent instead.
FrmDispatchEvent passes events to a form’s custom event
handler and then, if the event was not handled, to this function.

Table 10.1 provides an overview of how FrmHandleEvent handles
different events.

Table 10.1 FrmHandleEvent Actions

When FrmHandleEvent receives... n FrmHandleEvent performs these actions...

ctlEnterEvent

ctlRepeatEvent

Passes the event and a pointer to the object the
event occurred in to Ct1HandleEvent. The
object pointer is obtained from the event data.
If the control is part of an exclusive control
group, it deselects the currently selected
control of the group first.

Passes the event and a pointer to the object the
event occurred in to Ct1HandleEvent. The
object pointer is obtained from the event data.

Palm OS SDK Reference 273

Forms
Form Functions

Table 10.1 FrmHandleEvent Actions (continued)

When FrmHandleEvent receives...

FrmHandleEvent performs these actions...

ctlSelectEvent

fl1dEnterEvent or
fldHeightChangedEvent

frmCloseEvent

frmGadgetEnterEvent

frmGadgetMiscEvent

frmTitleEnterEvent

frmTitleSelectEvent

frmUpdateEvent

Checks if the control is a Popup Trigger
Control. If it is, the list associated with the
popup trigger is displayed until the user
makes a selection or touches the pen outside
the bounds of the list. If a selection is made, a
popSelectEvent is added to the event
queue.

Checks if a field object or a table object has the
focus and passes the event to the appropriate
handler (F1dHandleEvent or
TblHandleEvent). The table object is also a
container object, which may contain a field
object. If Tb1HandleEvent receives a field
event, it passes the event to the field object
contained within it.

Erases the form and releases any memory
allocated for it.

Passes the event to the gadget’s callback
function if the gadget has one. See
FormGadgetHandler.

Passes the event to the gadget’s callback
function if the gadget has one. See
FormGadgetHandler.

Tracks the pen until it is lifted. If it is lifted
within the bounds of the form title, adds a
frmTitleSelectEvent event to the event
queue.

Adds a keyDownEvent with the vechrMenu
character to the event queue.

Calls FrmDrawForm to redraw the form.

274 Palm OS SDK Reference

Forms
Form Functions

Table 10.1 FrmHandleEvent Actions (continued)

When FrmHandleEvent receives...

FrmHandleEvent performs these actions...

kevDownEvent

lstEnterEvent

menuCmdBarOpenEvent

menuEvent

penDownEvent; pen position in the
bounds of the form object

popSelectEvent

Passes the event to the handler for the object
that has the focus. If no object has the focus,
the event is ignored.

Passes the event and a pointer to the object the
event occurred in to LstHandleEvent. The
object pointer is obtained from the event data.

Checks if a field object or a table object has the
focus and passes the event to the appropriate
handler (F1dHandleEvent or
TblHandleEvent), broadcasts the
notification
sysNotifyMenuCmdBarOpenEvent, and
then displays the command toolbar.

Checks if the menu command is one of the
system edit menu commands. The system
provides a standard edit menu that contains
the commands Undo, Cut, Copy, Paste, Select
All, and Keyboard. FrmHandleEvent
responds to these commands.

Checks the list of objects contained by the
form to determine if the pen is within the
bounds of one. If it is, the appropriate handler
is called to handle the event, for example, if
the pen is in a control, Ct 1HandleEvent is
called. If the pen isn’t within the bounds of an
object, the event is ignored by the form. If the
pen is within the bounds of the help icon, it is
tracked until it is lifted, and if it’s still within
the help icon bounds, the help dialog is
displayed.

Sets the label of the popup trigger to the
current selection of the popup list.

Palm OS SDK Reference 275

Forms
Form Functions

Table 10.1 FrmHandleEvent Actions (continued)

When FrmHandleEvent receives... FrmHandleEvent performs these actions...
sclEnterEvent or Passes the event and a pointer to the object the
sclRepeatEvent event occurred in to Sc1HandleEvent.
tblEnterEvent Passes the event and a pointer to the object the
event occurred in to TblHandleEvent. The
object pointer is obtained from the event data.
Compatibility FrmHandleEvent only handles frmTitleSelectEvent,

See Also

Purpose

Prototype
Parameters
Result

Comments

menuCmdBarOpenEvent, frmGadgetEnterEvent, and
frmGadgetMiscEvent if 3.5 New Feature Set is present.

FrmDispatchEvent

FrmHelp

Display the specified help message until the user taps the Done
button in the help dialog.

void FrmHelp (UIntlé helpMsgId)
->helpMsgId Resource ID of help message string.
Returns nothing.

The help message is displayed in a modal dialog that has a vertical
scrollbar, if necessary:.

276 Palm OS SDK Reference

Forms
Form Functions

Purpose

Prototype

Parameters

Result
Comments

Compatibility

See Also

Purpose
Prototype
Parameters

Result

FrmHideObject

Erase the specified object and set its attribute data (usable bit) so
that it does not redraw or respond to the pen.

void FrmHideObject
UIntlé objIndex)

(FormType *formP,

-> formP Pointer to the form object (FormType

structure).

-> objIndex Index of an object in the form. You can obtain

this by using FrmGetObject Index.

Returns nothing.
This function does not affect lists or tables.

Prior to OS version 3.2, this function did not set the usable bit of
the object attribute data to false. On an OS version prior to 3.2 you
can work around this bug by directly setting this bit to false
yourself.

If 3.5 New Feature Set is present and the object is an extended
gadget, this function calls the gadget’s callback with
formGadgetEraseCmd. See FormGadgetHandler.

FrmShowObject

FrmInitForm

Load and initialize a form resource.
FormType *FrmInitForm (UIntlé rscID)
->rscID Resource ID of the form.

Returns a pointer to the form data structure.

Displays an error message if the form has already been initialized.

Palm OS SDK Reference 277

Forms
Form Functions

Comments

See Also

Purpose

Prototype

Parameters

This function does not affect the display (use FrmDrawForm to
draw the form) nor make the form active (use FrmSetActiveForm
to make it active).

For each initialized form, you must call FrmDeleteForm to release
the form memory when you are done with the form. Alternatively,
you can free the active form by calling FrmReturnToForm.

FrmDoDialog, FrmDeleteForm, FrmReturnToForm

FrmNewBitmap
Create a new form bitmap dynamically.

FormBitmapType *FrmNewBitmap (FormType **formPP,
UIntlé ID, UIntlé rscID, Coord x, Coord y)

<-> formPP Pointer to a pointer to the form in which the
new bitmap is installed. This value is not a
handle; that is, the old formPP value is not
necessarily valid after this function returns
because the form may be moved in memory. In
subsequent calls, always use the new formPP
value returned by this function.

-> 1D Symbolic ID of the bitmap, specified by the
developer. By convention, this ID should match
the resource ID (not mandatory).

->rscID Numeric value identifying the resource that
provides the bitmap. This value must be unique
within the application scope.

> x Horizontal coordinate of the upper-left corner
of the bitmap’s boundaries, relative to the
window in which it appears.

278

Palm OS SDK Reference

Forms
Form Functions

Result

Compatibility

See Also

Purpose

Prototype

Parameters

>y Vertical coordinate of the upper-left corner of
the bitmap’s boundaries, relative to the
window in which it appears.

Returns a pointer to the new bitmap, or 0 if the call did not succeed.
The most common cause of failure is lack of memory.

Implemented only if 3.0 New Feature Set is present.

FrmRemoveObject

FrmNewForm
Create a new form object dynamically.

FormType *FrmNewForm (UIntlé formID,
const Char *titleStrP, Coord x, Coord vy,
Coord width, Coord height, Boolean modal,
UIntlé defaultButton, UIntlé helpRscID,
UIntlé menuRscID)

-> formID Symbolic ID of the form, specified by the
developer. By convention, this ID should match
the resource ID (not mandatory).

->titleStrP Pointer to a string that is the title of the form.

->x Horizontal coordinate of the upper-left corner
of the form’s boundaries, relative to the
window in which it appears.

>y Vertical coordinate of the upper-left corner of
the form’s boundaries, relative to the window
in which it appears.

->width Width of the form, expressed in pixels. Valid
values are 1 -160.

->height Height of the form, expressed in pixels.Valid
values are 1 -160.

Palm OS SDK Reference 279

Forms
Form Functions

Result

Compatibility

See Also

Purpose

Prototype

Parameters

->modal t rue specifies that the form ignores pen events
outside its boundaries.

-> defaultButtonSymbolic ID of the button that provides the
form’s default action, specified by the
developer.

->helpRscID Symbolic ID of the resource that provides the
form’s online help, specified by the developer.
Only modal dialogs can have help resources.

->menuRscID Symbolic ID of the resource that provides the
form’s menus, specified by the developer.

Returns a pointer to the new form object, or 0 if the call did not
succeed. The most common cause of failure is lack of memory.

Implemented only if 3.0 New Feature Set is present.

FrmValidatePtr, WinValidateHandle, FrmRemoveObject

FrmNewGadget
Create a new gadget dynamically and install it in the specified form.

FormGadgetType *FrmNewGadget (FormType **formPP,
UIntlé id, Coord x, Coord y, Coord width,
Coord height)

<-> formPP Pointer to a pointer to the form in which the
new gadget is installed. This value is not a
handle; that is, the old formPP value is not
necessarily valid after this function returns
because the form may be moved in memory. In
subsequent calls, always use the new formPP
value returned by this function.

->1id Symbolic ID of the gadget, specified by the
developer. By convention, this ID should match
the resource ID (not mandatory).

280 Palm OS SDK Reference

Forms
Form Functions

->x Horizontal coordinate of the upper-left corner
of the gadget’s boundaries, relative to the
window in which it appears.

>y Vertical coordinate of the upper-left corner of
the gadget’s boundaries, relative to the window
in which it appears.

->width Width of the gadget, expressed in pixels. Valid
values are 1 - 160.

->height Height of the gadget, expressed in pixels.Valid
values are 1 - 160.

Result Returns a pointer to the new gadget object or 0 if the call did not
succeed. The most common cause of failure is lack of memory.

Comments A gadget is a custom user interface object. For more information, see
“Gadget Resource” on page 90.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FrmRemoveObiject

FrmNewGsi

Purpose Create a new Graffiti shift indicator dynamically and install it in the
specified form.

Prototype FrmGraffitiStateType *FrmNewGsi
(FormType **formPP, Coord x, Coord y)

Parameters <-> formPP Pointer to a pointer to the form in which the
new Graffiti shift indicator is installed. This
value is not a handle; that is, the old formPP
value is not necessarily valid after this function
returns because the form may be moved in
memory. In subsequent calls, always use the
new formPP value returned by this function.

Palm OS SDK Reference 281

Forms
Form Functions

Result

Comments

Compatibility

See Also

Purpose

Prototype

Parameters

->x Horizontal coordinate of the upper-left corner
of the Graffiti shift indicator’s boundaries,
relative to the window in which it appears.

>y Vertical coordinate of the upper-left corner of
the Graffiti shift indicator’s boundaries, relative
to the window in which it appears.

Returns a pointer to the new gadget object or 0 if the call did not
succeed. The most common cause of failure is lack of memory.

In normal operation, the Graffiti shift indicator is drawn in the
lower-right portion of the screen when the user enters the shift
keystroke. You use this function if the Graffiti shift indicator needs
to be drawn in a nonstandard location. For example, the form
manager uses it to draw the shift indicator in a custom alert dialog
that contains a text field (FrmCustomResponseAlert).

Implemented only if 3.5 New Feature Set is present.

FrmRemoveObject

FrmNewLabel

Create a new label object dynamically and install it in the specified
form.

FormLabelType *FrmNewLabel (FormType **formPP,
UIntlé ID, const Char *textP, Coord x, Coord vy,
FontID font)

<-> formPP Pointer to a pointer to the form in which the
new label is installed. This value is not a
handle; that is, the old formPP value is not
necessarily valid after this function returns
because the form may be moved in memory. In
subsequent calls, always use the new formPP
value returned by this function.

282 Palm OS SDK Reference

Forms
Form Functions

Result

Compatibility

See Also

Purpose

Prototype

Parameters

Result

Compatibility

-> 1D

-> textP

-> font

Symbolic ID of the label, specified by the
developer. By convention, this ID should match
the resource ID (not mandatory).

Pointer to a string that provides the label text.
This string is copied into the label structure.

Horizontal coordinate of the upper-left corner
of the label’s boundaries, relative to the
window in which it appears.

Vertical coordinate of the upper-left corner of
the label’s boundaries, relative to the window
in which it appears.

Font with which to draw the label text.

Returns a pointer to the new label object or 0 if the call did not
succeed. The most common cause of failure is lack of memory.

Implemented only if 3.0 New Feature Set is present.

CtlValidatePointer, FrmRemoveObject

FrmPointInTitle

Check if a coordinate is within the bounds of the form'’s title.

Boolean FrmPointInTitle (const FormType *formP,

Coord x,

-> formP

>x, Y

Coord vy)

Pointer to the form object (FormType
structure).

Window-relative x and y coordinates.

Returns true if the specified coordinate is in the form’s title.

Implemented only if 2.0 New Feature Set is present.

Palm OS SDK Reference 283

Forms
Form Functions

Purpose

Prototype
Parameters
Result

Comments

Purpose

Prototype

Parameters

Result

Comments

FrmPopupForm

Queues a frmLoadEvent and a frmOpenEvent for the specified
form.

void FrmPopupForm (UIntlé formId)
-> formID Resource ID of form to open.
Returns nothing.

This routine differs from FrmGotoForm in that the current form is
not closed. You can call FrmReturnToForm to close a form opened
by FrmPopupForm.

FrmRemoveObject
Remove the specified object from the specified form.

Err FrmRemoveObject (FormType **formPP,
UIntlé objIndex)

<-> formPP Pointer to a pointer to the form from which this
function removes an object. This value is not a
handle; that is, the old formPP value is not
necessarily valid after this function returns. In
subsequent calls, always use the new formPP
value returned by this function.

-> objIndex The object to remove, specified as an index into
the list of objects installed in the form. You can
use the FrmGetObject Index function to
discover this value.

Returns 0 if no error.

You can use this function to remove any form object (a bitmap,
control, list, and so on) and free the memory allocated to it within
the form data structure. The data structures for most form objects

284 Palm OS SDK Reference

Forms
Form Functions

Compatibility

See Also

Purpose
Prototype

Parameters

Result

Comments

Compatibility

are embedded within the form data structure memory chunk. This
function frees that memory and moves the other objects, if
necessary, to close up the memory “hole” and decrease the size of
the form chunk.

Note that this function does not free memory outside the form data
structure that may be allocated to an object, such as the memory
allocated to the string in an editable field object.

Implemented only if 3.0 New Feature Set is present.

FrmNewBitmap, FrmNewForm, FrmNewGadget, FrmNewLabel,
CtlNewControl, F1dNewField, LstNewlList

FrmRestoreActiveState
Macro that restores the active window and form state.
FrmRestoreActiveState (stateP)

-> stateP A pointer to the FormActiveStateType
structure that you passed to
FrmSaveActiveState when you saved the
state.

Returns zero on success.

Use this function to restore the state of displayed forms to the state
that existed before you dynamically showed a new modal form. You
must have previously called FrmSaveActiveState to save the
state.

Implemented only if 3.0 New Feature Set is present.

Palm OS SDK Reference 285

Forms
Form Functions

Purpose

Prototype
Parameters
Result

Comments

See Also

Purpose
Prototype

Parameters

Result

Comments

FrmReturnToForm

Erase and delete the currently active form and make the specified
form the active form.

void FrmReturnToForm (UIntlé formId)

-> formID Resource ID of the form to return to.

Returns nothing.

It is assumed that the form being returned to is already loaded into
memory and initialized. Passing a form ID of 0 returns to the first
form in the window list, which is the last form to be loaded.

FrmReturnToForm does not generate a frmCloseEvent when
called from a modal form’s event handler. It assumes that you have
already handled cleaning up your form’s variables since you are
explicitly calling FrmReturnToForm.

FrmGotoForm, FrmPopupForm

FrmSaveActiveState
Macro that saves the active window and form state.

FrmSaveActiveState (stateP)

<-> stateP A pointer to a FormActiveStateType
structure that is used to save the state. Pass the
same pointer to FrmRestoreActiveState to
restore the state. Treat the structure like a black
box; that is, don’t attempt to read it or write to

it.
Returns zero on success.

Use this function to save the state of displayed forms before
dynamically showing a new modal form. Call

286 Palm OS SDK Reference

Forms
Form Functions

Compatibility

Purpose
Prototype
Parameters
Result

See Also

Purpose

Prototype

Parameters

Result

Comments

Compatibility

FrmRestoreActiveState to restore the state after you remove
the modal form.

Implemented only if 3.0 New Feature Set is present.

FrmSaveAllForms

Send a frmSaveEvent to all open forms.

void FrmSaveAllForms (void)
None.

Returns nothing.

FrmCloseAllForms

FrmSetActiveForm

Set the active form. All input (key and pen) is directed to the active
form and all drawing occurs there.
void FrmSetActiveForm (FormType *formP)

-> formpP Pointer to the form object (FormType

structure).

Returns nothing.

A penDownEvent outside the form but within the display area is
ignored.

In Palm OS releases earlier than 3.5, this function generated a
winEnterEvent for the new form immediately following the
winExitEvent for the old form. Starting in Palm OS 3.5,
FrmSetActiveForm does not generate the winEnterEvent. The

Palm OS SDK Reference 287

Forms
Form Functions

See Also

Purpose

Prototype

Parameters

Result

Comments

Purpose

Prototype

Parameters

winEnterEvent does not occur until the newly active form is
drawn.

FrmGetActiveForm

FrmSetCategoryLabel

Set the category label displayed on the title line of a form. If the
form’s visible attribute is set, redraw the label.

void FrmSetCategorylLabel (FormType *formP,
UIntlé objIndex, Char *newLabel)

-> formpP Pointer to the form object (FormType
structure).
-> objIndex Index of an object in the form. You can obtain

this by using FrmGetObjectIndex.

->newLabel Pointer to the name of the new category.
Returns nothing.

The pointer to the new label (newLabel) is saved in the object.

FrmSetControlGroupSelection
Set the selected control in a group of controls.

void FrmSetControlGroupSelection
(const FormType *formP, UInt8 groupNum,
UIntlé controllID)

-> formP Pointer to the form object (FormType
structure).
-> groupNum Control group number.

288 Palm OS SDK Reference

Forms
Form Functions

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

-> controlID ID of control to set.
Returns nothing.

This function unsets all the other controls in the group. The display
is updated.

NOTE: FrmGetControlGroupSelection returns the
selection in a control group as an object index, not as an object
ID, which FrmSetControlGroupSelection uses to set the
selection.

FrmGetControlGroupSelection

FrmSetControlValue

Set the current value of a control. If the control is visible, it’s
redrawn.

void FrmSetControlValue (const FormType *formP,
UIntlé objIndex, Intl6é newValue)

-> formpP Pointer to the form object (FormType
structure).

-> objIndex Index of the control in the form. You can obtain
this by using FrmGetObjectIndex.

->newValue New value to set for the control. For sliders,

specify a value between the slider’s minimum
and maximum. For graphical controls, push
buttons, or check boxes, specify 0 for off,
nonzero for on.

Returns nothing.

Palm OS SDK Reference 289

Forms
Form Functions

Comments This function works only with graphical controls, sliders, push
buttons, and check boxes. If you set the value of any other type of
control, the behavior is undefined.

See Also FrmGetControlValue

FrmSetEventHandler
Purpose Registers the event handler callback routine for the specified form.

Prototype void FrmSetEventHandler (FormType *formP,
FormEventHandlerType *handler)

Parameters -> formP Pointer to the form object (FormType
structure).
->handler Address of the form event handler function,

FormEventHandler.

Result Returns nothing.

Comments FrmDispatchEvent calls this handler whenever it receives an
event for a specific form.

FrmSetEventHandler must be called right after a form resource is
loaded. The callback routine it registers is the mechanism for
dispatching events to an application. The tutorial explains how to
use callback routines.

FrmSetFocus
Purpose Set the focus of a form to the specified object.

Prototype void FrmSetFocus (FormType *formP,
UIntlée fieldIndex)

Parameters -> formP Pointer to the form object (FormType
structure).

290 Palm OS SDK Reference

Forms
Form Functions

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

->fieldIndex Index of the object to get the focus in the form.
You can obtain this by using
FrmGetObjectIndex. You can pass the
constant noFocus so that no object has the
focus.

Returns nothing.

You can set the focus to a field or table object. If the focus is set to a
tield object, this function turns on the insertion point in the field by
calling F1dGrabFocus internally.

FrmGetFocus

FrmSetGadgetData
Store a data value in the data field of the gadget object.

void FrmSetGadgetData (FormType *formP,
UIntlé objIndex, const void *data)

-> formpP Pointer to the form object (FormType
structure).

-> objIndex Index of an object in the form. You can obtain
this by using FrmGetObjectIndex.

->data Application-defined value. This value is stored
into the data field of the gadget data structure
(FormGadgetType).

Returns nothing.

Gadget objects provide a way for an application to attach custom
gadgetry to a form. Typically, the data field of a gadget object
contains a pointer to the custom object’s data structure.

FrmGetGadgetData, FrmSetGadgetHandler

Palm OS SDK Reference 291

Forms
Form Functions

Purpose

Prototype

Parameters

Result

Comments

Compatibility

See Also

Purpose

Prototype

Parameters

Result

FrmSetGadgetHandler

Registers the gadget event handler callback routine for the specified
gadget on the specified form.

void FrmSetGadgetHandler (FormType *formP,
UIntlé objIndex, FormGadgetHandlerType *attrP)

-> formP Pointer to the form object (FormType

structure).

-> objIndex Index of a gadget object in the form. You can

obtain this by using FrmGetObjectIndex.

Address of the callback function. See
FormGadgetHandler.

->attrP

Returns nothing.

This function sets the application-defined function that controls the
specified gadget’s behavior. This function is called when the gadget
needs to be drawn, erased, deleted, or needs to handle an event.

Implemented only if 3.5 New Feature Set is present.

FrmGetGadgetData, FrmSetGadgetData

FrmSetMenu
Change a form’s menu bar and make the new menu active.

void FrmSetMenu (FormType *formP,
UIntl6é menuRscID)

-> formP Pointer to the form object (FormType

structure).

-> menuRscID Resource ID of the menu.

Returns nothing.

292

Palm OS SDK Reference

Forms
Form Functions

Compatibility

Purpose

Prototype

Parameters

Result
Comments

Compatibility

Purpose

Prototype

Parameters

Implemented only if 2.0 New Feature Set is present.

FrmSetObjectBounds
Set the bounds or position of an object.

void FrmSetObjectBounds (FormType *formP,
UIntlé objIndex, const RectangleType *bounds)

-> formP Pointer to the form object (FormType
structure).
-> objIndex Index of an object in the form. You can obtain

this by using FrmGetObject Index.

-> bounds Window-relative bounds. For the following
objects, this sets only the position of the top-left
corner: label, bitmap, and Graffiti state
indicator.

Returns nothing.
Doesn’t update the display.

Implemented only if 2.0 New Feature Set is present.

FrmSetObjectPosition
Set the position of an object.

void FrmSetObjectPosition (FormType *formP,
UIntlé objIndex, Coord x, Coord Vy)

-> formP Pointer to the form object (FormType
structure).
-> objIndex Index of an object in the form. You can obtain

this by using FrmGetObject Index.

> x Window-relative horizontal coordinate.

Palm OS SDK Reference 293

Forms
Form Functions

Result

See Also

Purpose
Prototype

Parameters

Result

Comments

See Also

>y Window-relative vertical coordinate.
Returns nothing.

FrmGetObjectPosition, FrmGetObjectBounds

FrmSetTitle
Set the title of a form. If the form is visible, draw the new title.

void FrmSetTitle (FormType *formP, Char *newTitle)

-> formpP Pointer to the form object (FormType
structure).
->newTitle Pointer to the new title string.

Returns nothing.

This function draws the title if the form is visible.

This function saves the pointer passed in newTit1le; it does not
make a copy. Don’t pass a pointer to a stack-based object in
newTitle.

This function redraws the title but does not erase the old one first. If
the new title is shorter than the old one, the end of the old title will
still be visible. To avoid this, you can hide the title using
FrmHideObject, then show it using FrmShowObject, after using
FrmSetTitle.

FrmGetTitle, FrmCopyTitle, FrmCopyvLabel

294 Palm OS SDK Reference

Forms
Form Functions

Purpose

Prototype

Parameters

Result

Compatibility

See Also

Purpose

Prototype

Parameters

Result

FrmShowObiject
Set a form object as usable. If the form is visible, draw the object.

void FrmShowObject (FormType *formP,
UIntlé objIndex)

-> formpP Pointer to the form object (FormType
structure).
-> objIndex Index of an object in the form. You can obtain

this by using FrmGetObjectIndex.
Returns nothing.

If 3.5 New Feature Set is present and the object is an extended
gadget, this function calls the gadget’s callback with
formGadgetDrawCmd. See FormGadgetHandler.

FrmHideObject

FrmUpdateForm

Send a frmUpdateEvent to the specified form.

void FrmUpdateForm (UIntlé formId,
UIntlé updateCode)

-> formId Resource ID of form to update.

->updateCode Anapplication-defined code that can be used to
indicate what needs to be updated. Specify the
code frmRedrawUpdateCode to indicate that
the whole form should be redrawn.

Returns nothing.

Palm OS SDK Reference 295

Forms
Form Functions

Comments

Purpose

Prototype

Parameters

Result

If the frmUpdateEvent posted by this function is handled by the
default form event handler, FrmHandleEvent, the updateCode
parameter is ignored. FrmHandleEvent always redraws the form.

If you handle the frmUpdateEvent in a custom event handler, you
can use the updateCode parameter any way you want. For
example, you might use it to indicate that only a certain part of the
form needs to be redrawn. If you do handle the frmUpdateEvent,
be sure to return true from your event handler so that the default
form handler does not also redraw the whole form.

If you do handle the frmUpdateEvent in a custom event handler,
be sure to handle the case where updateCode is set to
frmRedrawUpdateCode, and redraw the whole form. This event
(and code) is sent by the system when the whole form needs to be
redrawn because the display needs to be refreshed.

FrmUpdateScrollers
Visually update (show or hide) the field scroll arrow buttons.

void FrmUpdateScrollers (FormType *formP,
UIntlé upIndex, UIntlé downlIndex,
Boolean scrollableUp, Boolean scrollableDown)

-> formpP Pointer to the form object (FormType
structure).
-> upIndex Index of the up-scroller button. You can obtain

this by using FrmGetObjectIndex.

-> downIndex Index of the down-scroller button. You can
obtain this by using FrmGetObjectIndex.

-> scrollableUp Setto true to make the up scroll arrow active
(shown), or false to hide it.

-> gscrollableDown
Set to true to make the down scroll arrow
active (shown), or false to hide it.

Returns nothing.

296 Palm OS SDK Reference

Forms
Form Functions

Purpose
Prototype
Parameters

Result

Comments

Compatibility

Purpose
Prototype

Parameters

Result

See Also

FrmValidatePtr

Return true if the specified pointer references a valid form.

Boolean FrmValidatePtr (const FormType *formP)

-> formP Pointer to be tested.

Returns true if the specified pointer is a non-NULL pointer to an
object having a valid form structure.

This function is intended for debugging purposes only. Do not
include it in released code.

To distinguish between a window and a form in released code,
instead of using this function, look at the flag
windowFlags.dialog in the WindowType structure. This flag is
true if the window is a form.

Implemented only if 3.0 New Feature Set is present.

FrmVisible

Return true if the form is visible (is drawn).
Boolean FrmVisible (const FormType *formP)

-> formP Pointer to the form object (FormType

structure).
Returns true if the form is visible; false if it is not visible.

FrmDrawForm, FrmEraseForm

Palm OS SDK Reference 297

Forms

Application-Defined Functions

Application-Defined Functions

Purpose

Prototype

Parameters

Result

Comments

Compatibility

FormCheckResponseFunc

Callback function for FrmCustomResponselAlert.

Boolean FormCheckResponseFuncType (Intlé button,
Char *attempt)

->button The ID of the button that the user tapped.
-> attempt The string that the user entered in the alert
dialog.

Return true if the dialog should be dismissed. Return false if the
dialog should not be dismissed.

This function is called at these times during the
FrmCustomResponseAlert routine:

¢ At the beginning of FrmCustomResponseAlert, this
function is called with a button ID of frmResponseCreate.
This constant indicates that the dialog is about to be
displayed, and your function should perform any necessary
initialization. For example, on a Japanese system, a password
dialog might need to disable the Japanese FEP. So it would
call TsmSetFepMode (NULL, tsmFepModeOff) in this
function.

* When the user has tapped a button on the dialog. The
function should process the at tempt string. If the string is
valid input, the function should return true. If not, it should
return false to give the user a chance to re-enter the string.

e At the end of FrmCustomResponseAlert, this function is
called with a button ID of frmResponseQuit. This gives the
callback a change to perform any cleanup, such as re-
enabling the Japanese FEP.

Implemented only if 3.5 New Feature Set is present.

298 Palm OS SDK Reference

Forms
Application-Defined Functions

Purpose
Prototype

Parameters

Result

Comments

Purpose

Prototype

Parameters

FormEventHandler
The event handler callback routine for a form.
Boolean FormEventHandlerType (EventType *eventP)

-> eventP Pointer to the form event (FormType
structure).

Must return true if this routine handled the event, otherwise
false.

FrmDispatchEvent calls this handler whenever it receives an
event for the form.

This callback routine is the mechanism for dispatching events to
particular forms in an application. The callback is registered by the
routine FrmSetEventHandler.

FormGadgetHandler

The event handler callback for an extended gadget.

Boolean (FormGadgetHandlerType)
(struct FormGadgetType *gadgetP, UIntlé cmd,
void *parambP)

->gadgetP Pointer to the gadget structure. See
FormGadgetType.

-> cmd A constant that specifies what action the
handler should take. This can be one of the
following;:

formGadgetDeleteCmd

Sent by FrmDeleteForm to indicate that the
gadget is being deleted and must clean up any
memory it has allocated or perform other
cleanup tasks.

Palm OS SDK Reference 299

Forms

Application-Defined Functions

Result

Comments

formGadgetDrawCmd

Sentby FrmDrawFormand FrmShowObject to
indicate that the gadget must be drawn or
redrawn.

formGadgetEraseCmd

Sent by FrmHideObject to indicate that the
gadget is going to be erased. FrmHideObject
clearsthe visible and usable flags for you. If
you return false, it also calls
WinEraseRectangle to erase the gadget’s
bounds.

formGadgetHandleEventCmd

Sent by FrmHandleEvent to indicate that a
gadget event has been received. The parampP
parameter contains the pointer to the
EventType structure.

-> paramP NULL except if cmd is
formGadgetHandleEventCmd. In that case,
this parameter holds the pointer to the
EventType structure containing the event.

Return true if the event was handed successfully; false
otherwise.

If this function performs any drawing in response to the
formGadgetDrawCmd, it should set the gadget’s visible
attribute flag. (gadgetP->attr.visible = true). This flag
indicates that the gadget appears on the screen. If you don’t set the
visible flag, the gadget won’t be erased when FrmHideObject
is called. (FrmHideObject immediately returns if the object’s
visible flagis false.)

Note that if the function receives the formGadgetEraseCmd, it
may simply choose to perform any necessary cleanup and return
false. If the function returns false, FrmHideObject erases the
gadget’s bounding rectangle. If the function returns true, it must
erase the gadget area itself.

If this function receives a formGadgetHandleEventCmd, paramP
points one of two events: frmGadgetEnterEvent or

300 Palm OS SDK Reference

Forms
Application-Defined Functions

Compatibility

See Also

frmGadgetMiscEvent. The frmGadgetEnterEvent is passed
when there is a penDownEvent within the gadget’s bounds. This
function should track the pen and perform any necessary
highlighting. The frmGadgetMiscEvent is never sent by the
system. Your application may choose to use it if at any point it
needs to send data to the extended gadget. In this case, the event has
one or both of these fields defined: selector, an unsigned integer,
and dataP, a pointer to data.

Implemented only if 3.5 New Feature Set is present.

FrmSetGadgetHandler

Palm OS SDK Reference 301

-o0—
-o—o-
-o0—

t

11
Graffiti Shift

This chapter provides reference material for the Graffiti® Shift
facility, declared in the header file GraffitiShift.h.

GraffitiShift Functions

Purpose
Prototype
Parameters
Result

Comments

Purpose

Prototype
Parameters

Result

GsiEnable

Enable or disable the Graffiti-shift state indicator.
void GsiEnable (const Boolean enablelt)
enableIt true to enable, false to disable.
Returns nothing.

Enabling the indicator makes it visible, disabling it makes the
insertion point invisible.

GsiEnabled

Return true if the Graffiti-shift state indicator is enabled, or false
if it’s disabled.

Boolean GsiEnabled (void)
None.

true if enabled, false if not.

Palm OS SDK Reference 303

Graffiti Shift

GraffitiShift Functions

Purpose

Prototype
Parameters

Result

Purpose
Prototype
Parameters
Result

Comments

Gsilnitialize

Initialize the global variables used to manage the Graffiti-shift state
indicator.

void GsiInitialize (void)
None.

Returns nothing.

GsiSetLocation

Set the display-relative position of the Graffiti-shift state indicator.
void GsiSetLocation (const Intlé x, const Intlé y)
X, Y Coordinate of left side and top of the indicator.
Returns nothing.

The indicator is not redrawn by this routine.

304 Palm OS SDK Reference

Graffiti Shift
GraffitiShift Functions

Purpose

Prototype

Parameters

Result

Comment

See Also

GsiSetShiftState
Set the Gralffiti-shift state indicator.

void GsiSetShiftState (const UIntlé lockFlags,
const UIntlé tempShift)

lockFlags glfCapsLock or gl £fNumLock.
tempShift The current temporary shift.

Returns nothing.

This function affects only the state of the Ul element, not the
underlying Graffiti engine.

GrfSetState

Palm OS SDK Reference 305

-o0—
-o—o-
-o0—

t

12

Insertion Point

This chapter provides reference material for the insertion point API,
declared in the header file InsPoint.h.

For more information on the insertion point, see the section
“Insertion Point” in the Palm OS Programmer’s Companion.

Insertion Point Functions

Purpose

Prototype
Parameters
Result

Comments

See Also

InsPtEnable

Enable or disable the insertion point. When the insertion point is
disabled, it’s invisible; when it’s enabled, it blinks.

void InsPtEnable (Boolean enablelt)
enablelIt true = enable; false = disable
Returns nothing.

This function is called by the Form functions when a text field loses
or gains the focus, and by the Windows function when a region of
the display is copied (WinCopyRectangle).

InsPtEnabled

Palm OS SDK Reference 307

Insertion Point

Insertion Point Functions

Purpose

Prototype
Parameters

Result

See Also

Purpose
Prototype
Parameters

Result

Purpose
Prototype

Parameters

Result

Comments

InsPtEnabled

Return true if the insertion point is enabled or false if the
insertion point is disabled.

Boolean InsPtEnabled (void)

None.

Returns true if the insertion point is enabled (blinking); returns
false if the insertion point is disabled (invisible).

InsPtEnable

InsPtGetHeight
Return the height of the insertion point.
Intl6 InsPtGetHeight (void)

None.

Returns the height of the insertion point, in pixels.

InsPtGetLocation
Return the screen-relative position of the insertion point.
(Int16 *x,

void InsPtGetLocation Intle *vy)

Pointer to top-left position of insertion point’s x
and y coordinate.

X,y

Returns nothing. Stores the location in x and y.

This function is called by the Field functions. An application would
not normally call this function.

308

Palm OS SDK Reference

Insertion Point
Insertion Point Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

InsPtSetHeight

Set the height of the insertion point.

void InsPtSetHeight (const Intlé height)

height Height of the insertion point in pixels.

Returns nothing.

Set the height of the insertion point to match the character height of
the font used in the field that the insertion point is in. When the
current font is changed, the insertion point height should be set to
the line height of the new font.

If the insertion point is visible when its height is changed, it’s erased
and redrawn with its new height.

InsPtGetHeight

InsPtSetLocation
Set the screen-relative position of the insertion point.

void InsPtSetlLocation
const Intlé vy)

(const Intlé x,

Number of pixels from the left side (top) of the
display:.

X,y

Returns nothing.

The position passed to this function is the location of the top-left
corner of the insertion point.

This function should be called only by the Field functions.

InsPtGetlLocation

Palm OS SDK Reference 309

13

3= Lists

t

This chapter provides information about list objects by discussing
these topics:

e [ist Data Structures
e [ist Resources
e List Functions

¢ Application-Defined Function

The header file List . h declares the API that this chapter describes.
For more information on lists, see the section “Lists” in the Palm OS
Programmer’s Companion.

List Data Structures

ListAttrType

The ListAttrType bit field defines the visible characteristics of
the list.

typedef struct ({
UIntlé usable
UIntleée enabled
UIntlé visible
UIntl6é poppedUp ;
UIntlé hasScrollBar:1.
UIntlé search :1;
UIntlé reserved :2;

} ListAttrType;

o~

=

Palm OS SDK Reference 311

Lists
List Data Structures

Field Descriptions

usable If not set, the form is not considered part of the
current interface of the application, and it
doesn’t appear on screen.

enabled If set, the user can interact with the list.

visible Set or cleared internally when the field object is
drawn or erased.

poppedUp If set, choices are displayed in a popup window.
This attribute is set and cleared internally.

hasScrollBar If set, the list has a scroll bar.

search If set, incremental search is enabled.
reserved Reserved for system use.
ListType

The ListType structure is defined as follows:

typedef struct {

UIntlé id;
RectangleType bounds;
ListAttrType attr;
Char ** itemsText;
Intle numItems;
Intleée currentItem;
Intle topItem;
FontID font;
UInts8 reserved;
WinHandle popupWin;
ListDrawDataFuncPtr drawlItemCallback;
} ListType;

312 Palm OS SDK Reference

Lists
List Resources

Field Descriptions

id

bounds
attr

itemsText

numItems
currentItem
topltem
font
reserved

popupWin

ID value, specified by the application developer.
This ID value is part of the event data of
lstEnterEvent and 1lstSelectEvent.

Bounds of the list, relative to the window.

List attributes. See ListAttrType.

Pointer to an array of pointers to the text of the
choices.

Number of choices in the list.
Currently-selected list choice (0 = first choice).
First choice displayed in the list.

ID of the font used to draw all list text strings.
Reserved for future use.

Handle of the window created when a list is
displayed if the poppedUp attribute is set.

drawItemCallbFunction used to draw an item in the list. If NULL,

ack

List Resources

the default drawing routine is used instead. See
Application-Defined Function.

The List Resource (tLST), and Popup Trigger Resource (tPUT) are
used together to represent an active list.

Palm OS SDK Reference 313

Lists
List Functions

List Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose
Prototype
Parameters
Result
Comments

See Also

LstDrawList
Draw the list object if it’s usable. Set its visible attribute to true.

void LstDrawList (ListType *1istP)

listP Pointer to list object (ListType).

Returns nothing.

If there are more choices than can be displayed, this function
ensures that the current selection is visible. If possible, the current
selection is displayed at the top. The current selection is highlighted.

If the list is disabled, it’s drawn grayed-out (strongly discouraged).
If it's empty, nothing is drawn. If it’s not usable, nothing is drawn.

FrmGetObjectPtr, LstPopupliist, LstEraseliist

LstEraseList
Erase a list object.
void LstEraselist (ListType *1istP)
listP Pointer to a list object (ListType).
Returns nothing.

The visible attribute is set to false by this function.

FrmGetObjectPtr, LstDrawlist

314 Palm OS SDK Reference

Lists
List Functions

Purpose
Prototype
Parameters
Result

See Also

Purpose
Prototype
Parameters

Result

See Also

Purpose

Prototype

Parameters

LstGetNumberOfitems

Return the number of items in a list.
Intle LstGetNumberOfItems (const ListType *1istP)
listP Pointer to a list object (ListType).

Returns the number of items in a list.

FrmGetObjectPtr, LstSetlListChoices

LstGetSelection

Return the currently selected choice in the list.

Intl6 LstGetSelection (const ListType *1listP)

listP Pointer to list object.

Returns the item number of the current list choice. The list choices
are numbered sequentially, starting with 0; Returns
noListSelection if none of the items are selected.

FrmGetObjectPtr, LstSetlListChoices, LstSetSelection,
LstGetSelectionText

LstGetSelectionText

Return a pointer to the text of the specified item in the list, or NULL
if no such item exists.

Char * LstGetSelectionText (const ListType *1listpPp,
Intle itemNum)

listP Pointer to list object.

Palm OS SDK Reference 315

Lists
List Functions

Result

Comments

See Also

Purpose
Prototype
Parameters
Result

Compatibility

Purpose

Prototype

Parameters

Result

itemNum Item to select (0 = first item in list).

Returns a pointer to the text of the current selection, or NULL if out
of bounds.

This is a pointer within ListType, not a copy.

FrmGetObjectPtr, LstSetlListChoices

LstGetVisibleltems

Return the number of visible items.

Intl6 LstGetVisibleItems (const ListType *1istP)
listP Pointer to list object.

The number of items visible.

Implemented only if 2.0 New Feature Set is present.

LstHandleEvent

Handle event in the specified list; the list object must have its
usable and visible attribute set to t rue.This routine handles
two type of events, penDownEvent and 1stEnterEvent; see
Comments.

Boolean LstHandleEvent (ListType *1istP,
const EventType *eventP)

listP Pointer to a list object (ListType).
eventP Pointer to an Event Type structure.

Return true if the event was handled. The following cases will
result in a return value of true:

¢ A penDownEvent within the bounds of the list

316 Palm OS SDK Reference

Lists
List Functions

Comments

Purpose

Prototype

Parameters

Result

Comments

See Also

e A lstEnterEvent with a list ID value that matches the list
ID in the list data structure

When this routine receives a penDownEvent, it checks if the pen
position is within the bounds of the list object. If it is, this routine
tracks the pen until the pen comes up. If the pen comes up within
the bounds of the list, a 1stEnterEvent is added to the event
queue, and the routine is exited.

When this routine receives a 1stEnterEvent, it checks that the list
ID in the event record matches the ID of the specified list. If there is
a match, this routine creates and displays a popup window
containing the list’s choices and the routine is exited.

If a penDownEvent is received while the list’s popup window is
displayed and the pen position is outside the bounds of the popup
window, the window is dismissed. If the pen position is within the
bounds of the window, this routine tracks the pen until it comes up.
If the pen comes up outside the list object, a 1stEnterEvent is
added to the event queue.

LstMakeltemVisible

Make an item visible, preferably at the top. If the item is already
visible, make no changes.

void LstMakeItemVisible (ListType *1listP,
Intle itemNum)

listP Pointer to a list object (ListType).
itemNum Item to select (0 = first item in list).

Returns nothing.

Does not visually update the list. You must call LstDrawList to
update it.

FrmGetObjectPtr, LstSetSelection, LstSetTopltem,
LstDrawlList

Palm OS SDK Reference 317

Lists
List Functions

LstNewList

Purpose Create a new list object dynamically and install it in the specified

form.

Prototype Err LstNewList

(void **formPP, UIntlé id, Coord x,

Coord y, Coord width, Coord height, FontID font,
Intl6 visibleItems, Intlé triggerId)

Parameters <--> formPP

id

width

height

visibleItems

triggerId

Pointer to the pointer to the form in which the
new list is installed. This value is not a handle;
that is, the old formPP value is not necessarily
valid after this function returns. In subsequent
calls, always use the new formPP value
returned by this function.

Symbolic ID of the list, specified by the
developer. By convention, this ID should match
the resource ID (not mandatory).

Horizontal coordinate of the upper-left corner
of the list’s boundaries, relative to the window
in which it appears.

Vertical coordinate of the upper-left corner of
the list’'s boundaries, relative to the window in
which it appears.

Width of the list, expressed in pixels. Valid
values are 1 —160.

Height of the list, expressed in pixels.Valid
values are 1 —160.

Number of list items that can be viewed
together.

Symbolic ID of the popup trigger associated
with the new list. This ID is specified by the
developer; by convention, this ID should match
the resource ID (not mandatory).

Result Returns 0 if no error.

318 Palm OS SDK Reference

Lists
List Functions

Compatibility

See Also

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype

Parameters

Result

Compatibility

Implemented only if 3.0 New Feature Set is present.

LstDrawList, FrmRemoveObiject

LstPopuplList

Display a modal window that contains the items in the list.
Intl6 LstPopupList (ListType *1istP)
listP Pointer to list object.

Returns the list item selected, or -1 if no item was selected.

Saves the previously active window. Creates and deletes the new
popup window.

FrmGetObjectPtr

LstScrollList

Scroll the list up or down a number of times.

Boolean LstScrollList
WinDirectionType direction,

(ListType *1listP,
Intlé6 itemCount)

listP Pointer to list object.
direction Direction to scroll.
itemCount Items to scroll in direction.

Returns true when the list is actually scrolled, false otherwise.
May return false if a scroll past the end of the list is requested.

Implemented only if 2.0 New Feature Set is present.

Palm OS SDK Reference 319

Lists
List Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result
Comments

See Also

LstSetDrawFunction

Set a callback function to draw each item instead of drawing the
item’s text string.

void LstSetDrawFunction (ListType *1listP,
ListDrawDataFuncPtr func)

listP Pointer to list object.

func Pointer to function which draws items.

Returns nothing.
This function also adjusts topItem to prevent a shrunken list from
being scrolled down too far. Use this function for custom draw

functionality.

FrmGetObjectPtr, LstSetlListChoices

LstSetHeight

Set the number of items visible in a list.

void LstSetHeight (ListType *1istP,
Intl6 visibleItems)

listP Pointer to list object.

visibleItems Number of choices visible at once.
Returns nothing.

This function doesn’t redraw the list if it’s already visible.

FrmGetObijectPtr

320 Palm OS SDK Reference

Lists
List Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result
Comments

See Also

LstSetListChoices

Set the items of a list to the array of text strings passed to this
function. This function doesn’t affect the display of the list. If the list
is visible, erases the old list items.

void LstSetListChoices (ListType *1listPp,
Char **itemsText, UIntlé numItems)

listP Pointer to a list object.
itemsText Pointer to an array of text strings.
numItems Number of choices in the list.

Returns nothing.

FrmGetObjectPtr, LstSetSelection, LstSetTopltem,
LstDrawlist, LstSetHeight, LstSetDrawFunction

LstSetPosition

Set the position of a list.

void LstSetPosition (ListType *1listP, Coord x,
Coord v)

listP Pointer to a list object

X, Y Left and top bound.

Returns nothing.
List is not redrawn. Don’t call this function when the list is visible.

FrmGetObjectPtr

Palm OS SDK Reference 321

Lists
List Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result
Comments

See Also

LstSetSelection
Set the selection for a list.

volid LstSetSelection
Intlé itemNum)

(ListType *1listP,

listP Pointer to a list object.

itemNum Item to select (0 = first item in list; -1 = none).

Returns nothing.
The old selection, if any, is unselected. If the list is visible, the
selected item is visually updated. The list is scrolled to the selection,

if necessary.

FrmGetObjectPtr

LstSetTopltem

Set the item visible. The item cannot become the top item if it’s on
the last page.

void LstSetTopIltem
Intl6é itemNum)

(ListType *1listP,

listP Pointer to list object.

itemNum Item to select (0 = first item in list).
Returns nothing.

Does not update the display.

FrmGetObjectPtr,LstSetSelection, LstMakeltemVisible,
LstDrawList, LstEraselist

322 Palm OS SDK Reference

Lists
Application-Defined Function

Application-Defined Function

If you need to perform special drawing for items in the list, call
LstSetDrawFunction to set the list drawing callback function.
The callback function’s prototype is:

void ListDrawDataFuncType (Intlé itemNum,
RectangleType *bounds, Char **itemsText)

Palm OS SDK Reference 323

14

"~ Menus

iz

This chapter describes the menu API as declared in the header file
Menu. h. It discusses the following topics:

¢ Menu Data Structures

¢ Menu Constants

e Menu Resources

e Menu Functions

For more information on menus, see the section “Menus” on
page 99 in the Palm OS Programmer’s Companion.

Menu Data Structures

MenuBarAttrType

The MenuBarAttrType bit field defines some characteristics of the
menu bar.

typedef struct ({
UIntlé visible : 1;
UIntlé commandPending : 1;
UIntlé insPtEnabled : 1;
UIntlé needsRecalc : 1;

} MenuBarAttrType;

Your code should treat the MenuBarAt trType structure as opaque.
Use the functions specified in the descriptions below to retrieve and
set each value. Do not attempt to change structure member values
directly.

Palm OS SDK Reference 325

Menus
Menu Data Structures

Field Descriptions

visible

commandPending

insPtEnabled

needsRecalc

Compatibility

If set, the menu bar is drawn and visible on the
screen. This attribute is set as part of
MenuDrawMenu, which is called when the
menu is drawn.

If set, a menu command shortcut is in
progress. This bit is set during
MenuHandleEvent if the menu shortcut
keystroke is received. If the next key is
received before the timeout value is reached,
the key is examined to see if it is a valid menu
command.

Stores the state of the insertion point at the
time the menu was drawn so that it can be
restored when the menu is erased.

If set, recalculate menu dimensions.

The needsRecalc constant is present only if 3.5 New Feature Set is

present.

MenuCmdBarButtonType

The MenuCmdBarButtonType struct defines a button to be
displayed on the command toolbar. The but tonsData field of the
MenuCmdBarType struct contains an array of structures of this

type.

typedef struct ({
UIntlé DbitmapId;
Char name [menuCmdBarMaxTextLength] ;
MenuCmdBarResultType resultType;
UInts8 reserved;
UInt32 result;
} MenuCmdBarButtonType;

Your code should treat the MenuCmdBarButtonType structure as
opaque. Do not attempt to change structure member values directly.
Instead, use MenuCmdBarAddButton to add a button to the

326 Palm OS SDK Reference

Menus
Menu Data Structures

display. For the most part, the parameters to
MenuCmdBarAddButton are the same as the fields in the
MenuCmdBarButtonType, so there should be no need to alter
these fields directly.

Field Descriptions

bitmapId Resource ID of the bitmap to display on the button.
This bitmap should be 13 pixels high by 16 pixels
wide.

name Text to display in the status message when the user
taps the button.

resultType Specifies what type of data is contained in the
result field. See MenuCmdBarResul tType.

reserved Reserved for future use.

result Specifies the data to send when the user clicks the
button. The data is interpreted as specified by the
resultType field. The result can be a shortcut
character to enqueue in a keyDownEvent, a menu
item ID to enqueue in a menuEvent, or a notification
to be broadcast.

Compatibility

This structure is defined only if 3.5 New Feature Set is present.

MenuCmdBarResultType

The MenuCmdBarResultType enum specifies how the result
field in the MenuCmdBarButtonType structure should be
interpreted.

typedef enum
menuCmdBarResultNone,
menuCmdBarResultChar,
menuCmdBarResultMenultem,
menuCmdBarResultNotify

} MenuCmdBarResultType;

Palm OS SDK Reference 327

Menus
Menu Data Structures

Value Descriptions

menuCmdBarResultNone Send nothing.
menuCmdBarResultChar The result is a character to send in a
kevDownEvent.

menuCmdBarResultMenuItem The resultis the ID of the menu item
to send in a menuEvent.

menuCmdBarResultNotify The resultis a notification constant
to be broadcast using
SysNotifyBroadcastDeferred.

Compatibility

This enum is defined only if 3.5 New Feature Set is present.

MenuCmdBarType

The MenuCmdBarType struct defines the command toolbar. This
command toolbar is allocated and displayed when the user draws
the shortcut stroke in the Graffiti® area. It is deallocated when
MenuEraseStatus is called, which occurs most frequently when
the timeout value has elapsed.

typedef struct MenuCmdBarType {
WinHandle bitsBehind;

Int32 timeoutTick;
Coord top;

Intleé numButtons;
Boolean insPtWasEnabled;
Boolean gsiWasEnabled;
Boolean feedbackMode;

MenuCmdBarButtonType *buttonsData;
} MenuCmdBarType;

Your code should treat the MenuCmdBarType structure as opaque.
Do not attempt to change structure member values directly.

328 Palm OS SDK Reference

Menus
Menu Data Structures

Field Descriptions

bitsBehind

timeoutTick

top

numButtons

insPtWasEnabled

gsiWasEnabled

feedbackMode

buttonsData

Handle for the window that contains the
region obscured by the command toolbar.

Timeout value given in system ticks. If the
user hasn’t specified a command after this
many ticks, the command toolbar is erased
from the screen and deallocated from
memory. This value also specifies how long
the status message is displayed after the user
successfully enters a command.

The top bound of the command toolbar given
in display-relative coordinates. The
command toolbar is as wide as the screen and
displays at the bottom of the screen.

Number of buttons displayed on the
command toolbar.

If true, the insertion point was enabled
before the command toolbar was displayed
and should be re-enabled when the command
toolbar is erased. If false, the insertion point
was disabled.

If true, the Graffiti shift indicator was
enabled before the command toolbar was
displayed and should be re-enabled when the
command toolbar is erased. If false, the
Graffiti shift indicator was disabled.

If true, the command toolbar is currently
displaying a status message. The status
message is displayed to tell the user what
command is being performed. If false, the
command toolbar is awaiting input.

The list of buttons to display on the command
toolbar. See MenuCmdBarButtonType.
Buttons are stored in this list sequentially
with the rightmost button at index 0.

Palm OS SDK Reference 329

Menus
Menu Data Structures

Compatibility

This structure is defined only if 3.5 New Feature Set is present.

MenuBarPtr

The MenuBarPtr type defines a pointer to a MenuBarType.

typedef MenuBarType *MenuBarPtr;

MenuBarType

The MenuBarType structure defines the menu bar. There is one
menu bar per form.

typedef struct ({

WinHandle barWin;
WinHandle bitsBehind;
WinHandle savedActiveWin;
WinHandle bitsBehindStatus;
MenuBarAttrType attr;

Intleé curMenu;

Intleée curltem;

Int32 commandTick;
Intleé numMenus ;

MenuPullDownPtr menus;
} MenuBarType;

Your code should treat the MenuBarType structure as opaque. Do
not attempt to change structure member values directly.

Field Descriptions

barWin Handle for the window that contains
the menu bar.

bitsBehind Handle for the window that contains
the region obscured by the menu bar.

savedActiveWin Handle where the currently active
window is saved so that it can be
restored when the menu is erased.

330 Palm OS SDK Reference

Menus
Menu Data Structures

bitsBehindStatus

attr

curMenu

curltem

commandTick

numMenus

menus

Compatibility

Handle where the bits behind the status
message are saved so that when the
message display terminates, the bits
can be restored.

The status message is displayed when
the user activates the menu through the
use of the command keystroke.

Menu bar attributes. See
MenuBarAttrType.

Menu number for the currently visible
menu. Menus are numbered
sequentially starting with 0. The value
is preserved when the menu bar is
dismissed. A value of
noMenuSelection indicates that
there is no current pull-down menu.

Item number of the currently
highlighted menu item. The items in
each menu are numbered sequentially,
starting with zero.

A value of noMenuItemSelection
indicates that there is no current item
selected.

Tick count at which the status message
should be erased.

Number of pull-down menus on the
menu bar.

Array of MenuPullDownType
structures.

If 3.5 New Feature Set is present, the bitsBehindStatus and
commandTick fields are defined but are not used. Instead, the
bitsBehind and timeoutTick fields in MenuCmdBarType

Palm OS SDK Reference 331

Menus
Menu Data Structures

define the save-behind window and the timeout value for the
command toolbar.

MenultemType

The MenuItemType structure defines a specific item within a
menu. The items array in the MenuPullDownType structure
contains one MenuItemType structure for each menu item in the
pull-down menu.

If 3.5 New Feature Set is present, you can add a menu item to a pull-
down menu programmatically using MenuAddItem.

typedef struct ({
UIntleée id;
Char command ;
UInt8 hidden: 1;
UInts8 reserved: 7;
Char * itemStr;

} MenulItemType;

Field Descriptions

id ID value you specified when you created the menu
item. This ID value is included as part of the event data
of a menuEvent.

command Shortcut key. If you provide shortcuts, make sure that
each shortcut is unique among all commands available
at that time.

hidden If true, the menu item is hidden. If false, itis
displayed. You can set and clear this value using
MenuHideItem and MenuShowItem

reserved Reserved for future use.

itemStr Pointer to the text to display for this menu item,
including the shortcut key. To include a shortcut key,
begin the string with the item’s text, then type a tab
character, and then the item’s shortcut key.

To create a separator bar, create a one-character string
containing the MenuSeparatorChar constant.

332

Palm OS SDK Reference

Menus
Menu Data Structures

Compatibility

The hidden and reserved fields are defined only if 3.5 New
Feature Set is present.

MenuPullDownPtr

The MenuPullDownPtr type defines a pointer to a
MenuPullDownType.

typedef MenuPullDownType * MenuPullDownPtr;

MenuPullDownType

The MenuPullDownType structure defines a specific menu
accessed from the menu bar. The menus array in the MenuBarType
structure contains one MenuPullDownType structure for each pull-
down menu associated with the menu bar.

typedef struct {

WinHandle menuWin;
RectangleType bounds;
WinHandle bitsBehind;
RectangleType titleBounds;
Char * title;

UIntleé hidden : 1;
UIntle numItems : 15;
MenultemType *items;

} MenuPullDownType;

Field Descriptions

menuWin Handle for the window that contains the menu.
bounds Position and size, in pixels, of the pull-down
menu.

bitsBehind Handle of a window that contains the region
obscured by the menu.

title The menu title (null-terminated string) displayed
in the menu bar.

Palm OS SDK Reference 333

Menus
Menu Constants

titleBounds

hidden

numltems

items

Compatibility

Position and size, in pixels, of the title in the menu
bar.

If true, the menu is hidden; if false, itis
displayed. This field is not currently used.

Number of items in the menu. Separators count as
items.

Array of MenuItemType structures.

The hidden field is defined only if 3.5 New Feature Set is present.

Menu Constants

Constant Value Description

noMenuSelection -1

noMenultemSelection -1

separatorItemSelection -2

MenuSeparatorChar -

The curMenu field of MenuBarType is set to
this when there is no currently selected
menu.

The curItemfield of MenuBarType is set to
this when there is no currently selected
menu item.

The curItem field of MenuBarType is set to
this when a menu separator item is selected.

Special character indicating that the menu
item is a bar used to separate groups of
related menu items. The first character of the
itemStr string in MenuItemType is set to
this.

Menu Resources

The menu bar (MBAR) and pull-down menu (MENU) resources are
used jointly to represent a menu object on screen. See “Menus and
Menu Bars” in Chapter 2, “Palm OS Resources.”

334 Palm OS SDK Reference

Menus
Menu Functions

Menu Functions

Purpose

Prototype

Parameters

Result

Comments

MenuAdditem

Add an item to the currently active menu.

Err MenuAddItem (UIntlé positionId, UIntlé id,
Char cmd, const Char *textP)

->positionId ID of an existing menu item. The new menu
item is added after this menu item.

->1id ID value to use for the new menu item.

-> cmd Shortcut key. If you provide shortcuts, make
sure that each shortcut is unique among all
commands available at that time.

-> textP Pointer to the text to display for this menu item,
including the shortcut key. To include a
shortcut key, begin the string with the item’s
text, then type a tab character, and then the
item’s shortcut key.

To create a separator bar, create a one-character
string containing the MenuSeparatorChar
constant.

Returns 0 upon success or one of the following if an error occurs:

menuErrNoMenu The textP parameter is NULL.

menuErrSameId The menu already contains an item with the ID
id.

menuErrNot Found

The menu doesn’t contain an item with the ID
positionId.

May display a fatal error message if there is no current menu.

This function creates a new MenuItemType structure and adds it to
the MenuBarType’s item list.

Palm OS SDK Reference 335

Menus
Menu Functions

Compatibility

Purpose

Prototype

Parameters

You should call this function only in response to a
menuOpenEvent. This event is generated when the menu is first
made active. In general, a form’s menu becomes active the first time
a keyDownEvent with a vehrMenu or vehrCommand is generated,
and it remains active until a new form (including a modal form or
alert panel) is displayed or until FrmSetMenu is called to change
the form’s menu. Palm OS® user interface guidelines discourage
adding or hiding menu items at any time other than when the menu
is first made active.

Implemented only if 3.5 New Feature Set is present.

MenuCmdBarAddButton

Define a button to be displayed on the command toolbar.

Err MenuCmdBarAddButton (UInt8 where,
UIntlé bitmapId, MenuCmdBarResultType resultType,
UInt32 result, Char *nameP)

-> where Either menuCmdBarOnLeft to add the button
to the left of the other buttons on the command
toolbar, menuCmdBarOnRight to add it to the
right of the other buttons, or a number
indicating the exact position of the button.
Button positions are numbered from right to
left, and the rightmost position is number 1.

->bitmapId Resource ID of the bitmap to display on the
button. The bitmap’s dimensions should be 13
pixels high by 16 pixels wide.

->resultType The type of data contained in the result
parameter. See MenuCmdBarResultType.

->result The data to send when the user taps this
button. This can be a character, a menu item ID,
or a notification constant.

336 Palm OS SDK Reference

Menus
Menu Functions

Result

Comments

-> nameP Pointer to the text to display in the status
message if the user taps the button. If NULL, the
text is taken from the menu item that matches
the ID or shortcut character contained in
result, if a match is found.

If you supply a text buffer for this parameter,
MenuCmdBarAddBut ton makes a copy of the
buffer.

Returns 0 upon success, or one of the following error codes:

menuErrOutOfMemory
There is not enough memory available to
perform the operation.

menuErrTooManyItems
The command toolbar already has the
maximum number of buttons allowed
(currently 8).

Call this function in response to a menuCmdBarOpenEvent or to
the notification sysNot i fyMenuCmdBarOpenEvent. Both of these
signal that the user has entered the command keystroke and the
command toolbar is about to open. Your response should be to add
buttons to the toolbar and to return false, indicating that you have
not completely handled the event.

The sysNotifyMenuCmdBarOpenEvent notification is intended
to be used only by shared libraries, system extensions, and other
code resources that do not use an event loop. If you're writing an
application, always respond to the event instead of the notification;
an application should only add buttons to the toolbar if it is the
current application. If you register for the notification, you receive it
each time the command toolbar is displayed, whether your
application is active or not.

Note that the command toolbar is allocated each time it is opened
and is deallocated when it is erased from the screen.

There is a limited amount of space in which to display buttons on
the command toolbar. You should limit the number of buttons to
four or five. The maximum allowed by the system is eight, but you

Palm OS SDK Reference 337

Menus
Menu Functions

should leave space for the status message that appears after the user
chooses an action. Buttons should be contextual; for example, the
tield code only displays a paste button if there is text on the
clipboard. Bitmaps for the buttons should be 16 X 13 pixels.

If a field has focus when the command toolbar is opened, the field
manager adds buttons for cut, copy, paste, and undo. If your
application does not want this default behavior, set the
preventFieldButtons field in the menuCmdBarOpenEvent
structure to true. (Note that there is no way to prevent the field
buttons from being drawn from within a notification handler.)

The following bitmaps for command toolbar buttons are defined in
UIResources.h. The system and the built-in applications use
these bitmaps to represent the commands listed in the table. Your
application should also use them if it performs the same actions. If
you use any of these buttons, add them in the order shown from
right to left. (For example, BarDeleteBitmap, if used, should
always be the rightmost button.)

Bitmap Command

BarDeleteBitmap Delete record.

BarPasteBitmap Paste clipboard contents at insertion point.

BarCopyBitmap Copy selection.
BarCutBitmap Cut selection.
BarUndoBitmap Undo previous action.

BarSecureBitmap Show Security dialog.
BarBeamBitmap Beam current record.

BarInfoBitmap Show Info dialog (Launcher).

It is best to add buttons on the left side. If you add buttons to the
right, this function moves all existing buttons over one position to
the left. You can also specify an exact position for the where
parameter. The positions are numbered from right to left with the
rightmost position being 1. If you specify an exact position, the
function leaves space for the other buttons. For example, if you

338 Palm OS SDK Reference

Menus
Menu Functions

Compatibility

See Also

Purpose
Prototype
Parameters

Result

specify position 3 and there are no buttons displayed at positions 1
and 2, there will be blank spots to the right of your button.

The result and resultType parameters specify what the result
should be if the user taps the button. result contains the actual
data, and resultType contains a constant that specifies the type of
data in result. Typically, the result is to enqueue a menuEvent. In
this case, resultType is menuCmdBarResultMenuItem and the
result is the ID of the menu item that should included in the
event.

You may also specify the shortcut character instead of the menu ID;
however, doing so is inefficient. When result is a shortcut
character, the MenuHandleEvent function enqueues a
keyDownEvent with the character in result. During the next
cycle of the event loop, MenuHandleEvent enqueues a
menuEvent in response to the keyDownEvent. Thus, it is better to
have your button enqueue the menuEvent directly.

If you call MenuCmdBarAddBut ton outside of an application, you
might not know of any menu items in the active menu (unless your
code has added one using MenuAddItem). In this case, specify a
notification to be broadcast. The notification is broadcast at the top
of the next event loop, and it must contain no custom data.
(Applications may also use the notification result type.)

Implemented only if 3.5 New Feature Set is present.

MenuCmdBarDisplay, MenuCmdBarGetButtonData

MenuCmdBarDisplay
Display the command toolbar.

void MenuCmdBarDisplay (void)
None

Returns nothing.

Palm OS SDK Reference 339

Menus
Menu Functions

Comments

Compatibility

See Also

Purpose

Prototype

Parameters

This function displays the command toolbar when the user enters
the command keystroke. You normally do not call this function in
your own code. The form manager calls it at the end of its handling
of menuCmdBarOpenEvent.

Implemented only if 3.5 New Feature Set is present.

MenuCmdBarAddButton, MenuCmdBarGetButtonData

MenuCmdBarGetButtonData

Get the data for a given command button.

Boolean MenuCmdBarGetButtonData

(Intl6e buttonIndex, UIntlé *bitmapIdP,
MenuCmdBarResultType *resultTypeP,
UInt32 *resultP, Char *nameP)

->buttonIndex Index of the button for which you want to
obtain information. Buttons are ordered from
right to left, with the rightmost button at index
0.

<-bitmapIdP The resource ID of the bitmap displayed on the
button. Pass NULL if you don’t want to retrieve
this value.

<-resultTypeP The type of action this button takes. Pass NULL
if you don’t want to retrieve this value.

<-resultP The result of tapping the button. Pass NULL if
you don’t want to retrieve this information.

340 Palm OS SDK Reference

Menus
Menu Functions

Result

Comments

Compatibility

See Also

Purpose

Prototype

Parameters

Result

<-nameP The text displayed in the status message when
this button is tapped. Pass NULL if you don’t
want to retrieve this information. If not NULL,
nameP must point to a string of
menuCmdBarMaxTextLength size.

Returns true if the information was retrieved successfully, false
if there is no command toolbar or if there is no button at
buttonIndex.

You can use this function to retrieve information about the buttons
that are displayed on the command toolbar. If the command toolbar
has not yet been initialized, this function returns false.

Note that the command toolbar is allocated when the user enters the
command keystroke and deallocated when MenuEraseStatus is
called. Thus, the only logical place to call
MenuCmdBarGetButtonData is in response to a
menuCmdBarOpenEvent or sysNotifyMenuCmdBarOpenEvent
notification.

Implemented only if 3.5 New Feature Set is present.

MenuCmdBarDisplay, MenuCmdBarAddButton

MenuDispose

Release any memory allocated to the menu and the command status
and restore any saved bits to the screen.

void MenuDispose (MenuBarType *menuP)

-> menuP Pointer to the menu object to dispose. (See
MenuBarType.) If NULL, this function returns
immediately.

Returns nothing.

Palm OS SDK Reference 341

Menus
Menu Functions

Comments

See Also

Purpose
Prototype
Parameters
Result

Comments

Most applications do not need to call this function directly.
MenuDispose is called by the system when the form that contains
the menu is no longer the active form, when the form that contains
the menu is freed, and when FrmSetMenu is called to change the
form’s menu bar.

MenulInit, MenuDrawMenu

MenuDrawMenu
Draw the current menu bar and the last pull-down that was visible.
void MenuDrawMenu (MenuBarType *menuP)

-> menuP Pointer to a MenuBarType. Must not be NULL.

Returns nothing.

Most applications do not need to call this function directly.
MenuHandleEvent calls MenuDrawMenu when the user taps the
Menu silk-screen button (or taps the form’s title on Palm OS 3.5 and
higher).

The menu bar and the pull-down menu are drawn in front of all the
application windows. The state of the insertion point, the bits that
are obscured by the menu bar and the pull-down menu, and the
currently active window are saved before the menu is drawn. These
are all restored when the menu is erased.

A menu keeps track of the last pull-down menu displayed for as
long as the menu is active. A menu loses its active status under these
conditions:

* When FrmSetMenu is called to change the active menu on
the form.

* When a new form, even a modal form or alert panel, becomes
active.

Suppose a user selects your application’s About item from the
Options menu then clicks the OK button to return to the main form.
When the About dialog is displayed, it becomes the active form,

342

Palm OS SDK Reference

Menus
Menu Functions

See Also

Purpose
Prototype

Parameters

Result

Comments

Compatibility

which causes the main form’s menu state to be erased. This menu
state is not restored when the main form becomes active again. The
next time MenuDrawMenu is called (that is, the next time the user
taps the Menu silk-screen button), the menu bar is displayed as it
was before, and the first pull-down menu listed in the menu bar is
displayed instead of the Options pull-down menu.

MenulInit, MenuDispose

MenuEraseStatus
Erase the menu command status.
void MenuEraseStatus (MenuBarType *menuP)

-> menuP Pointer to a MenuBarType, or NULL for the
current menu.

Returns nothing.

When the user selects a menu command using the command
keystroke, the command toolbar or status message is displayed at
the bottom of the screen. MenuEraseStatus erases the toolbar or
status message.

Under most circumstances, you do not need to call this function
explicitly—just let the current menu command status remove itself
automatically. Otherwise, you may cause text to be erased before the
user has a chance to see it.

You need to call MenuEraseStatus explicitly only if the command
toolbar covers something that is going to be changed by the menu
command the user has selected. For example, if the user selects a
command that displays a new form, call MenuEraseStatus before
executing the command. Also, if the command performs some
drawing in the lower portion of the window, call
MenuEraseStatus before performing the drawing function.

The exact behavior when a menu shortcut character is entered
depends on which version of the operating system is running. In

Palm OS SDK Reference 343

Menus
Menu Functions

See Also

Purpose
Prototype
Parameters

Result

Comments

versions prior to release 3.5, the system displays the string
“Command:” in the lower-left portion of the screen when the user
enters the Graffiti command keystroke.

In Palm OS 3.5 and higher, entering the Graffiti command keystroke
displays the command toolbar. This toolbar is the entire width of the
screen and it displays buttons that the user can tap instead of
entering another keystroke. If the user taps a button or enters a
character that matches a shortcut character for an item on the active
menu, a status message is displayed in the toolbar while the
command is executed. Calling MenuEraseStatus on Palm OS 3.5
and higher deallocates the command toolbar data structure as well
as erasing the command toolbar from the screen.

Because the command toolbar takes up more of the display than the
pre-Palm OS 3.5 status message, you may find you need to call
MenuEraseStatus more frequently in Palm OS 3.5 than in earlier
versions.

MenulInit

MenuGetActiveMenu

Returns a pointer to the currently active menu.
MenuBarType *MenuGetActiveMenu (void)
None.

Returns a pointer to the currently active menu, or NULL if there is
none.

An active menu is not necessarily visible on the screen. A menu
might be active but not visible, for example, if a command shortcut
has been entered. In general, a form’s menu becomes active the first
time a keyDownEvent with a vchrMenu or vehrCommand is
generated, and it remains active until a new form (including a
modal form or alert panel) is displayed or until FrmSetMenu is
called to change the form’s menu.

344 Palm OS SDK Reference

Menus
Menu Functions

If you want to know if the menu is visible rather than merely active,
there are two options:

* You can check the visible attribute. For example:

myMenu = MenuGetActiveMenu () ;
if (myMenu && myMenu-sattr.visible) ({
// menu is visible

® You can check for winEnterEvent and winExitEvent.

When the system draws a menu, the menu’s window
becomes the active drawing window. The system generates a
winExitEvent for the previous active drawing window
and a winEnterEvent for the menu’s window. When the
menu is erased, the system generates a winExitEvent for
the menu’s window and a winEnterEvent for the window
that was active before the menu was drawn.

It’s common to want to check if the menu is visible in
applications that perform custom drawing to a window.
Such applications want to make sure that they don’t draw on
top of the menu. The recommended way to do this is to stop
drawing when you receive a winExitEvent matching your
drawing window and resume drawing when you receive the
corresponding winEnterEvent. For example, the following
code is excerpted from the Reptoids example application’s
main event loop:

EvtGetEvent (&event, TimeUntillNextPeriod()) ;

if (event.eType == winExitEvent) {
if (event.data.winExit.exitWindow ==
(WinHandle) FrmGetFormPtr (MainView)) {

// stop drawing.

else if (event.eType == winEnterEvent) ({
if (event.data.winEnter.enterWindow ==
(WinHandle) FrmGetFormPtr (MainView) &&
event .data.winEnter.enterWindow ==

Palm OS SDK Reference 345

Menus
Menu Functions

See Also

Purpose

Prototype

Parameters

Result

Comments

(WinHandle) FrmGetFirstForm ()) {
// start drawing
}

}

Note that the second method of checking to see if a menu is visible
is preferred because it is not specific to menus—your application
should stop drawing if any window obscures your drawing
window, and it will do so if you check for winEnterEvent and
winExitEvent.

MenuHandleEvent, MenuSetActiveMenu

MenuHandleEvent

Handle events in the current menu. This routine handles two types
of events, penDownEvent and keyDownEvent.

Boolean MenuHandleEvent (MenuBarType *menuP,
EventType *event, Uintlé *error)

-> menuP Pointer to a MenuBarType data structure.
-> event Pointer to an Event Type structure.
-> error Error (or 0 if no error).

Returns true if the event is handled; that is, if the event is a
penDownEvent within the menu bar or the menu, or the event is a
keyDownEvent that the menu supports. Returns false on any
other event.

When a penDownEvent is received in the menu bar,
MenuHandleEvent tracks the pen until it comes up. If the pen
comes up within the bounds of the menu bar, the selected title is
inverted and the appropriate pull-down menu is drawn. Any
previous pull-down menu is erased. If the pen comes up outside of
the menu bar and pull-down menu, the menu is erased.

When a penDownEvent is received in a pull-down menu,
MenuHandleEvent tracks the pen until it comes up. If the pen

346 Palm OS SDK Reference

Menus
Menu Functions

comes up within the bounds of the menu, a menuEvent containing
the resource ID of the selected menu item is added to the event
queue. If the pen comes up outside of the bounds of the menu and
menu bar, the menu is erased.

If a keyDownEvent is received with a vechrMenu, the menu is
drawn if it is not visible and erased if it is visible.

If a keyDownEvent is received with a vchrCommand, a command
shortcut is in progress. Command shortcuts are handled differently
depending on which version of Palm OS is running. On versions
earlier than 3.5, the next keyDownEvent is checked to see if itis a
valid menu shortcut. If so, a menuEvent is added to the event
queue.

If a keyDownEvent is received with a vechrCommand on Palm OS
3.5 and higher, MenuHandleEvent enqueues a
menuCmdBarOpenEvent if the command toolbar is not already
open. The menuCmdBarOpenEvent provides a chance for
applications to add their own buttons to the command toolbar. The
next event might be either a keyDownEvent with a character that
completes the shortcut or a penDownEvent on one of the buttons
on the toolbar. The keyDownEvent is processed as with the earlier
releases— if it is a valid menu shortcut, a menuEvent is added to
the event queue. If the next event is a penDownEvent, the pen is
tracked until it comes up. If the pen comes up within the bounds of
a button, the appropriate action is taken. See the description of
MenuCmdBarAddButton for more information.

In Palm OS version 3.5 or higher, if either the vchrMenu or the
vchrCommand event causes a menu to be activated and initialized
for the first time, a menuOpenEvent containing the reason the
menu was initialized (menuButtonCause for a vchrMenu or
menuCommandCause for a vechrCommand) is added to the event
queue, and then the current event is added after it.

Palm OS SDK Reference 347

Menus
Menu Functions

Purpose
Prototype
Parameters
Result

Comments

Compatibility

See Also

Purpose
Prototype
Parameters

Result

Comments

MenuHideltem

Hide a menu item.

Boolean MenuHideItem (UIntlé id)

->1id ID of the menu item to hide.

Returns true if the menu item was hidden; false otherwise.

You should call this function only in response to a
menuOpenEvent. This event is generated when the menu is first
made active. In general, a form’s menu becomes active the first time
a keyDownEvent with a vehrMenu or vehrCommand is generated,
and it remains active until a new form (including a modal form or
alert panel) is displayed or until FrmSetMenu is called to change
the form’s menu. Palm OS user interface guidelines discourage
adding or hiding menu items at any time other than when the menu
is first made active.

Implemented only if 3.5 New Feature Set is present.

MenuShowItem

Menulnit

Load a menu resource from a resource file.
MenuBarType *Menulnit (Uintlé resourceld)
ID that identifies the menu resource.

-> resourcelId

Returns the pointer to a memory block allocated to hold the menu
resource (a pointer to a MenuBarType).

The menu is not usable until MenuSetActiveMenu is called.

Typically, you do not need to call this function directly. A form
stores the resource ID of the menu associated with it and initializes

348

Palm OS SDK Reference

Menus
Menu Functions

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose
Prototype
Parameters

Result

that menu as necessary. If you want to change the form’s menu, call
FrmSetMenu, which handles disposing of the form’s current menu,
associating the new menu with the form, and initializing when
needed.

MenuSetActiveMenu, MenuDispose

MenuSetActiveMenu
Set the current menu.

MenuBarType *MenuSetActiveMenu
(MenuBarType *menuP)

-> menuP Pointer to the memory block that contains the

new menu, or NULL for none.

Returns a pointer to the menu that was active before the new menu
was set, or NULL if no menu was active.

This function sets the active menu but does not associate it with a
form. It’s recommended that you call FrmSetMenu instead of
MenuSetActiveMenu. FrmSetMenu sets the active menu, frees the
old menu, and associates the newly active menu with the form,
which means the menu will be freed when the form is freed.

MenuGetActiveMenu

MenuSetActiveMenuRscID
Set the current menu by resource ID.

void MenuSetActiveMenuRscID (Uintlé resourceld)
Resource ID of the menu to be made active.

-> resourceld

Returns nothing.

Palm OS SDK Reference 349

Menus
Menu Functions

Comments

Compatibility

Purpose
Prototype
Parameters

Result

Comments

Compatibility

See Also

This function is similar to MenuSetActiveMenu except that you
pass the menu’s resource ID instead of a pointer to a menu
structure. It is used as an optimization; with MenuSetActiveMenu,
you must initialize the menu before making it active. Potentially, the
application may exit before the menu is needed, making this
memory allocation unnecessary. MenuSetActiveMenuRscID
simply stores the resource ID. The next time a menu is requested,
the menu is initialized from this resource.

It's recommended that you call FrmSetMenu instead of calling this
function for the reasons given in MenuSetActiveMenu.

Implemented only if 2.0 New Feature Set is present.

MenuShowltem

Display a menu item that is currently hidden.
Boolean MenuShowItem (UIntlé id)
->id ID of the menu item to display.

Returns true if the menu item was successfully displayed, false
otherwise.

You should call this function only in response to a
menuOpenEvent. This event is generated when the menu is first
made active. In general, a form’s menu becomes active the first time
a keyDownEvent with a vehrMenu or vehrCommand is generated,
and it remains active until a new form (including a modal form or
alert panel) is displayed or until FrmSetMenu is called to change
the form’s menu. Palm OS user interface guidelines discourage
adding or hiding menu items at any time other than when the menu
is first made active.

Implemented only if 3.5 New Feature Set is present.

MenuHideItem

350 Palm OS SDK Reference

15

" Private Records

iz

This chapter describes the private records API as declared in
PrivateRecords.h. It discusses the following topics:

e Private Record Data Structures

e Private Record Functions

Private Record Data Structures

privateRecordViewEnum

The privateRecordvViewEnum enumerated type provides the
available choices for displaying private records.

typedef enum privateRecordViewEnum {
showPrivateRecords = 0x00,
maskPrivateRecords,
hidePrivateRecords

} privateRecordViewEnum;

Value Descriptions

showPrivateRecords Display private records in the user
interface.

maskPrivateRecords Show ashaded rectangle in place of a
private record.

hidePrivateRecords Hide private records and provide no
indication in the user interface that they
exist.

Palm OS SDK Reference 351

Private Records

Private Record Functions

Private Record Functions

Purpose

Prototype
Parameters

Result

Comments

Compatibility

SecSelectViewStatus

Display a form that allows the user to select whether to hide, show,
or mask private records.

privateRecordViewEnum SecSelectViewStatus (void)
None

Returns a constant that indicates which option the user selected. See
privateRecordViewEnum.

This function displays a dialog that allows users to change the
preference prefShowPrivateRecords, which controls how
private records are displayed.

When the user taps the OK button in this dialog, SecverifyPW is
called to see if the user changed the preference setting and, if so, to
prompt the user to enter the appropriate password.

After calling this function, your code should check the return value
or the value of prefShowPrivateRecords and mask, display, or
hide the private records accordingly. See the description of
TblSetRowMasked for a partial example.

Implemented only if 3.5 New Feature Set is present.

352 Palm OS SDK

Reference

Private Records
Private Record Functions

Purpose

Prototype

Parameters

Result

Comments

Compatibility

SecVerifyPW

Display a password dialog, verify the password, and change the
private records preference.

Boolean SecVerifyPW
(privateRecordViewEnum newSecLevel)

->newSecLevel The security level (display, hide, or mask)
selected on the private records dialog.

Returns true if the prefShowPrivateRecords preference was
successfully changed, false if not.

This function checks newSecLevel against the current value for
the preference. If the two values differ and newSecLevel indicates
a decrease in security, a dialog is displayed prompting the user to
enter a password. (Hidden is considered the most secure, followed
by masked. Showing private records is considered the least secure.)
If the password is entered successfully, the preference is changed.

This function also displays an alert message if the security level has
changed to either hidden or masked.

Implemented only if 3.5 New Feature Set is present.

Palm OS SDK Reference 353

-o0—
-o—o-
-o0—

t

16

Progress Manager

This chapter provides reference material for the Progress Manager.

* Progress Manager Functions

¢ Application-Defined Functions

The header file Progress . h declares the API that this chapter
describes. For more information on the progress manager, see the
section “Progress Dialogs” in the Palm OS Programmer’s Companion.

Progress Manager Functions

Purpose

Prototype

Parameters

Result

PrgHandleEvent
Handles events related to the active progress dialog.

Boolean PrgHandleEvent (ProgressPtr prgP,
EventType *eventP)

->prgP Pointer to a progress structure created by
PrgStartDialog.
-> eventP Pointer to an event. You can pass a NULL event

to cause this function to immediately call your
PrgCallbackFunc function and then update
the dialog (for example, after you call
PrgUpdateDialog).

Returns true if the system handled the event. If it returns false,
you should check if the user canceled the dialog by calling

PrgUserCancel.

Palm OS SDK Reference 355

Progress Manager
Progress Manager Functions

Comments

Compatibility

See Also

Purpose

Prototype

Parameters

Use this function instead of SysHandleEvent when you have a
progress dialog. PrgHandleEvent internally calls
SysHandleEvent as needed.

Note that the auto power-off feature of the system is automatically
disabled when you use this function, unless the dialog is just
displaying an error. This function also prevents appStopEvent
events.

If an update to the dialog is pending (from a call to
PrgUpdateDialog, for example) this function handles that event
and causes the dialog to be updated. As part of this process, the
textCallback function you specified in your call to
PrgStartDialogis called. Your textCallback function should
set the textP buffer in the PrgCallbackData structure with the
new message to be displayed in the progress dialog. Optionally, you
can also set the bitmapId field to include an icon in the update
dialog. For more information about the textCallback function,
see the section “Application-Defined Functions.”

Implemented only if 3.0 New Feature Set is present.

PrgStartDialog, PrgStopDialog, PrgUpdateDialog,
PrgUserCancel

PrgStartDialog
Displays a progress dialog that can be updated.

ProgressPtr PrgStartDialog (Char *title,
PrgCallbackFunc textCallback, wvoid *userDataP)

->title Pointer to a title for the progress dialog. Must
be a NULL-terminated string that is no longer
than progressMaxTitle (20).

-> textCallback Pointer to a callback function that supplies the
text and icons for the current progress state. See
PrgCallbackFunc.

356 Palm OS SDK Reference

Progress Manager
Progress Manager Functions

Result

Comments

Compatibility

See Also

Purpose

Prototype

Parameters

->userDataP A pointer to data that you need to access in the
callback function. This address gets passed
directly to your function.

A pointer to a progress structure. This pointer must be passed to
other progress manager functions and must be released by calling
PrgStopDialog. NULL is returned if the system is unable to
allocate the progress structure.

The dialog created by this function can be updated by another
process via the PrgUpdateDialog function. The dialog can
contain a Cancel or OK button. The initial dialog defaults to stage 0
and calls the textCallback function to get the initial text and icon
data for the progress dialog.

This function saves the screen bits behind the progress dialog, and
these are restored when you call PrgStopDialog. Because of this,
you should minimize changes to the screen while the progress
dialog is displayed, otherwise, the restored bits may not match with
what is currently being displayed.

This version of the function is available only if 3.2 New Feature Set
is present. On earlier systems, PrgStartDialog has the prototype
shown for PrgStartDialogV31.

PrgHandleEvent, PrgStopDialog, PrgUpdateDialog,
PrgUserCancel

PrgStartDialogV31

Displays a progress dialog that can be updated.

ProgressPtr PrgStartDialogV31l (Char *title,
PrgCallbackFunc textCallback)

->title Pointer to a title for the progress dialog. Must
be a NULL-terminated string that is no longer
than progressMaxTitle (20).

Palm OS SDK Reference 357

Progress Manager
Progress Manager Functions

Result

Compatibility

See Also

Purpose

Prototype

Parameters

Result

Comments

-> textCallback Pointer to a callback function that supplies the
text and icons for the current progress state. See
PrgCallbackFunc.

A pointer to a progress structure. This pointer must be passed to
other progress manager functions and must be released by calling
PrgStopDialog. NULL is returned if the system is unable to
allocate the progress structure.

This function corresponds to version of PrgStartDialog
available on Palm OS® 3.0 and Palm OS 3.1.

PrgHandleEvent, PrgStopDialog, PrgUpdateDialog,
PrgUserCancel

PrgStopDialog

Releases memory used by the progress dialog and restores the
screen to its initial state.

void PrgStopDialog (ProgressPtr prgP,
Boolean force)

-> prgP Pointer to a progress structure created by
PrgStartDialog.
-> force t rue removes the progress dialog immediately,

false causes the system to wait until the user
confirms an error, if one is displayed.

Returns nothing.

If the progress dialog is in a state where it is displaying an error
message to the user, this function normally waits for the user to
confirm the dialog before it removes the dialog. If you specify true
for the force parameter, this causes the system to remove the
dialog immediately.

358 Palm OS SDK Reference

Progress Manager
Progress Manager Functions

Compatibility

See Also

Purpose

Prototype

Parameters

Result

Comments

Implemented only if 3.0 New Feature Set is present.

PrgHandleEvent, PrgStartDialog, PrgUpdateDialog,
PrgUserCancel

PrgUpdateDialog
Updates the status of the current progress dialog.

void PrgUpdateDialog (ProgressPtr prgP,
UIntlé err, UIntlé stage, Char *messageP,
Boolean updateNow)

-> prgP Pointer to a progress structure created by
PrgStartDialog.

->err If non-zero, causes the dialog to go into error
mo