
Palm OS® SDK
Reference

Document Number 3003-002
Print Date 3/00

Document Number 3003-002

CONTRIBUTORS

Written by Christopher Bey, Elly Freeman, Dwayne Mulder, and Jean Ostrem
Production by <dot>PS document production services
Engineering contributions by David Fedor, Roger Flores, Steve Lemke, Bob Ebert, Ken Krugler, Bruce
Thompson, Jesse Donaldson, Tim Wiegman, Gavin Peacock, Ryan Robertson, and Waddah Kudaimi

Copyright © 1996 - 2000, Palm, Inc. All rights reserved. This documentation may be printed and copied
solely for use in developing products for Palm OS software. In addition, two (2) copies of this documenta-
tion may be made for archival and backup purposes. Except for the foregoing, no part of this documenta-
tion may be reproduced or transmitted in any form or by any means or used to make any derivative work
(such as translation, transformation or adaptation) without express written consent from Palm, Inc.

Palm, Inc. reserves the right to revise this documentation and to make changes in content from time to
time without obligation on the part of Palm, Inc. to provide notification of such revision or changes.
PALM, INC. MAKES NO REPRESENTATIONS OR WARRANTIES THAT THE DOCUMENTATION IS
FREE OF ERRORS OR THAT THE DOCUMENTATION IS SUITABLE FOR YOUR USE. THE DOCUMEN-
TATION IS PROVIDED ON AN “AS IS” BASIS. PALM, INC. MAKES NO WARRANTIES, TERMS OR
CONDITIONS, EXPRESS OR IMPLIED, EITHER IN FACT OR BY OPERATION OF LAW, STATUTORY
OR OTHERWISE, INCLUDING WARRANTIES, TERMS, OR CONDITIONS OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND SATISFACTORY QUALITY.

TO THE FULL EXTENT ALLOWED BY LAW, PALM, INC. ALSO EXCLUDES FOR ITSELF AND ITS SUP-
PLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT (INCLUDING NEGLIGENCE),
FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE DAMAGES OF
ANY KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF BUSINESS, LOSS OF INFORMATION
OR DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF OR IN CONNECTION WITH THIS DOCU-
MENTATION, EVEN IF PALM, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Palm Computing, Palm OS, Graffiti, HotSync, and Palm Modem are registered trademarks, and Palm III,
Palm IIIe, Palm IIIx, Palm V, Palm Vx, Palm VII, Palm, More connected., Simply Palm, the Palm Comput-
ing platform logo, Palm III logo, Palm IIIx logo, Palm V logo, and HotSync logo are trademarks of Palm,
Inc. or its subsidiaries. All other product and brand names may be trademarks or registered trademarks of
their respective owners.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISK, THE OTHER SOFTWARE AND
DOCUMENTATION ON THE COMPACT DISK ARE SUBJECT TO THE LICENSE AGREEMENT AC-
COMPANYING THE COMPACT DISK.

Palm, Inc.
5400 Bayfront Plaza
Santa Clara, CA 95052
USA

www.palm.com/devzone

Palm OS SDK Reference
Document Number 3003-002
March 16, 2000

Palm OS SDK Reference 3

Table of Contents
 About This Document 49

Palm OS SDK Documentation 49
What This Volume Contains 49
Conventions Used in This Guide 50

Part I: User Interface

1 Application Launch Codes 53
Launch Codes . 55

sysAppLaunchCmdAddRecord 55
sysAppLaunchCmdAlarmTriggered 58
sysAppLaunchCmdCountryChange 59
sysAppLaunchCmdDisplayAlarm 59
sysAppLaunchCmdExgAskUser 60
sysAppLaunchCmdExgReceiveData 62
sysAppLaunchCmdFind 63
sysAppLaunchCmdGoto 65
sysAppLaunchCmdGoToURL 66
sysAppLaunchCmdInitDatabase 66
sysAppLaunchCmdLookup 67
sysAppLaunchCmdNotify 68
sysAppLaunchCmdOpenDB. 68
sysAppLaunchCmdPanelCalledFromApp 69
sysAppLaunchCmdReturnFromPanel. 69
sysAppLaunchCmdSaveData 70
sysAppLaunchCmdSyncNotify 70
sysAppLaunchCmdSystemLock 71
sysAppLaunchCmdSystemReset 71
sysAppLaunchCmdTimeChange 72
sysAppLaunchCmdURLParams 72

Launch Flags. 73

4 Palm OS SDK Reference

2 Palm OS Resources 75
System Resources . 75

The ‘code’ #1 Resource 75
The ‘code’ #0 and ‘data’ #0 Resources 76
The ‘pref’ #0 Resource 76

Resource Types . 77
Catalog Resources 77
Project Resources. 78

Alert Resource . 79
Button Resource . 81
Check Box Resource. 83
Field Resource . 84
Form Resource . 86
Form Bitmap Resource 89
Gadget Resource . 90
Graffiti Shift Indicator Resource 91
Label Resource . 91
List Resource. 92
Menus and Menu Bars 94
Popup Trigger Resource 96
Push Button Resource 97
Repeating Button Resource. 99
Scroll Bar Resource . 100
Selector Trigger Resource 101
String Resource. . 103
Table Resource . 103

3 Palm OS Events 105
Event Data Structures 106

eventsEnum . . 106
EventType. . 107
EventPtr . 109

Event Reference . 109
appStopEvent . 109
ctlEnterEvent . 109

Palm OS SDK Reference 5

ctlExitEvent . 110
ctlRepeatEvent . . 110
ctlSelectEvent . 111
daySelectEvent. . 112
fldChangedEvent 113
fldEnterEvent . 113
fldHeightChangedEvent 113
frmCloseEvent . . 114
frmGadgetEnterEvent 115
frmGadgetMiscEvent 115
frmGotoEvent . 116
frmLoadEvent . 117
frmOpenEvent . . 117
frmSaveEvent . 118
frmTitleEnterEvent 118
frmTitleSelectEvent 118
frmUpdateEvent 119
inetSockReadyEvent 120
inetSockStatusChangeEvent 120
keyDownEvent . 121
lstEnterEvent . 122
lstExitEvent . 123
lstSelectEvent . 123
menuCloseEvent 124
menuCmdBarOpenEvent 124
menuEvent . 124
menuOpenEvent 125
nilEvent. . 126
penDownEvent . 126
penMoveEvent. . 127
penUpEvent . . 127
popSelectEvent . 128
sclEnterEvent . 129
sclExitEvent . . 129
sclRepeatEvent. . 130
tblEnterEvent . 131

6 Palm OS SDK Reference

tblExitEvent . . 131
tblSelectEvent . 132
winEnterEvent . . 133
winExitEvent . 133

4 Categories 135
Category Data Structures 135

AppInfoType . 135
Category Constants 136
Category Functions 137

CategoryCreateList 137
CategoryCreateListV10 139
CategoryEdit . 139
CategoryEditV20 140
CategoryEditV10 141
CategoryFind . 142
CategoryFreeList 142
CategoryFreeListV10 143
CategoryGetName 144
CategoryGetNext. 144
CategoryInitialize 145
CategorySelect . . 146
CategorySelectV10 147
CategorySetName 148
CategorySetTriggerLabel 149
CategoryTruncateName 149

5 Clipboard 151
Clipboard Data Structures 151

ClipboardFormatType 151
Clipboard Functions 152

ClipboardAddItem 152
ClipboardAppendItem 153
ClipboardGetItem 154

Palm OS SDK Reference 7

6 Controls 155
Control Data Structures 155

ButtonFrameType 155
ControlAttrType . 156
ControlPtr. . 157
ControlStyleType. 157
ControlType . . 159
GraphicControlType 160
SliderControlType 162

Control Resources . 164
Control Functions. . 165

CtlDrawControl . 165
CtlEnabled . 165
CtlEraseControl . 166
CtlGetLabel . 166
CtlGetSliderValues 167
CtlGetValue . 168
CtlHandleEvent . 168
CtlHideControl . 169
CtlHitControl . 170
CtlNewControl . 170
CtlNewGraphicControl 172
CtlNewSliderControl 174
CtlSetEnabled . 175
CtlSetGraphics . . 176
CtlSetLabel . 177
CtlSetSliderValues 178
CtlSetUsable . . 179
CtlSetValue . 179
CtlShowControl . 180
CtlValidatePointer 181

7 Date and Time Selector 183
Date and Time Selections Data Structures 183

SelectDayType . . 183
DaySelectorType 183

8 Palm OS SDK Reference

HMSTime . . 184
Date and Time Selection Functions 184

DayHandleEvent 184
SelectDay . 185
SelectDayV10 . 186
SelectOneTime . . 186
SelectTime . 187
SelectTimeV33 . . 188

8 Fields 191
Field Data Structures 191

FieldAttrType . 191
FieldPtr . . 193
FieldType . 194
LineInfoPtr . 197
LineInfoType . 198

Field Resources. . 198
Field Functions . . 199

FldCalcFieldHeight 199
FldCompactText . 199
FldCopy . 200
FldCut . 201
FldDelete . 201
FldDirty . 202
FldDrawField . 203
FldEraseField . 203
FldFreeMemory . 204
FldGetAttributes 205
FldGetBounds . 205
FldGetFont . 206
FldGetInsPtPosition 206
FldGetMaxChars 207
FldGetNumberOfBlankLines 207
FldGetScrollPosition 208
FldGetScrollValues 208
FldGetSelection . 209

Palm OS SDK Reference 9

FldGetTextAllocatedSize 210
FldGetTextHandle 210
FldGetTextHeight 212
FldGetTextLength 212
FldGetTextPtr . 212
FldGetVisibleLines 213
FldGrabFocus . 213
FldHandleEvent . 214
FldInsert . 215
FldMakeFullyVisible 216
FldNewField . 217
FldPaste . 219
FldRecalculateField. 219
FldReleaseFocus . 220
FldScrollable. . 221
FldScrollField . 221
FldSendChangeNotification 222
FldSendHeightChangeNotification 223
FldSetAttributes . 223
FldSetBounds . 224
FldSetDirty . 225
FldSetFont . 225
FldSetInsertionPoint 226
FldSetInsPtPosition 226
FldSetMaxChars . 227
FldSetScrollPosition 228
FldSetSelection. . 228
FldSetText . . 229
FldSetTextAllocatedSize 231
FldSetTextHandle 231
FldSetTextPtr . 233
FldSetUsable . 234
FldUndo . 234
FldWordWrap . 235

10 Palm OS SDK Reference

9 Find 237
Find Functions . . 237

FindDrawHeader 237
FindGetLineBounds 237
FindSaveMatch . 238
FindStrInStr . . 239

10 Forms 241
Form Data Structures 241

FormAttrType . 241
FormBitmapType. 242
FormFrameType . 243
FormGadgetAttrType. 243
FormGadgetType. 244
FormLabelType . 245
FormLineType . . 246
FormObjAttrType 246
FormObjectKind . 247
FormObjectType . 248
FormObjListType. 249
FormPopupType 250
FormPtr. . 250
FormRectangleType 251
FormTitleType . . 251
FormType . . 251
FrmGraffitiStateType 253

Form Constants . 253
Form Resources . 254
Form Functions. . 255

FrmAlert . 255
FrmCloseAllForms 255
FrmCopyLabel . . 256
FrmCopyTitle . 257
FrmCustomAlert 257
FrmCustomResponseAlert 258
FrmDeleteForm . 259

Palm OS SDK Reference 11

FrmDispatchEvent 260
FrmDoDialog . 260
FrmDrawForm. . 261
FrmEraseForm . . 262
FrmGetActiveForm 262
FrmGetActiveFormID. 262
FrmGetControlGroupSelection 263
FrmGetControlValue 263
FrmGetFirstForm. 264
FrmGetFocus . 265
FrmGetFormBounds 265
FrmGetFormId. . 266
FrmGetFormPtr . 266
FrmGetGadgetData. 266
FrmGetLabel . 267
FrmGetNumberOfObjects 268
FrmGetObjectBounds 268
FrmGetObjectId . 269
FrmGetObjectIndex. 269
FrmGetObjectPosition 270
FrmGetObjectPtr 270
FrmGetObjectType 271
FrmGetTitle . 271
FrmGetWindowHandle 272
FrmGotoForm . 272
FrmHandleEvent 273
FrmHelp . 276
FrmHideObject . 277
FrmInitForm. . 277
FrmNewBitmap . 278
FrmNewForm . 279
FrmNewGadget . 280
FrmNewGsi . . 281
FrmNewLabel . 282
FrmPointInTitle . 283

12 Palm OS SDK Reference

FrmPopupForm . 284
FrmRemoveObject 284
FrmRestoreActiveState 285
FrmReturnToForm 286
FrmSaveActiveState 286
FrmSaveAllForms 287
FrmSetActiveForm 287
FrmSetCategoryLabel 288
FrmSetControlGroupSelection 288
FrmSetControlValue 289
FrmSetEventHandler 290
FrmSetFocus. . 290
FrmSetGadgetData 291
FrmSetGadgetHandler 292
FrmSetMenu. . 292
FrmSetObjectBounds 293
FrmSetObjectPosition 293
FrmSetTitle . 294
FrmShowObject . 295
FrmUpdateForm 295
FrmUpdateScrollers 296
FrmValidatePtr. . 297
FrmVisible . 297

Application-Defined Functions 298
FormCheckResponseFunc 298
FormEventHandler 299
FormGadgetHandler 299

11 Graffiti Shift 303
GraffitiShift Functions 303

GsiEnable . . 303
GsiEnabled . 303
GsiInitialize . 304
GsiSetLocation . . 304
GsiSetShiftState . 305

Palm OS SDK Reference 13

12 Insertion Point 307
Insertion Point Functions 307

InsPtEnable . 307
InsPtEnabled . 308
InsPtGetHeight . 308
InsPtGetLocation. 308
InsPtSetHeight . . 309
InsPtSetLocation 309

13 Lists 311
List Data Structures 311

ListAttrType . . 311
ListType . 312

List Resources . 313
List Functions . 314

LstDrawList . . 314
LstEraseList . 314
LstGetNumberOfItems 315
LstGetSelection . 315
LstGetSelectionText. 315
LstGetVisibleItems 316
LstHandleEvent . 316
LstMakeItemVisible 317
LstNewList . 318
LstPopupList . 319
LstScrollList . . 319
LstSetDrawFunction 320
LstSetHeight. . 320
LstSetListChoices 321
LstSetPosition . 321
LstSetSelection . . 322
LstSetTopItem . 322

Application-Defined Function 323

14 Palm OS SDK Reference

14 Menus 325
Menu Data Structures 325

MenuBarAttrType 325
MenuCmdBarButtonType 326
MenuCmdBarResultType 327
MenuCmdBarType 328
MenuBarPtr . 330
MenuBarType . 330
MenuItemType. . 332
MenuPullDownPtr 333
MenuPullDownType 333

Menu Constants . 334
Menu Resources . 334
Menu Functions . 335

MenuAddItem . . 335
MenuCmdBarAddButton 336
MenuCmdBarDisplay. 339
MenuCmdBarGetButtonData 340
MenuDispose . 341
MenuDrawMenu. 342
MenuEraseStatus. 343
MenuGetActiveMenu 344
MenuHandleEvent 346
MenuHideItem . 348
MenuInit . 348
MenuSetActiveMenu 349
MenuSetActiveMenuRscID 349
MenuShowItem . 350

15 Private Records 351
Private Record Data Structures 351

privateRecordViewEnum 351
Private Record Functions 352

SecSelectViewStatus 352
SecVerifyPW . 353

Palm OS SDK Reference 15

16 Progress Manager 355
Progress Manager Functions 355

PrgHandleEvent . 355
PrgStartDialog . . 356
PrgStartDialogV31 357
PrgStopDialog . . 358
PrgUpdateDialog. 359
PrgUserCancel . . 360

Application-Defined Functions 361
PrgCallbackFunc 361

17 Scroll Bars 365
Scroll Bar Data Structures 365

ScrollBarAttrType 365
ScrollBarPtr . 366
ScrollBarType . 366

Scroll Bar Resources. 368
Scroll Bar Functions 368

SclDrawScrollBar. 368
SclGetScrollBar . 369
SclHandleEvent . 370
SclSetScrollBar . . 371

18 System Dialogs 373
System Dialog Functions 373

SysAppLauncherDialog 373
SysFatalAlert . 374
SysGraffitiReferenceDialog 374

19 Tables 375
Table Data Structures 375

TableAttrType . 375
TableColumnAttrType 376
TableItemPtr . . 378
TableItemType . . 378
TablePtr . . 382

16 Palm OS SDK Reference

TableRowAttrType 383
TableType . . 384

Table Constants . 387
Table Resource . 387
Table Functions. . 388

TblDrawTable . 388
TblEditing. . 389
TblEraseTable . 390
TblFindRowData 390
TblFindRowID . . 391
TblGetBounds . 391
TblGetColumnSpacing 392
TblGetColumnWidth 392
TblGetCurrentField. 393
TblGetItemBounds 393
TblGetItemFont . 394
TblGetItemInt . 394
TblGetItemPtr . 395
TblGetLastUsableRow 396
TblGetNumberOfRows 396
TblGetRowData . 397
TblGetRowHeight 397
TblGetRowID . 398
TblGetSelection . 398
TblGrabFocus . 399
TblHandleEvent . 400
TblHasScrollBar . 401
TblInsertRow . 402
TblMarkRowInvalid 402
TblMarkTableInvalid 403
TblRedrawTable . 403
TblReleaseFocus . 404
TblRemoveRow . 405
TblRowInvalid. . 406
TblRowMasked . 406

Palm OS SDK Reference 17

TblRowSelectable 407
TblRowUsable . . 407
TblSelectItem . 408
TblSetBounds . 409
TblSetColumnEditIndicator 409
TblSetColumnMasked 410
TblSetColumnSpacing 411
TblSetColumnUsable 411
TblSetColumnWidth 412
TblSetCustomDrawProcedure 412
TblSetItemFont . 413
TblSetItemInt . 414
TblSetItemPtr . 415
TblSetItemStyle . 415
TblSetLoadDataProcedure 417
TblSetRowData . 417
TblSetRowHeight 418
TblSetRowID . 418
TblSetRowMasked 419
TblSetRowSelectable 420
TblSetRowStaticHeight 421
TblSetRowUsable 421
TblSetSaveDataProcedure 422
TblUnhighlightSelection 422

Application-Defined Functions 423
TableDrawItemFuncType 423
TableLoadDataFuncType 424
TableSaveDataFuncType 425

20 UI Color List 427
UI Color Data Types 427

UIColorTableEntries 427
UI Color Functions . 431

UIColorGetTableEntryIndex 431
UIColorGetTableEntryRGB 432
UIColorSetTableEntry 433

18 Palm OS SDK Reference

21 UI Controls 435
UI Control Functions 435

UIBrightnessAdjust. 435
UIContrastAdjust 436
UIPickColor . . 436

22 Miscellaneous User Interface Functions 439
Miscellaneous User Interface Functions 439

PhoneNumberLookup 439
ResLoadConstant 440
ResLoadForm . 441
ResLoadMenu . . 441

Part II: System Management

23 Alarm Manager 445
Alarm Manager Functions 445

AlmGetAlarm . 445
AlmGetProcAlarm 446
AlmSetAlarm . 446
AlmSetProcAlarm 447

Application-Defined Functions 449
AlmAlarmProcPtr 449

24 Bitmaps 451
Bitmap Data Structures 451

BitmapCompressionType 451
BitmapFlagsType. 452
BitmapPtr . . 453
BitmapType . 454
ColorTableType . 456
RGBColorType. . 457

Bitmap Constants . . 458
Bitmap Resources. . 459
Bitmap Functions . . 460

BmpBitsSize . . 460
BmpColortableSize 460

Palm OS SDK Reference 19

BmpCompress . . 461
BmpCreate . 462
BmpDelete . 464
BmpGetBits . 464
BmpGetColortable 465
BmpSize . 465
ColorTableEntries 466

25 Character Attributes 467
Character Attribute Functions 467

ChrHorizEllipsis 467
ChrIsHardKey . . 468
ChrNumericSpace 468
GetCharAttr . . 469
GetCharCaselessValue 470
GetCharSortValue 471

26 Data and Resource Manager 473
Data Manager Data Structures 473

DmOpenRef . . 473
DmResID . 473
DmResType . . 474
SortRecordInfoType 474

Data Manager Constants. 474
Category Constants. 474
Record Attribute Constants 475
Database Attribute Constants 475
Error Codes . 477
Open Mode Constants 480

Data Manager Functions. 481
DmArchiveRecord 481
DmAttachRecord. 482
DmAttachResource 483
DmCloseDatabase 484
DmCreateDatabase 485
DmCreateDatabaseFromImage. 486
DmDatabaseInfo 487

20 Palm OS SDK Reference

DmDatabaseProtect 489
DmDatabaseSize 490
DmDeleteCategory 491
DmDeleteDatabase 492
DmDeleteRecord 493
DmDetachRecord 494
DmDetachResource. 495
DmFindDatabase. 496
DmFindRecordByID 496
DmFindResource. 497
DmFindResourceType 498
DmFindSortPosition 499
DmFindSortPositionV10 500
DmGetAppInfoID 501
DmGetDatabase . 501
DmGetDatabaseLockState 502
DmGetLastErr . . 503
DmGetNextDatabaseByTypeCreator 504
DmGetRecord . 507
DmGetResource . 507
DmGetResourceIndex. 508
DmGet1Resource. 509
DmInsertionSort . 510
DmMoveCategory 511
DmMoveRecord . 512
DmNewHandle . 513
DmNewRecord . 513
DmNewResource 514
DmNextOpenDatabase 515
DmNextOpenResDatabase 515
DmNumDatabases 516
DmNumRecords 517
DmNumRecordsInCategory 517
DmNumResources 518
DmOpenDatabase 519

Palm OS SDK Reference 21

DmOpenDatabaseByTypeCreator 521
DmOpenDatabaseInfo 522
DmOpenDBNoOverlay 523
DmPositionInCategory 523
DmQueryNextInCategory 524
DmQueryRecord 526
DmQuickSort . 526
DmRecordInfo . . 527
DmReleaseRecord 528
DmReleaseResource 529
DmRemoveRecord 529
DmRemoveResource 530
DmRemoveSecretRecords 531
DmResizeRecord 531
DmResizeResource 532
DmResourceInfo 532
DmSearchRecord 533
DmSearchResource 534
DmSeekRecordInCategory 534
DmSet . 536
DmSetDatabaseInfo 537
DmSetRecordInfo 538
DmSetResourceInfo 539
DmStrCopy . 540
DmWrite . 540
DmWriteCheck . 541

Application-Defined Functions 541
DmComparF . 541

27 Time Manager 543
Time Manager Data Structures 543

TimeFormatType 543
DaylightSavingsTypes 543
DateFormatType . 544
DateTimeType . 545
TimeType . 545

22 Palm OS SDK Reference

DateType . 545
Time Manager Constants 546
Time Manager Functions 546

DateAdjust . 546
DateDaysToDate 547
DateSecondsToDate 547
DateTemplateToAscii 548
DateToAscii . 550
DateToDays . 551
DateToDOWDMFormat 551
DayOfMonth . 552
DayOfWeek . 553
DaysInMonth . 553
TimAdjust. . 553
TimDateTimeToSeconds 554
TimGetSeconds . 554
TimGetTicks . . 555
TimSecondsToDateTime 555
TimSetSeconds . . 556
TimeToAscii . . 557

28 Error Manager 559
ERROR_CHECK_LEVEL Define 559
Error Manager Functions 560

ErrAlert . . 560
ErrDisplay . 561
ErrDisplayFileLineMsg 561
ErrFatalDisplayIf 562
ErrNonFatalDisplayIf 562
ErrThrow . 563

29 Feature Manager 565
Feature Manager Functions 565

FtrGet . 565
FtrGetByIndex . . 566
FtrPtrFree . . 566

Palm OS SDK Reference 23

FtrPtrNew. . 567
FtrPtrResize . . 568
FtrSet . . 569
FtrUnregister . 570

30 File Streaming 571
File Streaming Constants 571

Primary Open Mode Constants 571
Secondary Open Mode Constants 572

File Streaming Functions. 573
FileClearerr . 573
FileClose . 573
FileControl . 574
FileDelete . . 578
FileDmRead . . 578
FileEOF . . 579
FileError . 580
FileFlush . 580
FileGetLastError . 581
FileOpen . 582
FileRead . 584
FileRewind . 585
FileSeek . . 585
FileTell . 586
FileTruncate . . 587
FileWrite . 587

File Streaming Error Codes. 588

31 Float Manager 591
Float Manager Functions 591

FplAdd . . 591
FplAToF. . 592
FplBase10Info . 592
FplDiv . 593
FplFloatToLong . 593
FplFloatToULong. 594

24 Palm OS SDK Reference

FplFree . 594
FplFToA. . 594
FplInit . 595
FplLongToFloat . 595
FplMul . 596
FplSub . 596

32 Fonts 597
Font Functions . 597

FntAverageCharWidth 597
FntBaseLine . . 597
FntCharHeight. . 598
FntCharsInWidth. 598
FntCharsWidth . 599
FntCharWidth . 599
FntDefineFont . 599
FntDescenderHeight 601
FntGetFont . 601
FntGetFontPtr . 601
FntGetScrollValues 602
FntLineHeight . . 602
FntLineWidth . 602
FntSetFont . 603
FntWidthToOffset 603
FntWordWrap . 604
FntWordWrapReverseNLines 605
FontSelect . . 605

33 Graffiti Manager 607
Graffiti Manager Functions 607

GrfAddMacro . 607
GrfAddPoint . 608
GrfCleanState . 608
GrfDeleteMacro . 608
GrfFilterPoints . . 609
GrfFindBranch . . 609

Palm OS SDK Reference 25

GrfFlushPoints. . 609
GrfGetAndExpandMacro 610
GrfGetGlyphMapping 610
GrfGetMacro . 611
GrfGetMacroName 611
GrfGetNumPoints 612
GrfGetPoint . 612
GrfGetState . 612
GrfInitState . 613
GrfMatch . 613
GrfMatchGlyph . 614
GrfProcessStroke 614
GrfSetState . 615

34 Key Manager 617
Key Manager Functions 617

KeyCurrentState . 617
KeyRates . 618
KeySetMask . . 618

35 Memory Manager 619
Memory Manager Functions 619

MemCardInfo . 619
MemCmp . . 620
MemDebugMode 621
MemHandleCardNo 621
MemHandleDataStorage 621
MemHandleFree 622
MemHandleHeapID 622
MemHandleLock. 623
MemHandleNew. 623
MemHandleResize 624
MemHandleSetOwner 625
MemHandleSize . 625
MemHandleToLocalID 626
MemHandleUnlock 626

26 Palm OS SDK Reference

MemHeapCheck 627
MemHeapCompact. 627
MemHeapDynamic. 628
MemHeapFlags . 628
MemHeapFreeBytes 629
MemHeapID . 629
MemHeapScramble. 630
MemHeapSize . . 631
MemLocalIDKind 631
MemLocalIDToGlobal 631
MemLocalIDToLockedPtr 632
MemLocalIDToPtr 632
MemMove . 633
MemNumCards . 633
MemNumHeaps 634
MemNumRAMHeaps 634
MemPtrCardNo . 635
MemPtrDataStorage 635
MemPtrFree . . 636
MemPtrHeapID . 636
MemPtrNew. . 636
MemPtrRecoverHandle 637
MemPtrResize . . 637
MemPtrSetOwner 638
MemPtrSize . 638
MemPtrToLocalID 639
MemPtrUnlock . 639
MemSet . . 639
MemSetDebugMode 640
MemStoreInfo . 641

36 Notification Manager 643
Notification Data Structures 643

SleepEventParamType 643
SysNotifyDisplayChangeDetailsType 644
SysNotifyParamType 644

Palm OS SDK Reference 27

Notification Constants. 646
Notification Manager Event Constants 646
Miscellaneous Constants 649

Notification Functions. 649
SysNotifyBroadcast. 649
SysNotifyBroadcastDeferred. 651
SysNotifyRegister 652
SysNotifyUnregister 654

Application-Defined Functions 655
SysNotifyProcPtr. 655

37 Overlay Manager 657
Overlay Manager Data Structures 657

OmLocaleType. . 657
OmOverlayRscType 658
OmOverlaySpecType 659

Overlay Manager Constants 660
Overlay Manager Functions 661

OmGetCurrentLocale 661
OmGetIndexedLocale. 662
OmGetRoutineAddress 663
OmGetSystemLocale 663
OmLocaleToOverlayDBName 664
OmOverlayDBNameToLocale 665
OmSetSystemLocale 666

38 Password 669
Password Functions. 669

PwdExists . . 669
PwdRemove . . 669
PwdSet . 670
PwdVerify. . 670

39 Pen Manager 671
Pen Manager Functions 671

PenCalibrate. . 671
PenResetCalibration 672

28 Palm OS SDK Reference

40 Preferences 673
Preferences Functions 673

PrefGetAppPreferences 673
PrefGetAppPreferencesV10 674
PrefGetPreference 675
PrefGetPreferences 675
PrefOpenPreferenceDBV10 676
PrefSetAppPreferences 676
PrefSetAppPreferencesV10 677
PrefSetPreference. 678
PrefSetPreferences 678

41 Rectangles 679
Rectangle Functions. 679

RctCopyRectangle 679
RctGetIntersection 679
RctInsetRectangle 680
RctOffsetRectangle 681
RctPtInRectangle 681
RctSetRectangle . 682

42 Sound Manager 683
Sound Manager Data Structures 683

SndCallbackInfoType 684
SndCmdIDType . 685
SndCommandType 686
SndMidiListItemType 687
SndMidiRecHdrType 687
SndMidiRecType 688
SndSmfCallbacksType 688
SndSmfChanRangeType. 689
SndSmfOptionsType 689

Sound Manager Functions 691
SndCreateMidiList 691
SndDoCmd . 692
SndGetDefaultVolume 693

Palm OS SDK Reference 29

SndPlaySmf . 694
SndPlaySmfResource 696
SndPlaySystemSound. 697

Application-Defined Functions 697
SndComplFuncType 698
SndBlockingFuncType 698

43 Standard IO 701
Standard IO Functions 701

fgetc . 701
fgets . 702
fprintf . 702
fputc . 703
fputs . 703
getchar . 704
gets. . 704
printf . . 705
putc . 705
putchar . . 706
puts . 706
SioAddCommand 706
sprintf . 707
system . 707
vfprintf . 708
vsprintf . . 709

Standard IO Provider Functions 709
SioClearScreen . . 710
SioExecCommand 710
SioFree . 711
SioHandleEvent . 711
SioInit . 711

Application-Defined Function 712
SioMain. . 712

30 Palm OS SDK Reference

44 String Manager 713
String Manager Functions 713

StrAToI . 713
StrCaselessCompare 714
StrCat. . 714
StrChr . 715
StrCompare . 715
StrCopy . . 716
StrDelocalizeNumber 717
StrIToA . 717
StrIToH . . 718
StrLen . 718
StrLocalizeNumber 718
StrNCaselessCompare 719
StrNCat . . 720
StrNCompare . 721
StrNCopy . . 722
StrPrintF . 722
StrStr . . 723
StrToLower . 724
StrVPrintF. . 724

45 System Event Manager 729
System Event Manager Data Structures 729
System Event Manager Functions 729

EvtAddEventToQueue 729
EvtAddUniqueEventToQueue 730
EvtCopyEvent . . 730
EvtDequeuePenPoint 731
EvtDequeuePenStrokeInfo. 731
EvtEnableGraffiti. 732
EvtEnqueueKey . 732
EvtEventAvail . 733
EvtFlushKeyQueue 733
EvtFlushNextPenStroke 734

Palm OS SDK Reference 31

EvtFlushPenQueue 734
EvtGetEvent . . 735
EvtGetPen. . 735
EvtGetPenBtnList 736
EvtGetSilkscreenAreaList 736
EvtKeydownIsVirtual 737
EvtKeyQueueEmpty 737
EvtKeyQueueSize 738
EvtPenQueueSize 738
EvtProcessSoftKeyStroke 738
EvtResetAutoOffTimer 739
EvtSetAutoOffTimer 739
EvtSetNullEventTick 740
EvtSysEventAvail 741
EvtWakeup . 741

46 System Manager 743
System Functions . . 743

SysAppLaunch . 743
SysBatteryInfo . . 744
SysBatteryInfoV20 746
SysBinarySearch . 747
SysBroadcastActionCode 749
SysCopyStringResource 749
SysCreateDataBaseList 749
SysCreatePanelList 750
SysCurAppDatabase 751
SysErrString . . 751
SysFormPointerArrayToStrings 752
SysGetOSVersionString 752
SysGetROMToken 753
SysGetStackInfo . 754
SysGetTrapAddress. 754
SysGraffitiReferenceDialog 755
SysGremlins . . 755

32 Palm OS SDK Reference

SysHandleEvent . 756
SysInsertionSort . 757
SysKeyboardDialog 758
SysKeyboardDialogV10 759
SysLibFind . 759
SysLibLoad . 760
SysLibRemove . . 761
SysQSort . 761
SysRandom . 762
SysReset . 762
SysSetAutoOffTime. 763
SysSetTrapAddress 763
SysStringByIndex 764
SysTaskDelay . 765
SysTicksPerSecond 765
SysUIAppSwitch 765

47 Text Manager 767
Text Manager Data Structures 767

CharEncodingType 767
Text Manager Functions 769

TxtByteAttr . 769
TxtCaselessCompare 770
TxtCharAttr . . 771
TxtCharBounds . 772
TxtCharEncoding 773
TxtCharIsAlNum. 774
TxtCharIsAlpha . 774
TxtCharIsCntrl. . 775
TxtCharIsDelim . 775
TxtCharIsDigit . . 775
TxtCharIsGraph . 776
TxtCharIsHardKey 776
TxtCharIsHex . 777
TxtCharIsLower . 777

Palm OS SDK Reference 33

TxtCharIsPrint . . 778
TxtCharIsPunct . 778
TxtCharIsSpace . 779
TxtCharIsUpper . 779
TxtCharIsValid. . 780
TxtCharSize . 780
TxtCharWidth . 781
TxtCharXAttr . 781
TxtCompare . . 782
TxtEncodingName 783
TxtFindString . 784
TxtGetChar . 785
TxtGetNextChar . 786
TxtGetPreviousChar 787
TxtGetTruncationOffset 788
TxtMaxEncoding 789
TxtNextCharSize 790
TxtParamString . 790
TxtPreviousCharSize 791
TxtReplaceStr . 792
TxtSetNextChar . 793
TxtStrEncoding . 794
TxtTransliterate . 795
TxtWordBounds . 797

48 Windows 799
Window Data Structures 799

CustomPatternType 799
DrawStateType . 799
FrameBitsType . . 801
FrameType . 802
IndexedColorType 803
PatternType . 803
UnderlineModeType 804
WindowFlagsType 804
WindowType . 806

34 Palm OS SDK Reference

WinDrawOperation 808
WinHandle . 809
WinLineType . 809
WinPtr . 810

Window Functions . 810
WinClipRectangle 810
WinCopyRectangle 811
WinCreateBitmapWindow 812
WinCreateOffscreenWindow. 813
WinCreateWindow 815
WinDeleteWindow 816
WinDisplayToWindowPt 817
WinDrawBitmap 817
WinDrawChar . . 818
WinDrawChars . 819
WinDrawGrayLine 820
WinDrawGrayRectangleFrame 820
WinDrawInvertedChars 821
WinDrawLine . 822
WinDrawPixel . . 822
WinDrawRectangle 823
WinDrawRectangleFrame 824
WinDrawTruncChars 824
WinEraseChars . 825
WinEraseLine . 826
WinErasePixel . . 827
WinEraseRectangle 827
WinEraseRectangleFrame 828
WinEraseWindow 828
WinFillLine . 829
WinFillRectangle 829
WinGetActiveWindow 830
WinGetBitmap . . 830
WinGetClip . 831
WinGetDisplayExtent 831
WinGetDisplayWindow 831

Palm OS SDK Reference 35

WinGetDrawWindow. 832
WinGetFirstWindow 832
WinGetFramesRectangle 833
WinGetPattern . . 833
WinGetPatternType 834
WinGetPixel . . 834
WinGetWindowBounds 835
WinGetWindowExtent 835
WinGetWindowFrameRect 836
WinIndexToRGB 836
WinInvertChars . 837
WinInvertLine . . 837
WinInvertPixel. . 838
WinInvertRectangle 838
WinInvertRectangleFrame 839
WinModal. . 840
WinPaintBitmap . 840
WinPaintChar . 841
WinPaintChars. . 842
WinPaintLine . 843
WinPaintLines . . 844
WinPaintPixel . 844
WinPaintPixels. . 845
WinPaintRectangle 846
WinPaintRectangleFrame 846
WinPalette . 847
WinPopDrawState 849
WinPushDrawState. 850
WinResetClip . 850
WinRestoreBits. . 851
WinRGBToIndex 851
WinSaveBits . . 852
WinScreenLock . 853
WinScreenMode . 854
WinScreenUnlock 857
WinScrollRectangle 857
WinSetActiveWindow 858
WinSetBackColor 859

36 Palm OS SDK Reference

WinSetClip . 859
WinSetDrawMode 860
WinSetDrawWindow 860
WinSetForeColor 861
WinSetPattern . 861
WinSetPatternType 862
WinSetTextColor 863
WinSetUnderlineMode 864
WinSetWindowBounds 864
WinValidateHandle. 865
WinWindowToDisplayPt 865

49 Miscellaneous System Functions 867
Crc16CalcBlock . 867
IntlGetRoutineAddress 868
LocGetNumberSeparators 868

Part III: Communications

50 Connection Manager 873
Connection Manager Functions. 873

CncAddProfile . . 873
CncDeleteProfile 875
CncGetProfileInfo 876
CncGetProfileList 877

51 Exchange Manager 879
Exchange Manager Data Structures 879

ExgAskResultType 879
ExgGoToType . 880
ExgSocketType. . 880

Exchange Manager Functions 883
ExgAccept. . 883
ExgDBRead . 884
ExgDBWrite . . 885
ExgDisconnect . . 886

Palm OS SDK Reference 37

ExgDoDialog . 888
ExgPut . 890
ExgReceive . 891
ExgRegisterData . 892
ExgSend . 894

Application-Defined Functions 895
DeleteProc . 895
ReadProc . 896
WriteProc . 896

52 IR Library 899
IR Library Data Structures 899

IrConnect . 899
IrPacket . . 901
IrIASObject . 902
IrIasQuery . 903
IrCallbackParms . 905

IR Stack Callback Events. 906
LEVENT_DATA_IND. 906
LEVENT_DISCOVERY_CNF 906
LEVENT_LAP_CON_CNF 906
LEVENT_LAP_CON_IND. 907
LEVENT_LAP_DISCON_IND 907
LEVENT_LM_CON_CNF 907
LEVENT_LM_CON_IND 907
LEVENT_LM_DISCON_IND 907
LEVENT_PACKET_HANDLED 907
LEVENT_STATUS_IND 907
LEVENT_TEST_CNF 908
LEVENT_TEST_IND 908

IR Library Functions 909
IrAdvanceCredit 909
IrBind . 909
IrClose . 910
IrConnectIrLap . 911

38 Palm OS SDK Reference

IrConnectReq . 911
IrConnectRsp . 913
IrDataReq . . 914
IrDisconnectIrLap 915
IrDiscoverReq . 916
IrIsIrLapConnected. 917
IrIsMediaBusy . . 917
IrIsNoProgress . . 917
IrIsRemoteBusy . 918
IrLocalBusy . 918
IrMaxRxSize . . 919
IrMaxTxSize . . 919
IrOpen . 920
IrSetConTypeLMP 920
IrSetConTypeTTP 921
IrSetDeviceInfo . 921
IrTestReq . 922
IrUnbind . 923

IAS Functions . 923
IrIAS_Add . 924
IrIAS_GetInteger 925
IrIAS_GetIntLsap 925
IrIAS_GetObjectID 926
IrIAS_GetOctetString 926
IrIAS_GetOctetStringLen 926
IrIAS_GetType . . 927
IrIAS_GetUserString 927
IrIAS_GetUserStringCharSet. 928
IrIAS_GetUserStringLen 928
IrIAS_Next . 928
IrIAS_Query. . 929
IrIAS_SetDeviceName 930
IrIAS_StartResult. 931

Application-Defined Functions 931
IrIasQueryCallBack. 931

Palm OS SDK Reference 39

53 Modem Manager 933
Modem Manager Functions 933

MdmDial . 933
MdmHangUp . 934

54 Net Library 935
Net Library Data Structures 935

NetHostInfoBufType 935
NetHostInfoType. 936
NetServInfoBufType 937
NetServInfoType 937
NetSocketAddrEnum 938
NetSocketAddrINType 938
NetSocketAddrRawType 939
NetSocketAddrType 939
NetSocketRef . 940
NetSocketTypeEnum 940

Net Library Constants 941
I/O Flags . 941
Tracing Bits . 941

Net Library Functions 942
NetHToNL . 942
NetHToNS . 942
NetLibAddrAToIN 943
NetLibAddrINToA 943
NetLibClose . . 944
NetLibConnectionRefresh 945
NetLibDmReceive 946
NetLibFinishCloseWait 948
NetLibGetHostByAddr 948
NetLibGetHostByName 950
NetLibGetMailExchangeByName 952
NetLibGetServByName 954
NetLibIFAttach . 955
NetLibIFDetach . 956

40 Palm OS SDK Reference

NetLibIFDown. . 957
NetLibIFGet . . 958
NetLibIFSettingGet 959
NetLibIFSettingSet 965
NetLibIFUp . 966
NetLibMaster . 967
NetLibOpen . . 971
NetLibOpenCount 972
NetLibReceive . . 973
NetLibReceivePB. 974
NetLibSelect . . 977
NetLibSend . 979
NetLibSendPB . . 982
NetLibSettingGet. 984
NetLibSettingSet 988
NetLibSocketAccept 989
NetLibSocketAddr 991
NetLibSocketBind 992
NetLibSocketClose 994
NetLibSocketConnect 995
NetLibSocketListen 996
NetLibSocketOpen 998
NetLibSocketOptionGet 1000
NetLibSocketOptionSet 1002
NetLibSocketShutdown 1005
NetLibTracePrintF 1006
NetLibTracePutS 1007
NetNToHL . 1008
NetNToHS . 1009

55 Network Utilities 1011
Network Utility Functions 1011

NetUReadN . 1011
NetUTCPOpen. 1012
NetUWriteN . 1013

Palm OS SDK Reference 41

56 New Serial Manager 1015
New Serial Manager Data Structures 1015

DeviceInfoType 1015
SrmCtlEnum . 1016
SrmCallbackEntryType 1018

New Serial Manager Constants 1019
Serial Capabilities Constants 1019
Serial Settings Constants 1019
Status Constants 1020

New Serial Manager Functions 1021
SrmClearErr . 1021
SrmClose . 1021
SrmControl . 1022
SrmGetDeviceCount 1024
SrmGetDeviceInfo 1024
SrmGetStatus . 1025
SrmOpen . 1026
SrmOpenBackground 1027
SrmPrimeWakeupHandler. 1028
SrmReceive . 1028
SrmReceiveCheck 1029
SrmReceiveFlush 1030
SrmReceiveWait 1031
SrmReceiveWindowClose 1031
SrmReceiveWindowOpen 1032
SrmSend . 1033
SrmSendCheck. 1034
SrmSendFlush . 1035
SrmSendWait . 1035
SrmSetReceiveBuffer 1036
SrmSetWakeupHandler 1036

New Serial Manager Application-Defined Function 1037
WakeupHandlerProc 1037

42 Palm OS SDK Reference

57 Script Plugin 1039
Script Plugin Data Types. 1039

PluginCallbackProcType 1039
PluginCmdPtr . 1040
PluginCmdType 1040
PluginExecCmdType 1040
PluginInfoPtr . 1041
PluginInfoType 1042
ScriptPluginLaunchCodesEnum 1042

Script Plugin Constants 1043
Command Constants 1043
Size Constants . 1045

Script Plugin Functions 1045
ScriptPluginSelectorProc 1045

58 Serial Manager 1049
Serial Manager Data Structures 1049

SerCtlEnum . 1049
SerSettingsType 1050

Serial Manager Functions 1051
SerClearErr . 1051
SerClose . 1052
SerControl. 1052
SerGetSettings . 1053
SerGetStatus . 1054
SerOpen . 1055
SerReceive . 1056
SerReceive10 . 1057
SerReceiveCheck 1058
SerReceiveFlush 1058
SerReceiveWait 1059
SerSend . 1060
SerSend10 . 1061
SerSendFlush . 1062
SerSendWait . 1062

Palm OS SDK Reference 43

SerSetReceiveBuffer 1063
SerSetSettings . 1063

59 Serial and Virtual Drivers 1065
Driver Data Structures. 1065

DrvrInfoType . 1065
DrvrRcvQType. 1067
DrvrStatusEnum 1068
SdrvAPIType . 1068
SdrvCtlOpCodeEnum 1069
VdrvAPIType . 1072
VdrvCtlOpCodeEnum 1072

Driver Constants . 1075
Port Feature Constants 1075

Serial Driver-Defined Functions 1075
DrvEntryPoint . 1075
SdrvClose . 1077
SdrvControl . 1077
SdrvISP . 1079
SdrvOpen . 1080
SdrvReadChar . 1082
SdrvStatus . 1083
SdrvWriteChar . 1083

Virtual Driver-Defined Functions 1084
DrvEntryPoint . 1084
VdrvClose. 1085
VdrvControl . 1085
VdrvOpen. 1087
VdrvStatus . 1088
VdrvWrite. 1089

Serial Manager Queue Functions 1089
GetSize . 1089
GetSpace . 1090
WriteBlock . 1090
WriteByte . 1091

44 Palm OS SDK Reference

60 Serial Link Manager 1093
Serial Link Manager Functions 1093

SlkClose . 1093
SlkCloseSocket. 1094
SlkFlushSocket. 1094
SlkOpen . 1095
SlkOpenSocket . 1095
SlkReceivePacket 1096
SlkSendPacket . 1097
SlkSetSocketListener 1098
SlkSocketPortID 1099
SlkSocketSetTimeout 1100

Part IV: Libraries

61 Internet Library 1103
Internet Library Data Structures 1104

INetCompressionTypeEnum 1104
INetConfigNameType 1104
INetContentTypeEnum 1105
INetHTTPAttrEnum 1106
INetSchemeEnum 1108
INetSettingEnum. 1110
INetSockSettingEnum 1112
INetStatusEnum 1114

Internet Library Constants 1116
Configuration Aliases. 1116
URL Info Constants. 1117
URL Open Constants 1117

Internet Library Functions 1118
INetLibCacheGetObject 1118
INetLibCacheList 1120
INetLibCheckAntennaState 1122
INetLibClose . 1122
INetLibConfigAliasGet 1123

Palm OS SDK Reference 45

INetLibConfigAliasSet 1124
INetLibConfigDelete 1125
INetLibConfigIndexFromName 1126
INetLibConfigList 1127
INetLibConfigMakeActive 1128
INetLibConfigRename 1129
INetLibConfigSaveAs. 1130
INetLibGetEvent 1131
INetLibOpen . 1132
INetLibSettingGet 1134
INetLibSettingSet 1135
INetLibSockClose 1136
INetLibSockConnect 1136
INetLibSockHTTPAttrGet 1137
INetLibSockHTTPAttrSet 1138
INetLibSockHTTPReqCreate. 1139
INetLibSockHTTPReqSend 1140
INetLibSockOpen 1142
INetLibSockRead. 1143
INetLibSockSettingGet 1144
INetLibSockSettingSet 1145
INetLibSockStatus 1146
INetLibURLCrack 1147
INetLibURLGetInfo 1149
INetLibURLOpen 1150
INetLibURLsAdd 1151
INetLibWiCmd 1152

62 PalmOSGlue Library 1155
PalmOSGlue Functions 1155

FntGlueGetDefaultFontID 1158
TxtGlueCharIsVirtual 1159
TxtGlueGetHorizEllipsisChar 1160
TxtGlueGetNumericSpaceChar 1161
TxtGlueLowerChar 1161

46 Palm OS SDK Reference

TxtGlueLowerStr. 1162
TxtGluePrepFindString 1163
TxtGlueStripSpaces. 1164
TxtGlueUpperChar 1164
TxtGlueUpperStr 1165

A System Use Only Functions 1167

B Compatibility Guide 1173
2.0 New Feature Set 1174

Launch Codes . 1174
Functions . 1174
Existing Functions that Changed 1175
Other Changes . 1176

3.0 New Feature Set 1176
Launch Codes . 1177
Font . 1177
Functions . 1177
Existing Functions that Changed 1179
Other Changes . 1180

3.1 New Feature Set 1180
Functions . 1181
Changes to the Character Encoding 1181
Other Changes in 3.1 1182

3.2 New Feature Set 1183
Functions . 1183
Existing Functions that Changed 1184
Other Changes in 3.2 1184

International Feature Set 1184
Functions . 1185

Japanese Feature Set 1186
Wireless Internet Feature Set 1187

Launch Codes . 1187
Events . 1187
Functions . 1188

New Serial Manager Feature Set 1188

Palm OS SDK Reference 47

Functions . 1189
3.5 New Feature Set 1190

Launch Codes . 1190
Events . 1190
Functions . 1191
Existing Functions that Changed 1192
New Data Types 1193
Changes to Events 1193
Other Changes . 1194

Notification Feature Set 1195

 Index 1197

Palm OS SDK Reference 49

About This
Document
Palm OS SDK Reference is part of the Palm OS® Software
Development Kit. This introduction provides an overview of SDK
documentation, discusses what materials are included in this
document, and what conventions are used.

Palm OS SDK Documentation
The following documents are part of the SDK:

What This Volume Contains
This section provides an overview of this volume.

• Part I, “User Interface,” documents the API contained in the
header files in the \Incs\Core\UI\ folder. This part contains
chapters covering subjects such as application launch codes,

Document Description

Palm OS SDK
Reference

An API reference document that contains descriptions of all
Palm OS function calls and important data structures.

Palm OS Programmer’s
Companion

A guide to application programming for the Palm OS. This
volume contains conceptual and “how-to” information that
complements the Reference.

CodeWarrior
Constructor for the
Palm OS Platform

A guide to using CodeWarrior Constructor to create Palm
OS resource files.

Palm OS Programming
Development Tools
Guide

A guide to writing and debugging Palm OS applications
with the various tools available.

About This Document
Conventions Used in This Guide

50 Palm OS SDK Reference

user interface resources, events, and all window, form, and
field object managers.

• Part II, “System Management,” documents the API contained
in the header files in the \Incs\Core\System\ folder. This
part contains chapters covering subjects such as the alarm
manager, data and resource manager, feature manager, float
manager, graffiti manager, key manager, memory manager,
preferences manager, sound manager, string manager, and
system manager.

• Part III, “Communications,” documents the API related to
communications, such as the exchange manager, IR library,
net library, serial manager, and serial drivers.

• Part IV, “Libraries,” documents the API contained in the
header files in the \Incs\Libraries\ folder. This part contains
chapters covering the Internet Library and the Palm OS Glue
library.

Conventions Used in This Guide
This guide uses the following typographical conventions:

This style... Is used for...

fixed width font Code elements such as function,
structure, field, bitfield.

fixed width underline Emphasis (for code elements).

bold Emphasis (for other elements).

blue and underlined Hot links.

black and underlined New function in one of the current
releases (headings only)

red and underlined New function in one of the current
releases (Table of Contents only)

Part I: User Interface

Palm OS SDK Reference 53

1
Application Launch
Codes
This chapter provides detailed information about the predefined
application launch codes. Launch codes are declared in the header
file SystemMgr.h. The associated parameter blocks are declared in
AppLaunchCmd.h, AlarmMgr.h, ExgMgr.h, and Find.h.

Table 1.1 lists all Palm OS® standard launch codes. More detailed
information is provided immediately after the table:

• Launch Codes

• Launch Flags

To learn what a launch code is and how to use it, see the chapter
titled “Application Startup and Stop” in the Palm OS Programmer’s
Companion.

Table 1.1 Palm OS Launch Codes

Code Request

scptLaunchCmdExecuteCmd Execute the specified Network login
script plugin command.

scptLaunchCmdListCmds Provide information about the
commands that your Network script
plugin executes.

sysAppLaunchCmdAddRecord Add a record to a database.

sysAppLaunchCmdAlarmTriggered Schedule next alarm or perform quick
actions such as sounding alarm tones.

sysAppLaunchCmdCountryChange Respond to country change.

sysAppLaunchCmdDisplayAlarm Display specified alarm dialog or
perform time-consuming alarm-related
actions.

Application Launch Codes

54 Palm OS SDK Reference

sysAppLaunchCmdExgAskUser Let application override display of
dialog asking user if they want to
receive incoming data via the exchange
manager.

sysAppLaunchCmdExgReceiveData Notify application that it should receive
incoming data via the exchange
manager.

sysAppLaunchCmdFind Find a text string.

sysAppLaunchCmdGoto Go to a particular record, display it, and
optionally select the specified text.

sysAppLaunchCmdGoToURL Launch Clipper application and open a
URL.

sysAppLaunchCmdInitDatabase Initialize database.

sysAppLaunchCmdLookup Look up data. In contrast to
sysAppLaunchCmdFind, a level of
indirection is implied. For example, look
up a phone number associated with a
name.

sysAppLaunchCmdNormalLaunch Launch normally.

sysAppLaunchCmdNotify Notify about an event.

sysAppLaunchCmdOpenDB Launch application and open a
database.

sysAppLaunchCmdPanelCalledFromAp
p

Tell preferences panel that it was
invoked from an application, not the
Preferences application.

sysAppLaunchCmdReturnFromPanel Tell an application that it’s restarting
after preferences panel had been called.

sysAppLaunchCmdSaveData Save data. Often sent before find
operations.

Table 1.1 Palm OS Launch Codes (continued)

Code Request

Applicat ion Launch Codes
Launch Codes

Palm OS SDK Reference 55

Launch Codes
This section provides supplemental information about launch
codes. For some launch codes, it lists the parameter block, which in
some cases provides additional information about the launch code.

sysAppLaunchCmdAddRecord
Add a record to an application’s database.

This launch code is used to add a message to the Mail or
iMessenger™ (on the Palm VII™ organizer) application’s outbox. You
pass information about the message such as address, body text, etc.
in the parameter block. For iMessenger, you can set the edit field of
the parameter block to control whether or not the iMessenger editor
is displayed. Set it to true to display the editor or false not to
display it.

For more information on sending messages via iMessenger, see
“Sending Messages” on page 312 in the Palm OS Programmer’s
Companion.

sysAppLaunchCmdSyncNotify Notify applications that a HotSync has
been completed.

sysAppLaunchCmdSystemLock Sent to the Security application to
request that the system be locked down.

sysAppLaunchCmdSystemReset Respond to system reset. No UI is
allowed during this launch code.

sysAppLaunchCmdTimeChange Respond to system time change.

sysAppLaunchCmdURLParams Launch an application with parameters
from Clipper.

Table 1.1 Palm OS Launch Codes (continued)

Code Request

Application Launch Codes
Launch Codes

56 Palm OS SDK Reference

IMPORTANT: Implemented for iMessenger only if Wireless
Internet Feature Set is present. Implemented for Mail only on OS
version 3.0 or later.

sysAppLaunchCmdAddRecord Parameter Block for Mail
Application

Prototype typedef enum {
mailPriorityHigh,
mailPriorityNormal,
mailPriorityLow

} MailMsgPriorityType;

typedef struct {
Boolean secret;
Boolean signature;
Boolean confirmRead;
Boolean confirmDelivery;
MailMsgPriorityType priority;
UInt8 padding
Char* subject;
Char* from;
Char* to;
Char* cc;
Char* bcc;
Char* replyTo;
Char* body;

} MailAddRecordParamsType;

Fields secret True means that the message should be
marked secret.

signature True means that the signature from the Mail
application’s preferences should be attached to
the message.

confirmRead True means that a confirmation should be sent
when the message is read.

Applicat ion Launch Codes
Launch Codes

Palm OS SDK Reference 57

confirmDelivery
True means that a confirmation should be sent
when the message is delivered.

priority Message priority. Specify one of the
MailMsgPriorityType enumerated types.

padding Reserved for future use.

subject Message’s subject, a null-terminated string
(optional).

from Message’s sender, a null-terminated string (not
used on outgoing mail).

to Address of the recipient, a null-terminated
string (required).

cc Addresses of recipients to be copied, a null-
terminated string (optional).

bcc Addresses of recipients to be blind copied, a
null-terminated string (optional).

replyTo Reply to address, a null-terminated string
(optional).

body The text of the message, a null-terminated
string (required).

sysAppLaunchCmdAddRecord Parameter Block for
iMessenger Application

Prototype typedef struct {
UInt16 category;
Boolean edit;
Boolean signature;
Char *subject;
Char *from;
Char *to;
Char *replyTo;
Char *body;

} MsgAddRecordParamsType;

Application Launch Codes
Launch Codes

58 Palm OS SDK Reference

Fields category Category in which to place the message.
Specify one of the following categories:

MsgInboxCategory

MsgOutboxCategory

MsgDeletedCategory

MsgFiledCategory

MsgDraftCategory

edit True means that the message should be
opened in the editor. False means that the
message should simply be placed into the
outbox and the editor not opened. You can
specify true only if the category is set to
MsgOutboxCategory.

signature True means that the signature from the
iMessenger application preferences should be
attached to the message.

subject Message’s subject, a null-terminated string
(optional).

from Message’s sender, a null-terminated string (not
used on outgoing mail).

to Address of the recipient, a null-terminated
string (required).

replyTo Reply to address, a null-terminated string
(optional).

body The text of the message, a null-terminated
string (required).

sysAppLaunchCmdAlarmTriggered
Performs quick action such as scheduling next alarm or sounding
alarm.

This launch code is sent as close to the actual alarm time as possible.
An application may perform any quick, non-blocking action at this
time. Multiple alarms may be pending at the same time for multiple
applications, and one alarm display shouldn’t block the system and

Applicat ion Launch Codes
Launch Codes

Palm OS SDK Reference 59

prevent other applications from receiving their alarms in a timely
fashion. An opportunity to perform more time-consuming actions
will come when sysAppLaunchCmdDisplayAlarm is sent.

sysAppLaunchCmdAlarmTriggered Parameter Block

Prototype typedef struct SysAlarmTriggeredParamType {
UInt32 ref;
UInt32 alarmSeconds;
Boolean purgeAlarm;
UInt8 padding;

} SysAlarmTriggeredParamType;

Fields -> ref The caller-defined value specified when the
alarm was set with AlmSetAlarm.

-> alarmSecondsThe date/time specified when the alarm was
set with AlmSetAlarm. The value is given as
the number of seconds since 1/1/1904.

<- purgeAlarm Upon return, set to true if the alarm should be
removed from the alarm table. Use this as an
optimization to prevent the application from
receiving sysAppLaunchCmdDisplayAlarm
if you don’t wish to perform any other
processing for this alarm. If you do want to
receive the launch code, set this field to false.

 padding Not used.

sysAppLaunchCmdCountryChange
Responds to country change.

Applications should change the display of numbers to use the
proper number separators. To do this, call
LocGetNumberSeparators, StrLocalizeNumber, and
StrDelocalizeNumber.

sysAppLaunchCmdDisplayAlarm
Performs full, possibly blocking, handling of alarm.

Application Launch Codes
Launch Codes

60 Palm OS SDK Reference

This is the application’s opportunity to handle an alarm in a lengthy
or blocking fashion. Notification dialogs are usually displayed
when this launch code is received. This work should be done here,
not when sysAppLaunchCmdAlarmTriggered is received.
Multiple alarms may be pending at the same time for multiple
applications, and one alarm display shouldn’t block the system and
prevent other applications from receiving their alarms in a timely
fashion.

sysAppLaunchCmdDisplayAlarm Parameter Block

Prototype typedef struct SysDisplayAlarmParamType {
UInt32 ref;
UInt32 alarmSeconds;
Boolean soundAlarm;
UInt8 padding;
} SysDisplayAlarmParamType;

Fields -> ref The caller-defined value specified when the
alarm was set with AlmSetAlarm.

-> alarmSecondsThe date/time specified when the alarm was
set with AlmSetAlarm. The value is given as
the number of seconds since 1/1/1904.

-> soundAlarm true if the alarm should be sounded, false
otherwise. This value is currently not used.

 padding Not used.

sysAppLaunchCmdExgAskUser
Exchange manager sends this launch code to the application when
data has arrived for that application. This launch code lets the
application tell the exchange manager whether or not to display a
dialog asking the user if they want to accept the data. If the
application chooses not to handle this launch code, the default
course of action is that the exchange manager displays a dialog
asking the user if they want to accept the incoming data.

Prior to Palm OS release 3.5, most applications didn’t need to
handle this launch code, since the default action was the preferred

Applicat ion Launch Codes
Launch Codes

Palm OS SDK Reference 61

alternative. On Palm OS 3.5, you can have the dialog display a
category pop-up list from which the user can choose a category in
which to file the incoming data. To do so, you must handle
sysAppLaunchCmdExgAskUser to call the ExgDoDialog
function. See the description of that function for more information.
If you don’t handle the launch code, the exchange manager displays
the dialog without the category pop-up list.

If an application responds to this launch code, it must set the
result field in the parameter to the appropriate value. Possible
values are:

exgAskDialog Display the dialog without the category pop-up
list (the default).

exgAskOk Accept the incoming data.

exgAskCancel Reject the incoming data.

For example, if your entire response to this launch code is to set the
result field to exgAskCancel, your application always rejects all
incoming data without displaying the dialog. If it is to set the result
field to exgAskOk, it always accepts all incoming data without
displaying the dialog.

On Palm OS 3.5 or higher if you are calling ExgDoDialog in your
handler, return exgAskOk if ExgDoDialog was successful, or
exgAskCancel if it failed. If you don’t set the result field on
Palm OS 3.5, the dialog is displayed twice.

If the application sets the result field to exgAskOk, or the dialog
is displayed and the user presses the OK button, then the exchange
manager sends the application the next launch code,
sysAppLaunchCmdExgReceiveData, so that it can actually
receive the data.

IMPORTANT: Implemented only if 3.0 New Feature Set is
present.

sysAppLaunchCmdExgAskUser Parameter Block

Prototype typedef struct {
ExgSocketPtr socketP;

Application Launch Codes
Launch Codes

62 Palm OS SDK Reference

ExgAskResultTyperesult;
UInt8 reserved;
} ExgAskParamType;

Fields <-> socketP Socket pointer

<- result Show dialog, auto-confirm, or auto-cancel

-> reserved Reserved for future use

sysAppLaunchCmdExgReceiveData
Following the launch code sysAppLaunchCmdExgAskUser, the
exchange manager sends this launch code to the application to
notify it that it should receive the data (assuming that the
application and/or the user has indicated the data should be
received).

The application should use exchange manager functions to receive
the data and store it or do whatever it needs to with the data.

Note that the application may not be the active application, and
thus may not have globals available when it is launched with this
launch code. You can check if you have globals by using this code in
the PilotMain routine:

Boolean appIsActive = launchFlags & sysAppLaunchFlagSubCall;

The appIsActive value will be true if your application is active
and globals are available; otherwise, you won’t be able to access any
of your global variables during the receive operation.

The parameter block sent with this launch code is of the
ExgSocketPtr data type. It is a pointer to the ExgSocketType
structure corresponding to the exchange manager connection via
which the data is arriving. You will need to pass this pointer to the
ExgAccept function to begin receiving the data. For more details,
refer to the “Exchange Manager” chapter.

IMPORTANT: Implemented only if 3.0 New Feature Set is
present.

Applicat ion Launch Codes
Launch Codes

Palm OS SDK Reference 63

sysAppLaunchCmdFind
This launch command is used to implement the global find. It is sent
by the system whenever the user enters a text string in a Find
dialog. At that time, the system queries each application whether it
handles this launch code and returns any records matching the find
request.

The system sends this launch code with the FindParamsType
parameter block to each application. The system displays the results
of the query in the Find dialog.

Most applications that use text records should support this launch
code. When they receive it, they should search all records for
matches to the find string and return all matches.

An application can also integrate the find operation in its own user
interface and send the launch code to a particular application.

Applications that support this launch code should support
sysAppLaunchCmdSaveData and sysAppLaunchCmdGoto as
well.

sysAppLaunchCmdFind Parameter Block

Prototype typedef struct {

// These fields are used by the applications.
UInt16 dbAccesMode;
UInt16 recordNum;
Boolean more;
Char strAsTyped

[maxFindStrLen+1];
Char strToFind

[maxFindStrLen+1];
// These fields are private to the Find routine
//and should NOT be accessed by applications.
UInt8 reserved1;
UInt16 numMatches;
UInt16 lineNumber;
Boolean continuation;
Boolean searchedCaller;
LocalID callerAppDbID;

Application Launch Codes
Launch Codes

64 Palm OS SDK Reference

UInt16 callerAppCardNo;
LocalID appDbID;
UInt16 appCardNo;
Boolean newSearch;
UInt8 reserved2;
DmSearchStateType searchState;
FindMatchType match [maxFinds];

} FindParamsType;

Fields dbAccesMode Read mode. May be “show secret.”

recordNum Index of last record that contained a match.

more true if more matches to display.

strAsTyped [maxFindStrLen+1]
Search string as entered.

strToFind [maxFindStrLen+1]
Search string in lower case.

reserved1 Reserved for future use.

numMatches System use only.

lineNumber System use only.

continuation System use only.

searchedCaller System use only.

callerAppDbID System use only.

callerAppCardNo
System use only.

appDbID System use only.

appCardNo System use only.

newSearch System use only.

reserved2 Reserved for future use.

searchState System use only.

match [maxFinds]
System use only.

Applicat ion Launch Codes
Launch Codes

Palm OS SDK Reference 65

sysAppLaunchCmdGoto
Sent in conjunction with sysAppLaunchCmdFind or
sysAppLaunchCmdExgReceiveData to allow users to actually
inspect the record that the global find returned or that was received
by the exchange manager.

Applications should do most of the normal launch actions, then
display the requested item. The application should continue
running unless explicitly closed.

An application launched with this code does have access to global
variables, static local variables, and code segments other than
segment 0 (in multi-segment applications).

sysAppLaunchCmdGoto Parameter Block

Prototype typedef struct {
Int16 searchStrLen;
UInt16 dbCardNo;
LocalID dbID;
UInt16 recordNum;
UInt16 matchPos;
UInt16 matchFieldNum;
UInt32 matchCustom;
} GoToParamsType;

Fields searchStrLen Length of search string.

dbCardNo Card number of the database.

dbID Local ID of the database.

recordNum Index of record containing a match.

matchPos Position of the match.

matchFieldNum Field number string was found in.

matchCustom Application-specific information.

Application Launch Codes
Launch Codes

66 Palm OS SDK Reference

sysAppLaunchCmdGoToURL
You can send this launch code to the Clipper application to launch
the application and cause it to retrieve and display the specified
URL.

The parameter block for this launch command is simply a pointer to
a string containing the URL.

For more information and an example of how to use this launch
code, see “Using Clipper to Display Information” on page 310 in the
Palm OS Programmer’s Companion.

IMPORTANT: Implemented only if Wireless Internet Feature Set
is present.

sysAppLaunchCmdInitDatabase
This launch code is sent by the Desktop Link server in response to a
request to create a database. It is sent to the application whose
creator ID matches that of the requested database.

The most frequent occurrence of this is when a 'data' database is
being installed or restored from the desktop. In this case, HotSync®
creates a new database on the device and passes it to the application
via a sysAppLaunchCmdInitDatabase command, so that the
application can perform any required initialization. HotSync will
then transfer the records from the desktop database to the device
database.

When a Palm OS application crashes while a database is installed
using HotSync, the reason may be that the application is not
handling the sysAppLaunchCmdInitDatabase command
properly. Be especially careful not to access global variables.

The system will create a database and pass it to the application for
initialization. The application must perform any initialization
required, then pass the database back to the system, unclosed.

sysAppLaunchCmdInitDatabase Parameter Block

Prototype typedef struct {
DmOpenRef dbP;

Applicat ion Launch Codes
Launch Codes

Palm OS SDK Reference 67

UInt32 creator;
UInt32 type;
UInt16 version;

} SysAppLaunchCmdInitDatabaseType;

Fields dbP Database reference.

creator Database creator.

type Database type.

version Database version.

sysAppLaunchCmdLookup
The system or an application sends this launch command to retrieve
information from another application. In contrast to Find, there is a
level of indirection; for example, this launch code could be used to
retrieve the phone number based on input of a name.

This functionality is currently supported by the standard Palm OS
Address Book.

Applications that decide to handle this launch code must search
their database for the string the user entered and perform the match
operation specified in the launch code’s parameter block.

If an application wants to allow its users to perform lookup in other
applications, it has to send it properly, including all information
necessary to perform the match. An example for this is in
Address.c and AppLaunchCmd.h, which are included in your
SDK.

sysAppLaunchCmdLookup Parameter Block

The parameter block is defined by the application that supports this
launch code. See AppLaunchCmd.h for an example.

IMPORTANT: Implemented only if 2.0 New Feature Set is
present.

Application Launch Codes
Launch Codes

68 Palm OS SDK Reference

sysAppLaunchCmdNotify
The system or an application sends this launch code to notify
applications that an event has occurred. The parameter block
specifies the type of event that occurred, as well as other pertinent
information. To learn which notifications are broadcast by the
system, see “Notification Manager Event Constants” in the
“Notification Manager” chapter.

IMPORTANT: Implemented only if Notification Feature Set is
present.

sysAppLaunchCmdNotify Parameter Block

The SysNotifyParamType structure declared in NotifyMgr.h
defines the format of this launch code’s parameter block. See its
description in the “Notification Manager” chapter.

sysAppLaunchCmdOpenDB
You can send this launch code to the Clipper application to launch
the application and cause it to open and display a Palm query
application stored on the device. This is the same mechanism that
the Launcher uses to launch query applications.

IMPORTANT: Implemented only if Wireless Internet Feature Set
is present.

sysAppLaunchCmdOpenDB Parameter Block

Prototype typedef struct {
UInt16 cardNo;
LocalID dbID;
} SysAppLaunchCmdOpenDBType;

Fields cardNo Card number of database to open.

dbID Database id of database to open.

Applicat ion Launch Codes
Launch Codes

Palm OS SDK Reference 69

sysAppLaunchCmdPanelCalledFromApp
sysAppLaunchCmdPanelCalledFromApp and
sysAppLaunchCmdReturnFromPanel allow an application to let
users change preferences without switching to the Preferences
application. For example, for the calculator, you may launch the
Formats preferences panel, set up a number format preference, then
directly return to the calculator that then uses the new format.

sysAppLaunchCmdPanelCalledFromApp lets a preferences
panel know whether it was switched to from the Preferences
application or whether an application invoked it to make a change.
The panel may be a preference panel owned by the application or a
system preferences panel.

Examples of these system panels that may handle this launch code
are:

• Network panel (called from network applications)

• Modem panel (called if modem selection is necessary)

All preferences panels must handle this launch code. If a panel is
launched with this command, it should:

• Display a Done button.

• Not display the panel-switching pop-up trigger used for
navigation within the preferences application.

IMPORTANT: Implemented only if 2.0 New Feature Set is
present.

sysAppLaunchCmdReturnFromPanel
This launch code is used in conjunction with
sysAppLaunchCmdPanelCalledFromApp. It informs an
application that the user is done with a called preferences panel. The
system passes this launch code to the application when a
previously-called preferences panel exists.

IMPORTANT: Implemented only if 2.0 New Feature Set is
present.

Application Launch Codes
Launch Codes

70 Palm OS SDK Reference

sysAppLaunchCmdSaveData
Instructs the application to save all current data. For example,
before the system performs a Find operation, an application should
save all data.

Any application that supports the Find command and that can have
buffered data should support this launch code. Generally, an
application only has to respond if it’s the currently running
application. In that case, all buffered data should be saved when the
launch code is received.

sysAppLaunchCmdSaveData Parameter Block

Prototype typedef struct {
Boolean uiComing;
UInt8 reserved1;

} SysAppLaunchCmdSaveDataType;

Fields uiComing true if system dialog is displayed before
launch code arrives.

reserved1 Reserved for future use.

sysAppLaunchCmdSyncNotify
This launch code is sent to applications to inform them that a
HotSync operation has occurred.

This launch code is sent only to applications whose databases were
changed during the HotSync operation. (Installing the application
database itself is considered a change.) The record database(s) must
have the same creator ID as the application in order for the system
to know which application to send the launch code to.

This launch code provides a good opportunity to update, initialize,
or validate the application’s new data, such as resorting records,
setting alarms, and so on.

Because applications only receive sysAppLaunchCmdSyncNotify
when their databases are updated, this launch code is not a good
place to perform any operation that must occur after every HotSync
operation. Instead, you may register to receive the
sysNotifySyncFinishEvent on systems that have the

Applicat ion Launch Codes
Launch Codes

Palm OS SDK Reference 71

Notification Feature Set. This notification is sent at the end of a
HotSync operation, and it is sent to all applications registered to
receive it, whether the application’s data changed or not. Note that
there is also a sysNotifySyncStartEvent notification.

sysAppLaunchCmdSystemLock
Launch code sent to the system-internal security application to lock
the device.

As a rule, applications don’t need to do respond to this launch code.
If an application replaces the system-internal security application, it
must handle this launch code.

IMPORTANT: Implemented only if 2.0 New Feature Set is
present.

sysAppLaunchCmdSystemReset
Launch code to respond to system soft or hard reset.

Applications can respond to this launch code by performing
initialization, indexing, or other setup that they need to do when the
system is reset. For more information about resetting the device, see
“System Boot and Reset” in the Palm OS Programmer’s Companion.

sysAppLaunchCmdSystemReset Parameter Block

Prototype typedef struct {
Boolean hardReset;
Boolean createDefaultDB;

} SysAppLaunchCmdSystemResetType;

Fields hardReset true if system was hardReset. false if
system was softReset.

createDefaultDBIf true, application has to create default
database.

Application Launch Codes
Launch Codes

72 Palm OS SDK Reference

sysAppLaunchCmdTimeChange
Launch code to respond to a time change initiated by the user.

Applications that are dependent on the current time or date need to
respond to this launch code. For example, an application that sets
alarms may want to cancel an alarm or set a different one if the
system time changes.

On systems that have the Notification Feature Set, applications
should register to receive the sysNotifyTimeChangeEvent
notification instead of responding to this launch code. The
sysAppLaunchCmdTimeChange launch code is sent to all
applications. The sysNotifyTimeChangeEvent notification is
sent only to applications that have specifically registered to receive
it, making it more efficient than sysAppLaunchCmdTimeChange.

sysAppLaunchCmdURLParams
This launch code is sent from the Clipper application to launch
another application.

The parameter block consists of a pointer to a special URL string,
which the application must know how to parse. The string is the
URL used to launch the application and may contain encoded
parameters. For more information, see “Launching Other
Applications from Clipper” on page 311 in the Palm OS
Programmer’s Companion.

An application launched with this code may or may not have access
to global variables, static local variables, and code segments other
than segment 0 (in multi-segment applications). It depends on the
URL that caused Clipper to send this launch code. If this launch
code results from a palm URL, then globals are available. If the
launch code results from a palmcall URL, then globals are not
available.

The best way to test if you have global variable access is to test the
sysAppLaunchFlagNewGlobals launch flag sent with this
launch code. If this is flag is set, then you have global variable
access.

Applicat ion Launch Codes
Launch Flags

Palm OS SDK Reference 73

IMPORTANT: Implemented only if Wireless Internet Feature Set
is present.

Launch Flags
When an application is launched with any launch command, it also
is passed a set of launch flags.

An application may decide not to handle the flags even if it handles
the launch code itself. For applications that decide to include this
launch code, the following table provides additional information:

Generally, the system sends launch flags along with all launch
codes. Applications should just pass 0 (zero) when sending a launch
code to another application.

Table 1.2 Launch Flags

Flag Functionality

sysAppLaunchFlagNewThread Creates a new thread for the application.
Implies sysAppLaunchFlagNewStack.

sysAppLaunchFlagNewStack Creates a separate stack for the application.

sysAppLaunchFlagNewGlobals Creates and initializes a new globals world for
the application. Implies new owner ID for
memory chunks.

sysAppLaunchFlagUIApp Notifies launch routine that this is a UI
application being launched.

sysAppLaunchFlagSubCall Notifies launch routine that the application is
calling its entry point as a subroutine call. This
tells the launch code that it's OK to keep the A5
(globals) pointer valid through the call. If this
flag is set, it indicates that the application is
already running as the current application.

Palm OS SDK Reference 75

2
Palm OS Resources
Palm OS® User Interface resources are the elements of an
application’s GUI (graphical user interface). This chapter provides
reference material you can use when creating user interface
resources in Metrowerks Constructor. It provides detailed
guidelines for using each resource, and it provides descriptions of
the attributes you set in Metrowerks Constructor.

NOTE: For more information see the following manuals:

The Palm OS Tutorial provides more detailed instruction on how to
create a GUI using the Constructor tool.

The Constructor for Palm OS manual in the CodeWarrior
Documentation folder provides detailed reference-style
documentation as well as information on how to use each
individual resource.

System Resources
Every application running under Palm OS must have certain
minimum system (not UI) resources defined to be recognized by the
Palm OS system software. These required resources are created for
your application by the development environment. You may find
that you need additional, application-specific resources. The
required resources are 'code' #1, 'code' #0, and 'data' #0. All other
system resources are optional. This section describes both the
required and optional resources.

The ‘code’ #1 Resource
The system creates a 'code' #1 resource for every application. This
resource is the entry point for the application and is where

Palm OS Resources
System Resources

76 Palm OS SDK Reference

application initialization is performed. When the Palm OS device
launches an application, it starts executing at the first byte of the
‘code’ #1 resource. All of the application code that you provide is
included in this resource as well.

Typically, some startup code provided with the Palm OS
development environment is linked in with your application code.
This startup code works as follows:

• The startup code performs application setup and
initialization.

• The startup code calls your main routine.

• When your main routine exits, control is returned to the
startup code, which performs any necessary cleanup of your
application and returns control to the Palm OS system
software.

The ‘code’ #0 and ‘data’ #0 Resources
The 'code' #0 and 'data' #0 resources contain the required size
of your global data and an image of the initialized area of that global
data. When your application is launched, the system allocates a
memory chunk in the dynamic heap that’s big enough to hold all
your globals. The 'data' #0 resource is then used to initialize those
globals.

The ‘pref’ #0 Resource
The system creates a'pref' #0 resource for every application. This
resource contains startup information for launching your
application. The resource includes

• Required stack size

• Dynamic heap space required (not currently used)

• Task priority (not currently used)

This resource applies only to Palm OS 3.0 and higher. It is ignored
on older versions of Palm OS.

Palm OS Resources
Resource Types

Palm OS SDK Reference 77

Resource Types
Metrowerks Constructor divides resources into two types: catalog
resources and project resources.

Catalog Resources
Catalog resources are available in Constructor’s Catalog window
and can be dragged directly on a form. Table 2.1 lists the available
catalog resources. The Macintosh ResEdit resource name is included
for reference only; it’s not needed by developers who use
Constructor exclusively, and not relevant for Windows developers.

Table 2.1 Catalog Resources

Name Resource Resource

tBTN Button Resource

tCBX Check Box Resource

tFLD Field Resource

tFBM Form Bitmap Resource (container for
Bitmap resource)

tGDT Gadget Resource (application
defined)

tGSI Graffiti Shift Indicator Resource

tLBL Label Resource (container for a
String)

Palm OS Resources
Resource Types

78 Palm OS SDK Reference

Project Resources
Project resources are instantiated from the projects window.

Table 2.2 lists the project resources. The Macintosh ResEdit resource
name is included for reference only; it’s not needed by developers
who use Constructor exclusively, and not relevant for Windows
developers.

tLST List Resource

tPUT Popup Trigger Resource

tPBN Push Button Resource

tREP Repeating Button Resource

Scroll Bar Resource (see below)

tSLT Selector Trigger Resource

tTBL Table Resource

Table 2.1 Catalog Resources (continued)

Name Resource Resource

Palm OS Resources
Alert Resource

Palm OS SDK Reference 79

Alert Resource

Example

Overview The alert resource defines a modal dialog that displays a message,
an icon, and one or more buttons.

A small icon indicates the category of the dialog box; for example,
an exclamation mark for an error message. The icon appears on the
left side of the dialog. The text is justified left but placed to the right
of the dialog icon.

Table 2.2 Project Resources

Name Resource UI Name

Talt Alert Resource Alert

tFRM Form Resource Form

Menu Resource Menu

Menu bar Resource Menu bar

tSTR String Resource String

Icons

Bitmaps

Palm OS Resources
Alert Resource

80 Palm OS SDK Reference

The Alert resource has the following attributes.

Attributes

Type Icon Definition Button Example

Information i Lowest-level warning.
Action shouldn’t or can’t be
completed but doesn’t
generate an error or risk
data loss.

OK An alarm setting
must be between 1
and 99.

Confirmation ? Confirm an action or
suggest options.

OK,
Cancel

Change settings
before switching
applications? (For
example, when
pressing an
application key with
an open dialog box.)

Warning ! Ask if user wishes to
continue a potentially
dangerous action.

OK,
Cancel

Are you sure you
want to delete this
entry?

Error (stop
sign)

Attempted action
generated error and/or
cannot be completed.

OK Disk full.

Alert Type Determines the sound played and the icon displayed
when the alert is drawn. There are four possible icons:

• InformationAlert (Alert Number 0)

• ConfirmationAlert (Alert Number 1)

• WarningAlert (Alert Number 2)

• ErrorAlert (Alert Number 3)

Help ID The ID of a String resource that’s the help text for the
alert dialog box. If you provide a value, the system
displays an “i” in the top right corner of the alert box.

Palm OS Resources
Button Resource

Palm OS SDK Reference 81

Button Resource

UI Structure ControlType

Overview A button is a clickable UI object, often used to trigger events in an
application. A button displays as a text label surrounded by a
rectangular frame. The frame has rounded corners. The label may be
regular text or a glyph from one of the symbol fonts provided with
your development environment, for example, an arrow.

Examples

Attributes

Default
Button ID

The number of a button that the system assumes is
selected if the user switches to another application,
forcing the form to go away without making a
selection.

Title Title of the alert form.

Message Message displayed by the alert dialog. May contain
^1, ^2, ^3 as substitution variables for use in
conjunction with FrmCustomAlert.

Button Text Text of the button (e.g. OK or Cancel), determined by
an entry in the resource of each button.
To add a button, select Item Text 0, and type Cmd-K.

Object
Identifier

Name of the object. Assigned by developer and used
by Constructor during header file generation and
update.

Button ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of button.
Valid values: 0 – 159

Top Origin Form-relative position of top of object.
Valid values: 0 – 159

Palm OS Resources
Button Resource

82 Palm OS SDK Reference

Comments The label is centered in the button. If the label text is wider than the
button, the whole label is centered and both the right and left sides
are clipped.

Place command buttons at the bottom of table views and dialog
boxes. Leave three pixels between the dialog bottom and buttons.

Increment arrows are a special case; they are buttons that let users
increment the value displayed in a data field.

Width Width of button in pixels. Size the buttons to allow 3-6
pixels of white space at each end of the label.
Valid values: 0 – 160

Height Height of the button in pixels. Should be 3 pixels
larger than the font size, for example, height =12 for 9-
point labels.
Valid values: 1 – 160

Usable A nonusable object is not considered part of the
application’s interface and doesn’t draw. Nonusable
object can programmatically be set to usable.
If checked, the object is usable.

Anchor Left Controls how the object resizes itself when its text
label is changed. If checked, the left bound of the
object is fixed; if unchecked, the right bound is fixed.

Frame If checked, a rectangular frame with rounded corners
is drawn around the button. Most buttons have
frames. Buttons whose labels are single symbol
characters such as scroll buttons don’t have frames.

Non-bold
Frame

If checked, a one-pixel-wide rectangular frame with
rounded corners is drawn around the button. If
unchecked, a bold frame (two pixels wide) is drawn
around the button. Non-bold frames are the default.

Font Font used to draw the text label of the button. Choose
from the pop-up menu to select one of the fonts.

Label Text displayed inside the button: one line of text or a
single character from a symbol font to create an
increment arrow.

Palm OS Resources
Check Box Resource

Palm OS SDK Reference 83

To create an increment arrow, use an arrow character from the
Symbol font as a label. Several arrow styles and sizes are available.

Tip Making a Button with a Bitmap Label

It’s not possible to make a bitmap the label of a button; the label
always has to be a text string. However, the same effect can be
achieved by

• Creating a bitmap the same size of a button

• Placing them at the same location.

Make sure the bitmap is a Form Bitmap, selected from the catalog.

When the user selects the button, the system inverts the bitmap
graphic as well.

Check Box Resource

UI Structure ControlType

Overview A check box is a small, square UI object with an optional text label to
the right.

Example The figure below shows a checked and an unchecked check box
with a label to the right (the default).

Attributes

Object
Identifier

Name of the object. Assigned by developer and
used by Constructor during header file generation
and update.

Check Box ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of object.
Valid values: 0 – 159

Top Origin Form-relative position of top of object.
Valid values: 0 – 159

Palm OS Resources
Field Resource

84 Palm OS SDK Reference

Comments Make sure that only one check box in a group is initially checked.

All check boxes are the same size. The Height and Width determine
the toggle area, which is the screen area the user needs to press to
check or uncheck the box.

If a label attribute is defined, it’s part of the activation area.

Field Resource

UI Structure FieldType

Width Width of the picking area around the check box.
Valid values: 0 – 160

Height Height of the picking area around the check box.
Valid values: 1– 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

Selected Initial selection state of the checkbox. If the box is
checked (the default), the checkbox is initially
checked.

Group ID Group ID of a check box that is part of an exclusive
group. Ungrouped (nonexclusive) check boxes
have 0 as a group ID.
Valid values: 0 – 65535

Font Font used to draw the text label of the button.
Choose from the pop-up menu to select one of the
fonts.

Label Text displayed to the right of the check box. This
text is part of the activation area. To create a
(nonactive) label to the left of the check box, leave
this attribute blank and create a separate Label
resource.

Palm OS Resources
Field Resource

Palm OS SDK Reference 85

Overview The field UI object is for user data entry in an application. It displays
one or more lines of text. A field can be underlined, justified left or
right, and editable or uneditable.

Text fields can be located anywhere except in menus and in the
command button area.

The following is an underlined, left-justified field containing data:

Attributes

Object
Identifier

Name of the object. Assigned by developer and used
by Constructor during header file generation and
update.

Field ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of object.
Valid values: 0 – 159

Top Origin Form-relative position of top of object.
Valid values: 0 – 159

Width Width of the object in pixels.
Valid values: 0 – 160

Height Height of the object in pixels.
Valid values: 1– 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

Editable If this box is checked, the field is editable. Noneditable
fields don’t accept user input but can be changed
programmatically. Noneditable text fields are useful
when you want to display text on a form but don’t
want users to edit it.

Underline If set, each line of text is underlined with a gray line.

Palm OS Resources
Form Resource

86 Palm OS SDK Reference

Form Resource

Overview A form is a container for one or more of the Catalog Resources.

Single Line If checked, the field doesn’t scroll horizontally and
doesn’t accept Return or Tab characters. Only a single
line of text is displayed. If the user attempts to enter
text beyond this, the system beeps.
Multiline text fields expand. An empty field may
display one or more blank lines; for example, records
in a To Do list or a text page.

Dynamic
Size

If checked, the height of the field is expanded or
compressed as characters are added or removed. Set
this attribute to false if the Single Line attribute is set.

Left Justified Text justification. Supported only for fields that have
the Single Line attribute checked.
Valid values: checked (left-justified)—recommended
unchecked (right-justified)

Max
characters

Maximum number of characters the field accepts. This
is a limit on the number of characters a user can enter,
but not on what can be displayed. All fields can
display up to 32,767 characters regardless of this
setting.
Valid values: 0 – 32767

Font Font used to draw the text label of the button. Choose
from the pop-up menu to select one of the fonts.

Auto-Shift If checked, 2.0 (and later) auto-shift rules are applied.

Has ScrollbarIf checked, the field has a scroll bar. The system sends
more frequent fldHeightChangedEvents so the
application can adjust the height appropriately.

Numeric If checked, only the characters 0 through 9 are allowed
to be entered in the field.

Palm OS Resources
Form Resource

Palm OS SDK Reference 87

Applications usually contain several different forms that the user
triggers by tapping buttons or other control UI objects. Most UI
objects are displayed only if they are contained within a form.

Example The example below shows a modal form. A form can also be as large
as the screen.

Attributes

Left Origin Window-relative position of left side of form.
Valid values: 0 – 159

Top Origin Window-relative position of top of form.
Valid values: 0 – 159

Width Width of the form in pixels.
Valid values: 0 – 160

Height Height of the form in pixels.
Valid values: 1– 160

Usable Not currently supported for forms.

Modal If checked, form is modal. Modal forms ignore pen
events outside their boundaries. Used for dialogs.

Save Behind If checked, the region obscured by the form is saved
when it’s drawn and restored when it’s erased. Used
for dialogs.

Form ID Form ID assigned by Constructor.

Help ID ID number of a string that’s displayed when the user
taps the “i” icon. The system adds the icon to the form
when you provide a value for this property. Currently,
only modal dialogs have help resources.

Palm OS Resources
Form Resource

88 Palm OS SDK Reference

Comments The total display on the Palm device is 160 pixels by 160 pixels. If
you want your whole form to be seen, make sure it fits within this
display area. For pop-up dialogs, you can make the form smaller.
Align a popup dialog with the bottom of the screen.

Here are some general design guidelines:

• Each form should have a title that displays the name or view
of the application, or both.

• Scroll bars in fields and tables appear and disappear
dynamically if you’ve selected that option for that UI
element. Place them to the right of command buttons.

• Modal dialogs always occupy the full width of the screen and
are justified to the bottom of the screen. They hide the
command buttons of the base application but don’t obscure
the title bar of the base application if possible. There should
be a minimum of three pixels between the top of the modal
dialog title bar and the bottom of the application title bar. If
the dialog is too large to accommodate this, the entire
application title bar should be obscured.

• Screen command buttons should always be at the bottom of
the screen.

Menu Bar IDContains the ID of a menu bar resource to be
associated with this form.

Default
Button ID

ID number of a button that the system assumes is
selected if the user switches to another application,
forcing the form to go away without making a
selection.

Form Title Title of that form. Use titles for dialogs, menu bars for
views. By convention, the name of the application and
the name of the screen, if possible, for example
Address List or Address Edit.
The title must be one line; it uses about 13 pixels of the
top of the form.

Palm OS
Version

Version of the device for which this form is created.

Palm OS Resources
Form Bitmap Resource

Palm OS SDK Reference 89

• Dialog command buttons appear four pixels above the
bottom of the dialog box frame. Two-pixel default ring is
three pixels above the bottom, and the baseline of the text
within the buttons should be aligned.

• Command buttons should be centered so that the spaces
between the buttons are twice the width of the spaces
between the edges and the border (see diagram below).

If possible, all buttons should be the same width. At a
minimum, they should be spaced equidistant, as illustrated
below.

Form Bitmap Resource

Overview Places predefined bitmaps on a given form. Used for icons in Alert
dialogs to indicate a warning, error, information, and so on. You
have to associate a Bitmap with the Form Bitmap to actually make a
picture appear.

Attributes

Object
Identifier

Name of the object. Assigned by developer and
used by Constructor during header file generation
and update.

Left Origin. Left bounds of bitmap.

Top Origin Top bounds of bitmap.

Palm OS Resources
Gadget Resource

90 Palm OS SDK Reference

Gadget Resource

Name tGDT

UI Name Gadget

Overview A gadget object lets developers implement a custom UI gadget. The
gadget resource contains basic information about the custom
gadget, which is useful to the gadget writer for drawing and
processing user input.

Attributes

Bitmap Resource
ID

ID of a PICT resource containing the graphic. You
can also assign an ID number, then click on Create
and draw the picture in the bitmap editor that
appears.

Usable Checked if the bitmap should be drawn.

Object
Identifier

Name of the object. Assigned by developer and used
by Constructor during header file generation and
update.

Gadget ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of object.
Valid values: 0 – 159

Top Origin Form-relative position of top of object.
Valid values: 0 – 159

Width Width of the gadget in pixels.
Valid values: 0 – 160

Palm OS Resources
Graffiti Shift Indicator Resource

Palm OS SDK Reference 91

Graffiti Shift Indicator Resource

Overview The Graffiti® Shift Indicator resource specifies the window-relative
or form-relative position of the Graffiti shift state indicator. The
different shift states are punctuation, symbol, uppercase shift, and
uppercase lock. These indicators will appear at the position of the
Graffiti Shift resource.

Note: By convention, Graffiti Shift indicators are placed at the
bottom-right of every form that has an editable text field.

Attributes

Label Resource

Overview The label resource displays noneditable text or labels on a form
(dialog box or full-screen). It’s used, for example, to have text
appear to the left of a checkbox instead of the right.

Height Height of the gadget in pixels.
Valid values: 1– 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

Object
Identifier

Name of the object. Assigned by developer and used
by Constructor during header file generation and
update.

Left Origin Form-relative position of left side of object.
Valid values: 0 – 159

Top Origin Form-relative position of top of object.
Valid values: 0 – 159

Object ID ID of the object (assigned by Constructor).

Palm OS Resources
List Resource

92 Palm OS SDK Reference

Comments Pressing Return in a label wraps the text to the next line.

Attributes

List Resource

UI Structure ListType

Example

Overview A list provides a box with a list of choices to the user. The list is
scrollable if the choices don’t all fit in the box.

The list box appears as a vertical list of choices surrounded by a
rectangular frame. The current selection of the list is inverted.
Arrows for scrolling the list appear in the right margin if necessary.

Object
Identifier

Name of the object. Assigned by developer and used
by Constructor during header file generation and
update.

Label ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of object.
Valid values: 0 – 159

Top Origin Form-relative position of top of object.
Valid values: 0 – 159

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

Font Font used to draw the text label of the button. Choose
from the pop-up menu to select one of the fonts.

Text Text of the label.

Palm OS Resources
List Resource

Palm OS SDK Reference 93

Lists can appear as popup lists when used with popup triggers. See
Popup Trigger Resource.

Attributes

Comments Errors may occur if the number of visible items is greater than the
actual number of items. An item’s text is not clipped against the list
box’s borders. Set a list to not usable if it’s linked to a popup trigger.

Use a list to let users choose between items of data; use a menu to
activate a command.

If a list becomes too tall to fit below the trigger, it’s justified up. If it
becomes to large for the screen, it scrolls.

Object
Identifier

Name of the object. Assigned by developer and used
by Constructor during header file generation and
update.

List ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of object.
Valid values: 0 – 159

Top Origin Form-relative position of top of object.
Valid values: 0 – 159

Width Width of the list.
Valid values: 0 – 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

Font Font used to draw the text label of the button. Choose
from the pop-up menu to select one of the fonts.

Visible items Height of the list box, in items (choices). For example,
if the list has six items but only four fit, specify four.

Items Items in the list.

Palm OS Resources
Menus and Menu Bars

94 Palm OS SDK Reference

Menus and Menu Bars

Overview

A menu assembly consists of a menu bar, menu names indicating
the available menus, and the menus themselves with their
commands:

• Menu bar. The menu bar at the top of the screen contains the
names of the available menus. Each application has different
sets of menu names; within an application, different views
may have different menus.

• Menu name. Each menu is displayed below the menu name.
The following menu names are commonly found:

– Record—Place Record to the left of Edit (if applicable).

– Edit—Screens that allow editing need an Edit menu.
Note, however, that most editing is edit-in-place.

– Options—Typically, the last menu. The About command,
which provides version and creator information, should
always be an Options command under Palm OS.

• Menu. The menus themselves consist of menu items and
optional shortcuts. Under Palm OS, menu items should not
duplicate functionality available via command buttons.
Menus justify left with the active heading of the menu name
when invoked. If the menu doesn’t fit, it’s justified to the
right border of the screen.

NOTE: For each menu, provide shortcuts for all commands or
for none at all. Don’t assign the same shortcut twice within one
application.

Menu item

Separator

Shortcut

Menu barMenu name

Palm OS Resources
Menus and Menu Bars

Palm OS SDK Reference 95

Menu Bar and Menu Resources

The only information provided for the menu and menu bar resource
is the resource name and resource ID.

Menu User Interaction

• Default Menu and Menu Item. A pen-up on the menu icon
displays the menu bar. The first time a menu is invoked after
an application is launched, no menus are displayed unless
there is only one menu available. Afterwards the menu and
menu item of the last command executed from the menu are
displayed. Graffiti command equivalents are ignored.

For example, if the user selects Edit > Copy, the Edit menu is
popped down and the Copy command is highlighted the
next time the menu bar is displayed. This expedites execution
of commonly used commands or of grouped commands (e.g.,
Copy/Paste). The last menu heading is not saved if the user
switches to a different view or a different application.

• View-specific Menus. Each view within an application can
have a unique menu, that is, different menu headings and
items.

• Menu Display. As a rule, a Palm OS application should try
to have the menu visible on screen as rarely as possible:

– After a menu command is executed, the menu bar is
dismissed.

– The menu bar is active when the menu headings in it are
active. When not active, the menu bar is not visible.

– There are no grayed-out menu headings or grayed-out
menu items. A command not accessible in a certain mode
doesn’t appear at all.

• Size. The vertical active area of menu headings is 2 pixels
beyond the ascender and 1 pixel below a potential descender
of the menu heading text. The horizontal active area covers
half the distance to the next menu heading, leaving no gaps
between the headings. If the menu headings aren’t as wide as
the menu bar, part of the menu bar may be inactive.

• Active Area. The entire area of the menu, excluding the
border, is active. Divider lines and status items on the

Palm OS Resources
Popup Trigger Resource

96 Palm OS SDK Reference

launcher menu are inactive; that is, they do not highlight
when tapped.

Popup Trigger Resource

UI structure ControlType

Overview The popup trigger shows the selection of a list. The user can press
the popup trigger to pop up the list and change the selection.

A popup trigger displays a text label and a triangle to the left of the
label that indicates the object is a popup trigger.

When the user selects a popup trigger, a list of items pops up.

Attributes

Object
Identifier

Name of the object. Assigned by developer and used
by Constructor during header file generation and
update.

Popup ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of button.
Valid values: 0 – 159

Top Origin Form-relative position of top of button.
Valid values: 0 – 159

Width Width of the button’s picking area in pixels.
Valid values: 1 – 160

Height Height of the button’s picking area in pixels.
Valid values: 1 – 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

Palm OS Resources
Push Button Resource

Palm OS SDK Reference 97

Push Button Resource

UI Structure ControlType

Overview Push buttons allow users to select an option from a group of items.
The choices should have few characters; if the choices are long;
check boxes are preferable.

Push buttons display a text label surrounded by a 1-pixel-wide
rectangular frame. They appear in a horizontal or vertical row with
no pixels between the buttons. The buttons share a common border
so there appears to be a one pixel line between two controls. The
current selection is highlighted.

.

The List By dialog of the Address Book and the Details dialog of the
ToDo List contain examples of rows of push buttons.

Left anchor Controls how the object resizes itself when its text
label is changed.
Valid values:

• checked (left bound fixed)

• unchecked (right bound fixed)

Font Font used to draw the text label of the button. Choose
from the pop-up menu to select one of the fonts.

Label Text displayed in the popup trigger (right of the
arrow).

List ID ID of the List object that pops up when the user taps
the pop-up trigger.

Palm OS Resources
Push Button Resource

98 Palm OS SDK Reference

Attributes

Comment To create a row of push buttons, create a number of individual push
button resources with the same height and align them by specifying
the same top position for each button.

Object
Identifier

Name of the object. Assigned by developer and used
by Constructor during header file generation and
update.

Button ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of button.
Valid values: 0 – 159

Top Origin Form-relative position of top of button.
Valid values: 0 – 159

Width Width of the button in pixels. Should be size of label
plus two pixels at each end.
Valid values: 1 – 160

Height Height of the button in pixels. Should be font size plus
two pixels.
Valid values: 1 – 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

Group ID Group ID of a push button that is part of an exclusive
group. Only one push button in an exclusive group
may be depressed at a time. Ungrouped
(nonexclusive) push buttons have zero as a group ID.
This feature must be enforced by the application.
Valid values: 0 – 65535

Font Font used to draw the text label of the button. Choose
from the pop-up menu to select one of the fonts.

Label Text displayed inside the push button.

Palm OS Resources
Repeating Button Resource

Palm OS SDK Reference 99

Repeating Button Resource

Overview The repeating button object is identical to the button object in its
appearance. The repeating button is used for buttons that need to be
triggered continuously by holding the pen down on them.

A good example for a repeating button is the scroll arrow, which
moves text as long as it’s held down.

Attributes

Object
Identifier

Name of the object. Assigned by developer and used
by Constructor during header file generation and
update.

Button ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of button.
Valid values: 0 – 159

Top Origin Form-relative position of top of button.
Valid values: 0 – 159

Width Width of the button in pixels.
Valid values: 1 – 160

Height Height of the button in pixels.
Valid values: 1 – 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

Anchor Left Controls how the object resizes itself when its text
label is changed. If checked, the left bound of the
object is fixed; if unchecked, the right bound is fixed.

Frame If checked, a rectangular frame with rounded corners
is drawn around the button.

Palm OS Resources
Scroll Bar Resource

100 Palm OS SDK Reference

Comments The attributes match those of the Button Resource (tBTN); the
behavior differs.

You can also use repeating buttons to create increment arrows. See
Button Resource for more information.

Scroll Bar Resource

Overview The scroll bar resource helps developers to provide scrolling
behavior for fields and tables.

Example

Non-bold
Frame

Determines the width of the rectangular frame drawn
around the object.
Valid values:

• checked (1-pixel-wide frame)

• unchecked (2-pixel-wide frame)

Font Font used to draw the text label of the button. Choose
from the pop-up menu to select one of the fonts.

Label Text displayed inside the button.

scroll car

Palm OS Resources
Selector Trigger Resource

Palm OS SDK Reference 101

Attributes

Selector Trigger Resource

UI Structure ControlType

Overview Users can tap a selector trigger to pop up a dialog that lets them
select an item. The selected item becomes the label of the selector

Object
Identifier

Name of the object. Assigned by developer and used
by Constructor during header file generation and
update.

Scrollbar ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of the scroll bar.
Valid values: 0 – 159

Top Origin Form-relative position of top of the scroll bar.
Valid values: 0 – 159

Width Width of the scroll bar in pixels.
7 (the default) is strongly recommended.

Height Height of the scroll bar in pixels.
Valid values:1 – 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

Value Current top value of the scroll bar’s car (movable
piece).

Min Value Position of the scroll car when the scroll bar is at the
top. Default should usually be 0.

Max Value Position of the scroll car when the scroll bar is at the
bottom. To compute this value, use the formula:
Number of lines – Page size + Overlap.

Page Size Number of lines to scroll at one time.

Palm OS Resources
Selector Trigger Resource

102 Palm OS SDK Reference

trigger. For example, a selector trigger for time pops up a time
selector. The selected time is entered into the selector trigger.

A selector trigger displays a text label surrounded by a gray
rectangular frame, as shown below:

Attributes

Object
Identifier

Name of the object. Assigned by developer and used
by Constructor during header file generation and
update.

Selector
Trigger ID

ID of the object (assigned by Constructor).

Left Origin Form-relative position of the left side of the object.
Valid values: 0 – 159

Top Origin Form-relative position of top of object.
Valid values: 0 – 159

Width Width of the object in pixels.
Valid values: 1– 160

Height Height of the object in pixels. Height extends two
pixels above and one pixel below the 9-point plain
font. Height is one pixel above command buttons to
accommodate the gray frame.
Valid values: 1– 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

Anchor Left Controls how the object resizes itself when its text
label is changed. If checked, the left bound of the
object is fixed, if unchecked, the right bound is fixed.
Valid values:

• checked (left bound fixed)

• unchecked (right bound fixed)

Palm OS Resources
String Resource

Palm OS SDK Reference 103

String Resource

Name Strings

Overview Stores data strings used by the program. String resources may be
entered as text strings or as a series of hexadecimal characters.

Attributes String The text string to be stored, in decimal ASCII.

Comments The string resource uses either the string or data. If both are entered,
they are concatenated.

Table Resource

Overview The table object allows the developer to organize a collection of
objects on the display. For example, a table might contain a column
of labels that correspond to a column of fields. Under some
circumstances, a one-column table may be preferable to a list.

Comments Since tables are scrollable, they may be larger than the display.

Example

Attributes

Font Font used to draw the text label of the button. Choose
from the pop-up menu to select one of the fonts.

Label Text in the selector trigger.

Object
Identifier

Name of the object. Assigned by developer, used by
Constructor during header file generation/update.

Table ID ID of the object (assigned by Constructor).

Palm OS Resources
Table Resource

104 Palm OS SDK Reference

Left Origin Form-relative position of left side of the object.
Valid values: 0 – 159

Top Origin Form-relative position of top of object.
Valid values: 0 – 159

Width Width of the object in pixels.
Valid values: 1– 160

Height Height of the object in pixels.
Valid values: 1–160

Editable If the user can modify the table.

Rows Number of rows in the table.

Columns Number of columns in the table.

Column
width

Width of the nth column.

Palm OS SDK Reference 105

3
Palm OS Events
Palm OS® events are structures (defined in the header files
Event.h, SysEvent.h, and INetMgr.h) that the system passes to
the application when the user interacts with the graphical user
interface. Chapter 4, “Event Loop” on page 65 in the Palm OS
Programmer’s Companion discusses in detail how this works. This
chapter provides reference-style information about each event. First
it shows the types used by Palm OS events. Then it discusses the
following events in alphabetical order:

Event UI Object

appStopEvent N.A.

ctlEnterEvent, ctlExitEvent, ctlRepeatEvent,
ctlSelectEvent

Control

daySelectEvent N.A.

fldChangedEvent, fldEnterEvent,
fldHeightChangedEvent

Field

frmCloseEvent, frmGotoEvent, frmLoadEvent,
frmOpenEvent, frmSaveEvent, frmUpdateEvent,
frmTitleEnterEvent, frmTitleSelectEvent

Form

frmGadgetEnterEvent, frmGadgetMiscEvent Extended gadget

inetSockReadyEvent, inetSockStatusChangeEvent N.A. (INetLib)

keyDownEvent N.A.

lstEnterEvent, lstExitEvent, lstSelectEvent List

menuEvent, menuOpenEvent, menuCloseEvent,
menuCmdBarOpenEvent

Menu

nilEvent N.A.

penDownEvent, penMoveEvent, penUpEvent N.A. (pen)

Palm OS Events
Event Data Structures

106 Palm OS SDK Reference

Event Data Structures

eventsEnum
The eventsEnum enum specifies the possible event types.

enum events {
nilEvent = 0,
penDownEvent,
penUpEvent,
penMoveEvent,
keyDownEvent,
winEnterEvent,
winExitEvent,
ctlEnterEvent,
ctlExitEvent,
ctlSelectEvent,
ctlRepeatEvent,
lstEnterEvent,
lstSelectEvent,
lstExitEvent,
popSelectEvent,
fldEnterEvent,
fldHeightChangedEvent,
fldChangedEvent,
tblEnterEvent,
tblSelectEvent,
daySelectEvent,
menuEvent,
appStopEvent = 22,
frmLoadEvent,

popSelectEvent Popup (Control)

sclEnterEvent, sclRepeatEvent, sclExitEvent Scroll bar

tblEnterEvent, tblExitEvent, tblSelectEvent Table

winEnterEvent, winExitEvent Window

Event UI Object

Palm OS Events
Event Data Structures

Palm OS SDK Reference 107

frmOpenEvent,
frmGotoEvent,
frmUpdateEvent,
frmSaveEvent,
frmCloseEvent,
frmTitleEnterEvent,
frmTitleSelectEvent,
tblExitEvent,
sclEnterEvent,
sclExitEvent,
sclRepeatEvent,
tsmFepModeEvent,

menuCmdBarOpenEvent = 0x0800,
menuOpenEvent,
menuCloseEvent,
frmGadgetEnterEvent,
frmGadgetMiscEvent,

firstINetLibEvent = 0x1000,
firstWebLibEvent = 0x1100,

firstUserEvent = 0x6000
} eventsEnum;

Each of these event types is discussed in alphabetical order below.

EventType
The EventType structure contains all the data associated with a
system event. All event types have some common data. Most events
also have data specific to those events. The specific data uses a
union that is part of the EventType data structure. The union can
have up to 8 words of specific data.

The common data is documented below the structure. The Event
Reference section gives details on the important data associated
with each type of event.

typedef struct {
eventsEnum eType;
Boolean penDown;

Palm OS Events
Event Data Structures

108 Palm OS SDK Reference

UInt8 tapCount;
Int16 screenX;
Int16 screenY;
union{
...

} data;
} EventType;

Common Field Descriptions

NOTE: Remember that the data field is part of the access path
to an identifier in the EventType structure. As an example, the
code to access the controlID field of a ctlEnterEvent would
be:
EventType *event;

//...

if (event->data.ctlEnter.controlID ==

MyAppLockButton)

eType One of the eventsEnum constants. Specifies the type
of the event.

penDown true if the pen was down at the time of the event,
otherwise false.

tapCount The number of taps received at this location. This
value is used mainly by fields. When the user taps in a
text field, two taps selects a word, and three taps
selects the entire line.

screenX Window-relative position of the pen in pixels (number
of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels (number
of pixels from the top left of the window).

data The specific data for an event, if any. The data is a
union, and its exact contents depend on the eType
field. The Event Reference section in this chapter
shows what the data field contains for each event.

Palm OS Events
Event Reference

Palm OS SDK Reference 109

Compatibility

The tapCount field is only defined if 3.5 New Feature Set is
present. Because of the tapCount field, it’s particularly important
that you clear the event structure before you use it to add a new
event to the queue in Palm OS 3.5 and higher. Otherwise, the
tapCount value may be incorrect for the new event.

EventPtr
The EventPtr defines a pointer to an EventType.

typedef EventType *EventPtr;

Event Reference

appStopEvent
When the system wants to launch a different application than the
one currently running, the event manager sends this event to
request the current application to terminate. In response, an
application has to exit its event loop, close any open files and forms,
and exit.

If an application doesn’t respond to this event by exiting, the system
can’t start the other application.

ctlEnterEvent
The control routine CtlHandleEvent sends this event when it
receives a penDownEvent within the bounds of a control.

For this event, the data field contains the following structure:

struct ctlEnter {
UInt16 controlID;
struct ControlType *pControl;

} ctlEnter;

Palm OS Events
Event Reference

110 Palm OS SDK Reference

Field Descriptions

ctlExitEvent
The control routine CtlHandleEvent sends this event. When
CtlHandleEvent receives a ctlEnterEvent, it tracks the pen
until the pen is lifted from the display. If the pen is lifted within the
bounds of a control, a ctlSelectEvent is added to the event
queue; if not, a ctlExitEvent is added to the event queue.

The following data is passed with the event:

Field Descriptions

ctlRepeatEvent
The control routine CtlHandleEvent sends this event. When
CtlHandleEvent receives a ctlEnterEvent in a repeating
button (tREP) or a feedback slider control (tslf), it sends a
ctlRepeatEvent. When CtlHandleEvent receives a
ctlRepeatEvent in a repeating button, it sends another
ctlRepeatEvent if the pen remains down within the bounds of
the control for 1/2 second beyond the last ctlRepeatEvent.

When CtlHandleEvent receives a ctlRepeatEvent in a
feedback slider control, it sends a ctlRepeatEvent each time the
slider’s thumb moves by at least one pixel. Feedback sliders do not
send ctlRepeatEvents at regular intervals like repeating buttons
do.

controlID Developer-defined ID of the control.

pControl Pointer to a control structure (ControlType).

penDown true if the pen was down at the time of the event,
otherwise false.

screenX Window-relative position of the pen in pixels (number of
pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels (number of
pixels from the top left of the window).

Palm OS Events
Event Reference

Palm OS SDK Reference 111

If you return true in response to a ctlRepeatEvent, it stops the
ctlRepeatEvent loop. No further ctlRepeatEvents are sent.

For this event, the data field contains the following structure:

struct ctlRepeat {
UInt16 controlID;
struct ControlType *pControl;
UInt32 time;
UInt16 value;

} ctlRepeat;

Field Descriptions

Compatibility

The value field is only present if 3.5 New Feature Set is present.

ctlSelectEvent
The control routine CtlHandleEvent sends this event. When
CtlHandleEvent receives a ctlEnterEvent, it tracks the pen
until the pen is lifted. If the pen is lifted within the bounds of the
same control it went down in, a cltSelectEvent is added to the
event queue; if not, a ctlExitEvent is added to the event queue.

For this event, the data field contains the following structure:

struct ctlSelect {
UInt16 controlID;
struct ControlType *pControl;
Boolean on;
UInt8 reserved1;
UInt16 value;

} ctlSelect;

controlID Developer-defined ID of the control.

pControl Pointer to a control structure (ControlType).

time System-ticks count when the event is added to the
queue.

value Current value if the control is a feedback slider.

Palm OS Events
Event Reference

112 Palm OS SDK Reference

Field Descriptions

Compatibility

The value field is only present if 3.5 New Feature Set is present.

daySelectEvent
The system-internal DayHandleEvent routine, which handles
events in the day selector object, handles this event. When the day
selector object displays a calendar month, the user can select a day
by tapping on it.

This event is sent when the pen touches and is lifted from a day
number.

For this event, the data field contains the following structure:

struct daySelect {
struct DaySelectorType *pSelector;
Int16 selection;
Boolean useThisDate;
UInt8 reserved1;

} daySelect;

Field Descriptions

controlID Developer-defined ID of the control.

pControl Pointer to a control structure (ControlType).

on true when the control is depressed; otherwise,
false.

reserved1 Unused.

value Current value if the control is a slider.

pSelector Pointer to a day selector structure
(DaySelectorType).

selection Not used.

useThisDate Set to true to automatically use the selected date.

reserved1 Unused.

Palm OS Events
Event Reference

Palm OS SDK Reference 113

fldChangedEvent
The field routine FldHandleEvent sends this event when the text
of a field has been scrolled as a result of drag-selecting. When
FldHandleEvent receives a fldEnterEvent, it positions the
insertion point and tracks the pen until it’s lifted. Text is selected
(highlighted) appropriately as the pen is dragged.

For this event, the data field contains the following structure:

struct fldChanged {
UInt16 fieldID;
struct FieldType *pField;

} fldChanged;

Field Descriptions

fldEnterEvent
The field routine FldHandleEvent sends this event when the field
receives a penDownEvent within the bounds of a field. For this
event, the data field contains the following structure:

struct fldEnter {
UInt16 fieldID;
struct FieldType *pField;

} fldEnter;

Field Descriptions

fldHeightChangedEvent
The field routine FldHandleEvent sends this event. The field API
supports a feature that allows a field to dynamically resize its visible
height as text is added or removed from it. Functions in the field API
send a fldHeightChangedEvent to change the height of a field.

fieldID Developer-defined ID of the field.

pField Pointer to a field structure (FieldType).

fieldID Developer-defined ID of the field.

pField Pointer to a field structure (FieldType).

Palm OS Events
Event Reference

114 Palm OS SDK Reference

If the field is contained in a table, the table’s code handles the
fldHeightChangedEvent. If the field is directly on a form, your
application code should handle the fldHeightChangedEvent
itself. The form code does not handle the event for you.

For this event, the data field contains the following structure:

struct fldHeightChanged {
UInt16 fieldID;
struct FieldType *pField;
Int16 newHeight;
UInt16 currentPos;

} fldHeightChanged;

Field Descriptions

frmCloseEvent
The form routines FrmGotoForm and FrmCloseAllForms send
this event. FrmGotoForm sends a frmCloseEvent to the currently
active form; FrmCloseAllForms sends a frmCloseEvent to all
forms an application has loaded into memory. If an application
doesn’t intercept this event, the routine FrmHandleEvent erases
the specified form and releases any memory allocated for it.

For this event, the data field contains the following structure:

struct frmClose {
UInt16 formID;

} frmClose;

Field Descriptions

fieldID Developer-defined ID of the field.

pField Pointer to a field structure (FieldType).

newHeight New visible height of the field, in number of lines.

currentPos Current position of the insertion point.

formID Developer-defined ID of the form.

Palm OS Events
Event Reference

Palm OS SDK Reference 115

frmGadgetEnterEvent
The function FrmHandleEvent sends this event when there is a
penDownEvent within the bounds of an extended gadget. The
gadget handler function (see FormGadgetHandler) should handle
this event.

For this event, the data field contains the following structure:

struct gadgetEnter {
UInt16 gadgetID;
struct FormGadgetType *gadgetP;

} gadgetEnter;

Field Descriptions

Compatibility

Implemented only if 3.5 New Feature Set is present.

frmGadgetMiscEvent
An application may choose to send this event when it needs to pass
information to an extended gadget. The FrmHandleEvent function
passes frmGadgetMiscEvents on to the extended gadget’s
handler function (see FormGadgetHandler).

For this event, the data field contains the following structure:

struct gadgetMisc {
UInt16 gadgetID;
struct FormGadgetType *gadgetP;
UInt16 selector;
void *dataP;

} gadgetMisc;

gadgetID Developer-defined ID of the gadget.

gadgetP Pointer to the FormGadgetType object
representing this gadget.

Palm OS Events
Event Reference

116 Palm OS SDK Reference

Field Descriptions

Compatibility

Implemented only if 3.5 New Feature Set is present.

frmGotoEvent
An application may choose to send itself this event when it receives
a sysAppLaunchCmdGoto launch code. sysAppLaunchCmdGoto
is generated when the user selects a record in the global find facility.
Like frmOpenEvent, frmGotoEvent is a request that the
application initialize and draw a form, but this event provides extra
information so that the application may display and highlight the
matching string in the form.

The application is responsible for handling this event.

For this event, the data field contains the following structure:

struct frmGoto {
UInt16 formID;
UInt16 recordNum;
UInt16 matchPos;
UInt16 matchLen;
UInt16 matchFieldNum;
UInt32 matchCustom;

} frmGoto;

Field Descriptions

gadgetID Developer-defined ID of the gadget.

gadgetP Pointer to the FormGadgetType object
representing this gadget.

selector Any necessary integer value to pass to the gadget
handler function.

dataP A pointer to any necessary data to pass to the
gadget handler function.

formID Developer-defined ID of the form.

recordNum Index of record containing the match string.

Palm OS Events
Event Reference

Palm OS SDK Reference 117

frmLoadEvent
The form routines FrmGotoForm and FrmPopupForm send this
event. It’s a request that the application load a form into memory.

The application is responsible for handling this event.

For this event, the data field contains the following structure:

struct frmLoad {
UInt16 formID;

} frmLoad;

Field Descriptions

frmOpenEvent
The form routines FrmGotoForm and FrmPopupForm send this
event. It is a request that the application initialize and draw a form.

The application is responsible for handling this event.

For this event, the data field contains the following structure:

struct frmOpen {
UInt16 formID;

} frmOpen;

Field Descriptions

matchPos Position of the match.

matchLen Length of the matched string.

matchFieldNum Number of the field the matched string was
found in.

matchCustom Application-specific information. You might use
this if you need to provide extra information to
locate the matching string within the record.

formID Developer-defined ID of the form.

formID Developer-defined ID of the form.

Palm OS Events
Event Reference

118 Palm OS SDK Reference

frmSaveEvent
The form routine FrmSaveAllForms sends this event. It is a
request that the application save any data stored in a form.

The application is responsible for handling this event.

No data is passed with this event.

frmTitleEnterEvent
The control routine FrmHandleEvent sends this event when it
receives a penDownEvent within the bounds of the title of the form.
Note that only the written title, not the whole title bar is active.

For this event, the data field contains the following structure:

struct frmTitleEnter {
UInt16 formID;
} frmTitleEnter;

Field Descriptions

frmTitleSelectEvent
The control routine FrmHandleEvent sends this event.
FrmHandleEvent receives a frmTitleEnterEvent, it tracks the
pen until the pen is lifted. If the pen is lifted within the bounds of
the active same title bar region, a frmTitleSelectEvent is added
to the event queue.

For this event, the data field contains the following structure:

struct frmTitleSelect {
UInt16 formID;

} frmTitleSelect;

Field Descriptions

formID Developer-defined ID of the form.

formID Developer-defined ID of the form.

Palm OS Events
Event Reference

Palm OS SDK Reference 119

Compatibility

In Palm OS version 3.5 and higher, FrmHandleEvent responds to
frmTitleSelectEvent. Its response is to enqueue a
keyDownEvent with a vchrMenu character to display the form’s
menu.

frmUpdateEvent
The form routine FrmUpdateForm, or in some cases the routine
FrmEraseForm, sends this event when it needs to redraw the
region obscured by the form being erased.

Generally, the region obscured by a form is saved and restored by
the form routines without application intervention. However, in
cases where the system is running low on memory, the form’s
routine may not save obscured regions itself. In that case, the
application adds a frmUpdateEvent to the event queue. The form
receives the event and redraws the region using the updateCode
value.

An application can define its own updateCode and then use this
event to also trigger behavior in another form, usually when
changes made to one form need to be reflected in another form.

For this event, the data field contains the following structure:

struct frmUpdate {
UInt16 formID;
UInt16 updateCode;

} frmUpdate;

Field Descriptions

formID Developer-defined ID of the form.

updateCode The reason for the update request. FrmEraseForm
sets this code to frmRedrawUpdateCode, which
indicates that the entire form needs to be redrawn.
Application developers can define their own
updateCode. The updateCode is passed as a
parameter to FrmUpdateForm.

Palm OS Events
Event Reference

120 Palm OS SDK Reference

inetSockReadyEvent
This event is returned only by INetLibGetEvent (not
EvtGetEvent) when the Internet library determines that a socket
has data ready for an INetLibSockRead.

For this event, the data field contains the following structure:

struct {
MemHandle sockH;
UInt32 context;
Boolean inputReady;
Boolean outputReady;

} inetSockReady;

Field Descriptions

The penDown, tapCount, screenX and screenY fields are not
valid for Internet library events and should be ignored.

Compatibility

Implemented only if Wireless Internet Feature Set is present.

inetSockStatusChangeEvent
This event is returned only by INetLibGetEvent (not
EvtGetEvent) when the Internet library determines that a socket
has data ready for an INetLibSockRead.

For this event, the data field contains the following structure:

struct {
MemHandle sockH;
UInt32 context;
UInt16 status;

sockH Socket handle of the socket that this event refers
to.

context Not used.

inputReady true when the socket has data ready for the
INetLibSockRead call.

outputReady Not used.

Palm OS Events
Event Reference

Palm OS SDK Reference 121

Err sockErr;
}inetSockStatusChange;

Field Descriptions

The penDown, tapCount, screenX and screenY fields are not
valid for Internet library events and should be ignored.

Compatibility

Implemented only if Wireless Internet Feature Set is present.

keyDownEvent
This event is sent by the system when the user enters a Graffiti®
character, presses one of the buttons below the display, or taps one
of the icons in the icon area; for example, the Find icon.

For this event, the data field contains the following structure:

struct _KeyDownEventType {
WChar chr;
UInt16 keyCode;
UInt16 modifiers;

};

Field Descriptions

sockH Socket handle of the socket that this event refers
to.

context Not used.

status Current status of the socket. This is one of the
INetStatusEnum constants.

sockErr Reason for failure of the last operation, if any. The
current socket error can be cleared by calling
INetLibSockStatus.

chr The character code.

keyCode Unused.

modifiers 0, or one or more of the following values:

Palm OS Events
Event Reference

122 Palm OS SDK Reference

lstEnterEvent
The list routine LstHandleEvent sends this event when it receives
a penDownEvent within the bounds of a list object.

For this event, the data field contains the following structure:

struct lstEnter {
UInt16 listID;
struct ListType *pList;
Int16 selection;

} lstEnter;

Field Descriptions

shiftKeyMask Graffiti is in case-shift mode.

capsLockMask Graffiti is in cap-shift mode.

numLockMask Graffiti is in numeric-shift mode.

commandKeyMask The Graffiti glyph was the menu
command glyph or a virtual key code.

optionKeyMask Not implemented. Reserved.

controlKeyMask Not implemented. Reserved.

autoRepeatKeyMask Event was generated due to auto-repeat.

doubleTapKeyMask Not implemented. Reserved.

poweredOnKeyMask The key press caused the system to be
powered on.

appEvtHookKeyMask System use only.

libEvtHookKeyMask System use only.

listID Developer-defined ID of the list.

pList Pointer to a list structure (ListType).

selection Unused.

Palm OS Events
Event Reference

Palm OS SDK Reference 123

lstExitEvent
The list routine LstHandleEvent sends this event. When
LstHandleEvent receives a lstEnterEvent, it tracks the pen
until the pen is lifted. If the pen is lifted within the bounds of a list, a
lstSelectEvent is added to the event queue; if not, a
lstExitEvent is added to the event queue.

For this event, the data field contains the following structure:

struct lstExit {
UInt16 listID;
struct ListType *pList;

} lstExit;

Field Descriptions

lstSelectEvent
The list routine LstHandleEvent sends this event. When
LstHandleEvent receives a lstEnterEvent, it tracks the pen
until the pen is lifted. If the pen is lifted within the bounds of a list, a
lstSelectEvent is added to the event queue; if not, a
lstExitEvent is added to the event queue.

For this event, the data field contains the following structure:

struct lstSelect {
UInt16 listID;
struct ListType *pList;
Int16 selection;

} lstSelect;

Field Descriptions

listID Developer-defined ID of the list.

pList Pointer to a list structure (ListType).

listID Developer-defined ID of the list.

pList Pointer to a list structure (ListType).

selection Item number (zero-based) of the new selection.

Palm OS Events
Event Reference

124 Palm OS SDK Reference

menuCloseEvent
This event is not currently used.

menuCmdBarOpenEvent
The menu routine MenuHandleEvent sends this event when the
user enters the menu shortcut keystroke, causing the command
toolbar to be displayed at the bottom of the screen. Applications
might respond to this event by calling MenuCmdBarAddButton to
add custom buttons to the command toolbar. Shared libraries or
other non-application code resources can add buttons to the toolbar
by registering to receive the sysNotifyMenuCmdBarOpenEvent
notification. (See Chapter 36, “Notification Manager.”)

For this event, the data field contains the following structure:

struct menuCmdBarOpen {
Boolean preventFieldButtons;
UInt8 reserved;

} menuCmdBarOpen;

Field Descriptions

To prevent the command toolbar from being displayed, respond to
this event and return true. Returning true prevents the form
manager from displaying the toolbar.

Compatibility

Implemented only if 3.5 New Feature Set is present.

menuEvent
The menu routine MenuHandleEvent sends this event:

• When the user selects an item from a pull-down menu

preventFieldButtons If true, the field manager does not add
the standard cut, copy, paste, and undo
buttons when the focus is on a field. If
false, the field adds the buttons.

reserved Unused.

Palm OS Events
Event Reference

Palm OS SDK Reference 125

• When the user selects a menu command using the Graffiti
command keystroke followed by an available command; for
example, Command-C for copy

• When the user taps one of the buttons on the command
toolbar and the button is set up to generate a menuEvent.

For this event, the data field contains the following structure:

struct menu {
UInt16 itemID;

} menu;

Field Descriptions

menuOpenEvent
The menu routine MenuHandleEvent sends this event when a new
active menu has been initialized. A menu becomes active the first
time the user taps the Menu silk-screen button or taps the form’s
titlebar, and it might need to be re-initialized and reactivated several
times during the life of an application.

A menu remains active until one of the following happens:

• A FrmSetMenu call changes the active menu on the form.

• A new form, even a modal form or alert panel, becomes
active.

Suppose a user selects your application’s About item from the
Options menu then clicks the OK button to return to the main form.
When the About dialog is displayed, it becomes the active form,
which causes the main form’s menu state to be erased. This menu
state is not restored when the main form becomes active again. The
next time the user requests the menu, it must be initialized again, so
menuOpenEvent is sent again.

Applications might respond to this event by adding, hiding, or
unhiding menu items using the functions MenuAddItem,
MenuHideItem, or MenuShowItem.

A menuCloseEvent is defined by the system, but it is not currently
sent. If you need to perform some cleanup (such as closing a

itemID Item ID of the selected menu command.

Palm OS Events
Event Reference

126 Palm OS SDK Reference

resource) after the menu item you added is no longer needed, do so
in response to frmCloseEvent.

For this event, the data field contains the following structure:

struct menuOpen {
UInt16 menuRscID;
Int16 cause;

} menuOpen;

Field Descriptions

Compatibility

Implemented only if 3.5 New Feature Set is present.

nilEvent
A nilEvent is useful for animation, polling, and similar situations.

The event manager sends this event when there are no events in the
event queue. This can happen if the routine EvtGetEvent is passed
a time-out value (a value other than evtWaitForever, -1). If
EvtGetEvent is unable to return an event in the specified time, it
returns a nilEvent. Different Palm OS versions and different
devices can send nilEvents under different circumstances, so you
might receive a nilEvent even before the timeout has expired.

penDownEvent
The event manager sends this event when the pen first touches the
digitizer.

The following data is passed with the event:

menuRscID Resource ID of the menu.

cause Reason for opening the menu. If menuButtonCause,
the user tapped the Menu silkscreen button or tapped
the form’s titlebar, and the menu is going to be
displayed. If menuCommandCause, the user entered
the command keystroke, so the menu is becoming
active without being displayed.

Palm OS Events
Event Reference

Palm OS SDK Reference 127

Field Descriptions

penMoveEvent
The event manager sends this event when the pen is moved on the
digitizer. Note that several kinds of UI objects, such as controls and
lists, track the movement directly, and no penMoveEvent is
generated.

The following data is passed with the event:

Field Descriptions

penUpEvent
The event manager sends this event when the pen is lifted from the
digitizer. Note that several kinds of UI objects, such as controls and
lists, track the movement directly, and no penUpEvent is
generated.

For this event, the data field contains the following structure:

struct _PenUpEventType {
PointType start;
PointType end;

penDown Always true.

tapCount The number of taps received at this location.

screenX Window-relative position of the pen in pixels (number
of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels (number
of pixels from the top left of the window).

penDown Always true.

tapCount The number of taps received at this location.

screenX Window-relative position of the pen in pixels (number
of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels (number
of pixels from the top left of the window).

Palm OS Events
Event Reference

128 Palm OS SDK Reference

};

Field Descriptions

In addition, the following data is passed with this event:

popSelectEvent
The form routine FrmHandleEvent sends this event when the user
selects an item in a popup list.

For this event, the data field contains the following structure:

struct popSelect {
UInt16 controlID;
struct ControlType *controlP;
UInt16 listID;
struct ListType *listP;
Int16 selection;
Int16 priorSelection;

} popSelect;

Field Descriptions

start Display-relative start point of the stroke.

end Display-relative end point of the stroke.

penDown Always false.

tapCount The number of taps received at this location.

screenX Window-relative position of the pen in pixels
(number of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels
(number of pixels from the top left of the window).

controlID Developer-defined ID of the resource.

controlP Pointer to the control structure
(ControlType) of the popup trigger object.

listID Developer-defined ID of the popup list object.

Palm OS Events
Event Reference

Palm OS SDK Reference 129

sclEnterEvent
The routine SclHandleEvent sends this event when it receives a
penDownEvent within the bounds of a scroll bar.

Applications usually don’t have to handle this event.

For this event, the data field contains the following structure:

struct sclEnter {
UInt16 scrollBarID;
struct ScrollBarType *pScrollBar;

} sclEnter;

Field Descriptions

sclExitEvent
The routine SclHandleEvent sends this event when the user lifts
the pen from the scroll bar.

Applications that want to implement non-dynamic scrolling should
wait for this event, then scroll the text using the values provided in
value and newvalue.

Note that this event is sent regardless of previous
sclRepeatEvents. If, however, the application has implemented
dynamic scrolling, it doesn’t have to catch this event.

For this event, the data field contains the following structure:

struct sclExit {
UInt16 scrollBarID;

listP Pointer to the list structure (ListType) of the
popup list object.

selection Item number (zero-based) of the new list
selection.

priorSelection Item number (zero-based) of the prior list
selection.

scrollBarID Developer-defined ID of the scroll bar resource.

pScrollBar Pointer to the scroll bar structure.

Palm OS Events
Event Reference

130 Palm OS SDK Reference

struct ScrollBarType *pScrollBar;
Int16 value;
Int16 newValue;

} sclExit;

Field Descriptions

sclRepeatEvent
The routine SclHandleEvent sends this event when the pen is
continually held within the bounds of a scroll bar.

Applications that implement dynamic scrolling should watch for
this event. In dynamic scrolling, the display is updated as the user
drags the scroll bar (not after the user releases the scroll bar).

For this event, the data field contains the following structure:

struct sclRepeat {
UInt16 scrollBarID;
struct ScrollBarType *pScrollBar;
Int16 value;
Int16 newValue;
Int32 time;

} sclRepeat;

Field Descriptions

scrollBarID Developer-defined ID of the scroll bar
resource.

pScrollBar Pointer to the scroll bar structure.

value Initial position of the scroll bar

newvalue New position of the scroll bar. Given value
and newValue, you can actually tell how
much you have scrolled.

scrollBarID Developer-defined ID of the scroll bar
resource.

pScrollBar Pointer to the scroll bar structure.

value Initial position of the scroll bar.

Palm OS Events
Event Reference

Palm OS SDK Reference 131

tblEnterEvent
The table routine TblHandleEvent sends this event when it
receives a penDownEvent within the bounds of an active item in a
table object.

For this event, the data field contains the following structure:

struct tblEnter {
UInt16 tableID;
struct TableType *pTable;
Int16 row;
Int16 column;

} tblEnter;

Field Descriptions

tblExitEvent
The table routine TblHandleEvent sends this event. When
TblHandleEvent receives a tblEnterEvent, it tracks the pen
until it’s lifted from the display. If the pen is lifted within the bounds
of the same item it went down in, a tblSelectEvent is added to
the event queue; if not, a tblExitEvent is added to the event
queue.

For this event, the data field contains the following structure:

newValue New position of the scroll bar. Given value
and newValue, you can actually tell how
much you have scrolled.

time System-ticks count when the event is added to
the queue to determine when the next event
should occur.

tableID Developer-defined ID of the table.

pTable Pointer to a table structure (TableType).

row Row of the item.

column Column of the item.

Palm OS Events
Event Reference

132 Palm OS SDK Reference

struct tblExit {
UInt16 tableID;
struct TableType *pTable;
Int16 row;
Int16 column;

} tblExit;

Field Descriptions

tblSelectEvent
The table routine TblHandleEvent sends this event. When
TblHandleEvent receives a tblEnterEvent, it tracks the pen
until the pen is lifted from the display. If the pen is lifted within the
bounds of the same item it went down in, a tblSelectEvent is
added to the event queue; if not, a tblExitEvent is added to the
event queue.

For this event, the data field contains the following structure:

struct tblSelect {
UInt16 tableID;
struct TableType *pTable;
Int16 row;
Int16 column;

} tblSelect;

Field Descriptions

tableID Developer-defined ID of the table.

pTable Pointer to a table structure (TableType).

row Row of the item.

column Column of the item.

tableID Developer-defined ID of the table.

pTable Pointer to a table structure (TableType).

row Row of the item.

column Column of the item.

Palm OS Events
Event Reference

Palm OS SDK Reference 133

winEnterEvent
The event manager sends this event when a window becomes the
active window. This can happen in two ways: a call to
WinSetActiveWindow is issued (FrmSetActiveForm calls this
routine), or the user taps within the bounds of a window that is
visible but not active. All forms are windows, but not all windows
are forms; for example, the menu bar is a window but not a form.

For this event, the data field contains the following structure:

struct _WinEnterEventType {
WinHandle enterWindow;
WinHandle exitWindow;

};

Field Descriptions

winExitEvent
This event is sent by the event manager when a window is
deactivated. A window is deactivated when another window
becomes the active window (see winEnterEvent).

For this event, the data field contains the following structure:

struct _WinExitEventType {
WinHandle enterWindow;
WinHandle exitWindow;

};

enterWindow Handle to the window we are entering. If the
window is a form, then this is a pointer to a
FormType structure; if not, it’s a pointer to a
WindowType structure.

exitWindow Handle to the window we are exiting, if there is
currently an active window, or zero if there is no
active window. If the window is a form, then this
is a pointer to a FormType structure; if not, it’s a
pointer to a WindowType structure.

Palm OS Events
Event Reference

134 Palm OS SDK Reference

Field Descriptions

enterWindow Handle to the window we are entering. If the
window is a form, then this is a pointer to a
FormType structure; if not, it’s a pointer to a
WindowType structure.

exitWindow Handle to the window we are exiting. If the
window is a form, then this is a pointer to a
FormType structure; if not, it’s a pointer to a
WindowType structure.

Palm OS SDK Reference 135

4
Categories
This chapter describes the categories API as declared in the header
file Category.h. It discusses the following topics:

• Category Data Structures

• Category Constants

• Category Functions

For more information on categories see the section “Categories” on
page 107 in the Palm OS Programmer’s Companion.

Category Data Structures
An AppInfo block can hold any data at all. The category APIs
provide a way to implement categories and use the AppInfo block
as the storage area. An application could implement the category
popup on its own without this API and use the Data Manager
category routines, and /or the AppInfo block, as it chooses.

This API requires that the AppInfo block be used like this:

AppInfoType
typedef struct {
UInt16 renamedCategories;
Char categoryLabels

[dmRecNumCategories]
[dmCategoryLength];

UInt8 categoryUniqIDs
[dmRecNumCategories];

UInt8 lastUniqID;
UInt8 padding;

} AppInfoType;

typedef AppInfoType *AppInfoPtr;

Categories
Category Constants

136 Palm OS SDK Reference

Field Descriptions

Category Constants
The following category constants are defined:

renamedCategories Used by CategorySetName as a
bit field indicating which
categories have been renamed.
Usually cleared by a conduit.

categoryLabels An array of strings containing the
category names.

dmRecNumCategories Number of categories in the list.

dmCategoryLength Length of the category names.

categoryUniqIDs Category IDs used for
synchronization. Unique IDs
generated by the device are
between 0 - 127. Those from the
PC are 128 - 255.

lastUniqID Used for sorting and assigning
unique IDs.

Constant Value Description

categoryHideEditCategory 10000 Used as an argument to
CategoryCreateList
to suppress adding the
“Edit Categories” item to
the list.

categoryDefaultEditCategoryString 10001 Used as an argument to
CategoryCreateList
to show the default “Edit
Categories” item in the
list.

Categories
Category Functions

Palm OS SDK Reference 137

Compatibility

The functionality of the constants categoryHideEditCategory
and categoryDefaultEditCategoryString is present only if
the 3.5 New Feature Set is present.

Category Functions

CategoryCreateList

Purpose Read a database’s categories and store them in a list.

Prototype void CategoryCreateList (DmOpenRef db,
ListType *listP, Uint16 currentCategory,
Boolean showAll, Boolean showUneditables,
UInt8 numUneditableCategories,
UInt32 editingStrID, Boolean resizeList)

Parameters ->db Opened database containing category info.

<-listP A pointer to the list of category names. See
ListType.

->currentCategory
Category to select.

->showAll true to have an “All” category.

->showUneditables
true to show uneditable categories.

->numUneditableCategories
This is the number of categories, starting with
the first one at zero, that may not have their
names edited by the user. For example, it’s
common to have an “Unfiled” category at
position zero which is not editable.

->editingStrID The resource ID of a string to use with the “Edit
Categories” list item.

If you don’t want users to edit categories, pass
the categoryHideEditCategory constant.

Categories
Category Functions

138 Palm OS SDK Reference

If you want to allow users to edit categories,
pass the
categoryDefaultEditCategoryString
constant.

To display an alternate string, pass a tSTR
resource ID of your own string.

->resizeList true to resize the list to the number of
categories. Set to true for pop-ups, false
otherwise.

Result A memory block is allocated containing the list of categories. The
ListType in listP must be allocated outside this function.
However, this function allocates some structs that are stored INSIDE
the ListType, so CategoryFreeList must be called when you
are done with the list to free the memory block.

Comments You use this function to create a list of categories to display in your
application’s user interface, usually by calling LstDrawList or
LstPopupList. The category list is obtained from the
AppInfoType structure of the database specified by the db
parameter.

If the showAll parameter is true, the “All” item is first in the list,
followed by the editable categories in the database and then the
categories that cannot be edited. The option to edit categories is last
in the list and can be suppressed if desired. If the current selection is
not in any category, it is marked “Unfiled”.

Compatibility Implemented only if 2.0 New Feature Set is present.

The functionality of the constants
categoryDefaultEditCategoryString and
categoryHideEditString is available only if 3.5 New Feature
Set is present. In earlier versions, you can suppress the Edit
Categories string by passing 0 for the editingStrID parameter, or
include the item by passing categoryEditStrID.

See Also CategoryCreateListV10

Categories
Category Functions

Palm OS SDK Reference 139

CategoryCreateListV10

Purpose Read a database’s categories and set the category list.

This function is obsolete and should not be used.

Prototype void CategoryCreateListV10 (DmOpenRef db,
ListType *lst, UInt16 currentCategory,
Boolean showAll)

Parameters ->db Database containing categories to extract.

<-lst List object to load categories into.

->currentCategory
Set as the current selection in the resulting list.

->showAll true if an “All” category should be included in
the list.

Result Returns nothing.

Compatibility This function corresponds to the Palm OS® 1.0 version of
CategoryCreateList.

NOTE: Obsolete functions are provided ONLY for backward
compatibility; for example, so a 1.0 application will work on 3.x OS
releases. New code should not call these routines!

See Also CategoryCreateList

CategoryEdit

Purpose Event handler for the “Edit Categories” dialog. Called by
CategorySelect if the user chooses the Edit Category line. (If
the Edit Category line is present)

->db Database containing the categories to be edited.

Categories
Category Functions

140 Palm OS SDK Reference

<-categoryP Set to the category selected when the dialog is
done.

->titleStrID Title of the dialog bar.

->numUneditableCategories
This is the number of categories (starting with
the first one at zero) that may not have their
names edited by the user. For example, it’s
common to have an “Unfiled” category at
position zero which is not editable.

Result Returns true if any of the following conditions are true:

• The current category is renamed.

• The current category is deleted.

• The current category is merged with another category.

Compatibility This function was revised for Palm OS 2.0, and Palm OS 3.0. In Palm
OS 3.0, the numUneditableCategories parameter was added.

NOTE: This enhancement is implemented only if 3.0 New
Feature Set is present.

See Also CategoryEditV20, CategoryEditV10

CategoryEditV20

Purpose Event handler for the Edit Categories dialog.Called by
CategorySelect if the user chooses the Edit Category line. (If the Edit
Category line is present.)

This function is obsolete and should not be used.

Prototype Boolean CategoryEdit (DmOpenRef db,
UInt16 *categoryP, UInt32 titleStrID)

Parameters ->db Database containing the categories to be edited.

Categories
Category Functions

Palm OS SDK Reference 141

<-categoryP Set to the category selected when the dialog is
done.

->titleStrID Title of the dialog bar.

Result Returns true if any of the following conditions are true:

• The current category is renamed.

• The current category is deleted.

• The current category is merged with another category.

Compatibility This function corresponds to the Palm OS 2.0 version of
CategoryEdit. Implemented only if 3.0 New Feature Set is
present.

NOTE: Obsolete functions are provided ONLY for backward
compatibility. For example, so a 1.0 application will work on 3.x
OS releases. New code should not call these routines!

See Also CategoryEdit, CategoryEditV10

CategoryEditV10

Purpose Event handler for the Edit Categories dialog. Called by
CategorySelect if the user chooses the “Edit Category” line. (If
the Edit Category line is present.)

This function is obsolete and should not be used.

Prototype Boolean CategoryEditV10 (DmOpenRef db,
UInt16 *categoryP)

Parameters ->db Database containing the categories to be edited.

<-categoryP Current category (index into the database).

Result Returns true if any of the following conditions are true:

• The current category is renamed.

Categories
Category Functions

142 Palm OS SDK Reference

• The current category is deleted.

• The current category is merged with another category.

Compatibility This function corresponds to the Palm OS 1.0 version of
CategoryEdit.

NOTE: Obsolete functions are provided ONLY for backward
compatibility; for example, so a 1.0 application will work on 3.x OS
releases. New code should not call these routines!

See Also CategoryEdit, CategoryEditV20

CategoryFind

Purpose Return the unique ID of the category that matches the name passed.

Prototype UIint16 CategoryFind (DmOpenRef db, const
Char *name)

Parameters ->db Database to search for the passed category.

->name Category name.

Result Returns the category index.

CategoryFreeList

Purpose This routine unlocks or frees memory locked or allocated by
CategoryCreateList.

Prototype void CategoryFreeList (DmOpenRef db, const
ListType *listP, Boolean showAll,
UInt32 editingStrID)

Parameters ->db Categories database.

->listP Pointer to the category list.

Categories
Category Functions

Palm OS SDK Reference 143

->showAll true if the list was created with an “All”
category.

->editingStrID The editingStrID should be the same as that
passed to CategoryCreateList. The
function will unlock the resource.

Result Returns nothing.

Comments Calling this function doesn’t remove the categories from the passed
database. It frees the items in the list. The developer must manage
the ListType structure.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also CategoryFreeListV10

CategoryFreeListV10

Purpose Unlock or free memory locked or allocated by
CategoryCreateListV10 which was attached to the passed list
object.

This function is obsolete and should not be used.

Prototype void CategoryFreeListV10 (DmOpenRef db, const
ListType *lst)

Parameters ->db Database containing the categories.

->1st Pointer to the category list containing the
memory to be freed.

Result Returns nothing.

Compatibility This function corresponds to the Palm OS 1.0 version of
CategoryFreeList.

Categories
Category Functions

144 Palm OS SDK Reference

NOTE: Obsolete functions are provided ONLY for backward
compatibility; for example, so a 1.0 application will work on 3.x OS
releases. New code should not call these routines!

See Also CategoryFreeList

CategoryGetName

Purpose Return the name of the specified category.

Prototype void CategoryGetName (DmOpenRef db, UInt16 index,
Char *name)

Parameters ->db Database that contains the categories.

->index Category index.

<-name Buffer to hold category name. Buffer should be
dmCategoryLength in size.

Result Stores the category name in the name buffer passed.

CategoryGetNext

Purpose Given a category index, this function returns the index of the next
category. Note that categories are not stored sequentially.

Prototype UInt16 CategoryGetNext (DmOpenRef db,
UInt16 index)

Parameters ->db Database that contains the categories.

->index Category index.

Result Category index of next category.

Categories
Category Functions

Palm OS SDK Reference 145

Comments Don’t use this function to search for a category. Instead, use it to
allow your users to cycle through categories, for example, using the
hard-button scroll bars on the device.

Compatibility In Palm OS 1.0, the system chose Unfiled as one category.

In Palm OS 2.0 and later, the system skips both Unfiled and
empty records. That is, if a category contains no records, then its
index will not be returned by this function.

CategoryInitialize

Purpose Initialize the category names, IDs, and flags.

Prototype void CategoryInitialize (AppInfoPtr appInfoP,
UInt16 localizedAppInfoStrID)

Parameters ->appInfoP Application info pointer. See AppInfoType.

->localizedAppInfoStrID
Resource ID of the localized category names.
This must be a resource of the type
appInfoStringsRsc.

Result Returns nothing.

Comments Used to make sure the first field in your application info block is of
type AppInfoType, and to initialize category names.

Compatibility Implemented only if 2.0 New Feature Set is present.

Categories
Category Functions

146 Palm OS SDK Reference

CategorySelect

Purpose Process the selection and editing of categories.Usually you call this
when the user taps the category pop-up trigger.

Prototype Boolean CategorySelect (DmOpenRef db, const
FormType *frm, UInt16 ctlID, UInt16 lstID,
Boolean title, UInt16 *categoryP,
char *categoryName, UInt8 numUneditableCategories,
UInt32 editingStrID)

Parameters ->db Database that contains the categories.

->frm Form that contains the category popup list.

->ctlID ID of the popup trigger.

->lstID ID of the popup list.

->title true if the popup trigger is on the title line,
which means that an “All” choice should be
added to the list. Pass false if the popup
trigger appears in a form where a specific
record is being modified or any where else the
“All” choice should not appear.

<->categoryP Current category (pointer into db structure).

<->categoryName
Name of the current category.

->numUneditableCategories
This is the number of categories, starting with
the first one at zero, that may not have their
names edited by the user. For example, it’s
common to have an “Unfiled” category at
position zero which is not editable.

->editingStrID
The resource ID of a string to use with the “Edit
Categories” list item.

If you don’t want users to edit categories, pass
the categoryHideEditCategory constant.

Categories
Category Functions

Palm OS SDK Reference 147

If you want to allow users to edit categories,
pass the
categoryDefaultEditCategoryString
constant.

To display an alternate string, pass a tSTR
resource ID of your own string.

Result Returns true if any of the following conditions are true:

• The current category is renamed.

• The current category is deleted.

• The current category is merged with another category.

Comments This function calls CategoryEdit if the user selects the Edit
Categories option in the list.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also CategorySelectV10

CategorySelectV10

Purpose Process the selection and editing of categories.

This function is obsolete and should not be used.

Prototype Boolean CategorySelectV10 (DmOpenRef db, const
FormType *frm, UInt16 ctlID, UInt16 lstID,
Boolean title, UInt16 *categoryP,
Char *categoryName)

Parameters ->db Database that contains the categories.

->frm Form that contains the category popup list.

->ctlID ID of the popup trigger.

->lstID ID of the popup list.

->title true if the popup trigger is on the title line.

Categories
Category Functions

148 Palm OS SDK Reference

<->categoryP Current category (index into db structure).

<->categoryName
Name of the current category.

Result Returns true if any of the following conditions are true:

• The current category is renamed.

• The current category is deleted.

• The current category is merged with another category.

Compatibility This function corresponds to the Palm OS 1.0 version of
CategorySelect.

NOTE: Obsolete functions are provided ONLY for backward
compatibility; for example, so a 1.0 application will work on 3.x OS
releases. New code should not call these routines!

CategorySetName

Purpose Set the category name and rename bits. A NULL pointer removes the
category name.

Prototype void CategorySetName (DmOpenRef db, UInt16 index,
const Char nameP)

Parameters ->db Database containing the categories to change.

->index Index of category to set.

->nameP A category name (null-terminated) or NULL
pointer to remove the category.

Result Returns nothing.

Compatibility Implemented only if 2.0 New Feature Set is present.

Categories
Category Functions

Palm OS SDK Reference 149

CategorySetTriggerLabel

Purpose Set the label displayed by the category trigger. The category name is
truncated if it is larger than the system default maximum width.
CategorySetTrigger calls CategoryTruncateName, with a
default (system-provided) width.

Prototype void CategorySetTriggerLabel (ControlType *ctl,
Char *name)

Parameters ->ctl Pointer to control object to relabel.

->name Pointer to the name of the new category.

Result Does not copy the string. Ctl points to the passed string when
done. See CtlSetLabel.

CategoryTruncateName

Purpose Truncate a category name so that it’s short enough to display. The
category name is truncated if it’s longer than maxWidth.

Prototype void CategoryTruncateName (Char *name,
UInt16 maxWidth)

Parameters ->name Category name to truncate.

->maxWidth Maximum size, in pixels, of truncated category
(including ellipsis).

Result Returns nothing. Stores the changed category in name

Palm OS SDK Reference 151

5
Clipboard
This chapter provides reference material for the clipboard API
defined in Clipboard.h. It covers:

• Clipboard Data Structures

• Clipboard Functions

Clipboard Data Structures

ClipboardFormatType
The ClipboardFormatType enum specifies the type of data to
add to the clipboard or retrieve from the clipboard.

enum clipboardFormats {
clipboardText,
clipboardInk,
clipboardBitmap };

typedef enum clipboardFormats
ClipboardFormatType;

Value Descriptions

Clipboards for each type of data are separately maintained. That is,
if you add a string of text to the clipboard, then add a bitmap, then
ask to retrieve a clipboardText item from the clipboard, you will
receive the string you added before the bitmap; the bitmap does not
overwrite textual data and vice versa.

clipboardText Textual data. This is the most commonly
used clipboard.

clipboardInk Reserved.

clipboardBitmap Bitmap data.

Clipboard
Clipboard Functions

152 Palm OS SDK Reference

Clipboard Functions

ClipboardAddItem

Purpose Add the item passed to the specified clipboard. Replaces the current
item (if any) of that type.

Prototype void ClipboardAddItem
(const ClipboardFormatType format,
const void *ptr, UInt16 length)

Parameters -> format Text, ink, bitmap, etc. See
ClipboardFormatType.

-> ptr Pointer to the item to place on the clipboard.

-> length Size in bytes of the item to place on the
clipboard.

Result Returns nothing.

Comments The clipboard makes a copy of the data that you pass to this
function. Thus, you may free any data that you’ve passed to the
clipboard without destroying the contents of the clipboard. You may
also add constant data or stack-based data to the clipboard.

See Also FldCut, FldCopy

Clipboard
Clipboard Functions

Palm OS SDK Reference 153

ClipboardAppendItem

Purpose Append data to the item on the clipboard.

Prototype Err ClipboardAppendItem
(const ClipboardFormatType format,
const void *ptr, UInt16 length)

Parameters -> format Text, ink, bitmap, etc. See
ClipboardFormatType. This function is
intended to be used only for the
clipboardText format.

-> ptr Pointer to the data to append to the item on the
clipboard.

-> length Size in bytes of the data to append to the
clipboard.

Result 0 upon success or memErrNotEnoughSpace if there is not enough
space to append the data to the clipboard.

Comments This function differs from ClipboardAddItem in that it does not
overwrite data already on the clipboard. It allows you to create a
large text item on the clipboard from several small disjointed pieces.
When other applications retrieve the text from the clipboard, it’s
retrieved as a single unit.

This function simply appends the specified item to the item already
on the clipboard without attempting to parse the format. It’s
assumed that you’ll call it several times over a relatively short
interval and that no other application will attempt to retrieve text
from the clipboard before your application is finished appending.

Compatibility Implemented only if 3.2 New Feature Set is present.

Clipboard
Clipboard Functions

154 Palm OS SDK Reference

ClipboardGetItem

Purpose Return the handle of the contents of the clipboard of a specified type
and the length of a clipboard item.

Prototype MemHandle ClipboardGetItem
(const ClipboardFormatType format, UInt16 *length)

Parameters -> format Text, ink, bitmap, etc. See
ClipboardFormatType.

<- length The length in bytes of the clipboard item is
returned here.

Result Handle of the clipboard item.

Comments The handle returned is a handle to the actual clipboard chunk. It is
not suitable for passing to any API that modifies memory (such as
FldSetTextHandle). Consider this to be read-only access to the
chunk. Copy the contents of the clipboard to your application’s own
storage as soon as possible and use that reference instead of the
handle returned by this function.

Don’t free the handle returned by this function; it is freed when a
new item is added to the clipboard.

Text retrieved from the clipboard does not have a NULL terminator.
You must use the length parameter to determine the length in
bytes of the string you’ve retrieved.

Palm OS SDK Reference 155

6
Controls
This chapter describes the control object API as declared in the
header file Control.h. It discusses the following topics:

• Control Data Structures

• Control Resources

• Control Functions

For more information on controls, see the section “Controls” in the
Palm OS Programmer’s Companion.

Control Data Structures

ButtonFrameType
The ButtonFrameType enum specifies the border style for the
button. It defines values for the frame field of ControlAttrType.

enum buttonFrames {noButtonFrame,
standardButtonFrame, boldButtonFrame,
rectangleButtonFrame};

typedef enum buttonFrames ButtonFrameType;

Value Descriptions

noButtonFrame The button has no border.

standardButtonFrame Standard button rectangular border
with rounded corners.

boldButtonFrame Bolded rectangular border with
rounded corners.

rectangleButtonFrame Rectangular border with square
corners.

Controls
Control Data Structures

156 Palm OS SDK Reference

ControlAttrType
The ControlAttrType bit field specifies the control’s visible
characteristics. It is defined as follows:

typedef struct {
UInt8 usable :1;
UInt8 enabled :1;
UInt8 visible :1;
UInt8 on :1;
UInt8 leftAnchor:1;
UInt8 frame :3;
UInt8 drawnAsSelected : 1;
UInt8 graphical :1;
UInt8 vertical :1;

} ControlAttrType;

Your code should treat the ControlAttrType structure as opaque.
Use the functions specified in the descriptions below to retrieve and
set each value. Do not attempt to change structure member values
directly.

Field Descriptions

usable If 0, the control is not considered to be part of
the interface of the current application, and it
doesn’t appear on screen. You can use
CtlSetUsable, CtlShowControl, or
CtlHideControl to set or clear this value.

enabled If 0, the control is visible but doesn’t respond to
the pen. This value is set by CtlSetEnabled
and returned by CtlEnabled.

visible Set and cleared internally when the control is
drawn (CtlDrawControl) and erased
(CtlEraseControl).

on If set, the control has the value “on.” For
example, a check box that has the on value has
a check mark displayed in it. Use
CtlGetValue and CtlSetValue to retrieve
and set this value.

Controls
Control Data Structures

Palm OS SDK Reference 157

Compatibility

The drawnAsSelected, graphical, and vertical attributes are
only present if 3.5 New Feature Set is present.

ControlPtr
The ControlPtr is a pointer to a ControlType structure.

typedef ControlType* ControlPtr;

ControlStyleType
The ControlStyleType enum specifies values for the
ControlType style field, which specifies the type of the control
(button, push button, and so on).

enum controlStyles {buttonCtl, pushButtonCtl,
checkboxCtl, popupTriggerCtl,
selectorTriggerCtl, repeatingButtonCtl,
sliderCtl, feedbackSliderCtl};

leftAnchor Used by controls that expand and shrink their
width when the label is changed. If this
attribute is set, the left bound of the control is
fixed.

frame The type of frame drawn around the button
controls. See ButtonFrameType for possible
values. Only button controls use this attribute;
for all other controls, the ControlStyleType
determines the frame.

drawnAsSelected Used on Palm OS® release 3.5 for button
controls that contain no text (indicating that the
button is displayed on top of a bitmap). If set,
the button is drawn as inverted. If clear, the
button is drawn normally.

graphical If set, the control is a graphical control, slider,
or feedback slider.

vertical Not currently used.

Controls
Control Data Structures

158 Palm OS SDK Reference

typedef enum controlStyles ControlStyleType;

Value Descriptions

buttonCtl Button. Buttons display a text label in a
box. The ButtonFrameType specifies
the type of box.

pushButtonCtl Push button. Selecting a push button
inverts its display so that it appears
highlighted.

checkboxCtl Check box. Check boxes display a
setting of either on (checked) or off
(unchecked)

popupTriggerCtl Popup trigger. Popup triggers display a
graphic element followed by a text label.
They are used to display popup lists.

selectorTriggerCtl Selector trigger. Selector triggers display
a text label surrounded by a gray
rectangular frame. The control expands
or contracts to the width of the new
label.

repeatingButtonCtl Repeating button. Repeating buttons
look like buttons; however, a repeating
button is repeatedly selected if the user
holds the pen on it.

Controls
Control Data Structures

Palm OS SDK Reference 159

Compatibility

The sliderCtl and feedbackSliderCtl values are only
defined if 3.5 New Feature Set is present.

ControlType
The ControlType structure defines the type and characteristics of
a control. It is defined as follows:

typedef struct {
UInt16 id;
RectangleType bounds;
Char * text;
ControlAttrType attr;
ControlStyleType style;
FontID font;
UInt8 group;
UInt8 reserved;

} ControlType;

Your code should treat the ControlType structure as opaque. The
fields in the struct are set by values you specify when you create the
control resource, and they typically do not change. Use the
functions specified in the descriptions below to retrieve and set the
values. Do not attempt to change structure member values directly.

sliderCtl Slider. Sliders display two bitmaps: one
representing the current value (the
thumb), and another representing the
scale of available values. The user can
slide the thumb to the left or the right to
change the value.

feedbackSliderCtl Feedback slider. A feedback slider looks
like a slider; however, a feedback slider
sends events each time the thumb moves
while the pen is still down. A regular
slider sends an event only when the user
releases the pen.

Controls
Control Data Structures

160 Palm OS SDK Reference

Field Descriptions

GraphicControlType
The GraphicControlType struct defines a graphical control. A
graphical control is like any other control except that it displays a
bitmap in place of the text label.

typedef struct GraphicControlType {
UInt16 id;
RectangleType bounds;
DmResID bitmapID;
DmResID selectedBitmapID;
ControlAttrType attr;
ControlStyleType style;
FontID unused;
UInt8 group;

id ID value you specified when you created the control
resource.

bounds Bounds of the control, in window-relative coordinates.
The control’s text label is clipped to the control’s
bounds. The control’s frame is drawn around (outside)
the bounds of the control. FrmGetObjectBounds and
FrmSetObjectBounds retrieve and set this value.

text Pointer to the control’s label. If text is NULL, the control
has no label. Use CtlGetLabel and CtlSetLabel to
retrieve and set this value.

attr Control attributes. See ControlAttrType.

style Style of the control. See ControlStyleType.

font Font to use to draw the control’s label.

group Group ID of a push button or a check box that is part of
an exclusive group. The control routines don’t
automatically turn one control off when another is
selected. It’s up to the application or a higher-level
object, like a dialog box, to manage this.

reserved Reserved for future use.

Controls
Control Data Structures

Palm OS SDK Reference 161

UInt8 reserved;
} GraphicControlType;

Your code should treat the GraphicControlType structure as
opaque. The fields in the struct are set by values you specify when
you create the control resource, and they typically do not change.
Use the functions specified in the descriptions below to retrieve and
set the values. Do not attempt to change structure member values
directly.

Field Descriptions

id ID value you specified when you created the
control resource.

bounds Bounds of the control, in window-relative
coordinates. The control’s frame is drawn
around (outside) the bounds of the control.
FrmGetObjectBounds and
FrmSetObjectBounds retrieve and set this
value.

bitmapID Resource ID of the bitmap to display in the
button. You can use CtlSetGraphics to
change this value.

selectedBitmapID If the button should show a different bitmap
when selected, this field contains the
resource ID of that bitmap. You typically use
this field for push buttons or repeating
buttons. CtlSetGraphics can change this
value.

attr Control attributes. See ControlAttrType.
For a graphical control, the graphical
attribute must be set.

style Style of the control. See
ControlStyleType. A graphical control
can be any type of control other than
checkboxCtl.

unused Unused.

Controls
Control Data Structures

162 Palm OS SDK Reference

Compatibility

This struct is defined only if 3.5 New Feature Set is present.

SliderControlType
The SliderControlType struct defines a slider control or a
feedback slider control.

typedef struct SliderControlType {
UInt16 id;
RectangleType bounds;
DmResID thumbID;
DmResID backgroundID;
ControlAttrType attr;
ControlStyleType style;
UInt8 reserved;
Int16 minValue;
Int16 maxValue;
Int16 pageSize;
Int16 value;
MemPtr activeSliderP;

} SliderControlType;

Your code should treat the SliderControlType structure as
opaque. The fields in the struct are set by values you specify when
you create the control resource, and they typically do not change.
You can use CtlSetSliderValues to set new minimum,
maximum, page size, and current values, and
CtlGetSliderValues to retrieve these values. Do not attempt to
change structure member values directly.

group Group ID of a push button that is part of an
exclusive group. The control routines don’t
automatically turn one control off when
another is selected. It’s up to the application
or a higher-level object, like a dialog box, to
manage this.

reserved Reserved for future use.

Controls
Control Data Structures

Palm OS SDK Reference 163

Field Descriptions

id ID value you specified when you created the
control resource.

bounds Bounds of the control, in window-relative
coordinates. FrmGetObjectBounds and
FrmSetObjectBounds retrieve and set this
value.

thumbID Resource ID of the bitmap to use for the
slider knob (called the “thumb”). If NULL, the
default bitmap is used.

backgroundID Resource ID of the bitmap to use for the
slider background. If NULL, the default
bitmap is used.

attr Control attributes. See ControlAttrType.
For a slider, the graphical attribute is set.

style Style of the control. See
ControlStyleType. Must be sliderCtl
or feedbackSliderCtl.

reserved Reserved for future use.

minValue Value of the slider when the thumb is all the
way to the left.

maxValue Value of the slider when the thumb is all the
way to the right.

pageSize Amount by which to increase or decrease the
slider value when the user taps to the right or
left of the thumb.

Controls
Control Resources

164 Palm OS SDK Reference

Compatibility

This struct is defined only if 3.5 New Feature Set is present.

Control Resources
Different resources are associated with different controls, as follows:

• Button—Button Resource (tBTN)

• Popup trigger— Popup Trigger Resource (tPUT)

• Selector trigger—Selector Trigger Resource (tSLT)

• Repeat control—Repeating Button Resource (tREP)

• Push button—Push Button Resource (tPBN)

• Check box—Check Box Resource (tCBX)

• Slider— Slider Resource (tsld)

• Feedback slider— Feedback Slider Resource (tslf)

value Current value represented by the slider. Use
CtlGetValue and CtlSetValue to
retrieve and set this value.

activeSliderP Pointer to a memory location used when the
slider is active. A slider is active if it is
currently being drawn or if it is tracking the
pen. If the slider is inactive, this pointer is
NULL.

Controls
Control Functions

Palm OS SDK Reference 165

Control Functions

CtlDrawControl

Purpose Draw a control object (and the text or graphic in it) on screen.

Prototype void CtlDrawControl (ControlType *controlP)

Parameters -> controlP Pointer to the control object to draw. (See
ControlType.)

Result Returns nothing.

Comments The control is drawn only if its usable attribute is true. This
function sets the visible attribute to true.

Compatibility In releases prior to Palm OS® 3.5, it is common to create graphical
buttons by drawing a button with no text label on top of a bitmap. If
3.5 New Feature Set is present, you should use graphical controls
instead. (See GraphicControlType.) CtlDrawControl attempts
to provide backward compatibility for the old-style graphical
buttons.

See Also CtlSetUsable, CtlShowControl

CtlEnabled

Purpose Return true if the control responds to the pen.

Prototype Boolean CtlEnabled (const ControlType *controlP)

Parameters -> controlP Pointer to control object. (See ControlType.)

Result Returns true if the controls object responds to the pen; false if
not.

Controls
Control Functions

166 Palm OS SDK Reference

Comments This function provides no indication of whether the control is
visible on the screen. A control that doesn’t respond to the pen may
be visible, and if so, its appearance is no different from controls that
do respond to the pen. You might use such a control to display some
state of your application that cannot be modified.

See Also CtlSetEnabled

CtlEraseControl

Purpose Erase a usable and visible control object and its frame from the
screen.

Prototype void CtlEraseControl (ControlType *controlP)

Parameters -> controlP Pointer to control object to erase. (See
ControlType.)

Comments This function sets the visible attribute to false. If 3.5 New
Feature Set is present, it also sets the drawnAsSelected attribute
to false.

Don’t call this function directly; instead, use FrmHideObject,
which calls this function.

CtlGetLabel

Purpose Return a character pointer to a control’s text label.

Prototype const Char *CtlGetLabel
(const ControlType *controlP)

Parameters -> controlP Pointer to control object. (See ControlType.)

Result Returns a pointer to a null-terminated string.

Controls
Control Functions

Palm OS SDK Reference 167

Comments Make sure that controlP is not a graphical control or a slider
control. The graphical control and slider control structures do not
contain a text label field.

See Also CtlSetLabel

CtlGetSliderValues

Purpose Return current values used by a slider control.

Prototype void CtlGetSliderValues (const ControlType *ctlP,
UInt16 *minValueP, UInt16 *maxValueP,
UInt16 *pageSizeP, UInt16 *valueP)

Parameters -> ctlP Pointer to a control object. (See ControlType.)

<- minValueP The slider’s minimum value. Pass NULL if you
don’t want to retrieve this value.

<- maxValueP The slider’s maximum value. Pass NULL if you
don’t want to retrieve this value.

<- pageSizeP The slider’s page size value. Pass NULL if you
don’t want to retrieve this value.

<- valueP The slider’s current value. Pass NULL if you
don’t want to retrieve this value.

Result Returns nothing. The slider’s values are returned in the parameters
to this function.

Comments If ctlP is not a slider or a feedback slider, this function immediately
returns.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also CtlSetSliderValues, SliderControlType

Controls
Control Functions

168 Palm OS SDK Reference

CtlGetValue

Purpose Return the current value of the specified control.

Prototype Int16 CtlGetValue (const ControlType *controlP)

Parameters -> controlP Pointer to a control object. (See ControlType.)

Result Returns the current value of the control. For most controls the return
value is either 0 (off) or 1 (on). For sliders, this function returns the
value of the value field.

See Also CtlSetValue, FrmGetControlGroupSelection,
FrmSetControlGroupSelection, FrmGetControlValue,
FrmSetControlValue

CtlHandleEvent

Purpose Handle event in the specified control object.

Prototype Boolean CtlHandleEvent (ControlType *controlP,
EventType pEvent)

Parameters -> controlP Pointer to control object. (See ControlType.)

-> pEvent Pointer to an EventType structure.

Result Returns true if an event is handled by this function. Events that are
handled are:

• penDownEvent — If the pen is within the bounds of the
control

• ctlEnterEvent, ctlRepeatEvent, and
ctlExitEvent— If the control ID in the event data matches
the control’s ID.

Comments The control object must be usable, visible, and respond to the pen
for this function to handle the event.

Controls
Control Functions

Palm OS SDK Reference 169

When this routine receives a penDownEvent, it checks if the pen
position is within the bounds of the control object. If it is, a
ctlEnterEvent is added to the event queue and the routine exits.

When this routine receives a ctlEnterEvent, the control object is
redrawn as necessary as either selected or deselected, depending on
its previous state.

When this routine receives a ctlEnterEvent or
ctlRepeatEvent, it checks that the control ID in the passed event
record matches the ID of the specified control. If they match, this
routine tracks the pen until it comes up or until it leaves the object’s
bounds. When that happens, ctlSelectEvent is sent to the event
queue if the pen came up in the bounds of the control. If the pen
exits the bounds, a ctlExitEvent is sent to the event queue.

CtlHideControl

Purpose Set a control’s usable attribute to false and erase the control from
the screen.

Prototype void CtlHideControl (ControlType *controlP)

Parameters -> controlP Pointer to the control object to hide. (See
ControlType.)

Result Returns nothing.

Comments A control that is not usable doesn’t draw and doesn’t respond to the
pen.

This function is the same as CtlEraseControl except that it also
sets usable to false (in addition to setting visible to false).

Don’t call this function directly; instead, use FrmHideObject,
which performs the same function and works for all user interface
objects.

See Also CtlShowControl

Controls
Control Functions

170 Palm OS SDK Reference

CtlHitControl

Purpose Simulate tapping a control. This function adds a ctlSelectEvent
to the event queue.

Prototype void CtlHitControl (const ControlType *controlP)

Parameters -> controlP Pointer to a control object. (See ControlType.)

Result Returns nothing.

Comments Useful for testing.

CtlNewControl

Purpose Create a new control object dynamically and install it in the
specified form.

Prototype ControlType *CtlNewControl (void **formPP,
UInt16 ID, ControlStyleType style,
const Char *textP, Coord x, Coord y, Coord width,
Coord height, FontID font, UInt8 group,
Boolean leftAnchor)

Parameters <-> formPP Pointer to the pointer to the form in which the
new control is installed. This value is not a
handle; that is, the formPP value may change if
the object moves in memory. In subsequent
calls, always use the new formPP value
returned by this function.

-> ID Symbolic ID of the control.

-> style A ControlStyleType value specifying the
kind of control to create: button, push button,
repeating button, check box, popup trigger, or
popup selector. To create a graphical control or
slider control dynamically, use
CtlNewGraphicControl or
CtlNewSliderControl, respectively.

Controls
Control Functions

Palm OS SDK Reference 171

-> textP Pointer to the control’s label text. If textP is
NULL, the control has no label. Only buttons,
push buttons, and text boxes have text labels.
Because the contents of this pointer are copied
into their own buffer, you can free the textP
pointer any time after the CtlNewControl
function returns. The buffer into which this
string is copied is freed automatically when
you remove the control from the form or delete
the form.

-> x Horizontal coordinate of the upper-left corner
of the control’s boundaries, relative to the
window in which it appears.

-> y Vertical coordinate of the upper-left corner of
the control’s boundaries, relative to the
window in which it appears.

-> width Width of the control, expressed in pixels. Valid
values are 1–160. If the value of either of the
width or height parameters is 0, the control is
sized automatically as necessary to display the
text passed as the value of the text parameter.

-> height Height of the control, expressed in pixels. Valid
values are 1–160. If the value of either of the
width or height parameters is 0, the control is
sized automatically as necessary to display the
text passed as the value of the text parameter.

-> font Font used to draw the control’s label.

-> group Group ID of a push button or a check box that
is part of an exclusive group. The control
routines don’t turn one control off
automatically when another is selected. It’s up
to the application or a higher-level object, such
as a dialog box, to manage this.

Controls
Control Functions

172 Palm OS SDK Reference

-> leftAnchor true specifies that the left bound of this control
is fixed. This attribute is used by controls that
resize dynamically in response to label text
changes.

Result Returns a pointer to the new control.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also CtlValidatePointer, FrmRemoveObject

CtlNewGraphicControl

Purpose Create a new graphical control dynamically and install it in the
specified form.

Prototype GraphicControlType *CtlNewGraphicControl
(void **formPP, UInt16 ID, ControlStyleType style,
DmResID bitmapID, DmResID selectedBitmapID,
Coord x, Coord y, Coord width, Coord height,
UInt8 group, Boolean leftAnchor)

Parameters <-> formPP Pointer to the pointer to the form in which the
new control is installed. This value is not a
handle; that is, the formPP value may change if
the object moves in memory. In subsequent
calls, always use the new formPP value
returned by this function.

-> ID Symbolic ID of the control.

-> style A ControlStyleType value specifying the
kind of control to create: button, push button,
popup trigger, repeating button, or popup
selector. Graphic controls cannot be check
boxes.

-> bitmapID Resource ID of the bitmap to display on the
control.

Controls
Control Functions

Palm OS SDK Reference 173

-> selectedBitmapID
Resource ID of the bitmap to display when the
control is selected, if different from bitmapID.

-> x Horizontal coordinate of the upper-left corner
of the control’s boundaries, relative to the
window in which it appears.

-> y Vertical coordinate of the upper-left corner of
the control’s boundaries, relative to the
window in which it appears.

-> width Width of the control, expressed in pixels. Valid
values are 1–160.

-> height Height of the control, expressed in pixels. Valid
values are 1–160.

-> group Group ID of a push button that is part of an
exclusive group. The control routines don’t
turn one control off automatically when
another is selected. It’s up to the application or
a higher-level object, such as a dialog box, to
manage this.

-> leftAnchor true specifies that the left bound of this control
is fixed.

Result Returns a pointer to the new graphical control. See
GraphicControlType.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also CtlNewSliderControl, CtlNewControl,
CtlValidatePointer, FrmRemoveObject

Controls
Control Functions

174 Palm OS SDK Reference

CtlNewSliderControl

Purpose Create a new slider or feedback slider dynamically and install it in
the specified form.

Prototype SliderControlType *CtlNewSliderControl
(void **formPP, UInt16 ID, ControlStyleType style,
DmResID thumbID, DmResID backgroundID, Coord x,
Coord y, Coord width, Coord height,
UInt16 minValue, UInt16 maxValue, UInt16 pageSize,
UInt16 value)

Parameters <-> formPP Pointer to the pointer to the form in which the
new control is installed. This value is not a
handle; that is, the formPP value may change if
the object moves in memory. In subsequent
calls, always use the new formPP value
returned by this function.

-> ID Symbolic ID of the slider.

-> style Either sliderCtl or feedbackSliderCtl.
See ControlStyleType.

-> thumbID Resource ID of the bitmap to display as the
slider thumb. The slider thumb is the knob that
the user can drag to change the slider’s value.
To use the default thumb bitmap, pass NULL for
this parameter.

-> backgroundID Resource ID of the bitmap to display as the
slider background. To use the default
background bitmap, pass NULL for this
parameter.

-> x Horizontal coordinate of the upper-left corner
of the slider’s boundaries, relative to the
window in which it appears.

-> y Vertical coordinate of the upper-left corner of
the slider’s boundaries, relative to the window
in which it appears.

Controls
Control Functions

Palm OS SDK Reference 175

-> width Width of the slider, expressed in pixels. Valid
values are 1–160.

-> height Height of the slider, expressed in pixels. Valid
values are 1–160.

-> minValue Value of the slider when its thumb is all the
way to the left.

-> maxValue Value of the slider when its thumb is all the
way to the right.

-> pageSize Amount by which to increase or decrease the
slider’s value when the user clicks to the right
or left of the thumb.

-> value The initial value to display in the slider.

Result Returns a pointer to the new slider control. See
SliderControlType.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also CtlNewGraphicControl, CtlNewControl,
CtlValidatePointer, FrmRemoveObject

CtlSetEnabled

Purpose Set a control as enabled or disabled. Disabled controls do not
respond to the pen.

Prototype void CtlSetEnabled (ControlType *controlP,
Boolean enable)

Parameters -> controlP Pointer to a control object. (See ControlType.)

-> enable true to enable the control; false to disable
the control.

Result Returns nothing.

Controls
Control Functions

176 Palm OS SDK Reference

Comments If you disable a visible control, the control is still displayed, and its
appearance is no different from controls that do respond to the pen.
You might use such a control to inform your users of some state of
your application that cannot be modified.

See Also CtlEnabled

CtlSetGraphics

Purpose Set the bitmaps for a graphical control and redraw the control if it is
visible.

Prototype void CtlSetGraphics (ControlType *ctlP,
DmResID newBitmapID, DmResID newSelectedBitmapID)

Parameters -> ctlP Pointer to a graphical control object. (See
GraphicControlType.)

-> newBitmapID Resource ID of a new bitmap to display on the
control, or NULL to use the current bitmap.

-> newSelectedBitmapID
Resource ID of a new bitmap to display when
the control is selected, or NULL to use the
current selected bitmap.

Result Returns nothing.

Comments If ctlP is not a graphical control, this function immediately returns.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also GraphicControlType

Controls
Control Functions

Palm OS SDK Reference 177

CtlSetLabel

Purpose Set the current label for the specified control object and redraw the
control if it is visible.

Prototype void CtlSetLabel (ControlType *controlP,
const Char *newLabel)

Parameters -> controlP Pointer to a control object. (See ControlType.)

-> newLabel Pointer to the new text label. Must be a NULL-
terminated string.

Result Returns nothing.

Comments This function resizes the width of the control to the size of the new
label.

This function stores the newLabel pointer in the control’s data
structure. It doesn’t make a copy of the string that is passed in.
Therefore, if you use CtlSetLabel, you must manage the string
yourself. You must ensure that it persists for as long as it is being
displayed (that is, for as long as the control is displayed or until you
call CtlSetLabel with a new string), and you must free the string
after it is no longer in use (typically after the form containing the
control is freed).

If you never use CtlSetLabel, you do not need to worry about
freeing a control’s label.

Make sure that controlP is not a graphical control or a slider
control. The graphical controls and slider control structures do not
contain a text label field, so attempting to set one will crash your
application.

See Also CtlGetLabel

Controls
Control Functions

178 Palm OS SDK Reference

CtlSetSliderValues

Purpose Change a slider control’s values and redraw the slider if it is visible.

Prototype void CtlSetSliderValues (ControlType *ctlP,
const UInt16 *minValueP, const UInt16 *maxValueP,
const UInt16 *pageSizeP, const UInt16 *valueP)

Parameters -> ctlP Pointer to an inactive slider or feedback slider
control. (See SliderControlType.)

-> minValueP Pointer to a new value to use for the slider’s
minimum or NULL if you don’t want to change
this value.

-> maxValueP Pointer to a new value to use for the slider’s
maximum, or NULL if you don’t want to change
this value.

-> pageSizeP Pointer to a new value to use for the slider’s
page size, or NULL if you don’t want to change
this value.

-> valueP Pointer to a new value to use for the current
value, or NULL if you don’t want to change this
value.

Result Returns nothing.

Comments The control’s style must be sliderCtl or feedbackSliderCtl,
and it not be currently tracking the pen. If the slider is currently
tracking the pen, use CtlSetValue to set the value field.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also CtlGetSliderValues, SliderControlType

Controls
Control Functions

Palm OS SDK Reference 179

CtlSetUsable

Purpose Set a control to usable or not usable.

Prototype void CtlSetUsable (ControlType *controlP,
Boolean usable)

Parameters -> controlP Pointer to a control object. (See ControlType.)

-> usable true to have the control be usable; false to
have the control be not usable.

Result Returns nothing.

Comments A control that is not usable doesn’t draw and doesn’t respond to the
pen.

This function doesn’t usually update the control.

See Also CtlEraseControl, CtlHideControl, CtlShowControl

CtlSetValue

Purpose Set the current value of the specified control. If the control is visible,
it’s redrawn.

Prototype void CtlSetValue (ControlType *controlP,
Int16 newValue)

Parameters -> controlP Pointer to a control object. (See ControlType.)

-> newValue New value to set for the control. For sliders,
specify a value between the slider’s minimum
and maximum. For graphical controls, push
buttons, or check boxes, specify 0 for off,
nonzero for on.

Result Returns nothing.

Controls
Control Functions

180 Palm OS SDK Reference

Comments This function works only with graphical controls, sliders, push
buttons, and check boxes. If you set the value of any other type of
control, the behavior is undefined.

Compatibility Sliders and graphical controls are only supported if 3.5 New Feature
Set is present.

See Also CtlGetValue, FrmGetControlGroupSelection,
FrmSetControlGroupSelection, FrmGetControlValue,
FrmSetControlValue

CtlShowControl

Purpose Set a control’s usable attribute to true and draw the control on
the screen. This function calls CtlDrawControl.

Prototype void CtlShowControl (ControlType *controlP)

Parameters -> controlP Pointer to a control object. (See ControlType.)

Result Returns nothing.

Comments If the control is already usable, this function is the functional
equivalent of CtlDrawControl.

Sets the visible and the usable attributes to true. (See
ControlAttrType.)

Don’t use this function directly; instead use FrmShowObject,
which does the same thing.

See Also CtlHideControl

Controls
Control Functions

Palm OS SDK Reference 181

CtlValidatePointer

Purpose Returns true if the specified pointer references a valid control
object.

Prototype Boolean CtlValidatePointer
(const ControlType *controlP)

Parameters -> controlP Pointer to a control. (See ControlType.)

Result Returns true when passed a valid pointer to a control; otherwise,
returns false.

Comments For debugging purposes; do not include this function in commercial
products. In debug builds, this function displays a dialog and waits
for the debugger when an error occurs.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FrmValidatePtr, WinValidateHandle

Palm OS SDK Reference 183

7
Date and Time
Selector
The Palm OS® UI provides two system resources for accepting date
and time input values. These resources are dialog boxes that contain
UI gadgetry for entering dates and times. The Palm OS UI also
provides routines to manage the interaction with these resources.
This chapter describes those functions.

The API described in this chapter is declared in the header files
Day.h, SelDay.h, and SelTime.h.

Date and Time Selections Data Structures

SelectDayType

typedef enum
{
selectDayByDay,// return d/m/y
selectDayByWeek,// return d/m/y with d as

same day of the week
selectDayByMonth// return d/m/y with d as

same day of the month
} SelectDayType;

DaySelectorType

typedef struct DaySelectorType
{
RectangleTypebounds;
Booleanvisible;
UInt8 reserved1;
Int16visibleMonth;// month actually displayed
Int16visibleYear;// year actually displayed

Date and Time Selector
Date and Time Selection Functions

184 Palm OS SDK Reference

DateTimeTypeselected;
SelectDayTypeselectDayBy;
UInt8 reserved2;
} DaySelectorType;

HMSTime
typedef struct {
 UInt8 hours;
 UInt8 minutes;
 UInt8 seconds;
 UInt8 reserved;

} HMSTime;

Date and Time Selection Functions

DayHandleEvent

Purpose Handle event in the specified control. This routine handles two
types of events, penDownEvent and ctlEnterEvent.

Prototype Boolean DayHandleEvent
(const DaySelectorPtr pSelector,
const EventType *pEvent)

Parameters -> pSelector Pointer to control object.

-> pEvent Pointer to an EventType structure.

Result true if the event was handled or false if it was not.

Posts a daySelectEvent with information on whether to use the
date.

Comments A date is used if the user selects a day in the visible month.

Date and Time Selector
Date and Time Selection Functions

Palm OS SDK Reference 185

When this routine receives a penDownEvent, it checks if the pen
position is within the bounds of the control object. If it is, a
dayEnterEvent is added to the event queue and the routine exits.

When this routine receives a dayEnterEvent, it checks that the
control id in the event record matches the id of the control specified.
If they match, this routine will track the pen until it comes up in the
bounds in which case daySelectEvent is sent.

If the pen exits the bounds a dayExitEvent is sent.

SelectDay

Purpose Display a form showing a date; allow user to select a different date.

Prototype Boolean SelectDay
(const SelectDayType selectDayBy, Int16 *month,
Int16 *day, Int16 *year, const Char *title)

Parameters selectDayBy The method by which the user should choose
the day. Possible values are selectDayByDay,
selectDayByWeek, and
selectDayByMonth. See SelectDayType

<-> month, day, year
Month, day, and year selected.

-> title String title for the dialog.

Result true if the OK button was pressed. If true, month, day, and year
contain the new date.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also SelectDayV10

Date and Time Selector
Date and Time Selection Functions

186 Palm OS SDK Reference

SelectDayV10

Purpose Display a form showing a date, allow user to select a different date.

Prototype Boolean SelectDay (Int16 *month, Int16 *day,
Int16 *year, const Char title)

Parameters <-> month, day, year
Month, day, and year selected. The initial
values passed in these parameters must be
valid.

-> title String title for the dialog.

Result Returns true if the OK button was pressed. In that case, the
parameters passed are changed.

Compatibility This function corresponds to the 1.0 version of SelectDay.

See Also SelectDay

SelectOneTime

Purpose Display a form showing the time and allow the user to select a
different time.

Prototype Boolean SelectOneTime (Int16 *hour, Int16 *minute,
const Char *titleP)

Parameters <-> hour The hour selected in the form.

<-> minute The minute selected in the form.

-> titleP A pointer to a string to display as the title.
Doesn’t change as the function executes.

Result Returns true if the user selects OK and false otherwise. If true is
returned, the values in hour and minute have probably been
changed.

Date and Time Selector
Date and Time Selection Functions

Palm OS SDK Reference 187

Comments Use this function instead of SelectTime if you want to display a
dialog that specifies a single point in time, not a range of time from
start to end.

Compatibility Implemented only if 3.1 New Feature Set is present.

See Also SelectTimeV33

SelectTime

Purpose Display a form showing a start and end time. Allow the user to
select a different time.

Prototype Boolean SelectTime (TimeType * startTimeP,
TimeType * endTimeP, Boolean untimed, const Char *
titleP, Int16 startOfDay, Int16 endOfDay,
Int16 startOfDisplay)

Parameters <-> startTimeP, endTimeP
Pointers to values of type TimeType. Pass
values to display in these two parameters. If the
user makes a selection and taps the OK button,
the selected values are returned here.

-> untimed Pass in true to indicate that no time is selected.
If the user sets the time to no time then
startTimeP and EndTimeP are both set to the
constant noTime (-1).

-> titleP A pointer to a string to display as the title.
Doesn’t change as the function executes.

-> startOfDay The hour that the hour list displays at its top. To
see earlier hours, the user can scroll the list up.
The value must be between 0 to 12, inclusive.

-> endOfDay The hour used when the “All Day” button is
selected.

Date and Time Selector
Date and Time Selection Functions

188 Palm OS SDK Reference

-> startOfDisplay
First hour initially visible.

Result Returns true if the user selects OK and false otherwise. If true is
returned, the values in hour and minute have probably been
changed.

Comments This version of SelectTime adds the endOfDay and
startOfDisplay functionality.

Compatibility Implemented if 3.5 New Feature Set is present.

See Also SelectDay, SelectOneTime

SelectTimeV33

Purpose Display a form showing the time and allow the user to select a
different time.

This function is obsolete and should not be used.

Prototype Boolean SelectTimeV33 (TimeType *startTimeP,
TimeType *EndTimeP, Boolean untimed, Char *title,
Int16 startOfDay)

Parameters <-> startTimeP, EndTimeP
Pointers to values of type TimeType. Pass
values to display in these two parameters. If the
user makes a selection and taps the OK button,
the selected values are returned here.

-> untimed Pass in true to indicate that no time is selected.
If the user sets the time to no time then
startTimeP and EndTimeP are both set to the
constant noTime (-1).

-> title A pointer to a string to display as the title.
Doesn’t change as the function executes.

Date and Time Selector
Date and Time Selection Functions

Palm OS SDK Reference 189

-> startOfDay The hour that the hour list displays at its top. To
see earlier hours, the user can scroll the list up.
The value must be between 0 to 12, inclusive.

Result Returns true if the user selects OK and false otherwise. If true is
returned, the values in hour and minute have probably been
changed.

Comments NOTE: Obsolete functions are provided ONLY for backward
compatibility; for example, so a 1.0 application will work on 3.x OS
releases. New code should not call these routines!

See Also SelectDay, SelectOneTime

Palm OS SDK Reference 191

8
Fields
This chapter provides the following information about field objects:

• Field Data Structures

• Field Resources

• Field Functions

The header file Field.h declares the API that this chapter
describes. For more information on fields, see the section “Fields” in
the Palm OS Programmer’s Companion.

Field Data Structures

FieldAttrType
The FieldAttrType bit field defines the visible characteristics of
the field. The functions FldGetAttributes and
FldSetAttributes return and set these values. There are other
functions that retrieve or set individual attributes defined here.
Those functions are noted below.

typedef struct {
UInt16 usable :1;
UInt16 visible :1;
UInt16 editable :1;
UInt16 singleLine :1;
UInt16 hasFocus :1;
UInt16 dynamicSize :1;
UInt16 insPtVisible :1;
UInt16 dirty :1;
UInt16 underlined :2;
UInt16 justification:2;
UInt16 autoShift :1;
UInt16 hasScrollBar :1;
UInt16 numeric :1;

Fields
Field Data Structures

192 Palm OS SDK Reference

} FieldAttrType;

Field Descriptions

usable If not set, the field object is not considered part
of the current interface of the application, and it
doesn’t appear on screen. The function
FldSetUsable sets this value, but it is better
to use FrmShowObject.

visible Set or cleared internally when the field object is
drawn or erased with FldDrawField or
FrmShowObject.

editable If not set, the field object doesn’t accept
Graffiti® input or editing commands and the
insertion point cannot be positioned with the
pen. The text can still be selected and copied.

singleLine If set, the field is a single line of text high and
doesn’t expand to accommodate more text. If
not set, the field can grow to multiple lines.

hasFocus Set internally when the field has the current
focus. The blinking insertion point appears in
the field that has the current focus. Use the
function FrmSetFocus and
FldReleaseFocus to set this value.

dynamicSize If set, the height of the field expands as
characters are entered into the field and
contracts as characters are deleted from the
field.

Note that a scrolling multiline field with
dynamicSize set to false will expand the
field height as necessary, but it does not
contract as you delete characters.

insPtVisible If set, the insertion point is scrolled into view.
This attribute is set and cleared internally.

Fields
Field Data Structures

Palm OS SDK Reference 193

FieldPtr
The FieldPtr type defines a pointer to a FieldType structure.

dirty If set, the user has modified the field. The
functions FldDirty and FldSetDirty
retrieve this field’s value.

underlined If set each line of the field, including blank
lines, is underlined. Possible values are defined
by the UnderlineModeType defined in
Window.h:

noUnderline
grayUnderline
solidUnderline

Editable text fields generally use
grayUnderline as the value.

The solidUnderline value is only valid for
Palm OS 3.1 and higher.

justification Specifies the text alignment. Possible values are
leftAlign and rightAlign. (left or right
justification only; centerAlign justification is
not supported).

autoShift If set, Graffiti auto-shift rules are applied.

hasScrollBar If set, the field has a scrollbar. The system
sends more frequent fldChangedEvents so
the application can adjust the height
appropriately.

numeric If set, only characters in the range of 0 through
9 are allowed in the field. Exactly one decimal
separator (either . or ,) is also allowed per
numeric field.

Fields
Field Data Structures

194 Palm OS SDK Reference

typedef FieldType* FieldPtr;

You pass the FieldPtr as an argument to all field functions. You
can obtain the FieldPtr using the function FrmGetObjectPtr in
this way:

fldPtr = FrmGetObjectPtr(frm,
FrmGetObjectIndex(frm, fldID));

where fldID is the resource ID assigned when you created the
field.

FieldType
The FieldType structure represents a field.

typedef struct {
UInt16 id;
RectangleType rect;
FieldAttrType attr;
Char *text;
MemHandle textHandle;
LineInfoPtr lines;
UInt16 textLen;
UInt16 textBlockSize;
UInt16 maxChars;
UInt16 selFirstPos;
UInt16 selLastPos;
UInt16 insPtXPos;
UInt16 insPtYPos;
FontID fontID;
UInt8 reserved;

} FieldType;

Your code should treat the FieldType structure as opaque. Use the
functions specified in the descriptions below to retrieve and set each
value. Do not attempt to change structure member values directly.

Fields
Field Data Structures

Palm OS SDK Reference 195

Field Descriptions

id ID value you specified when you created the
field resource. This ID value is included as part
of the event data of fldEnterEvent.

rect Position and size of the field object. The
functions FldGetBounds,
FrmGetObjectBounds, FldSetBounds, and
FrmSetObjectBounds retrieve and set this
value.

attr Field object attributes. (See FieldAttrType.)

text Pointer to the NULL-terminated string that is
displayed by the field object. The functions
FldGetTextPtr and FldSetTextPtr
retrieve and set this value (see below). Never
set the value of this field directly using a
function such as StrCopy.

textHandle Handle to the stored text or to a database
record containing the stored text. The functions
FldGetTextHandle and
FldSetTextHandle retrieve and set this
value.

If textHandle is defined, the field calculates
the text pointer when it locks the handle. In
general, you should only use FldGetTextPtr
and FldSetTextPtr on text fields that aren’t
editable. On editable text fields, use
FldGetTextHandle and
FldSetTextHandle.

Also note that editable text fields allocate the
text handle as necessary. If a user starts typing
in a field that doesn’t have a text handle
allocated, the field will allocate one. The field
also resizes the text’s memory block as
necessary when the user adds more text.

Fields
Field Data Structures

196 Palm OS SDK Reference

lines Pointer to an array of LineInfoType
structures. There is one entry in this array for
each visible line of the text. (See
LineInfoType.) The field code maintains this
array internally; you should never change the
lines array yourself.

textLen Length in bytes of the string currently
displayed by the field object; the null
terminator is excluded. You can retrieve this
value with FldGetTextLength.

textBlockSize Allocated size of the memory block that holds
the field object’s text string. You can retrieve
this value with FldGetTextAllocatedSize.

Fields allocate memory for the field text as
needed, several bytes at a time.

Note that textBlockSize may be different
from the size of the chunk pointed to by
textHandle. The textHandle may point to
a database record that contains, in part, the text
displayed by the field. If you called
MemHandleSize on such a textHandle, the
number returned may be greater than
textBlockSize.

maxChars Maximum number of bytes the field object
accepts. The functions FldGetMaxChars and
FldSetMaxChars retrieve and set this value.

Note the difference between textLen,
textBlockSize, and maxChars. textLen is
the size of the characters that text actually
holds. textBlockSize is the amount of
memory currently allocated for the text (which
must be greater than or equal to textLen),
and maxChars sets the maximum value that
textBlockSize and textLen can expand to.

Fields
Field Data Structures

Palm OS SDK Reference 197

LineInfoPtr
The LineInfoPtr type defines a pointer to the LineInfoType.

For example, if you’ve created a text field for
users to enter their first names in, you might
specify that the maximum length of this field is
20 characters. If a user enters “John” in this
field, textLen is 4, textBlockSize is 16,
and maxChars is 20.

selFirstPos Starting character offset in bytes of the current
selection. Use FldGetSelection and
FldSetSelection to retrieve and set this
value and the selLastPos value.

selLastPos Ending character offset in bytes of the current
selection. When selFirstPos equals
selLastPos, there is no selection.

insPtXPos Horizontal location of the insertion point,
given as the offset in bytes into the line
indicated by insPtYPos. The functions
FldGetInsPtPosition and
FldSetInsPtPosition retrieve and set this
value.

insPtYPos Vertical location of the insertion point, given as
the display line where the insertion point is
positioned. The first display line is zero. The
first display line may be different from the first
line of text in the field if the field has been
scrolled.

fontID Font ID for the field. See Font.h for more
information. The functions FldGetFont and
FldSetFont retrieve and set this value.

reserved Reserved for future use.

Fields
Field Resources

198 Palm OS SDK Reference

typedef LineInfoType* LineInfoPtr;

LineInfoType
The LineInfoType structure defines an element in the field’s
lines array. The lines array contains the field’s word wrapping
information. There is one element in the array per visible line in the
field, including visible lines that contain no text. The field code
maintains this array internally; you should never change the lines
array yourself.

The functions FldCalcFieldHeight, FldGetVisibleLines,
FldRecalculateField, and FldGetNumberOfBlankLines
retrieve or set information in this structure. The scrolling functions
FldGetScrollPosition, FldGetScrollValues,
FldScrollField, and FldSetScrollPosition also retrieve or
set information in this structure.

typedef struct {
UInt16 start;
UInt16 length;

} LineInfoType;

Field Descriptions

Field Resources
The Field Resource (tFLD) represents a field on screen.

start The byte offset into the FieldType’s text field of the
first character displayed by this line. If the line is blank,
start is equal to textLen and length is 0.

length The length in bytes of the portion of the string displayed
on this line. If the line is blank, the length is 0.

Fields
Field Functions

Palm OS SDK Reference 199

Field Functions

FldCalcFieldHeight

Purpose Determine the height of a field for a string.

Prototype UInt16 FldCalcFieldHeight (const Char* chars,
UInt16 maxWidth)

Parameters -> chars Pointer to a null-terminated string.

-> maxWidth Maximum line width in pixels.

Result Returns the total number of lines needed to draw the string passed.

Comments The width of a field is contained in the rect member of the
FieldType structure. You can retrieve this value in the following
way:

FrmGetObjectBounds(frm,
FrmGetObjectIndex(frm, fldID),
&myRect);

fieldWidth = myRect.extent.x;
FldCalcFieldHeight(myString, fieldWidth);

See Also FldWordWrap

FldCompactText

Purpose Compact the memory block that contains the field’s text to release
any unused space.

Prototype void FldCompactText (FieldType* fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns nothing.

Fields
Field Functions

200 Palm OS SDK Reference

Comments As characters are added to the field’s text, the block that contains the
text is grown. The block is expanded several bytes at a time so that it
doesn’t have to expand each time a character is added. This
expansion may result in some unused space in the text block.

Applications should call this function on field objects that edit data
records in place before the field is unlocked, or at any other time
when a compact field is desirable; for example, before writing to the
storage heap.

See Also FldGetTextAllocatedSize, FldSetTextAllocatedSize

FldCopy

Purpose Copy the current selection to the text clipboard.

Prototype void FldCopy (const FieldType* fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns nothing.

Comments This function leaves the current selection highlighted.

This function replaces anything previously in the text clipboard if
there is text to copy. If no text is selected, the function beeps and the
clipboard remains intact.

See Also FldCut, FldPaste

Fields
Field Functions

Palm OS SDK Reference 201

FldCut

Purpose Copy the current selection to the text clipboard, delete the selection
from the field, and redraw the field.

Prototype void FldCut (FieldType* fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns nothing.

Comments If text is selected, the text is removed from the field, the field’s dirty
attribute is set, and anything previously in the text clipboard is
replaced by the selected text.

If there is no selection or if the field is not editable, this function
beeps.

See Also FldCopy, FldPaste, FldUndo

FldDelete

Purpose Delete the specified range of characters from the field and redraw
the field.

Prototype void FldDelete (FieldType* fldP, UInt16 start,
UInt16 end)

Parameters -> fldP Pointer to the field object (FieldType
structure) to delete from.

-> start The beginning of the range of characters to
delete given as a valid byte offset into the field’s
text string.

Fields
Field Functions

202 Palm OS SDK Reference

-> end The end of the range of characters to delete
given as a valid byte offset into the field’s text
string. On systems that support multi-byte
characters, this position must be an inter-
character boundary. That is, it must not point to
a middle byte of a multi-byte character.

Result Returns nothing.

Comments This function deletes all characters from the starting offset up to the
ending offset and sets the field’s dirty attribute. It does not delete
the character at the ending offset.

If start or end point to an intra-character boundary, FldDelete
attempts to move the offset backward, toward the beginning of the
text, until the offset points to an inter-character boundary (i.e., the
start of a character).

FldDelete posts a fldChangedEvent to the event queue. If you
call this function repeatedly, you may overflow the event queue
with fldChangedEvents. An alternative is to remove the text
handle from the field, change the text, and then set the field’s handle
again. See FldGetTextHandle for a code example.

See Also FldInsert, FldEraseField, TxtCharBounds

FldDirty

Purpose Return true if the field has been modified since the text value was
set.

Prototype Boolean FldDirty (const FieldType* fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns true if the field has been modified either by the user or
through calls to certain functions such as FldInsert and
FldDelete, false if the field has not been modified.

See Also FldSetDirty, FieldAttrType

Fields
Field Functions

Palm OS SDK Reference 203

FldDrawField

Purpose Draw the text of the field.

Prototype void FldDrawField (FieldType* fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns nothing.

Comments The field’s usable attribute must be true or the field won’t be
drawn.

This function doesn’t erase the area behind the field before drawing.

If the field has the focus, the blinking insertion point is displayed in
the field.

See Also FldEraseField

FldEraseField

Purpose Erase the text of a field and turn off the insertion point if it’s in the
field.

Prototype void FldEraseField (FieldType* fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns nothing.

Comments You rarely need to call this function directly. Instead, use
FrmHideObject, which calls FldEraseField for you.

This function visibly erases the field from the display, but it doesn’t
modify the contents of the field or free the memory associated with
it.

If the field has the focus, the blinking insertion point is turned off.

Fields
Field Functions

204 Palm OS SDK Reference

This function sets the visible attribute to false. (See
FieldAttrType.)

See Also FldDrawField

FldFreeMemory

Purpose Release the handle-based memory allocated to the field’s text and
the associated word-wrapping information.

Prototype void FldFreeMemory (FieldType* fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns nothing. May raise a fatal error message if the text
associated with the field is actually a record in a database.

Comments This function releases

• The memory allocated to the text of a field—the memory
block that the textHandle member of the FieldType data
structure points to.

If the field’s textHandle is NULL but there is a text string
associated with that field (which is often the case with
noneditable text fields), the text string is not freed.

• The memory allocated to hold the word-wrapping
information—the memory block that the lines member of
the FieldType data structure points to.

This function doesn’t affect the display of the field. Fields allocate
memory for the text string as needed, so it is not an error to call this
function while the field is still displayed. That is, if text is NULL
and the user starts typing in the field, the field simply allocates
memory for text and continues.

Fields
Field Functions

Palm OS SDK Reference 205

FldGetAttributes

Purpose Return the attributes of a field.

Prototype void FldGetAttributes (const FieldType* fldP,
FieldAttrPtr attrP)

Parameters -> fldP Pointer to a FieldType structure.

<- attrP Pointer to the FieldAttrType structure.

Result Returns the field’s attributes in the attrP parameter.

See Also FldSetAttributes

FldGetBounds

Purpose Return the current bounds of a field.

Prototype void FldGetBounds (const FieldType* fldP,
RectanglePtr rect)

Parameters -> fldP Pointer to a field object (FieldType structure).

<- rect Pointer to a RectangleType structure.

Result Returns nothing. Stores the field’s bounds in the RectangleType
structure reference by rect.

Comments Returns the rect field of the FieldType structure.

See Also FldSetBounds, FrmGetObjectBounds

Fields
Field Functions

206 Palm OS SDK Reference

FldGetFont

Purpose Return the ID of the font used to draw the text of a field.

Prototype FontID FldGetFont (const FieldType* fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns the ID of the font.

See Also FldSetFont

FldGetInsPtPosition

Purpose Return the insertion point position within the string.

Prototype UInt16 FldGetInsPtPosition (const FieldType* fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns the byte offset of the insertion point.

Comments The insertion point is to the left of the byte offset that this function
returns. That is, if this function returns 0, the insertion point is to the
left of the first character in the string. In multiline fields, line feeds
are counted as a single character in the string, and the byte offset
after the line feed character is the beginning of the next line.

See Also FldSetInsPtPosition

Fields
Field Functions

Palm OS SDK Reference 207

FldGetMaxChars

Purpose Return the maximum number of bytes the field accepts.

Prototype UInt16 FldGetMaxChars (const FieldType* fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns the maximum length in bytes of characters the user is
allowed to enter. This is the maxChars field in FieldType.

See Also FldSetMaxChars

FldGetNumberOfBlankLines

Purpose Return the number of blank lines that are displayed at the bottom of
a field.

Prototype UInt16 FldGetNumberOfBlankLines
(const FieldType* fldP)

Parameters -> fldP Pointer to a FieldType structure.

Result Returns the number of blank lines visible.

Comments This routine is useful for updating a scroll bar after characters have
been removed from the text in a field. See the NoteViewScroll
function in the Address sample application for an example.

Compatibility Implemented only if 2.0 New Feature Set is present.

Fields
Field Functions

208 Palm OS SDK Reference

FldGetScrollPosition

Purpose Return the offset of the first character in the first visible line of a
field.

Prototype UInt16 FldGetScrollPosition
(const FieldType* fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns the offset of the first visible character.

See Also FldSetScrollPosition, LineInfoType

FldGetScrollValues

Purpose Return the values necessary to update a scroll bar.

Prototype void FldGetScrollValues (const FieldType* fldP,
UInt16* scrollPosP, UInt16* textHeightP,
UInt16* fieldHeightP)

Parameters -> fldP Pointer to a FieldType structure.

<- scrollPosP The line of text that is the topmost visible line.
Line numbering starts with 0.

<-textHeightP The number of lines needed to display the
field’s text, given the width of the field.

<-fieldHeightP The number of visible lines in the field.

Result Returns nothing. Stores the position, text height, and field height in
the parameters passed in.

Comments Use the values returned by this function to calculate the values you
send to SclSetScrollBar to update the scroll bar. For example:

FldGetScrollValues (fldP, &scrollPos,
&textHeight, &fieldHeight);

Fields
Field Functions

Palm OS SDK Reference 209

if (textHeight > fieldHeight)
maxValue = textHeight - fieldHeight;

else if (scrollPos)
maxValue = scrollPos;

else
maxValue = 0;

SclSetScrollBar (bar, scrollPos, 0, maxValue,
fieldHeight-1);

}

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also FldSetScrollPosition

FldGetSelection

Purpose Return the current selection of a field.

Prototype void FldGetSelection (const FieldType* fldP,
UInt16* startPosition, UInt16* endPosition)

Parameters -> fldP Pointer to a field object (FieldType structure).

<- startPosition
Pointer to the start of the selected characters
range, given as the byte offset into the field’s
text.

<- endPosition Pointer to end of the selected characters range
given as the byte offset into the field’s text.

Result Returns the starting and ending byte offsets in startPosition
and endPosition.

Comments The first character in a field is at offset zero.

Fields
Field Functions

210 Palm OS SDK Reference

If the user has selected the first five characters of a field,
startPosition will contain the value 0 and endPosition the
value 5, assuming all characters are a single byte long.

See Also FldSetSelection

FldGetTextAllocatedSize

Purpose Return the number of bytes allocated to hold the field’s text string.
Don’t confuse this number with the actual length of the text string
displayed in the field.

Prototype UInt16 FldGetTextAllocatedSize
(const FieldType* fldP)

Parameters -> fldP Pointer to a field object.

Result Returns the number of bytes allocated for the field’s text. This is the
textBlockSize field in FieldType.

See Also FldSetTextAllocatedSize

FldGetTextHandle

Purpose Return a handle to the block that contains the text string of a field.

Prototype MemHandle FldGetTextHandle (const FieldType* fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns the handle to the text string of a field or NULL if no handle
has been allocated for the field pointer.

Comments The handle returned by this function is not necessarily the handle to
the start of the string. If you’ve used FldSetText to set the field’s
text to a string that is part of a database record, the text handle
points to the start of that record. You’ll need to compute the offset
from the start of the record to the start of the string. You can either

Fields
Field Functions

Palm OS SDK Reference 211

store the offset that you passed to FldSetText or you can compute
the offset by performing pointer arithmetic on the pointer you get
by locking this handle and the pointer returned by
FldGetTextPtr.

If you are obtaining the text handle so that you can edit the field’s
text, you must remove the handle from the field before you do so. If
you change the text while it is being used by a field, the field’s
internal structures specifying the text length, allocated size, and
word wrapping information can become out of sync. To avoid this
problem, remove the text handle from the field, change the text, and
then set the field’s text handle again. For example:

/* Get the handle for the string and unlock */
/* it by removing it from the field. */
textH = FldGetTextHandle(fldP);
FldSetTextHandle (fldP, NULL);

/* Insert code that modifies the string here.*/
/* The basic steps are: */
/* resize the chunk if necessary,*/
/* lock the chunk, write to it, and then */
/* unlock the chunk. If the text is in a */
/* database record, use Data Manager calls. */

/* Update the text in the field. */
FldSetTextHandle (fldP, textH);
FldDrawField(fldP);

See Also FldSetTextHandle, FldGetTextPtr

Fields
Field Functions

212 Palm OS SDK Reference

FldGetTextHeight

Purpose Return the height in pixels of the number of lines that are not empty.

Prototype UInt16 FldGetTextHeight (const FieldType* fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns the height in pixels of the number of lines that are not
empty.

Comments Empty lines are all of the lines in the field following the last byte of
text. Note that lines that contain only a linefeed are not empty.

See Also FldCalcFieldHeight

FldGetTextLength

Purpose Return the length in bytes of the field’s text.

Prototype UInt16 FldGetTextLength (const FieldType* fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns the length in bytes of a field’s text, not including the
terminating null character. This is the textLen field of FieldType.

FldGetTextPtr

Purpose Return a locked pointer to the field’s text string.

Prototype Char* FldGetTextPtr (FieldType* fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns a locked pointer to the field’s text string or NULL if the field
is empty.

Fields
Field Functions

Palm OS SDK Reference 213

Comments The pointer returned by this function can become invalid if the user
edits the text after you obtain the pointer.

Do not modify the contents of the pointer yourself. If you change
the text while it is being used by a field, the field’s internal
structures specifying the text length, allocated size, and word
wrapping information can become out of sync. To avoid this
problem, follow the instructions given under FldGetTextHandle.

See Also FldSetTextPtr, FldGetTextHandle

FldGetVisibleLines

Purpose Return the number of lines that can be displayed within the visible
bounds of the field.

Prototype UInt16 FldGetVisibleLines (const FieldType* fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns the number of lines the field displays. (This is the size of the
lines array in the FieldType structure.)

See Also FldGetNumberOfBlankLines, FldCalcFieldHeight

FldGrabFocus

Purpose Turn the insertion point on (if the specified field is visible) and
position the blinking insertion point in the field.

Prototype void FldGrabFocus (FieldType* fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns nothing.

Comments You rarely need to call this function directly. Instead, use
FrmSetFocus, which calls FldGrabFocus for you.

Fields
Field Functions

214 Palm OS SDK Reference

One instance where you need to call FldGrabFocus directly is to
programmatically set the focus in a field that is contained in a table
cell.

This function sets the field attribute hasFocus to true. (See
FieldAttrType.)

See Also FrmSetFocus, FldReleaseFocus

FldHandleEvent

Purpose Handles events that affect the field, including the following:
keyDownEvent, penDownEvent, and fldEnterEvent.

Prototype Boolean FldHandleEvent (FieldType* fldP,
EventType* eventP)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> eventP Pointer to an event (EventType data
structure).

Result Returns true if the event was handled.

Comments When a keyDownEvent occurs in an editable text field, the
keystroke appears in the field if it’s a printable character or
manipulates the insertion point if it’s a “movement” character. The
field is automatically updated.

When a penDownEvent occurs, the field sends a fldEnterEvent
to the event queue.

When a fldEnterEvent occurs, the field grabs the focus. If the
user has tapped twice in the current location, the word at that
location is selected. If the user has tapped three times, the entire line
is selected. Otherwise, the insertion point is placed in the specified
position.

When a menuCmdBarOpenEvent occurs, the field adds paste, copy,
cut, and undo buttons to the command toolbar. These buttons are
only added if they make sense in the current context. That is, the cut
button is only added if the field is editable, the paste button is only

Fields
Field Functions

Palm OS SDK Reference 215

added if there is text on the clipboard and the field is editable, and
the undo button is only added if there is an action to undo.

If the event alters the contents of the field, this function visually
updates the field.

This function doesn’t handle any events if the field is not editable or
usable.

Compatibility Double-tapping to select a word and triple-tapping to select a line
are only supported if 3.5 New Feature Set is present.

FldHandleEvent only handles the menuCmdBarOpenEvent if 3.5
New Feature Set is present.

FldInsert

Purpose Replace the current selection if any with the specified string and
redraw the field.

Prototype Boolean FldInsert (FieldType* fldP,
const Char* insertChars, UInt16 insertLen)

Parameters -> fldP Pointer to the field object (FieldType
structure) to insert to.

-> insertChars Text string to be inserted.

-> insertLen Length in bytes of the text string to be inserted,
not counting the trailing null character.

Result Returns true if string was successfully inserted. Returns false if:

• The insertLen parameter is 0.

• The field is not editable.

• Adding the text would exceed the field’s size limit (the
maxChars value).

• More memory must be allocated for the field, and the
allocation fails.

Fields
Field Functions

216 Palm OS SDK Reference

Comments If there is no current selection, the string passed is inserted at the
position of the insertion point.

This function sets the field’s dirty attribute and posts a
fldChangedEvent to the event queue. If you call this function
repeatedly, you may overflow the event queue with
fldChangedEvents. An alternative is to remove the text handle
from the field, change the text, and then set the field’s handle again.
See FldGetTextHandle for a code example.

See Also FldPaste, FldDelete, FldCut, FldCopy

FldMakeFullyVisible

Purpose Cause a dynamically resizable field to expand its height to make its
text fully visible.

Prototype Boolean FldMakeFullyVisible (FieldType* fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns true if the field is dynamically resizable and was not fully
visible; false otherwise.

Comments Use this function on a field whose dynamicSize attribute is true
(see FieldAttrType).

This function does not actually resize the field. Instead, it computes
how big the field should be to be fully visible and then posts this
information to the event queue in a fldHeightChangedEvent.

If the field is contained in a table, the table’s code handles the
fldHeightChangedEvent. If the field is directly on a form, your
application code should handle the fldHeightChangedEvent
itself. The form code does not handle the event for you. Note that
the constant maxFieldLines defines the maximum number of
lines a field can expand to if the field is using the standard font.

See Also TblHandleEvent

Fields
Field Functions

Palm OS SDK Reference 217

FldNewField

Purpose Create a new field object dynamically and install it in the specified
form.

Prototype FieldType *FldNewField (void **formPP, UInt16 id,
Coord x, Coord y, Coord width, Coord height,
FontID font, UInt32 maxChars, Boolean editable,
Boolean underlined, Boolean singleLine,
Boolean dynamicSize,
JustificationType justification,
Boolean autoShift, Boolean hasScrollBar,
Boolean numeric)

Parameters <-> formPP Pointer to the pointer to the form in which the
new field is installed. This value is not a handle;
that is, the old form pointer value is not
necessarily valid after this function returns. In
subsequent calls, always use the new form
pointer value returned by this function.

-> id Symbolic ID of the field, specified by the
developer. By convention, this ID should match
the resource ID (not mandatory).

-> x Horizontal coordinate of the upper-left corner
of the field’s boundaries, relative to the
window in which it appears.

-> y Vertical coordinate of the upper-left corner of
the field’s boundaries, relative to the window
in which it appears.

-> width Width of the field, expressed in pixels.

-> height Height of the field, expressed in pixels.

-> font Font to use to draw the field’s text.

-> maxChars Maximum number of bytes held by the field
this function creates.

Fields
Field Functions

218 Palm OS SDK Reference

-> editable Pass true to create a field in which the user can
edit text. Pass false to create a field that
cannot be edited.

-> underlined Pass noUnderline for no underline, or
grayUnderline to have the field underline
the text it displays. On Palm OS® version 3.1
and higher, pass solidUnderline to use a
solid underline instead of a dotted underline.

-> singleLine Pass true to create a field that can display only
a single line of text.

-> dynamicSize Pass true to create a field that resizes
dynamically according to the amount of text it
displays.

-> justification
Pass either of the values leftAlign or
rightAlign to specify left justification or
right justification, respectively. The
centerAlign value is not supported.

-> autoShift Pass true to specify the use of Palm OS 2.0
(and later) auto-shift rules.

-> hasScrollBar Pass true to attach a scroll bar control to the
field this function creates.

-> numeric Pass true to specify that only characters in the
range of 0 through 9 are allowed in the field.

Result Returns a pointer to the new field object or NULL if there wasn’t
enough memory to create the field. Out of memory situations could
be caused by memory fragmentation.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FrmValidatePtr, WinValidateHandle,
CtlValidatePointer, FrmRemoveObject

Fields
Field Functions

Palm OS SDK Reference 219

FldPaste

Purpose Replace the current selection in the field, if any, with the contents of
the text clipboard.

Prototype void FldPaste (FieldType* fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns nothing

Comments The function performs these actions:

• Scrolls the field, if necessary, so the insertion point is visible.

• Inserts the clipboard text at the position of the insertion point
if there is no current selection.

• Positions the insertion point after the last character inserted.

• Doesn’t delete the current selection if there is no text in the
clipboard.

See Also FldInsert, FldDelete, FldCut, FldCopy FldUndo

FldRecalculateField

Purpose Update the structure that contains the word-wrapping information
for each visible line.

Prototype void FldRecalculateField (FieldType* fldP,
Boolean redraw)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> redraw If true, redraws the field. Currently, this
parameter must be set to true to update the
word-wrapping information.

Result Returns nothing.

Fields
Field Functions

220 Palm OS SDK Reference

Comments If necessary, this function reallocates the memory block that
contains the displayed lines information, the LineInfoType
structure pointed to by the lines member of the FieldType data
structure.

Call this function if the field’s data structure is modified in a way
that invalidates the visual appearance of the field (for example, if
you update a field’s text with FldSetTextPtr). However, many of
the field functions, such as FldSetTextHandle, FldInsert, and
FldDelete, recalculate the word-wrapping information for you.

FldReleaseFocus

Purpose Turn the blinking insertion point off if the field is visible and has the
current focus, reset the Graffiti state, and reset the undo state.

Prototype void FldReleaseFocus (FieldType* fldP)

Parameters -> fldP Pointer to a field object (FieldType structure).

Result Returns nothing.

Comments This function sets the field attribute hasFocus to false. (See
FieldAttrType.)

Usually, you don’t need to call this function. If the field is in a form
or in a table that doesn’t use custom drawing functions, the field
code releases the focus for you when the focus changes to some
other control. If your field is in any other type of object, such as a
table that uses custom drawing functions or a gadget, you must call
FldReleaseFocus when the focus moves away from the field.

See Also FldGrabFocus

Fields
Field Functions

Palm OS SDK Reference 221

FldScrollable

Purpose Return true if the field is scrollable in the specified direction.

Prototype Boolean FldScrollable (const FieldType* fldP,
WinDirectionType direction)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> direction The direction to test. DirectionType is
defined in Window.h. It is an enum defining
the constants up and down.

Result Returns true if the field is scrollable in the specified direction;
false otherwise.

See Also FldScrollField

FldScrollField

Purpose Scroll a field up or down by the number of lines specified.

Prototype void FldScrollField (FieldType* fldP,
UInt16 linesToScroll, WinDirectionType direction)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> linesToScroll
Number of lines to scroll.

-> direction The direction to scroll. DirectionType is
defined in Window.h. It is an enum defining
the constants up and down.

Result Returns nothing.

Comments This function can’t scroll horizontally, that is, right or left.

The field object is redrawn if it’s scrolled; however, the scrollbar is
not updated. Use SclSetScrollBar to update the scrollbar. For
example:

Fields
Field Functions

222 Palm OS SDK Reference

FldScrollField (fldP, linesToScroll,
direction);

// Update the scroll bar.
SclGetScrollBar (bar, &value, &min, &max,
&pageSize);

if (direction == up)
value -= linesToScroll;

else
value += linesToScroll;

SclSetScrollBar (bar, value, min, max,
pageSize);

If the field is not scrollable in the direction indicated, this function
returns without performing any work. You can use
FldScrollable before calling this function to see if the field can
be scrolled.

See Also FldScrollable, FldSetScrollPosition

FldSendChangeNotification

Purpose Send a fldChangedEvent to the event queue.

Prototype void FldSendChangeNotification
(const FieldType* fldP)

Parameters -> fldP Pointer to a field object.

Result Returns nothing.

Comments This function is used internally by the field code. You normally
never call it in application code.

Fields
Field Functions

Palm OS SDK Reference 223

FldSendHeightChangeNotification

Purpose Send a fldHeightChangedEvent to the event queue.

Prototype void FldSendHeightChangeNotification
(const FieldType* fldP, UInt16 pos,
Int16 numLines)

Parameters -> fldP Pointer to a field object.

-> pos Character position of the insertion point.

-> numLines New number of lines in the field.

Result Returns nothing.

Comments This function is used internally by the field code. You normally
never call it in application code.

FldSetAttributes

Purpose Set the attributes of a field.

Prototype void FldSetAttributes (FieldType* fldP,
const FieldAttrPtr attrP)

Parameters -> fldP Pointer to a FieldType structure.

-> attrP Pointer to the attributes.

Result Returns nothing.

Comments This function does not do anything to make the new attribute values
take effect. For example, if you use this function to change the value
of the underline attribute, you won’t see its effect until you call
FldDrawField.

Fields
Field Functions

224 Palm OS SDK Reference

You usually do not have to modify field attributes at runtime, so
you rarely need to call this function.

See Also FldGetAttributes, FieldAttrType

FldSetBounds

Purpose Change the position or size of a field.

Prototype void FldSetBounds (FieldType* fldP,
const RectangleType* rP)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> rP Pointer to a RectangleType structure that
contains the new bounds of the display.

Result Returns nothing. May raise a fatal error message if the memory
block that contains the word-wrapping information needs to be
resized and there is not enough space to do so.

Comments If the field is visible, the field is redrawn within its new bounds.

NOTE: You can change the height or location of the field while
it’s visible, but do not change the width.

The memory block that contains the word-wrapping information
(see LineInfoType) will be resized if the number of visible lines is
changed. The insertion point is assumed to be off when this routine
is called.

Make sure that rect is at least as tall as a single line in the current
font. (You can determine this value by calling FntLineHeight.) If
it’s not, results are unpredictable.

See Also FldGetBounds, FrmSetObjectBounds

Fields
Field Functions

Palm OS SDK Reference 225

FldSetDirty

Purpose Set whether the field has been modified.

Prototype void FldSetDirty (FieldType* fldP, Boolean dirty)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> dirty true if the text is modified.

Result Returns nothing.

Comments You typically call this function when you want to clear the dirty
attribute. The dirty attribute is set when the user enters or deletes
text in the field. It is also set by certain field functions, such as
FldInsert and FldDelete.

See Also FldDirty

FldSetFont

Purpose Set the font used by the field, update the word-wrapping
information, and draw the field if the field is visible.

Prototype void FldSetFont (FieldType* fldP, FontID fontID)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> fontID ID of new font.

Result Returns nothing.

See Also FldGetFont, FieldAttrType

Fields
Field Functions

226 Palm OS SDK Reference

FldSetInsertionPoint

Purpose Set the location of the insertion point based on a specified string
position.

Prototype void FldSetInsertionPoint (FieldType* fldP,
UInt16 pos)

Parameters -> fldP Pointer to a FieldType structure.

-> pos New location of the insertion point, given as a
valid offset in bytes into the field’s text. On
systems that support multi-byte characters, you
must make sure that this specifies an inter-
character boundary (does not specify the
middle or end bytes of a multi-byte character).

Result Nothing.

Comments This routine differs from FldSetInsPtPosition in that it doesn’t
make the character position visible. FldSetInsertionPoint also
doesn’t make the field the current focus of input if it was not
already.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also TxtCharBounds

FldSetInsPtPosition

Purpose Set the location of the insertion point for a given string position.

Prototype void FldSetInsPtPosition (FieldType* fldP,
UInt16 pos)

Parameters -> fldP Pointer to a field object (FieldType structure).

Fields
Field Functions

Palm OS SDK Reference 227

-> pos New location of the insertion point, given as a
valid offset in bytes into the field’s text. On
systems that support multi-byte characters, you
must make sure that this specifies an inter-
character boundary (does not specify the
middle or end bytes of a multi-byte character).

Result Returns nothing.

Comments If the position is beyond the visible text, the field is scrolled until the
position is visible.

See Also FldGetInsPtPosition, TxtCharBounds

FldSetMaxChars

Purpose Set the maximum number of bytes the field accepts (the maxChars
value).

Prototype void FldSetMaxChars (FieldType* fldP,
UInt16 maxChars)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> maxChars Maximum size in bytes of the characters the
user may enter. You may specify any value up
to maxFieldTextLen.

Result Returns nothing.

Comments Line feed characters are counted when the length of characters is
determined.

See Also FldGetMaxChars

Fields
Field Functions

228 Palm OS SDK Reference

FldSetScrollPosition

Purpose Scroll the field such that the character at the indicated offset is the
first character on the first visible line. Redraw the field if necessary.

Prototype void FldSetScrollPosition (FieldType* fldP,
UInt16 pos)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> pos Byte offset into the field’s text string of first
character to be made visible. On systems that
support multi-byte characters, you must make
sure that this specifies an inter-character
boundary (does not specify the middle or end
bytes of a multi-byte character).

Result Returns nothing.

Comments This function scrolls the field but does not update the field’s
scrollbar. You should update the scrollbar after calling this function.
To do so, first call FldGetScrollValues to determine the values
to use, and then call SclSetScrollBar.

See Also FldGetScrollPosition, FldScrollField, TxtCharBounds

FldSetSelection

Purpose Set the current selection in a field and highlight the selection if the
field is visible.

Prototype void FldSetSelection (FieldType* fldP,
UInt16 startPosition, UInt16 endPosition)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> startPosition
Starting offset of the character range to
highlight, given as a byte offset into the field’s
text.

Fields
Field Functions

Palm OS SDK Reference 229

-> endPosition Ending offset of the character range to
highlight. The ending offset should be greater
than or equal to the starting offset. On systems
that support multi-byte characters, this position
must be an inter-character boundary. That is, it
must not point to a middle byte of a multi-byte
character.

Result Returns nothing.

Comments To cancel a selection, set both startPosition and endPosition
to the same value. If startPosition equals endPosition, then
the current selection is unhighlighted.

If either startPosition or endPosition point to an intra-
character boundary, FldSetSelection attempts to move that
offset backward, toward the beginning of the string, until the offset
points to an inter-character boundary (i.e., the start of a character).

See Also TxtCharBounds

FldSetText

Purpose Set the text value of the field without updating the display.

Prototype void FldSetText (FieldType* fldP,
MemHandle textHandle, UInt16 offset, UInt16 size)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> textHandle Unlocked handle of a block containing a null-
terminated text string. Pass NULL for this
parameter to remove the association between
the field and the string it is currently displaying
so that the string is not freed with the field
when the form is deleted.

-> offset Offset from start of block to start of the text
string.

Fields
Field Functions

230 Palm OS SDK Reference

-> size Allocated size of text string, not the string
length.

Result Returns nothing.

Comments This function allows applications to perform editing in place in
memory. You can use it to point the field to a string in a database
record so that you can edit that string directly using field routines.

The handle that you pass to this function is assumed to contain a
null-terminated string starting at offset bytes in the memory
chunk. The string should be between 0 and size - 1 bytes in length.
The field does not make a copy of the memory chunk or the string
data; instead, it stores the handle to the record in its structure.

FldSetText updates the word-wrapping information and places
the insertion point after the last visible character, but it does not
update the display. You must call FldDrawField after calling this
function to update the display.

FldSetText increments the lock count for textHandle and
decrements the lock count of its previous text handle (if any).

Because FldSetText (and FldSetTextHandle) may be used to
edit database records, they do not free the memory associated with
the previous text handle. If the previous text handle points to a
string on the dynamic heap and you want to free it, use
FldGetTextHandle to obtain the handle before using
FldSetText and then free that handle after using FldSetText.
(See FldSetTextHandle for a code example.)

If the field points to a database record, you want the memory
associated with the text handle to persist; however, this memory
and all other memory associated with the field is freed when the
field itself is freed, which happens when the form is closed. If you
don’t want the memory associated with the text handle freed when
the field is freed, use FldSetText and pass NULL for the text
handle immediately before the form is closed. Passing NULL
removes the association between the field and the text handle that
you want retained. That text handle is unlocked as a result of the

Fields
Field Functions

Palm OS SDK Reference 231

FldSetText call, and when the field is freed, there is no text
handle to free with it.

See Also FldSetTextPtr, FldSetTextHandle

FldSetTextAllocatedSize

Purpose Set the number of bytes allocated to hold the field’s text string.
Don’t confuse this with the actual length of the text string displayed
in the field.

Prototype void FldSetTextAllocatedSize (FieldType* fldP,
UInt16 allocatedSize)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> allocatedSize
Number of bytes to allocate for the text.

Result Returns nothing.

Comments This function generally is not used. It does not resize the field’s
allocated memory for the text string; it merely sets the
textBlockSize field of the FieldType structure. The value of
this field is computed and maintained internally by the field, so you
should not have to call FldSetTextAllocatedSize directly.

See Also FldGetTextAllocatedSize, FldCompactText

FldSetTextHandle

Purpose Set the text value of a field to the string associated with the specified
handle. Does not update the display.

Prototype void FldSetTextHandle (FieldType* fldP,
MemHandle textHandle)

Parameters -> fldP Pointer to a field object (FieldType structure).

Fields
Field Functions

232 Palm OS SDK Reference

-> textHandle Unlocked handle of a field’s text string. Pass
NULL for this parameter to remove the
association between the field and the string it is
currently displaying so that the string is not
freed with the field when the form is deleted.

Result Returns nothing.

Comments This function differs from FldSetText in that it uses the entire
memory chunk pointed to by textHandle for the string. In fact,
this function simply calls FldSetText with an offset of 0 and a size
equal to the entire length of the memory chunk. Use it to have the
field edit a string in a database record if the entire record consists of
that string, or use it to have the field edit a string in the dynamic
heap.

FldSetTextHandle updates the word-wrapping information and
places the insertion point after the last visible character, but it does
not update the display. You must call FldDrawField after calling
this function to update the display.

FldSetTextHandle increments the lock count for textHandle
and decrements the lock count of its previous text handle (if any).

Because FldSetTextHandle (and FldSetText) may be used to
edit database records, they do not free the memory associated with
the previous text handle. If the previous text handle points to a
string on the dynamic heap and you want to free it, use
FldGetTextHandle to obtain the handle before using
FldSetText and then free that handle after using FldSetText.
For example:

/* get the old text handle */
oldTxtH = FldGetTextHandle(fldP);

/* change the text and update the display */
FldSetTextHandle(fldP, txtH);
FldDrawField(fldP);

/* free the old text handle */
if (oldTxtH != NULL)
MemHandleFree(oldTxtH);

Fields
Field Functions

Palm OS SDK Reference 233

If the field points to a database record, you want the memory
associated with the text handle to persist; however, this memory
and all other memory associated with the field is freed when the
field itself is freed, which happens when the form is closed. If you
don’t want the memory associated with the text handle freed when
the field is freed, use FldSetTextHandle and pass NULL for the
text handle immediately before the form is closed. Passing NULL
removes the association between the field and the text handle that
you want retained. That text handle is unlocked as a result of the
FldSetTextHandle call, and when the field is freed, there is no
text handle to free with it.

See Also FldSetTextPtr, FldSetText

FldSetTextPtr

Purpose Set a noneditable field’s text to point to the specified text string.

Prototype void FldSetTextPtr (FieldType* fldP, Char* textP)

Parameters -> fldP Pointer to a field object (FieldType structure).

-> textP Pointer to a null-terminated string.

Result Returns nothing. May display an error message if passed an editable
text field.

Comments Do not call FldSetTextPtr with an editable text field. Instead, call
FldSetTextHandle for editable text fields. FldSetTextPtr is
intended for displaying noneditable text in the user interface.

If the field has more than one line, use FldRecalculateField to
recalculate the word wrapping.

This function does not visually update the field. Use
FldDrawField to do so.

The field never frees the string that you pass to this function, even
when the field itself is freed. You must free the string yourself.
Before you free the string, make sure the field is not still displaying
it. Set the field’s string pointer to some other string or call

Fields
Field Functions

234 Palm OS SDK Reference

FldSetTextPtr(fldP, NULL) before freeing a string you have
passed using this function.

See Also FldSetTextHandle, FldGetTextPtr

FldSetUsable

Purpose Set a field to usable or nonusable.

Prototype void FldSetUsable (FieldType* fldP,
Boolean usable)

Parameters fldP Pointer to a FieldType structure.

usable true to set usable; false to set nonusable.

Result Returns nothing.

Comments A nonusable field doesn’t display or accept input.

Use FrmHideObject and FrmShowObject instead of using this
function.

See Also FldEraseField, FldDrawField, FieldAttrType

FldUndo

Purpose Undo the last change made to the field object, if any. Changes
include typing, backspaces, delete, paste, and cut.

Prototype void FldUndo (FieldType* fldP)

Parameters fldP Pointer to the field (FieldType structure) that
has the focus.

Result Returns nothing.

See Also FldPaste, FldCut, FldDelete, FldInsert

Fields
Field Functions

Palm OS SDK Reference 235

FldWordWrap

Purpose Given a string and a width, return the number of bytes of characters
that can be displayed using the current font.

Prototype UInt16 FldWordWrap (const Char* chars,
Int16 maxWidth)

Parameters -> chars Pointer to a null-terminated string.

-> maxWidth Maximum line width in pixels.

Result Returns the length in bytes of the characters that can be displayed.

See Also FntWordWrap

Palm OS SDK Reference 237

9
Find
This chapter provides reference material for the global find facility.
The API for the find facility is defined in the header file Find.h.

Find Functions

FindDrawHeader

Purpose Draw the header line that separates, by database, the list of found
items.

Prototype Boolean FindDrawHeader (FindParamsPtr findParams,
Char const* title)

Parameters findParams Handle of FindParamsPtr.

title Description of the database (for example
Memos).

Result Returns true if Find screen is filled up. Applications should exit
from the search if this occurs.

FindGetLineBounds

Purpose Returns the bounds of the next available line for displaying a match
in the Find Results dialog.

Prototype void FindGetLineBounds
(const FindParamsType *findParams, RectanglePtr r)

Parameters findParams Handle of FindParamsPtr.

Find
Find Functions

238 Palm OS SDK Reference

r Pointer to a structure to hold the bounds of the
next results line.

Result Returns nothing.

FindSaveMatch

Purpose Saves the record and position within the record of a text search
match. This information is saved so that it’s possible to later
navigate to the match.

Prototype Boolean FindSaveMatch (FindParamsPtr findParams,
UInt16 recordNum, UInt16 pos, UInt16 fieldNum,
UInt32 appCustom, UInt16 cardNo, LocalID dbID)

Parameters findParams Handle of FindParamsPtr.

recordNum Record index.

pos Offset of the match string from start of record.

fieldNum Field number the string was found in.

appCustom Extra data the application can save with a
match.

cardNo Card number of the database that contains the
match.

dbID Local ID of the database that contains the
match.

Result Returns true if the maximum number of displayable items has
been exceeded

Comments Called by application code when it gets a match.

Find
Find Functions

Palm OS SDK Reference 239

FindStrInStr

Purpose Perform a case-blind partial word search for a string in another
string. This function assumes that the string to find has already been
normalized for searching.

Prototype Boolean FindStrInStr (Char const *strToSearch,
Char const *strToFind, UInt16 *posP)

Parameters strToSearch String to search.

strToFind Normalized version of the text string to be
found.

posP Pointer to offset in search string of the match.

Result Returns true if the string was found. FindStrInStr matches the
beginnings of words only; that is, strToFind must be a prefix of
one of the words in strToSearch for FindStrInStr to return
true.

Comment Don’t use this function on systems that support the Text Manager.
Instead, use TxtFindString, which performs searches on strings
that contain multi-byte characters and returns the length of the
matching text.

On systems that don’t support the Text Manager, use
TxtGlueFindString, found in the PalmOSGlue library. For more
information, see Chapter 62, “PalmOSGlue Library.”

The method by which a search string is normalized varies
depending on the version of Palm OS® and the character encoding
supported by the device. The string passed to your application in
the strToFind field of the sysAppLaunchCmdFind launch code
parameter block has already been normalized. It can be passed
directly to FindStrInStr, TxtFindString, or
TxtGlueFindString. If you have to create your own normalized
search string, use TxtGluePrepFindString, also in the
PalmOSGlue library.

Palm OS SDK Reference 241

10
Forms
This chapter provides the following information about form objects:

• Form Data Structures

• Form Constants

• Form Resources

• Form Functions

• Application-Defined Functions

The header file Form.h declares the API that this chapter describes.
For more information on forms, see the section “Forms, Windows,
and Dialogs” in the Palm OS Programmer’s Companion.

Form Data Structures

FormAttrType
The FormAttrType bit field defines the visible characteristics of
the form.

typedef struct {
UInt16 usable :1;
UInt16 enabled :1;
UInt16 visible :1;
UInt16 dirty :1;
UInt16 saveBehind :1;
UInt16 graffitiShift:1;
UInt16 globalsAvailable : 1;
UInt16 doingDialog : 1;
UInt16 exitDialog : 1;
UInt16 reserved :7;
UInt16 reserved2;

} FormAttrType;

Forms
Form Data Structures

242 Palm OS SDK Reference

Your code should treat the FormAttrType bit field as opaque. Do
not attempt to change bit field member values directly.

Field Descriptions

Compatibility

The globalsAvailable, doingDialog, and exitDialog flags
are present only if 3.5 New Feature Set is present.

FormBitmapType
The FormBitmapType structure defines the visible characteristics
of a bitmap on a form.

typedef struct {
FormObjAttrType attr;
PointType pos;

usable Not set if the form is not considered part
of the current interface of the application,
and it doesn’t appear on screen.

enabled Not used.

visible Set or cleared internally when the field
object is drawn or erased.

dirty Not used.

saveBehind Set if the bits behind the form are saved
when the form is drawn.

graffitiShift Set if the graffiti shift indicator is
supported.

globalsAvailable System use only.

doingDialog System use only.

exitDialog System use only.

reserved Reserved for system use.

reserved2 Reserved for system use.

Forms
Form Data Structures

Palm OS SDK Reference 243

UInt16 rscID;
} FormBitmapType;

Field Descriptions

FormFrameType
The FormFrameType structure defines a frame that appears on the
form.

typedef struct {
UInt16 id;
FormObjAttrType attr;
RectangleType rect;
UInt16 frameType;

} FormFrameType;

Field Descriptions

FormGadgetAttrType
The FormGadgetAttrType bit field defines a gadget’s attributes.

typedef struct {
UInt16 usable : 1;
UInt16 extended : 1;
UInt16 visible : 1;
UInt16 reserved : 13;

} FormGadgetAttrType;

attr See FormObjAttrType.

pos Location of the bitmap.

rscID Resource ID of the bitmap. If you use
DmGetResource with this value as the resource ID,
it returns a pointer to a BitmapType structure.

id ID of the frame.

attr See FormObjAttrType.

rect Location and size of the frame.

frameType The type of frame.

Forms
Form Data Structures

244 Palm OS SDK Reference

Your code should treat the FormGadgetAttrType structure as
opaque. Use the functions specified in the descriptions below to
retrieve and set each value. Do not attempt to change structure
member values directly.

Field Descriptions

Compatibility

This type is defined only if 3.5 New Feature Set is present.

FormGadgetType
The FormGadgetType structure defines a gadget object that
appears on a form.

typedef struct{
UInt16 id;
FormGadgetAttrType attr;
RectangleType rect;
const void * data;
FormGadgetHandlerType *handler;

}FormGadgetType;

Your code should treat the FormGadgetType structure as opaque.
Use the functions specified in the descriptions below to retrieve and

usable Not set if the gadget is not considered part of the current
interface of the application, and it doesn’t appear on
screen. This is set by FrmShowObject and cleared by
FrmHideObject.

extended If set, the gadget is an extended gadget. Extended
gadgets are supported if 3.5 New Feature Set is present.
An extended gadget has the handler field defined in its
FormGadgetType. If not set, the gadgets is a standard
gadget compatible with all releases of Palm OS®.

visible Set or cleared when the gadget is drawn or erased.
FrmHideObject clears this value. You should set it
explicitly in the gadget’s callback function (if it has one)
in response to a draw request.

reserved Reserved for future use.

Forms
Form Data Structures

Palm OS SDK Reference 245

set each value. Do not attempt to change structure member values
directly.

Field Descriptions

Compatibility

In Palm OS® releases prior to 3.5, the attr field was of type
FormObjAttrType and the handler field did not exist.

FormLabelType
The FormLabelType structure defines a label that appears on a
form.

typedef struct {
UInt16 id;
PointType pos;
FormObjAttrType attr;
FontID fontID;
UInt8 reserved;
Char * text;

} FormLabelType;

Your code should treat the FormLabelType structure as opaque.
Do not attempt to change structure member values directly.

id ID of the gadget resource.

attr See FormGadgetAttrType.

rect Location and size of the object.

data Pointer to any specific data that needs to be stored.
You can set and retrieve the value of this field with
FrmGetGadgetData and FrmSetGadgetData.

handler Pointer to a callback function that controls the
gadget’s behavior and responds to events. You can
set this field with FrmSetGadgetHandler.

Forms
Form Data Structures

246 Palm OS SDK Reference

Field Descriptions

FormLineType
The FormLineType structure defines a line appearing on a form.

typedef struct {
FormObjAttrType attr;
PointType point1;
PointType point2;

} FormLineType;

Your code should treat the FormLineType structure as opaque. Do
not attempt to change structure member values directly.

Field Descriptions

FormObjAttrType
The FormObjAttrType bit field defines a form object’s attributes.

typedef struct {
UInt16 usable : 1;
UInt16 reserved : 15;

} FormObjAttrType;

Your code should treat the FormObjAttrType structure as opaque.
Do not attempt to change structure member values directly.

id Resource ID of the label.

pos Location of the label.

attr See FormObjAttrType.

fontID Font ID of the font used for the label.

reserved Reserved for future use.

text Text of the label.

attr See FormObjAttrType.

point1 Starting point of the line.

point2 Ending point of the line.

Forms
Form Data Structures

Palm OS SDK Reference 247

Field Descriptions

FormObjectKind
The FormObjectKind enum specifies values for the objectType
field of the FormObjListType. It specifies how to interpret the
object field.

enum formObjects {
frmFieldObj,
frmControlObj,
frmListObj,
frmTableObj,
frmBitmapObj,
frmLineObj,
frmFrameObj,
frmRectangleObj,
frmLabelObj,
frmTitleObj,
frmPopupObj,
frmGraffitiStateObj,
frmGadgetObj,
frmScrollbarObj,

};
typedef enum formObjects FormObjectKind;

Value Descriptions

usable Not set if the object is not considered part of the
current interface of the application, and it doesn’t
appear on screen.

reserved Reserved for future use.

frmFieldObj Text field

frmControlObj Control

frmListObj List

frmTableObj Table

frmBitmapObj Form bitmap

Forms
Form Data Structures

248 Palm OS SDK Reference

FormObjectType
The FormObjectType union points to the C structure for a user
interface object that appears on the form.

typedef union {
void * ptr;
FieldType* field;
ControlType* control;
GraphicControlType * graphicControl;
SliderControlType * sliderControl;
ListType* list;
TableType* table;
FormBitmapType* bitmap;
FormLabelType * label;
FormTitleType* title;
FormPopupType* popup;
FormGraffitiStateType* grfState;
FormGadgetType* gadget;
ScrollBarType* scrollBar;

} FormObjectType;

Your code should treat the FormObjectType structure as opaque.
Do not attempt to change structure member values directly.

frmLineObj Line

frmFrameObj Frame

frmRectangleObj Rectangle

frmLabelObj Label

frmTitleObj Form title

frmPopupObj Popup list

frmGraffitiStateObj Graffiti® state indicator

frmGadgetObj Gadget (custom object)

frmScrollbarObj Scrollbar

Forms
Form Data Structures

Palm OS SDK Reference 249

Field Descriptions

Compatibility

The graphicControl and sliderControl fields are only
defined if 3.5 New Feature Set is present.

FormObjListType
The FormObjectListType structure specifies a user interface
object that appears on the form.

ptr Used when the object’s type is not one of those
specified below.

field Text field’s structure. See FieldType.

control Control’s structure. See ControlType.

graphicControl Graphic button structure. See
GraphicControlType.

sliderControl Slider control structure. See
SliderControlType.

list List object’s structure. See ListType.

table Table structure. See TableType.

bitmap Form bitmap’s structure. See
FormBitmapType.

label Label’s structure. See FormLabelType.

title Form title’s structure. See FormTitleType.

popup Popup list’s structure. See FormPopupType.

grfState Graffiti shift indicator’s structure. See
FrmGraffitiStateType.

gadget Gadget (custom UI resource) structure. See
FormGadgetType.

scrollbar Scroll bar’s structure. See ScrollBarType.

Forms
Form Data Structures

250 Palm OS SDK Reference

typedef struct {
FormObjectKind objectType;
UInt8 reserved;
FormObjectType object;

} FormObjListType;

Your code should treat the FormObjListType structure as opaque.
Do not attempt to change structure member values directly.

Field Descriptions

FormPopupType
The FormPopupType structure defines a popup list that appears on
a form.

typedef struct {
UInt16 controlID;
UInt16 listID;

} FormPopupType;

Your code should treat the FormPopupType structure as opaque.
Do not attempt to change structure member values directly.

Field Descriptions

FormPtr
The FormPtr type defines a pointer to a FormType structure.

objectType Specifies the type of the object (control, field, etc.).
See FormObjectKind.

reserved Reserved for future use.

object The C data structure that defines the object. See
FormObjectType.

controlID Resource ID of the popup trigger control that
triggers the list’s display.

listID Resource ID of the list object that defines the popup
list.

Forms
Form Data Structures

Palm OS SDK Reference 251

typedef FormType * FormPtr;

FormRectangleType
The FormRectangleType structure defines a rectangle that
appears on the form.

typedef struct {
FormObjAttrType attr;
RectangleType rect;

} FormRectangleType;

Your code should treat the FormRectangleType structure as
opaque. Do not attempt to change structure member values directly.

Field Descriptions

FormTitleType
The FormTitleType structure defines the title of the form.

typedef struct {
RectangleType rect;
char * text;

} FormTitleType;

Your code should treat the FormTitleType structure as opaque.
Do not attempt to change structure member values directly.

Field Descriptions

FormType
The FormType structure and supporting structures are defined as
follows:

attr See FormObjAttrType.

rect Location and size of the rectangle.

rect The location and size of the title area.

text Text of the title.

Forms
Form Data Structures

252 Palm OS SDK Reference

typedef struct {
WindowType window;
UInt16 formId;
FormAttrType attr;
WinHandle bitsBehindForm;
FormEventHandlerType * handler;
UInt16 focus;
UInt16 defaultButton;
UInt16 helpRscId;
UInt16 menuRscId;
UInt16 numObjects;
FormObjListType * objects;

} FormType;

Your code should treat the FormType structure as opaque. Do not
attempt to change structure member values directly.

Field Descriptions

window Structure of the window object that
corresponds to the form. See WindowType.

formId ID number of the form, specified by the
application developer. This ID value is part of
the event data of frmOpenEvent. The ID
should match the form’s resource ID.

attr Form object attributes. See FormAttrType.

bitsBehindForm Used to save all the bits behind the form so
the screen can be properly refreshed when the
form is closed. Use this attribute for modal
forms.

handler Routine called when the form needs to handle
an event. You typically set this in your
application’s event handling function.

focus Index of a field or table object within the form
that contains the focus. Any keyDownEvent
is passed to the object that has the focus. Set to
noFocus if no object has the focus.

Forms
Form Constants

Palm OS SDK Reference 253

FrmGraffitiStateType
The FrmGraffitiStateType structure defines the graffiti shift
indicator.

typedef struct{
PointerType pos;

}FrmGraffitiStateType;

Your code should treat the FrmGraffitiStateType structure as
opaque. Do not attempt to change structure member values directly.

Field Descriptions

Form Constants
The following form constants are defined:

defaultButton Resource ID of the object defined as the
default button. This value is used by the
routine FrmDoDialog.

helpRscId Resource ID number of the help resource. The
help resource is a String resource (type tSTR).

menuRscId ID number of a menu bar to use if the form
has a menu, or zero if the form doesn’t have a
menu.

numObjects Number of objects contained within the form.

objects Pointer to the array of objects contained
within the form. See FormObjListType.

pos Location of the graffiti shift indicator.

Constant Value Description

noFocus 0xffff No form object has the focus

frmRedrawUpdateCode 0x8000 Indicates that the form should be
redrawn; flag in a frmUpdateEvent.

Forms
Form Resources

254 Palm OS SDK Reference

Form Resources
The following resources are associated with forms and with the
objects on a form whose data structures are defined above:

• Form—Form Resource (tFRM)

• Alert dialog— Alert Resource (Talt)

• Bitmap—Form Bitmap Resource (tFBM)

• Button—Button Resource (tBTN)

• Check box—Check Box Resource (tCBX)

• Field—Field Resource (tFLD)

• Gadget (custom object)— Gadget Resource (tGDT)

• Graffiti shift indicator —Graffiti Shift Indicator Resource
(tGSI)

• Label—Label Resource (tLBL)

• List—List Resource (tLST)

• Popup trigger—Popup Trigger Resource (tPUT)

• Push button—Push Button Resource (tPBN)

• Repeating button—Repeating Button Resource (tREP)

• Scrollbar—Scroll Bar Resource (tSCL)

• Selector trigger—Selector Trigger Resource (tSLT)

• Table—Table Resource (tTBL)

frmNoSelectedControl 0xff Returned by
FrmGetControlGroupSelection if
no control is selected.

frmResponseCreate 1974 Passed to FormCheckResponseFunc to
indicate that the function should perform
initialization.

frmResponseQuit 0xBEEF Passed to FormCheckResponseFunc to
indicate that the function should perform
cleanup.

Constant Value Description

Forms
Form Functions

Palm OS SDK Reference 255

Form Functions

FrmAlert

Purpose Create a modal dialog from an alert resource and display it until the
user selects a button in the dialog.

Prototype UInt16 FrmAlert (UInt16 alertId)

Parameters -> alertId ID of the alert resource.

Result Returns the item number of the button the user selected. A button’s
item number is determined by its order in the alert dialog; the first
button has the item number 0 (zero).

See Also FrmDoDialog, FrmCustomAlert, FrmCustomResponseAlert

FrmCloseAllForms

Purpose Send a frmCloseEvent to all open forms.

Prototype void FrmCloseAllForms (void)

Parameters None.

Result Returns nothing.

Comments Applications can call this function to ensure that all forms are closed
cleanly before exiting PilotMain(); that is, before termination.

See Also FrmSaveAllForms

Forms
Form Functions

256 Palm OS SDK Reference

FrmCopyLabel

Purpose Copy the passed string into the data structure of the specified label
object in the active form.

Prototype void FrmCopyLabel (FormType *formP,
UInt16 labelID, const Char * newLabel)

Parameters -> formP Pointer to the form object (FormType
structure).

-> labelID ID of form label object.

-> newLabel Pointer to a NULL-terminated string.

Result Returns nothing.

Comments The size of the new label must not exceed the size of the label
defined in the resource. When defining the label in the resource,
specify an initial size at least as big as any of the strings that will be
assigned dynamically. This function redraws the label if the form’s
usable attribute and the label’s visible attribute are set.

This function redraws the label but does not erase the old one first.
If the new label is shorter than the old one, the end of the old label
will still be visible. To avoid this, you can hide the label using
FrmHideObject, then show it using FrmShowObject, after using
FrmCopyLabel.

See Also FrmGetLabel

Forms
Form Functions

Palm OS SDK Reference 257

FrmCopyTitle

Purpose Copy a new title over the form’s current title. If the form is visible,
the new title is drawn.

Prototype void FrmCopyTitle (FormType *formP,
const Char *newTitle)

Parameters -> formP Pointer to the form object (FormType
structure).

-> newTitle Pointer to the new title string.

Result Returns nothing.

Comments The size of the new title must not exceed the title size defined in the
resource. When defining the title in the resource, specify an initial
size at least as big as any of the strings to be assigned dynamically.

See Also FrmGetTitle, FrmSetTitle

FrmCustomAlert

Purpose Create a modal dialog from an alert resource and display the dialog
until the user taps a button in the alert dialog.

Prototype UInt16 FrmCustomAlert (UInt16 alertId,
const Char *s1, const Char *s2, const Char *s3)

Parameters -> alertId Resource ID of the alert.

-> s1, s2, s3 Strings to replace ^1, ^2, and ^3 (see
Comments).

Result Returns the number of the button the user tapped (the first button is
zero).

Comments A button’s item number is determined by its order in the alert
template; the first button has the item number zero.

Forms
Form Functions

258 Palm OS SDK Reference

Up to three strings can be passed to this routine. They are used to
replace the variables ̂ 1, ̂ 2 and ̂ 3 that are contained in the message
string of the alert resource.

If the variables ^1, ^2, and ^3 occur in the message string, do not
pass NULL for the arguments s1, s2, and s3. If you want an
argument to be ignored, pass the empty string (""). In Palm OS 2.0
or below, pass a string containing a space (" ") instead of the empty
string.

See Also FrmAlert, FrmDoDialog, FrmCustomResponseAlert

FrmCustomResponseAlert

Purpose Create a modal dialog with a text field from an alert resource and
display it until the user taps a button in the alert dialog.

Prototype UInt16 FrmCustomResponseAlert (UInt16 alertId,
const Char *s1, const Char *s2,
const Char *s3, Char *entryStringBuf,
Int16 entryStringBufLength,
FormCheckResponseFuncPtr callback)

Parameters -> alertId Resource ID of the alert.

-> s1, s2, s3 Strings to replace ^1, ^2, and ^3. See the
Comments in FrmCustomAlert for more
information.

<- entryStringBuf
The string the user entered in the text field.

-> entryStringBufLength
The maximum length for the string in
entryStringBuf.

-> callback A callback function that processes the string.
See FormCheckResponseFunc. Pass NULL if
there is no callback.

Result Returns the number of the button the user tapped (the first button is
zero).

Forms
Form Functions

Palm OS SDK Reference 259

Comments This function differs from FrmCustomAlert in these ways:

• The dialog it displays contains a text field for user entry. The
text that the user enters is returned in the entryStringBuf
parameter.

• When the user taps a button, the callback function is called
and is passed the button number and entryStringBuf.
The dialog is only dismissed if the callback returns true.
This behavior allows you to perform error checking on the
string that the user entered and give the user a chance to re-
enter the string.

The callback function is also called with special constants
when the alert dialog is being initialized and when it is being
deallocated. This allows the callback to perform any
necessary initialization and cleanup.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also FrmAlert, FrmDoDialog

FrmDeleteForm

Purpose Release the memory occupied by a form. Any memory allocated to
objects in the form is also released.

Prototype void FrmDeleteForm (FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns nothing.

Comments This function doesn’t modify the display.

Compatibility If 3.5 New Feature Set is present and the form contains an extended
gadget, this function calls the gadget’s callback with
formGadgetDeleteCmd. See FormGadgetHandler.

See Also FrmInitForm, FrmReturnToForm

Forms
Form Functions

260 Palm OS SDK Reference

FrmDispatchEvent

Purpose Dispatch an event to the application’s handler for the form.

Prototype Boolean FrmDispatchEvent (EventType *eventP)

Parameters -> eventP Pointer to an event.

Result Returns the Boolean value returned by the form’s event handler or
FrmHandleEvent. (If the form’s event handler returns false, the
event is passed to FrmHandleEvent.) This function also returns
false if the form specified in the event is invalid.

Comments The event is dispatched to the current form’s handler unless the
form ID is specified in the event data, as, for example, with
frmOpenEvent or frmGotoEvent. A form’s event handler
(FormEventHandler) is registered by FrmSetEventHandler.

Note that if the form does not have a registered event handler, this
function causes a fatal error.

FrmDoDialog

Purpose Display a modal dialog until the user taps a button in the dialog.

Prototype UInt16 FrmDoDialog (FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns the resource ID of the button the user tapped.

See Also FrmInitForm, FrmCustomAlert, FrmCustomResponseAlert

Forms
Form Functions

Palm OS SDK Reference 261

FrmDrawForm

Purpose Draw all objects in a form and the frame around the form.

Prototype void FrmDrawForm (FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns nothing.

Comments If the saveBehind form attribute is set and the form is visible, this
function saves the bits behind the form using the bitsBehindForm
field in the FormType structure.

You should call this function in response to a frmOpenEvent.

If you do any custom drawing, you should do so after you call this
function not before. If you do custom drawing, respond to
frmUpdateEvent as well as frmOpenEvent, and be sure to return
true to specify that the frmUpdateEvent was handled. The default
event handler for frmUpdateEvent calls FrmDrawForm, so if you
allow the event to fall through by returning false, your custom
drawing is erased.

Compatibility If 3.5 New Feature Set is present, FrmDrawForm erases the form’s
window before performing any drawing. Thus, it is especially
important to do any custom drawing after this function call on Palm
OS 3.5 and higher.

If 3.5 New Feature Set is present and the form contains an extended
gadget, this function calls the gadget’s callback with
formGadgetDrawCmd. See FormGadgetHandler.

See Also FrmEraseForm, FrmInitForm

Forms
Form Functions

262 Palm OS SDK Reference

FrmEraseForm

Purpose Erase a form from the display.

Prototype void FrmEraseForm (FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns nothing.

Comments If the region obscured by the form was saved by FrmDrawForm, this
function restores that region.

FrmGetActiveForm

Purpose Return the currently active form.

Prototype FormType *FrmGetActiveForm (void)

Parameters None.

Result Returns a pointer to the form object of the active form.

See Also FrmGetActiveFormID, FrmSetActiveForm

FrmGetActiveFormID

Purpose Return the ID of the currently active form.

Prototype UInt16 FrmGetActiveFormID (void)

Parameters None.

Result Returns the active form’s ID number.

See Also FrmGetActiveForm

Forms
Form Functions

Palm OS SDK Reference 263

FrmGetControlGroupSelection

Purpose Return the item number of the control selected in a group of
controls.

Prototype UInt16 FrmGetControlGroupSelection
(FormType *formP, UInt8 groupNum)

Parameters -> formP Pointer to the form object (FormType
structure).

-> groupNum Control group number.

Result Returns the item number of the selected control; returns
frmNoSelectedControl if no item is selected.

Comments The item number is the index into the form object’s data structure.

NOTE: FrmSetControlGroupSelection sets the selection
in a control group based on an object ID, not its index, which
FrmGetControlGroupSelection returns.

Compatibility On versions prior to 3.5, this function returned a Byte instead of
UInt16.

See Also FrmGetObjectId, FrmGetObjectPtr,
FrmSetControlGroupSelection

FrmGetControlValue

Purpose Return the current value of a control.

Prototype Int16 FrmGetControlValue (const FormType *formP,
UInt16 controlID)

Parameters -> formP Pointer to the form object (FormType
structure).

Forms
Form Functions

264 Palm OS SDK Reference

-> controlID Index of the control object in the form object’s
data structure. You can obtain this by using
FrmGetObjectIndex.

Result Returns the current value of the control. For most controls the return
value is either 0 (off) or 1 (on). For sliders, this function returns the
value of the value field.

Comments The caller must specify a valid index. This function is valid only for
push button and check box control objects.

See Also FrmSetControlValue

FrmGetFirstForm

Purpose Return the first form in the window list.

Prototype FormType *FrmGetFirstForm (void)

Parameters None.

Result Returns a pointer to a form object, or NULL if there are no forms.

Comments The window list is a LIFO stack. The last window created is the first
window in the window list.

Forms
Form Functions

Palm OS SDK Reference 265

FrmGetFocus

Purpose Return the item (index) number of the object that has the focus.

Prototype UInt16 FrmGetFocus (const FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns the index of the object (UI element) that has the focus, or
returns noFocus if none does. To convert the object index to an ID,
use FrmGetObjectId.

See Also FrmGetObjectPtr, FrmSetFocus

FrmGetFormBounds

Purpose Return the visual bounds of the form; the region returned includes
the form’s frame.

Prototype void FrmGetFormBounds (const FormType *formP,
RectangleType *rP)

Parameters -> formP Pointer to the form object (FormType
structure).

<- rP Pointer to a RectangleType structure where
the bounds is returned.

Result Returns nothing. The bounds of the form are returned in r.

Forms
Form Functions

266 Palm OS SDK Reference

FrmGetFormId

Purpose Return the resource ID of a form.

Prototype UInt16 FrmGetFormId (FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns form resource ID.

See Also FrmGetFormPtr

FrmGetFormPtr

Purpose Return a pointer to the form that has the specified ID.

Prototype FormType *FrmGetFormPtr (UInt16 formId)

Parameters -> formId Form ID number.

Result Returns a pointer to the form object, or NULL if the form is not in
memory.

See Also FrmGetFormId

FrmGetGadgetData

Purpose Return the value stored in the data field of the gadget object.

Prototype void *FrmGetGadgetData (const FormType *formP,
UInt16 objIndex)

Parameters -> formP Pointer to the form object (FormType
structure).

Forms
Form Functions

Palm OS SDK Reference 267

-> objIndex Index of the gadget object in the form object’s
data structure. You can obtain this by using
FrmGetObjectIndex.

Result Returns a pointer to the custom gadget’s data.

Comments Gadget objects provide a way for an application to attach custom
gadgetry to a form. In general, the data field of a gadget object
contains a pointer to the custom object’s data structure.

See Also FrmSetGadgetData, FrmSetGadgetHandler

FrmGetLabel

Purpose Return pointer to the text of the specified label object in the specified
form.

Prototype const Char *FrmGetLabel (FormType *formP,
UInt16 labelID)

Parameters -> formP Pointer to the form object (FormType
structure).

-> labelID ID of the label object.

Result Returns a pointer to the label string.

Comments Does not make a copy of the string; returns a pointer to the string.
The object must be a label.

See Also FrmCopyLabel

Forms
Form Functions

268 Palm OS SDK Reference

FrmGetNumberOfObjects

Purpose Return the number of objects in a form.

Prototype UInt16 FrmGetNumberOfObjects
(const FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns the number of objects in the specified form.

See Also FrmGetObjectPtr, FrmGetObjectId

FrmGetObjectBounds

Purpose Retrieve the bounds of an object given its form and index.

Prototype void FrmGetObjectBounds (const FormType *formP,
UInt16 ObjIndex, RectangleType *rP)

Parameters -> formP Pointer to the form object (FormType
structure).

-> ObjIndex Index of an object in the form. You can obtain
this by using FrmGetObjectIndex.

<- rP Pointer to a RectangleType structure where
the object bounds are returned. The bounds are
in window-relative coordinates.

Result Returns nothing. The object’s bounds are returned in r.

See Also FrmGetObjectPosition, FrmSetObjectPosition

Forms
Form Functions

Palm OS SDK Reference 269

FrmGetObjectId

Purpose Return the ID of the specified object.

Prototype UInt16 FrmGetObjectId (const FormType *formP,
UInt16 objIndex)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objIndex Index of an object in the form. You can obtain
this by using FrmGetObjectIndex.

Result Returns the ID number of an object or frmInvalidObjectId if the
objIndex parameter is invalid.

See Also FrmGetObjectPtr

FrmGetObjectIndex

Purpose Return the index of an object in the form’s objects list.

Prototype UInt16 FrmGetObjectIndex (const FormType *formP,
UInt16 objID)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objID ID of an object in the form.

Result Returns the index of the object (the index of the first object is 0).

Comments Bitmaps use a different mechanism for IDs than the rest of the form
objects. When finding a bitmap with FrmGetObjectIndex, you
need to pass the bitmap's resource ID, not the ID of the form bitmap
object. (Passing the ID of the form bitmap object may or may not
give you the right object back, depending on how you created the
objects.)

Forms
Form Functions

270 Palm OS SDK Reference

This means that if you've got the same bitmap in two different form
bitmap objects on the same form, you won't be able to use
FrmGetObjectIndex to get at the second one; it'll always return
the first.

See Also FrmGetObjectPtr, FrmGetObjectId

FrmGetObjectPosition

Purpose Return the coordinates of the specified object relative to the form.

Prototype void FrmGetObjectPosition (const FormType *formP,
UInt16 objIndex, Coord *x, Coord *y)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objIndex Index of an object in the form. You can obtain
this by using FrmGetObjectIndex.

<- x, y Pointers where the window-relative x and y
positions of the object are returned. These
locate the top-left corner of the object.

Result Returns nothing.

See Also FrmGetObjectBounds, FrmSetObjectPosition

FrmGetObjectPtr

Purpose Return a pointer to the data structure of an object in a form.

Prototype void *FrmGetObjectPtr (const FormType *formP,
UInt16 objIndex)

Parameters -> formP Pointer to the form object (FormType
structure).

Forms
Form Functions

Palm OS SDK Reference 271

-> objIndex Index of an object in the form. You can obtain
this by using FrmGetObjectIndex.

Result Returns a pointer to an object in the form.

See Also FrmGetObjectId

FrmGetObjectType

Purpose Return the type of an object.

Prototype FormObjectKind FrmGetObjectType
(const FormType *formP, UInt16 objIndex)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objIndex Index of an object in the form. You can obtain
this by using FrmGetObjectIndex.

Result Returns FormObjectKind of the item specified. See
FormObjectKind.

FrmGetTitle

Purpose Return a pointer to the title string of a form.

Prototype const Char *FrmGetTitle (const FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns a pointer to title string, or NULL if there is no title string or
there is an error finding it.

Comments This is a pointer to the internal structure itself, not to a copy.

See Also FrmCopyTitle, FrmSetTitle

Forms
Form Functions

272 Palm OS SDK Reference

FrmGetWindowHandle

Purpose Return the window handle of a form.

Prototype WinHandle FrmGetWindowHandle
(const FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns the handle of the memory block that contains the form data
structure. Since the form structure begins with the WindowType,
this is also a WinHandle.

FrmGotoForm

Purpose Send a frmCloseEvent to the current form; send a
frmLoadEvent and a frmOpenEvent to the specified form.

Prototype void FrmGotoForm (UInt16 formId)

Parameters -> formId ID of the form to display.

Result Returns nothing.

Comments The default form event handler (FrmHandleEvent) erases and
disposes of a form when it receives a frmCloseEvent.

See Also FrmPopupForm

Forms
Form Functions

Palm OS SDK Reference 273

FrmHandleEvent

Purpose Handle the event that has occurred in the form.

Prototype Boolean FrmHandleEvent (FormType *formP,
EventType *eventP)

Parameters -> formP Pointer to the form object (FormType
structure).

-> eventP Pointer to the event data structure
(EventType).

Result Returns true if the event was handled.

Comments Never call this function directly. Call FrmDispatchEvent instead.
FrmDispatchEvent passes events to a form’s custom event
handler and then, if the event was not handled, to this function.

Table 10.1 provides an overview of how FrmHandleEvent handles
different events.

Table 10.1 FrmHandleEvent Actions

When FrmHandleEvent receives... FrmHandleEvent performs these actions...

ctlEnterEvent Passes the event and a pointer to the object the
event occurred in to CtlHandleEvent. The
object pointer is obtained from the event data.
If the control is part of an exclusive control
group, it deselects the currently selected
control of the group first.

ctlRepeatEvent Passes the event and a pointer to the object the
event occurred in to CtlHandleEvent. The
object pointer is obtained from the event data.

Forms
Form Functions

274 Palm OS SDK Reference

ctlSelectEvent Checks if the control is a Popup Trigger
Control. If it is, the list associated with the
popup trigger is displayed until the user
makes a selection or touches the pen outside
the bounds of the list. If a selection is made, a
popSelectEvent is added to the event
queue.

fldEnterEvent or
fldHeightChangedEvent

Checks if a field object or a table object has the
focus and passes the event to the appropriate
handler (FldHandleEvent or
TblHandleEvent). The table object is also a
container object, which may contain a field
object. If TblHandleEvent receives a field
event, it passes the event to the field object
contained within it.

frmCloseEvent Erases the form and releases any memory
allocated for it.

frmGadgetEnterEvent Passes the event to the gadget’s callback
function if the gadget has one. See
FormGadgetHandler.

frmGadgetMiscEvent Passes the event to the gadget’s callback
function if the gadget has one. See
FormGadgetHandler.

frmTitleEnterEvent Tracks the pen until it is lifted. If it is lifted
within the bounds of the form title, adds a
frmTitleSelectEvent event to the event
queue.

frmTitleSelectEvent Adds a keyDownEvent with the vchrMenu
character to the event queue.

frmUpdateEvent Calls FrmDrawForm to redraw the form.

Table 10.1 FrmHandleEvent Actions (continued)

When FrmHandleEvent receives... FrmHandleEvent performs these actions...

Forms
Form Functions

Palm OS SDK Reference 275

keyDownEvent Passes the event to the handler for the object
that has the focus. If no object has the focus,
the event is ignored.

lstEnterEvent Passes the event and a pointer to the object the
event occurred in to LstHandleEvent. The
object pointer is obtained from the event data.

menuCmdBarOpenEvent Checks if a field object or a table object has the
focus and passes the event to the appropriate
handler (FldHandleEvent or
TblHandleEvent), broadcasts the
notification
sysNotifyMenuCmdBarOpenEvent, and
then displays the command toolbar.

menuEvent Checks if the menu command is one of the
system edit menu commands. The system
provides a standard edit menu that contains
the commands Undo, Cut, Copy, Paste, Select
All, and Keyboard. FrmHandleEvent
responds to these commands.

penDownEvent; pen position in the
bounds of the form object

Checks the list of objects contained by the
form to determine if the pen is within the
bounds of one. If it is, the appropriate handler
is called to handle the event, for example, if
the pen is in a control, CtlHandleEvent is
called. If the pen isn’t within the bounds of an
object, the event is ignored by the form. If the
pen is within the bounds of the help icon, it is
tracked until it is lifted, and if it’s still within
the help icon bounds, the help dialog is
displayed.

popSelectEvent Sets the label of the popup trigger to the
current selection of the popup list.

Table 10.1 FrmHandleEvent Actions (continued)

When FrmHandleEvent receives... FrmHandleEvent performs these actions...

Forms
Form Functions

276 Palm OS SDK Reference

Compatibility FrmHandleEvent only handles frmTitleSelectEvent,
menuCmdBarOpenEvent, frmGadgetEnterEvent, and
frmGadgetMiscEvent if 3.5 New Feature Set is present.

See Also FrmDispatchEvent

FrmHelp

Purpose Display the specified help message until the user taps the Done
button in the help dialog.

Prototype void FrmHelp (UInt16 helpMsgId)

Parameters -> helpMsgId Resource ID of help message string.

Result Returns nothing.

Comments The help message is displayed in a modal dialog that has a vertical
scrollbar, if necessary.

sclEnterEvent or
sclRepeatEvent

Passes the event and a pointer to the object the
event occurred in to SclHandleEvent.

tblEnterEvent Passes the event and a pointer to the object the
event occurred in to TblHandleEvent. The
object pointer is obtained from the event data.

Table 10.1 FrmHandleEvent Actions (continued)

When FrmHandleEvent receives... FrmHandleEvent performs these actions...

Forms
Form Functions

Palm OS SDK Reference 277

FrmHideObject

Purpose Erase the specified object and set its attribute data (usable bit) so
that it does not redraw or respond to the pen.

Prototype void FrmHideObject (FormType *formP,
UInt16 objIndex)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objIndex Index of an object in the form. You can obtain
this by using FrmGetObjectIndex.

Result Returns nothing.

Comments This function does not affect lists or tables.

Compatibility Prior to OS version 3.2, this function did not set the usable bit of
the object attribute data to false. On an OS version prior to 3.2 you
can work around this bug by directly setting this bit to false
yourself.

If 3.5 New Feature Set is present and the object is an extended
gadget, this function calls the gadget’s callback with
formGadgetEraseCmd. See FormGadgetHandler.

See Also FrmShowObject

FrmInitForm

Purpose Load and initialize a form resource.

Prototype FormType *FrmInitForm (UInt16 rscID)

Parameters -> rscID Resource ID of the form.

Result Returns a pointer to the form data structure.

Displays an error message if the form has already been initialized.

Forms
Form Functions

278 Palm OS SDK Reference

Comments This function does not affect the display (use FrmDrawForm to
draw the form) nor make the form active (use FrmSetActiveForm
to make it active).

For each initialized form, you must call FrmDeleteForm to release
the form memory when you are done with the form. Alternatively,
you can free the active form by calling FrmReturnToForm.

See Also FrmDoDialog, FrmDeleteForm, FrmReturnToForm

FrmNewBitmap

Purpose Create a new form bitmap dynamically.

Prototype FormBitmapType *FrmNewBitmap (FormType **formPP,
UInt16 ID, UInt16 rscID, Coord x, Coord y)

Parameters <-> formPP Pointer to a pointer to the form in which the
new bitmap is installed. This value is not a
handle; that is, the old formPP value is not
necessarily valid after this function returns
because the form may be moved in memory. In
subsequent calls, always use the new formPP
value returned by this function.

-> ID Symbolic ID of the bitmap, specified by the
developer. By convention, this ID should match
the resource ID (not mandatory).

-> rscID Numeric value identifying the resource that
provides the bitmap. This value must be unique
within the application scope.

-> x Horizontal coordinate of the upper-left corner
of the bitmap’s boundaries, relative to the
window in which it appears.

Forms
Form Functions

Palm OS SDK Reference 279

-> y Vertical coordinate of the upper-left corner of
the bitmap’s boundaries, relative to the
window in which it appears.

Result Returns a pointer to the new bitmap, or 0 if the call did not succeed.
The most common cause of failure is lack of memory.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FrmRemoveObject

FrmNewForm

Purpose Create a new form object dynamically.

Prototype FormType *FrmNewForm (UInt16 formID,
const Char *titleStrP, Coord x, Coord y,
Coord width, Coord height, Boolean modal,
UInt16 defaultButton, UInt16 helpRscID,
UInt16 menuRscID)

Parameters -> formID Symbolic ID of the form, specified by the
developer. By convention, this ID should match
the resource ID (not mandatory).

-> titleStrP Pointer to a string that is the title of the form.

-> x Horizontal coordinate of the upper-left corner
of the form’s boundaries, relative to the
window in which it appears.

-> y Vertical coordinate of the upper-left corner of
the form’s boundaries, relative to the window
in which it appears.

-> width Width of the form, expressed in pixels. Valid
values are 1 -160.

-> height Height of the form, expressed in pixels.Valid
values are 1 -160.

Forms
Form Functions

280 Palm OS SDK Reference

-> modal true specifies that the form ignores pen events
outside its boundaries.

-> defaultButtonSymbolic ID of the button that provides the
form’s default action, specified by the
developer.

-> helpRscID Symbolic ID of the resource that provides the
form’s online help, specified by the developer.
Only modal dialogs can have help resources.

-> menuRscID Symbolic ID of the resource that provides the
form’s menus, specified by the developer.

Result Returns a pointer to the new form object, or 0 if the call did not
succeed. The most common cause of failure is lack of memory.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FrmValidatePtr, WinValidateHandle, FrmRemoveObject

FrmNewGadget

Purpose Create a new gadget dynamically and install it in the specified form.

Prototype FormGadgetType *FrmNewGadget (FormType **formPP,
UInt16 id, Coord x, Coord y, Coord width,
Coord height)

Parameters <-> formPP Pointer to a pointer to the form in which the
new gadget is installed. This value is not a
handle; that is, the old formPP value is not
necessarily valid after this function returns
because the form may be moved in memory. In
subsequent calls, always use the new formPP
value returned by this function.

-> id Symbolic ID of the gadget, specified by the
developer. By convention, this ID should match
the resource ID (not mandatory).

Forms
Form Functions

Palm OS SDK Reference 281

-> x Horizontal coordinate of the upper-left corner
of the gadget’s boundaries, relative to the
window in which it appears.

-> y Vertical coordinate of the upper-left corner of
the gadget’s boundaries, relative to the window
in which it appears.

-> width Width of the gadget, expressed in pixels. Valid
values are 1 - 160.

-> height Height of the gadget, expressed in pixels.Valid
values are 1 - 160.

Result Returns a pointer to the new gadget object or 0 if the call did not
succeed. The most common cause of failure is lack of memory.

Comments A gadget is a custom user interface object. For more information, see
“Gadget Resource” on page 90.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FrmRemoveObject

FrmNewGsi

Purpose Create a new Graffiti shift indicator dynamically and install it in the
specified form.

Prototype FrmGraffitiStateType *FrmNewGsi
(FormType **formPP, Coord x, Coord y)

Parameters <-> formPP Pointer to a pointer to the form in which the
new Graffiti shift indicator is installed. This
value is not a handle; that is, the old formPP
value is not necessarily valid after this function
returns because the form may be moved in
memory. In subsequent calls, always use the
new formPP value returned by this function.

Forms
Form Functions

282 Palm OS SDK Reference

-> x Horizontal coordinate of the upper-left corner
of the Graffiti shift indicator’s boundaries,
relative to the window in which it appears.

-> y Vertical coordinate of the upper-left corner of
the Graffiti shift indicator’s boundaries, relative
to the window in which it appears.

Result Returns a pointer to the new gadget object or 0 if the call did not
succeed. The most common cause of failure is lack of memory.

Comments In normal operation, the Graffiti shift indicator is drawn in the
lower-right portion of the screen when the user enters the shift
keystroke. You use this function if the Graffiti shift indicator needs
to be drawn in a nonstandard location. For example, the form
manager uses it to draw the shift indicator in a custom alert dialog
that contains a text field (FrmCustomResponseAlert).

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also FrmRemoveObject

FrmNewLabel

Purpose Create a new label object dynamically and install it in the specified
form.

Prototype FormLabelType *FrmNewLabel (FormType **formPP,
UInt16 ID, const Char *textP, Coord x, Coord y,
FontID font)

Parameters <-> formPP Pointer to a pointer to the form in which the
new label is installed. This value is not a
handle; that is, the old formPP value is not
necessarily valid after this function returns
because the form may be moved in memory. In
subsequent calls, always use the new formPP
value returned by this function.

Forms
Form Functions

Palm OS SDK Reference 283

-> ID Symbolic ID of the label, specified by the
developer. By convention, this ID should match
the resource ID (not mandatory).

-> textP Pointer to a string that provides the label text.
This string is copied into the label structure.

-> x Horizontal coordinate of the upper-left corner
of the label’s boundaries, relative to the
window in which it appears.

-> y Vertical coordinate of the upper-left corner of
the label’s boundaries, relative to the window
in which it appears.

-> font Font with which to draw the label text.

Result Returns a pointer to the new label object or 0 if the call did not
succeed. The most common cause of failure is lack of memory.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also CtlValidatePointer, FrmRemoveObject

FrmPointInTitle

Purpose Check if a coordinate is within the bounds of the form’s title.

Prototype Boolean FrmPointInTitle (const FormType *formP,
Coord x, Coord y)

Parameters -> formP Pointer to the form object (FormType
structure).

-> x, y Window-relative x and y coordinates.

Result Returns true if the specified coordinate is in the form’s title.

Compatibility Implemented only if 2.0 New Feature Set is present.

Forms
Form Functions

284 Palm OS SDK Reference

FrmPopupForm

Purpose Queues a frmLoadEvent and a frmOpenEvent for the specified
form.

Prototype void FrmPopupForm (UInt16 formId)

Parameters -> formID Resource ID of form to open.

Result Returns nothing.

Comments This routine differs from FrmGotoForm in that the current form is
not closed. You can call FrmReturnToForm to close a form opened
by FrmPopupForm.

FrmRemoveObject

Purpose Remove the specified object from the specified form.

Prototype Err FrmRemoveObject (FormType **formPP,
UInt16 objIndex)

Parameters <-> formPP Pointer to a pointer to the form from which this
function removes an object. This value is not a
handle; that is, the old formPP value is not
necessarily valid after this function returns. In
subsequent calls, always use the new formPP
value returned by this function.

-> objIndex The object to remove, specified as an index into
the list of objects installed in the form. You can
use the FrmGetObjectIndex function to
discover this value.

Result Returns 0 if no error.

Comments You can use this function to remove any form object (a bitmap,
control, list, and so on) and free the memory allocated to it within
the form data structure. The data structures for most form objects

Forms
Form Functions

Palm OS SDK Reference 285

are embedded within the form data structure memory chunk. This
function frees that memory and moves the other objects, if
necessary, to close up the memory “hole” and decrease the size of
the form chunk.

Note that this function does not free memory outside the form data
structure that may be allocated to an object, such as the memory
allocated to the string in an editable field object.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FrmNewBitmap, FrmNewForm, FrmNewGadget, FrmNewLabel,
CtlNewControl, FldNewField, LstNewList

FrmRestoreActiveState

Purpose Macro that restores the active window and form state.

Prototype FrmRestoreActiveState (stateP)

Parameters -> stateP A pointer to the FormActiveStateType
structure that you passed to
FrmSaveActiveState when you saved the
state.

Result Returns zero on success.

Comments Use this function to restore the state of displayed forms to the state
that existed before you dynamically showed a new modal form. You
must have previously called FrmSaveActiveState to save the
state.

Compatibility Implemented only if 3.0 New Feature Set is present.

Forms
Form Functions

286 Palm OS SDK Reference

FrmReturnToForm

Purpose Erase and delete the currently active form and make the specified
form the active form.

Prototype void FrmReturnToForm (UInt16 formId)

Parameters -> formID Resource ID of the form to return to.

Result Returns nothing.

Comments It is assumed that the form being returned to is already loaded into
memory and initialized. Passing a form ID of 0 returns to the first
form in the window list, which is the last form to be loaded.

FrmReturnToForm does not generate a frmCloseEvent when
called from a modal form’s event handler. It assumes that you have
already handled cleaning up your form’s variables since you are
explicitly calling FrmReturnToForm.

See Also FrmGotoForm, FrmPopupForm

FrmSaveActiveState

Purpose Macro that saves the active window and form state.

Prototype FrmSaveActiveState (stateP)

Parameters <-> stateP A pointer to a FormActiveStateType
structure that is used to save the state. Pass the
same pointer to FrmRestoreActiveState to
restore the state. Treat the structure like a black
box; that is, don’t attempt to read it or write to
it.

Result Returns zero on success.

Comments Use this function to save the state of displayed forms before
dynamically showing a new modal form. Call

Forms
Form Functions

Palm OS SDK Reference 287

FrmRestoreActiveState to restore the state after you remove
the modal form.

Compatibility Implemented only if 3.0 New Feature Set is present.

FrmSaveAllForms

Purpose Send a frmSaveEvent to all open forms.

Prototype void FrmSaveAllForms (void)

Parameters None.

Result Returns nothing.

See Also FrmCloseAllForms

FrmSetActiveForm

Purpose Set the active form. All input (key and pen) is directed to the active
form and all drawing occurs there.

Prototype void FrmSetActiveForm (FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns nothing.

Comments A penDownEvent outside the form but within the display area is
ignored.

Compatibility In Palm OS releases earlier than 3.5, this function generated a
winEnterEvent for the new form immediately following the
winExitEvent for the old form. Starting in Palm OS 3.5,
FrmSetActiveForm does not generate the winEnterEvent. The

Forms
Form Functions

288 Palm OS SDK Reference

winEnterEvent does not occur until the newly active form is
drawn.

See Also FrmGetActiveForm

FrmSetCategoryLabel

Purpose Set the category label displayed on the title line of a form. If the
form’s visible attribute is set, redraw the label.

Prototype void FrmSetCategoryLabel (FormType *formP,
UInt16 objIndex, Char *newLabel)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objIndex Index of an object in the form. You can obtain
this by using FrmGetObjectIndex.

-> newLabel Pointer to the name of the new category.

Result Returns nothing.

Comments The pointer to the new label (newLabel) is saved in the object.

FrmSetControlGroupSelection

Purpose Set the selected control in a group of controls.

Prototype void FrmSetControlGroupSelection
(const FormType *formP, UInt8 groupNum,
UInt16 controlID)

Parameters -> formP Pointer to the form object (FormType
structure).

-> groupNum Control group number.

Forms
Form Functions

Palm OS SDK Reference 289

-> controlID ID of control to set.

Result Returns nothing.

Comments This function unsets all the other controls in the group. The display
is updated.

NOTE: FrmGetControlGroupSelection returns the
selection in a control group as an object index, not as an object
ID, which FrmSetControlGroupSelection uses to set the
selection.

See Also FrmGetControlGroupSelection

FrmSetControlValue

Purpose Set the current value of a control. If the control is visible, it’s
redrawn.

Prototype void FrmSetControlValue (const FormType *formP,
UInt16 objIndex, Int16 newValue)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objIndex Index of the control in the form. You can obtain
this by using FrmGetObjectIndex.

-> newValue New value to set for the control. For sliders,
specify a value between the slider’s minimum
and maximum. For graphical controls, push
buttons, or check boxes, specify 0 for off,
nonzero for on.

Result Returns nothing.

Forms
Form Functions

290 Palm OS SDK Reference

Comments This function works only with graphical controls, sliders, push
buttons, and check boxes. If you set the value of any other type of
control, the behavior is undefined.

See Also FrmGetControlValue

FrmSetEventHandler

Purpose Registers the event handler callback routine for the specified form.

Prototype void FrmSetEventHandler (FormType *formP,
FormEventHandlerType *handler)

Parameters -> formP Pointer to the form object (FormType
structure).

-> handler Address of the form event handler function,
FormEventHandler.

Result Returns nothing.

Comments FrmDispatchEvent calls this handler whenever it receives an
event for a specific form.

FrmSetEventHandler must be called right after a form resource is
loaded. The callback routine it registers is the mechanism for
dispatching events to an application. The tutorial explains how to
use callback routines.

FrmSetFocus

Purpose Set the focus of a form to the specified object.

Prototype void FrmSetFocus (FormType *formP,
UInt16 fieldIndex)

Parameters -> formP Pointer to the form object (FormType
structure).

Forms
Form Functions

Palm OS SDK Reference 291

-> fieldIndex Index of the object to get the focus in the form.
You can obtain this by using
FrmGetObjectIndex. You can pass the
constant noFocus so that no object has the
focus.

Result Returns nothing.

Comments You can set the focus to a field or table object. If the focus is set to a
field object, this function turns on the insertion point in the field by
calling FldGrabFocus internally.

See Also FrmGetFocus

FrmSetGadgetData

Purpose Store a data value in the data field of the gadget object.

Prototype void FrmSetGadgetData (FormType *formP,
UInt16 objIndex, const void *data)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objIndex Index of an object in the form. You can obtain
this by using FrmGetObjectIndex.

-> data Application-defined value. This value is stored
into the data field of the gadget data structure
(FormGadgetType).

Result Returns nothing.

Comments Gadget objects provide a way for an application to attach custom
gadgetry to a form. Typically, the data field of a gadget object
contains a pointer to the custom object’s data structure.

See Also FrmGetGadgetData, FrmSetGadgetHandler

Forms
Form Functions

292 Palm OS SDK Reference

FrmSetGadgetHandler

Purpose Registers the gadget event handler callback routine for the specified
gadget on the specified form.

Prototype void FrmSetGadgetHandler (FormType *formP,
UInt16 objIndex, FormGadgetHandlerType *attrP)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objIndex Index of a gadget object in the form. You can
obtain this by using FrmGetObjectIndex.

-> attrP Address of the callback function. See
FormGadgetHandler.

Result Returns nothing.

Comments This function sets the application-defined function that controls the
specified gadget’s behavior. This function is called when the gadget
needs to be drawn, erased, deleted, or needs to handle an event.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also FrmGetGadgetData, FrmSetGadgetData

FrmSetMenu

Purpose Change a form’s menu bar and make the new menu active.

Prototype void FrmSetMenu (FormType *formP,
UInt16 menuRscID)

Parameters -> formP Pointer to the form object (FormType
structure).

-> menuRscID Resource ID of the menu.

Result Returns nothing.

Forms
Form Functions

Palm OS SDK Reference 293

Compatibility Implemented only if 2.0 New Feature Set is present.

FrmSetObjectBounds

Purpose Set the bounds or position of an object.

Prototype void FrmSetObjectBounds (FormType *formP,
UInt16 objIndex, const RectangleType *bounds)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objIndex Index of an object in the form. You can obtain
this by using FrmGetObjectIndex.

-> bounds Window-relative bounds. For the following
objects, this sets only the position of the top-left
corner: label, bitmap, and Graffiti state
indicator.

Result Returns nothing.

Comments Doesn’t update the display.

Compatibility Implemented only if 2.0 New Feature Set is present.

FrmSetObjectPosition

Purpose Set the position of an object.

Prototype void FrmSetObjectPosition (FormType *formP,
UInt16 objIndex, Coord x, Coord y)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objIndex Index of an object in the form. You can obtain
this by using FrmGetObjectIndex.

-> x Window-relative horizontal coordinate.

Forms
Form Functions

294 Palm OS SDK Reference

-> y Window-relative vertical coordinate.

Result Returns nothing.

See Also FrmGetObjectPosition, FrmGetObjectBounds

FrmSetTitle

Purpose Set the title of a form. If the form is visible, draw the new title.

Prototype void FrmSetTitle (FormType *formP, Char *newTitle)

Parameters -> formP Pointer to the form object (FormType
structure).

-> newTitle Pointer to the new title string.

Result Returns nothing.

Comments This function draws the title if the form is visible.

This function saves the pointer passed in newTitle; it does not
make a copy. Don’t pass a pointer to a stack-based object in
newTitle.

This function redraws the title but does not erase the old one first. If
the new title is shorter than the old one, the end of the old title will
still be visible. To avoid this, you can hide the title using
FrmHideObject, then show it using FrmShowObject, after using
FrmSetTitle.

See Also FrmGetTitle, FrmCopyTitle, FrmCopyLabel

Forms
Form Functions

Palm OS SDK Reference 295

FrmShowObject

Purpose Set a form object as usable. If the form is visible, draw the object.

Prototype void FrmShowObject (FormType *formP,
UInt16 objIndex)

Parameters -> formP Pointer to the form object (FormType
structure).

-> objIndex Index of an object in the form. You can obtain
this by using FrmGetObjectIndex.

Result Returns nothing.

Compatibility If 3.5 New Feature Set is present and the object is an extended
gadget, this function calls the gadget’s callback with
formGadgetDrawCmd. See FormGadgetHandler.

See Also FrmHideObject

FrmUpdateForm

Purpose Send a frmUpdateEvent to the specified form.

Prototype void FrmUpdateForm (UInt16 formId,
UInt16 updateCode)

Parameters -> formId Resource ID of form to update.

-> updateCode An application-defined code that can be used to
indicate what needs to be updated. Specify the
code frmRedrawUpdateCode to indicate that
the whole form should be redrawn.

Result Returns nothing.

Forms
Form Functions

296 Palm OS SDK Reference

Comments If the frmUpdateEvent posted by this function is handled by the
default form event handler, FrmHandleEvent, the updateCode
parameter is ignored. FrmHandleEvent always redraws the form.

If you handle the frmUpdateEvent in a custom event handler, you
can use the updateCode parameter any way you want. For
example, you might use it to indicate that only a certain part of the
form needs to be redrawn. If you do handle the frmUpdateEvent,
be sure to return true from your event handler so that the default
form handler does not also redraw the whole form.

If you do handle the frmUpdateEvent in a custom event handler,
be sure to handle the case where updateCode is set to
frmRedrawUpdateCode, and redraw the whole form. This event
(and code) is sent by the system when the whole form needs to be
redrawn because the display needs to be refreshed.

FrmUpdateScrollers

Purpose Visually update (show or hide) the field scroll arrow buttons.

Prototype void FrmUpdateScrollers (FormType *formP,
UInt16 upIndex, UInt16 downIndex,
Boolean scrollableUp, Boolean scrollableDown)

Parameters -> formP Pointer to the form object (FormType
structure).

-> upIndex Index of the up-scroller button. You can obtain
this by using FrmGetObjectIndex.

-> downIndex Index of the down-scroller button. You can
obtain this by using FrmGetObjectIndex.

-> scrollableUp Set to true to make the up scroll arrow active
(shown), or false to hide it.

-> scrollableDown
Set to true to make the down scroll arrow
active (shown), or false to hide it.

Result Returns nothing.

Forms
Form Functions

Palm OS SDK Reference 297

FrmValidatePtr

Purpose Return true if the specified pointer references a valid form.

Prototype Boolean FrmValidatePtr (const FormType *formP)

Parameters -> formP Pointer to be tested.

Result Returns true if the specified pointer is a non-NULL pointer to an
object having a valid form structure.

Comments This function is intended for debugging purposes only. Do not
include it in released code.

To distinguish between a window and a form in released code,
instead of using this function, look at the flag
windowFlags.dialog in the WindowType structure. This flag is
true if the window is a form.

Compatibility Implemented only if 3.0 New Feature Set is present.

FrmVisible

Purpose Return true if the form is visible (is drawn).

Prototype Boolean FrmVisible (const FormType *formP)

Parameters -> formP Pointer to the form object (FormType
structure).

Result Returns true if the form is visible; false if it is not visible.

See Also FrmDrawForm, FrmEraseForm

Forms
Application-Defined Functions

298 Palm OS SDK Reference

Application-Defined Functions

FormCheckResponseFunc

Purpose Callback function for FrmCustomResponseAlert.

Prototype Boolean FormCheckResponseFuncType (Int16 button,
Char *attempt)

Parameters -> button The ID of the button that the user tapped.

-> attempt The string that the user entered in the alert
dialog.

Result Return true if the dialog should be dismissed. Return false if the
dialog should not be dismissed.

Comments This function is called at these times during the
FrmCustomResponseAlert routine:

• At the beginning of FrmCustomResponseAlert, this
function is called with a button ID of frmResponseCreate.
This constant indicates that the dialog is about to be
displayed, and your function should perform any necessary
initialization. For example, on a Japanese system, a password
dialog might need to disable the Japanese FEP. So it would
call TsmSetFepMode(NULL, tsmFepModeOff) in this
function.

• When the user has tapped a button on the dialog. The
function should process the attempt string. If the string is
valid input, the function should return true. If not, it should
return false to give the user a chance to re-enter the string.

• At the end of FrmCustomResponseAlert, this function is
called with a button ID of frmResponseQuit. This gives the
callback a change to perform any cleanup, such as re-
enabling the Japanese FEP.

Compatibility Implemented only if 3.5 New Feature Set is present.

Forms
Application-Defined Functions

Palm OS SDK Reference 299

FormEventHandler

Purpose The event handler callback routine for a form.

Prototype Boolean FormEventHandlerType (EventType *eventP)

Parameters -> eventP Pointer to the form event (FormType
structure).

Result Must return true if this routine handled the event, otherwise
false.

Comments FrmDispatchEvent calls this handler whenever it receives an
event for the form.

This callback routine is the mechanism for dispatching events to
particular forms in an application. The callback is registered by the
routine FrmSetEventHandler.

FormGadgetHandler

Purpose The event handler callback for an extended gadget.

Prototype Boolean (FormGadgetHandlerType)
(struct FormGadgetType *gadgetP, UInt16 cmd,
void *paramP)

Parameters -> gadgetP Pointer to the gadget structure. See
FormGadgetType.

-> cmd A constant that specifies what action the
handler should take. This can be one of the
following:

formGadgetDeleteCmd
Sent by FrmDeleteForm to indicate that the
gadget is being deleted and must clean up any
memory it has allocated or perform other
cleanup tasks.

Forms
Application-Defined Functions

300 Palm OS SDK Reference

formGadgetDrawCmd
Sent by FrmDrawForm and FrmShowObject to
indicate that the gadget must be drawn or
redrawn.

formGadgetEraseCmd
Sent by FrmHideObject to indicate that the
gadget is going to be erased. FrmHideObject
clears the visible and usable flags for you. If
you return false, it also calls
WinEraseRectangle to erase the gadget’s
bounds.

formGadgetHandleEventCmd
Sent by FrmHandleEvent to indicate that a
gadget event has been received. The paramP
parameter contains the pointer to the
EventType structure.

-> paramP NULL except if cmd is
formGadgetHandleEventCmd. In that case,
this parameter holds the pointer to the
EventType structure containing the event.

Result Return true if the event was handed successfully; false
otherwise.

Comments If this function performs any drawing in response to the
formGadgetDrawCmd, it should set the gadget’s visible
attribute flag. (gadgetP->attr.visible = true). This flag
indicates that the gadget appears on the screen. If you don’t set the
visible flag, the gadget won’t be erased when FrmHideObject
is called. (FrmHideObject immediately returns if the object’s
visible flag is false.)

Note that if the function receives the formGadgetEraseCmd, it
may simply choose to perform any necessary cleanup and return
false. If the function returns false, FrmHideObject erases the
gadget’s bounding rectangle. If the function returns true, it must
erase the gadget area itself.

If this function receives a formGadgetHandleEventCmd, paramP
points one of two events: frmGadgetEnterEvent or

Forms
Application-Defined Functions

Palm OS SDK Reference 301

frmGadgetMiscEvent. The frmGadgetEnterEvent is passed
when there is a penDownEvent within the gadget’s bounds. This
function should track the pen and perform any necessary
highlighting. The frmGadgetMiscEvent is never sent by the
system. Your application may choose to use it if at any point it
needs to send data to the extended gadget. In this case, the event has
one or both of these fields defined: selector, an unsigned integer,
and dataP, a pointer to data.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also FrmSetGadgetHandler

Palm OS SDK Reference 303

11
Graffiti Shift
This chapter provides reference material for the Graffiti® Shift
facility, declared in the header file GraffitiShift.h.

GraffitiShift Functions

GsiEnable

Purpose Enable or disable the Graffiti-shift state indicator.

Prototype void GsiEnable (const Boolean enableIt)

Parameters enableIt true to enable, false to disable.

Result Returns nothing.

Comments Enabling the indicator makes it visible, disabling it makes the
insertion point invisible.

GsiEnabled

Purpose Return true if the Graffiti-shift state indicator is enabled, or false
if it’s disabled.

Prototype Boolean GsiEnabled (void)

Parameters None.

Result true if enabled, false if not.

Graff it i Shift
GraffitiShift Functions

304 Palm OS SDK Reference

GsiInitialize

Purpose Initialize the global variables used to manage the Graffiti-shift state
indicator.

Prototype void GsiInitialize (void)

Parameters None.

Result Returns nothing.

GsiSetLocation

Purpose Set the display-relative position of the Graffiti-shift state indicator.

Prototype void GsiSetLocation (const Int16 x, const Int16 y)

Parameters x, y Coordinate of left side and top of the indicator.

Result Returns nothing.

Comments The indicator is not redrawn by this routine.

Graffit i Shift
GraffitiShift Functions

Palm OS SDK Reference 305

GsiSetShiftState

Purpose Set the Graffiti-shift state indicator.

Prototype void GsiSetShiftState (const UInt16 lockFlags,
const UInt16 tempShift)

Parameters lockFlags glfCapsLock or glfNumLock.

tempShift The current temporary shift.

Result Returns nothing.

Comment This function affects only the state of the UI element, not the
underlying Graffiti engine.

See Also GrfSetState

Palm OS SDK Reference 307

12
Insertion Point
This chapter provides reference material for the insertion point API,
declared in the header file InsPoint.h.

For more information on the insertion point, see the section
“Insertion Point” in the Palm OS Programmer’s Companion.

Insertion Point Functions

InsPtEnable

Purpose Enable or disable the insertion point. When the insertion point is
disabled, it’s invisible; when it’s enabled, it blinks.

Prototype void InsPtEnable (Boolean enableIt)

Parameters enableIt true = enable; false = disable

Result Returns nothing.

Comments This function is called by the Form functions when a text field loses
or gains the focus, and by the Windows function when a region of
the display is copied (WinCopyRectangle).

See Also InsPtEnabled

Insertion Point
Insertion Point Functions

308 Palm OS SDK Reference

InsPtEnabled

Purpose Return true if the insertion point is enabled or false if the
insertion point is disabled.

Prototype Boolean InsPtEnabled (void)

Parameters None.

Result Returns true if the insertion point is enabled (blinking); returns
false if the insertion point is disabled (invisible).

See Also InsPtEnable

InsPtGetHeight

Purpose Return the height of the insertion point.

Prototype Int16 InsPtGetHeight (void)

Parameters None.

Result Returns the height of the insertion point, in pixels.

InsPtGetLocation

Purpose Return the screen-relative position of the insertion point.

Prototype void InsPtGetLocation (Int16 *x, Int16 *y)

Parameters x, y Pointer to top-left position of insertion point’s x
and y coordinate.

Result Returns nothing. Stores the location in x and y.

Comments This function is called by the Field functions. An application would
not normally call this function.

Insertion Point
Insertion Point Functions

Palm OS SDK Reference 309

InsPtSetHeight

Purpose Set the height of the insertion point.

Prototype void InsPtSetHeight (const Int16 height)

Parameters height Height of the insertion point in pixels.

Result Returns nothing.

Comments Set the height of the insertion point to match the character height of
the font used in the field that the insertion point is in. When the
current font is changed, the insertion point height should be set to
the line height of the new font.

If the insertion point is visible when its height is changed, it’s erased
and redrawn with its new height.

See Also InsPtGetHeight

InsPtSetLocation

Purpose Set the screen-relative position of the insertion point.

Prototype void InsPtSetLocation (const Int16 x,
const Int16 y)

Parameters x, y Number of pixels from the left side (top) of the
display.

Result Returns nothing.

Comments The position passed to this function is the location of the top-left
corner of the insertion point.

This function should be called only by the Field functions.

See Also InsPtGetLocation

Palm OS SDK Reference 311

13
Lists
This chapter provides information about list objects by discussing
these topics:

• List Data Structures

• List Resources

• List Functions

• Application-Defined Function

The header file List.h declares the API that this chapter describes.
For more information on lists, see the section “Lists” in the Palm OS
Programmer’s Companion.

List Data Structures

ListAttrType
The ListAttrType bit field defines the visible characteristics of
the list.

typedef struct {
UInt16 usable :1;
UInt16 enabled :1;
UInt16 visible :1;
UInt16 poppedUp :1;
UInt16 hasScrollBar:1.
UInt16 search :1;
UInt16 reserved :2;

} ListAttrType;

Lists
List Data Structures

312 Palm OS SDK Reference

Field Descriptions

ListType
The ListType structure is defined as follows:

typedef struct {
UInt16 id;
RectangleType bounds;
ListAttrType attr;
Char ** itemsText;
Int16 numItems;
Int16 currentItem;
Int16 topItem;
FontID font;
UInt8 reserved;
WinHandle popupWin;
ListDrawDataFuncPtr drawItemCallback;

} ListType;

usable If not set, the form is not considered part of the
current interface of the application, and it
doesn’t appear on screen.

enabled If set, the user can interact with the list.

visible Set or cleared internally when the field object is
drawn or erased.

poppedUp If set, choices are displayed in a popup window.
This attribute is set and cleared internally.

hasScrollBar If set, the list has a scroll bar.

search If set, incremental search is enabled.

reserved Reserved for system use.

Lists
List Resources

Palm OS SDK Reference 313

Field Descriptions

List Resources
The List Resource (tLST), and Popup Trigger Resource (tPUT) are
used together to represent an active list.

id ID value, specified by the application developer.
This ID value is part of the event data of
lstEnterEvent and lstSelectEvent.

bounds Bounds of the list, relative to the window.

attr List attributes. See ListAttrType.

itemsText Pointer to an array of pointers to the text of the
choices.

numItems Number of choices in the list.

currentItem Currently-selected list choice (0 = first choice).

topItem First choice displayed in the list.

font ID of the font used to draw all list text strings.

reserved Reserved for future use.

popupWin Handle of the window created when a list is
displayed if the poppedUp attribute is set.

drawItemCallb
ack

Function used to draw an item in the list. If NULL,
the default drawing routine is used instead. See
Application-Defined Function.

Lists
List Functions

314 Palm OS SDK Reference

List Functions

LstDrawList

Purpose Draw the list object if it’s usable. Set its visible attribute to true.

Prototype void LstDrawList (ListType *listP)

Parameters listP Pointer to list object (ListType).

Result Returns nothing.

Comments If there are more choices than can be displayed, this function
ensures that the current selection is visible. If possible, the current
selection is displayed at the top. The current selection is highlighted.

If the list is disabled, it’s drawn grayed-out (strongly discouraged).
If it’s empty, nothing is drawn. If it’s not usable, nothing is drawn.

See Also FrmGetObjectPtr, LstPopupList, LstEraseList

LstEraseList

Purpose Erase a list object.

Prototype void LstEraseList (ListType *listP)

Parameters listP Pointer to a list object (ListType).

Result Returns nothing.

Comments The visible attribute is set to false by this function.

See Also FrmGetObjectPtr, LstDrawList

Lists
List Functions

Palm OS SDK Reference 315

LstGetNumberOfItems

Purpose Return the number of items in a list.

Prototype Int16 LstGetNumberOfItems (const ListType *listP)

Parameters listP Pointer to a list object (ListType).

Result Returns the number of items in a list.

See Also FrmGetObjectPtr, LstSetListChoices

LstGetSelection

Purpose Return the currently selected choice in the list.

Prototype Int16 LstGetSelection (const ListType *listP)

Parameters listP Pointer to list object.

Result Returns the item number of the current list choice. The list choices
are numbered sequentially, starting with 0; Returns
noListSelection if none of the items are selected.

See Also FrmGetObjectPtr, LstSetListChoices, LstSetSelection,
LstGetSelectionText

LstGetSelectionText

Purpose Return a pointer to the text of the specified item in the list, or NULL
if no such item exists.

Prototype Char * LstGetSelectionText (const ListType *listP,
Int16 itemNum)

Parameters listP Pointer to list object.

Lists
List Functions

316 Palm OS SDK Reference

itemNum Item to select (0 = first item in list).

Result Returns a pointer to the text of the current selection, or NULL if out
of bounds.

Comments This is a pointer within ListType, not a copy.

See Also FrmGetObjectPtr, LstSetListChoices

LstGetVisibleItems

Purpose Return the number of visible items.

Prototype Int16 LstGetVisibleItems (const ListType *listP)

Parameters listP Pointer to list object.

Result The number of items visible.

Compatibility Implemented only if 2.0 New Feature Set is present.

LstHandleEvent

Purpose Handle event in the specified list; the list object must have its
usable and visible attribute set to true.This routine handles
two type of events, penDownEvent and lstEnterEvent; see
Comments.

Prototype Boolean LstHandleEvent (ListType *listP,
const EventType *eventP)

Parameters listP Pointer to a list object (ListType).

eventP Pointer to an EventType structure.

Result Return true if the event was handled. The following cases will
result in a return value of true:

• A penDownEvent within the bounds of the list

Lists
List Functions

Palm OS SDK Reference 317

• A lstEnterEvent with a list ID value that matches the list
ID in the list data structure

Comments When this routine receives a penDownEvent, it checks if the pen
position is within the bounds of the list object. If it is, this routine
tracks the pen until the pen comes up. If the pen comes up within
the bounds of the list, a lstEnterEvent is added to the event
queue, and the routine is exited.

When this routine receives a lstEnterEvent, it checks that the list
ID in the event record matches the ID of the specified list. If there is
a match, this routine creates and displays a popup window
containing the list’s choices and the routine is exited.

If a penDownEvent is received while the list’s popup window is
displayed and the pen position is outside the bounds of the popup
window, the window is dismissed. If the pen position is within the
bounds of the window, this routine tracks the pen until it comes up.
If the pen comes up outside the list object, a lstEnterEvent is
added to the event queue.

LstMakeItemVisible

Purpose Make an item visible, preferably at the top. If the item is already
visible, make no changes.

Prototype void LstMakeItemVisible (ListType *listP,
Int16 itemNum)

Parameters listP Pointer to a list object (ListType).

itemNum Item to select (0 = first item in list).

Result Returns nothing.

Comments Does not visually update the list. You must call LstDrawList to
update it.

See Also FrmGetObjectPtr, LstSetSelection, LstSetTopItem,
LstDrawList

Lists
List Functions

318 Palm OS SDK Reference

LstNewList

Purpose Create a new list object dynamically and install it in the specified
form.

Prototype Err LstNewList (void **formPP, UInt16 id, Coord x,
Coord y, Coord width, Coord height, FontID font,
Int16 visibleItems, Int16 triggerId)

Parameters <--> formPP Pointer to the pointer to the form in which the
new list is installed. This value is not a handle;
that is, the old formPP value is not necessarily
valid after this function returns. In subsequent
calls, always use the new formPP value
returned by this function.

id Symbolic ID of the list, specified by the
developer. By convention, this ID should match
the resource ID (not mandatory).

x Horizontal coordinate of the upper-left corner
of the list’s boundaries, relative to the window
in which it appears.

y Vertical coordinate of the upper-left corner of
the list’s boundaries, relative to the window in
which it appears.

width Width of the list, expressed in pixels. Valid
values are 1 – 160.

height Height of the list, expressed in pixels.Valid
values are 1 – 160.

visibleItems Number of list items that can be viewed
together.

triggerId Symbolic ID of the popup trigger associated
with the new list. This ID is specified by the
developer; by convention, this ID should match
the resource ID (not mandatory).

Result Returns 0 if no error.

Lists
List Functions

Palm OS SDK Reference 319

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also LstDrawList, FrmRemoveObject

LstPopupList

Purpose Display a modal window that contains the items in the list.

Prototype Int16 LstPopupList (ListType *listP)

Parameters listP Pointer to list object.

Result Returns the list item selected, or -1 if no item was selected.

Comments Saves the previously active window. Creates and deletes the new
popup window.

See Also FrmGetObjectPtr

LstScrollList

Purpose Scroll the list up or down a number of times.

Prototype Boolean LstScrollList (ListType *listP,
WinDirectionType direction, Int16 itemCount)

Parameters listP Pointer to list object.

direction Direction to scroll.

itemCount Items to scroll in direction.

Result Returns true when the list is actually scrolled, false otherwise.
May return false if a scroll past the end of the list is requested.

Compatibility Implemented only if 2.0 New Feature Set is present.

Lists
List Functions

320 Palm OS SDK Reference

LstSetDrawFunction

Purpose Set a callback function to draw each item instead of drawing the
item’s text string.

Prototype void LstSetDrawFunction (ListType *listP,
ListDrawDataFuncPtr func)

Parameters listP Pointer to list object.

func Pointer to function which draws items.

Result Returns nothing.

Comments This function also adjusts topItem to prevent a shrunken list from
being scrolled down too far. Use this function for custom draw
functionality.

See Also FrmGetObjectPtr, LstSetListChoices

LstSetHeight

Purpose Set the number of items visible in a list.

Prototype void LstSetHeight (ListType *listP,
Int16 visibleItems)

Parameters listP Pointer to list object.

visibleItems Number of choices visible at once.

Result Returns nothing.

Comments This function doesn’t redraw the list if it’s already visible.

See Also FrmGetObjectPtr

Lists
List Functions

Palm OS SDK Reference 321

LstSetListChoices

Purpose Set the items of a list to the array of text strings passed to this
function. This function doesn’t affect the display of the list. If the list
is visible, erases the old list items.

Prototype void LstSetListChoices (ListType *listP,
Char **itemsText, UInt16 numItems)

Parameters listP Pointer to a list object.

itemsText Pointer to an array of text strings.

numItems Number of choices in the list.

Result Returns nothing.

See Also FrmGetObjectPtr, LstSetSelection, LstSetTopItem,
LstDrawList, LstSetHeight, LstSetDrawFunction

LstSetPosition

Purpose Set the position of a list.

Prototype void LstSetPosition (ListType *listP, Coord x,
Coord y)

Parameters listP Pointer to a list object

x, y Left and top bound.

Result Returns nothing.

Comments List is not redrawn. Don’t call this function when the list is visible.

See Also FrmGetObjectPtr

Lists
List Functions

322 Palm OS SDK Reference

LstSetSelection

Purpose Set the selection for a list.

Prototype void LstSetSelection (ListType *listP,
Int16 itemNum)

Parameters listP Pointer to a list object.

itemNum Item to select (0 = first item in list; -1 = none).

Result Returns nothing.

Comments The old selection, if any, is unselected. If the list is visible, the
selected item is visually updated. The list is scrolled to the selection,
if necessary.

See Also FrmGetObjectPtr

LstSetTopItem

Purpose Set the item visible. The item cannot become the top item if it’s on
the last page.

Prototype void LstSetTopItem (ListType *listP,
Int16 itemNum)

Parameters listP Pointer to list object.

itemNum Item to select (0 = first item in list).

Result Returns nothing.

Comments Does not update the display.

See Also FrmGetObjectPtr, LstSetSelection, LstMakeItemVisible,
LstDrawList, LstEraseList

Lists
Application-Defined Function

Palm OS SDK Reference 323

Application-Defined Function
If you need to perform special drawing for items in the list, call
LstSetDrawFunction to set the list drawing callback function.
The callback function’s prototype is:

void ListDrawDataFuncType (Int16 itemNum,
RectangleType *bounds, Char **itemsText)

Palm OS SDK Reference 325

14
Menus
This chapter describes the menu API as declared in the header file
Menu.h. It discusses the following topics:

• Menu Data Structures

• Menu Constants

• Menu Resources

• Menu Functions

For more information on menus, see the section “Menus” on
page 99 in the Palm OS Programmer’s Companion.

Menu Data Structures

MenuBarAttrType
The MenuBarAttrType bit field defines some characteristics of the
menu bar.

typedef struct {
UInt16 visible : 1;
UInt16 commandPending : 1;
UInt16 insPtEnabled : 1;
UInt16 needsRecalc : 1;

} MenuBarAttrType;

Your code should treat the MenuBarAttrType structure as opaque.
Use the functions specified in the descriptions below to retrieve and
set each value. Do not attempt to change structure member values
directly.

Menus
Menu Data Structures

326 Palm OS SDK Reference

Field Descriptions

Compatibility

The needsRecalc constant is present only if 3.5 New Feature Set is
present.

MenuCmdBarButtonType
The MenuCmdBarButtonType struct defines a button to be
displayed on the command toolbar. The buttonsData field of the
MenuCmdBarType struct contains an array of structures of this
type.

typedef struct {
UInt16 bitmapId;
Char name[menuCmdBarMaxTextLength];
MenuCmdBarResultType resultType;
UInt8 reserved;
UInt32 result;

} MenuCmdBarButtonType;

Your code should treat the MenuCmdBarButtonType structure as
opaque. Do not attempt to change structure member values directly.
Instead, use MenuCmdBarAddButton to add a button to the

visible If set, the menu bar is drawn and visible on the
screen. This attribute is set as part of
MenuDrawMenu, which is called when the
menu is drawn.

commandPending If set, a menu command shortcut is in
progress. This bit is set during
MenuHandleEvent if the menu shortcut
keystroke is received. If the next key is
received before the timeout value is reached,
the key is examined to see if it is a valid menu
command.

insPtEnabled Stores the state of the insertion point at the
time the menu was drawn so that it can be
restored when the menu is erased.

needsRecalc If set, recalculate menu dimensions.

Menus
Menu Data Structures

Palm OS SDK Reference 327

display. For the most part, the parameters to
MenuCmdBarAddButton are the same as the fields in the
MenuCmdBarButtonType, so there should be no need to alter
these fields directly.

Field Descriptions

Compatibility

This structure is defined only if 3.5 New Feature Set is present.

MenuCmdBarResultType
The MenuCmdBarResultType enum specifies how the result
field in the MenuCmdBarButtonType structure should be
interpreted.

typedef enum {
menuCmdBarResultNone,
menuCmdBarResultChar,
menuCmdBarResultMenuItem,
menuCmdBarResultNotify

} MenuCmdBarResultType;

bitmapId Resource ID of the bitmap to display on the button.
This bitmap should be 13 pixels high by 16 pixels
wide.

name Text to display in the status message when the user
taps the button.

resultType Specifies what type of data is contained in the
result field. See MenuCmdBarResultType.

reserved Reserved for future use.

result Specifies the data to send when the user clicks the
button. The data is interpreted as specified by the
resultType field. The result can be a shortcut
character to enqueue in a keyDownEvent, a menu
item ID to enqueue in a menuEvent, or a notification
to be broadcast.

Menus
Menu Data Structures

328 Palm OS SDK Reference

Value Descriptions

Compatibility

This enum is defined only if 3.5 New Feature Set is present.

MenuCmdBarType
The MenuCmdBarType struct defines the command toolbar. This
command toolbar is allocated and displayed when the user draws
the shortcut stroke in the Graffiti® area. It is deallocated when
MenuEraseStatus is called, which occurs most frequently when
the timeout value has elapsed.

typedef struct MenuCmdBarType {
WinHandle bitsBehind;
Int32 timeoutTick;
Coord top;
Int16 numButtons;
Boolean insPtWasEnabled;
Boolean gsiWasEnabled;
Boolean feedbackMode;
MenuCmdBarButtonType *buttonsData;

} MenuCmdBarType;

Your code should treat the MenuCmdBarType structure as opaque.
Do not attempt to change structure member values directly.

menuCmdBarResultNone Send nothing.

menuCmdBarResultChar The result is a character to send in a
keyDownEvent.

menuCmdBarResultMenuItem The result is the ID of the menu item
to send in a menuEvent.

menuCmdBarResultNotify The result is a notification constant
to be broadcast using
SysNotifyBroadcastDeferred.

Menus
Menu Data Structures

Palm OS SDK Reference 329

Field Descriptions

bitsBehind Handle for the window that contains the
region obscured by the command toolbar.

timeoutTick Timeout value given in system ticks. If the
user hasn’t specified a command after this
many ticks, the command toolbar is erased
from the screen and deallocated from
memory. This value also specifies how long
the status message is displayed after the user
successfully enters a command.

top The top bound of the command toolbar given
in display-relative coordinates. The
command toolbar is as wide as the screen and
displays at the bottom of the screen.

numButtons Number of buttons displayed on the
command toolbar.

insPtWasEnabled If true, the insertion point was enabled
before the command toolbar was displayed
and should be re-enabled when the command
toolbar is erased. If false, the insertion point
was disabled.

gsiWasEnabled If true, the Graffiti shift indicator was
enabled before the command toolbar was
displayed and should be re-enabled when the
command toolbar is erased. If false, the
Graffiti shift indicator was disabled.

feedbackMode If true, the command toolbar is currently
displaying a status message. The status
message is displayed to tell the user what
command is being performed. If false, the
command toolbar is awaiting input.

buttonsData The list of buttons to display on the command
toolbar. See MenuCmdBarButtonType.
Buttons are stored in this list sequentially
with the rightmost button at index 0.

Menus
Menu Data Structures

330 Palm OS SDK Reference

Compatibility

This structure is defined only if 3.5 New Feature Set is present.

MenuBarPtr
The MenuBarPtr type defines a pointer to a MenuBarType.

typedef MenuBarType *MenuBarPtr;

MenuBarType
The MenuBarType structure defines the menu bar. There is one
menu bar per form.

typedef struct {
WinHandle barWin;
WinHandle bitsBehind;
WinHandle savedActiveWin;
WinHandle bitsBehindStatus;
MenuBarAttrType attr;
Int16 curMenu;
Int16 curItem;
Int32 commandTick;
Int16 numMenus;
MenuPullDownPtr menus;

} MenuBarType;

Your code should treat the MenuBarType structure as opaque. Do
not attempt to change structure member values directly.

Field Descriptions

barWin Handle for the window that contains
the menu bar.

bitsBehind Handle for the window that contains
the region obscured by the menu bar.

savedActiveWin Handle where the currently active
window is saved so that it can be
restored when the menu is erased.

Menus
Menu Data Structures

Palm OS SDK Reference 331

Compatibility

If 3.5 New Feature Set is present, the bitsBehindStatus and
commandTick fields are defined but are not used. Instead, the
bitsBehind and timeoutTick fields in MenuCmdBarType

bitsBehindStatus Handle where the bits behind the status
message are saved so that when the
message display terminates, the bits
can be restored.

The status message is displayed when
the user activates the menu through the
use of the command keystroke.

attr Menu bar attributes. See
MenuBarAttrType.

curMenu Menu number for the currently visible
menu. Menus are numbered
sequentially starting with 0. The value
is preserved when the menu bar is
dismissed. A value of
noMenuSelection indicates that
there is no current pull-down menu.

curItem Item number of the currently
highlighted menu item. The items in
each menu are numbered sequentially,
starting with zero.

A value of noMenuItemSelection
indicates that there is no current item
selected.

commandTick Tick count at which the status message
should be erased.

numMenus Number of pull-down menus on the
menu bar.

menus Array of MenuPullDownType
structures.

Menus
Menu Data Structures

332 Palm OS SDK Reference

define the save-behind window and the timeout value for the
command toolbar.

MenuItemType
The MenuItemType structure defines a specific item within a
menu. The items array in the MenuPullDownType structure
contains one MenuItemType structure for each menu item in the
pull-down menu.

If 3.5 New Feature Set is present, you can add a menu item to a pull-
down menu programmatically using MenuAddItem.

typedef struct {
UInt16 id;
Char command;
UInt8 hidden: 1;
UInt8 reserved: 7;
Char * itemStr;

} MenuItemType;

Field Descriptions

id ID value you specified when you created the menu
item. This ID value is included as part of the event data
of a menuEvent.

command Shortcut key. If you provide shortcuts, make sure that
each shortcut is unique among all commands available
at that time.

hidden If true, the menu item is hidden. If false, it is
displayed. You can set and clear this value using
MenuHideItem and MenuShowItem.

reserved Reserved for future use.

itemStr Pointer to the text to display for this menu item,
including the shortcut key. To include a shortcut key,
begin the string with the item’s text, then type a tab
character, and then the item’s shortcut key.

To create a separator bar, create a one-character string
containing the MenuSeparatorChar constant.

Menus
Menu Data Structures

Palm OS SDK Reference 333

Compatibility

The hidden and reserved fields are defined only if 3.5 New
Feature Set is present.

MenuPullDownPtr
The MenuPullDownPtr type defines a pointer to a
MenuPullDownType.

typedef MenuPullDownType * MenuPullDownPtr;

MenuPullDownType
The MenuPullDownType structure defines a specific menu
accessed from the menu bar. The menus array in the MenuBarType
structure contains one MenuPullDownType structure for each pull-
down menu associated with the menu bar.

typedef struct {
WinHandle menuWin;
RectangleType bounds;
WinHandle bitsBehind;
RectangleType titleBounds;
Char * title;
UInt16 hidden : 1;
UInt16 numItems : 15;
MenuItemType *items;

} MenuPullDownType;

Field Descriptions

menuWin Handle for the window that contains the menu.

bounds Position and size, in pixels, of the pull-down
menu.

bitsBehind Handle of a window that contains the region
obscured by the menu.

title The menu title (null-terminated string) displayed
in the menu bar.

Menus
Menu Constants

334 Palm OS SDK Reference

Compatibility

The hidden field is defined only if 3.5 New Feature Set is present.

Menu Constants

Menu Resources
The menu bar (MBAR) and pull-down menu (MENU) resources are
used jointly to represent a menu object on screen. See “Menus and
Menu Bars” in Chapter 2, “Palm OS Resources.”

titleBounds Position and size, in pixels, of the title in the menu
bar.

hidden If true, the menu is hidden; if false, it is
displayed. This field is not currently used.

numItems Number of items in the menu. Separators count as
items.

items Array of MenuItemType structures.

Constant Value Description

noMenuSelection -1 The curMenu field of MenuBarType is set to
this when there is no currently selected
menu.

noMenuItemSelection -1 The curItem field of MenuBarType is set to
this when there is no currently selected
menu item.

separatorItemSelection -2 The curItem field of MenuBarType is set to
this when a menu separator item is selected.

MenuSeparatorChar '–' Special character indicating that the menu
item is a bar used to separate groups of
related menu items. The first character of the
itemStr string in MenuItemType is set to
this.

Menus
Menu Functions

Palm OS SDK Reference 335

Menu Functions

MenuAddItem

Purpose Add an item to the currently active menu.

Prototype Err MenuAddItem (UInt16 positionId, UInt16 id,
Char cmd, const Char *textP)

Parameters -> positionId ID of an existing menu item. The new menu
item is added after this menu item.

-> id ID value to use for the new menu item.

-> cmd Shortcut key. If you provide shortcuts, make
sure that each shortcut is unique among all
commands available at that time.

-> textP Pointer to the text to display for this menu item,
including the shortcut key. To include a
shortcut key, begin the string with the item’s
text, then type a tab character, and then the
item’s shortcut key.

To create a separator bar, create a one-character
string containing the MenuSeparatorChar
constant.

Result Returns 0 upon success or one of the following if an error occurs:

menuErrNoMenu The textP parameter is NULL.

menuErrSameId The menu already contains an item with the ID
id.

menuErrNotFound
The menu doesn’t contain an item with the ID
positionId.

May display a fatal error message if there is no current menu.

Comments This function creates a new MenuItemType structure and adds it to
the MenuBarType’s item list.

Menus
Menu Functions

336 Palm OS SDK Reference

You should call this function only in response to a
menuOpenEvent. This event is generated when the menu is first
made active. In general, a form’s menu becomes active the first time
a keyDownEvent with a vchrMenu or vchrCommand is generated,
and it remains active until a new form (including a modal form or
alert panel) is displayed or until FrmSetMenu is called to change
the form’s menu. Palm OS® user interface guidelines discourage
adding or hiding menu items at any time other than when the menu
is first made active.

Compatibility Implemented only if 3.5 New Feature Set is present.

MenuCmdBarAddButton

Purpose Define a button to be displayed on the command toolbar.

Prototype Err MenuCmdBarAddButton (UInt8 where,
UInt16 bitmapId, MenuCmdBarResultType resultType,
UInt32 result, Char *nameP)

Parameters -> where Either menuCmdBarOnLeft to add the button
to the left of the other buttons on the command
toolbar, menuCmdBarOnRight to add it to the
right of the other buttons, or a number
indicating the exact position of the button.
Button positions are numbered from right to
left, and the rightmost position is number 1.

-> bitmapId Resource ID of the bitmap to display on the
button. The bitmap’s dimensions should be 13
pixels high by 16 pixels wide.

-> resultType The type of data contained in the result
parameter. See MenuCmdBarResultType.

-> result The data to send when the user taps this
button. This can be a character, a menu item ID,
or a notification constant.

Menus
Menu Functions

Palm OS SDK Reference 337

-> nameP Pointer to the text to display in the status
message if the user taps the button. If NULL, the
text is taken from the menu item that matches
the ID or shortcut character contained in
result, if a match is found.

If you supply a text buffer for this parameter,
MenuCmdBarAddButton makes a copy of the
buffer.

Result Returns 0 upon success, or one of the following error codes:

menuErrOutOfMemory
There is not enough memory available to
perform the operation.

menuErrTooManyItems
The command toolbar already has the
maximum number of buttons allowed
(currently 8).

Comments Call this function in response to a menuCmdBarOpenEvent or to
the notification sysNotifyMenuCmdBarOpenEvent. Both of these
signal that the user has entered the command keystroke and the
command toolbar is about to open. Your response should be to add
buttons to the toolbar and to return false, indicating that you have
not completely handled the event.

The sysNotifyMenuCmdBarOpenEvent notification is intended
to be used only by shared libraries, system extensions, and other
code resources that do not use an event loop. If you’re writing an
application, always respond to the event instead of the notification;
an application should only add buttons to the toolbar if it is the
current application. If you register for the notification, you receive it
each time the command toolbar is displayed, whether your
application is active or not.

Note that the command toolbar is allocated each time it is opened
and is deallocated when it is erased from the screen.

There is a limited amount of space in which to display buttons on
the command toolbar. You should limit the number of buttons to
four or five. The maximum allowed by the system is eight, but you

Menus
Menu Functions

338 Palm OS SDK Reference

should leave space for the status message that appears after the user
chooses an action. Buttons should be contextual; for example, the
field code only displays a paste button if there is text on the
clipboard. Bitmaps for the buttons should be 16 X 13 pixels.

If a field has focus when the command toolbar is opened, the field
manager adds buttons for cut, copy, paste, and undo. If your
application does not want this default behavior, set the
preventFieldButtons field in the menuCmdBarOpenEvent
structure to true. (Note that there is no way to prevent the field
buttons from being drawn from within a notification handler.)

The following bitmaps for command toolbar buttons are defined in
UIResources.h. The system and the built-in applications use
these bitmaps to represent the commands listed in the table. Your
application should also use them if it performs the same actions. If
you use any of these buttons, add them in the order shown from
right to left. (For example, BarDeleteBitmap, if used, should
always be the rightmost button.)

It is best to add buttons on the left side. If you add buttons to the
right, this function moves all existing buttons over one position to
the left. You can also specify an exact position for the where
parameter. The positions are numbered from right to left with the
rightmost position being 1. If you specify an exact position, the
function leaves space for the other buttons. For example, if you

Bitmap Command

BarDeleteBitmap Delete record.

BarPasteBitmap Paste clipboard contents at insertion point.

BarCopyBitmap Copy selection.

BarCutBitmap Cut selection.

BarUndoBitmap Undo previous action.

BarSecureBitmap Show Security dialog.

BarBeamBitmap Beam current record.

BarInfoBitmap Show Info dialog (Launcher).

Menus
Menu Functions

Palm OS SDK Reference 339

specify position 3 and there are no buttons displayed at positions 1
and 2, there will be blank spots to the right of your button.

The result and resultType parameters specify what the result
should be if the user taps the button. result contains the actual
data, and resultType contains a constant that specifies the type of
data in result. Typically, the result is to enqueue a menuEvent. In
this case, resultType is menuCmdBarResultMenuItem and the
result is the ID of the menu item that should included in the
event.

You may also specify the shortcut character instead of the menu ID;
however, doing so is inefficient. When result is a shortcut
character, the MenuHandleEvent function enqueues a
keyDownEvent with the character in result. During the next
cycle of the event loop, MenuHandleEvent enqueues a
menuEvent in response to the keyDownEvent. Thus, it is better to
have your button enqueue the menuEvent directly.

If you call MenuCmdBarAddButton outside of an application, you
might not know of any menu items in the active menu (unless your
code has added one using MenuAddItem). In this case, specify a
notification to be broadcast. The notification is broadcast at the top
of the next event loop, and it must contain no custom data.
(Applications may also use the notification result type.)

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also MenuCmdBarDisplay, MenuCmdBarGetButtonData

MenuCmdBarDisplay

Purpose Display the command toolbar.

Prototype void MenuCmdBarDisplay (void)

Parameters None

Result Returns nothing.

Menus
Menu Functions

340 Palm OS SDK Reference

Comments This function displays the command toolbar when the user enters
the command keystroke. You normally do not call this function in
your own code. The form manager calls it at the end of its handling
of menuCmdBarOpenEvent.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also MenuCmdBarAddButton, MenuCmdBarGetButtonData

MenuCmdBarGetButtonData

Purpose Get the data for a given command button.

Prototype Boolean MenuCmdBarGetButtonData
(Int16 buttonIndex, UInt16 *bitmapIdP,
MenuCmdBarResultType *resultTypeP,
UInt32 *resultP, Char *nameP)

Parameters -> buttonIndex Index of the button for which you want to
obtain information. Buttons are ordered from
right to left, with the rightmost button at index
0.

<- bitmapIdP The resource ID of the bitmap displayed on the
button. Pass NULL if you don’t want to retrieve
this value.

<- resultTypeP The type of action this button takes. Pass NULL
if you don’t want to retrieve this value.

<- resultP The result of tapping the button. Pass NULL if
you don’t want to retrieve this information.

Menus
Menu Functions

Palm OS SDK Reference 341

<- nameP The text displayed in the status message when
this button is tapped. Pass NULL if you don’t
want to retrieve this information. If not NULL,
nameP must point to a string of
menuCmdBarMaxTextLength size.

Result Returns true if the information was retrieved successfully, false
if there is no command toolbar or if there is no button at
buttonIndex.

Comments You can use this function to retrieve information about the buttons
that are displayed on the command toolbar. If the command toolbar
has not yet been initialized, this function returns false.

Note that the command toolbar is allocated when the user enters the
command keystroke and deallocated when MenuEraseStatus is
called. Thus, the only logical place to call
MenuCmdBarGetButtonData is in response to a
menuCmdBarOpenEvent or sysNotifyMenuCmdBarOpenEvent
notification.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also MenuCmdBarDisplay, MenuCmdBarAddButton

MenuDispose

Purpose Release any memory allocated to the menu and the command status
and restore any saved bits to the screen.

Prototype void MenuDispose (MenuBarType *menuP)

Parameters -> menuP Pointer to the menu object to dispose. (See
MenuBarType.) If NULL, this function returns
immediately.

Result Returns nothing.

Menus
Menu Functions

342 Palm OS SDK Reference

Comments Most applications do not need to call this function directly.
MenuDispose is called by the system when the form that contains
the menu is no longer the active form, when the form that contains
the menu is freed, and when FrmSetMenu is called to change the
form’s menu bar.

See Also MenuInit, MenuDrawMenu

MenuDrawMenu

Purpose Draw the current menu bar and the last pull-down that was visible.

Prototype void MenuDrawMenu (MenuBarType *menuP)

Parameters -> menuP Pointer to a MenuBarType. Must not be NULL.

Result Returns nothing.

Comments Most applications do not need to call this function directly.
MenuHandleEvent calls MenuDrawMenu when the user taps the
Menu silk-screen button (or taps the form’s title on Palm OS 3.5 and
higher).

The menu bar and the pull-down menu are drawn in front of all the
application windows. The state of the insertion point, the bits that
are obscured by the menu bar and the pull-down menu, and the
currently active window are saved before the menu is drawn. These
are all restored when the menu is erased.

A menu keeps track of the last pull-down menu displayed for as
long as the menu is active. A menu loses its active status under these
conditions:

• When FrmSetMenu is called to change the active menu on
the form.

• When a new form, even a modal form or alert panel, becomes
active.

Suppose a user selects your application’s About item from the
Options menu then clicks the OK button to return to the main form.
When the About dialog is displayed, it becomes the active form,

Menus
Menu Functions

Palm OS SDK Reference 343

which causes the main form’s menu state to be erased. This menu
state is not restored when the main form becomes active again. The
next time MenuDrawMenu is called (that is, the next time the user
taps the Menu silk-screen button), the menu bar is displayed as it
was before, and the first pull-down menu listed in the menu bar is
displayed instead of the Options pull-down menu.

See Also MenuInit, MenuDispose

MenuEraseStatus

Purpose Erase the menu command status.

Prototype void MenuEraseStatus (MenuBarType *menuP)

Parameters -> menuP Pointer to a MenuBarType, or NULL for the
current menu.

Result Returns nothing.

Comments When the user selects a menu command using the command
keystroke, the command toolbar or status message is displayed at
the bottom of the screen. MenuEraseStatus erases the toolbar or
status message.

Under most circumstances, you do not need to call this function
explicitly—just let the current menu command status remove itself
automatically. Otherwise, you may cause text to be erased before the
user has a chance to see it.

You need to call MenuEraseStatus explicitly only if the command
toolbar covers something that is going to be changed by the menu
command the user has selected. For example, if the user selects a
command that displays a new form, call MenuEraseStatus before
executing the command. Also, if the command performs some
drawing in the lower portion of the window, call
MenuEraseStatus before performing the drawing function.

Compatibility The exact behavior when a menu shortcut character is entered
depends on which version of the operating system is running. In

Menus
Menu Functions

344 Palm OS SDK Reference

versions prior to release 3.5, the system displays the string
“Command:” in the lower-left portion of the screen when the user
enters the Graffiti command keystroke.

In Palm OS 3.5 and higher, entering the Graffiti command keystroke
displays the command toolbar. This toolbar is the entire width of the
screen and it displays buttons that the user can tap instead of
entering another keystroke. If the user taps a button or enters a
character that matches a shortcut character for an item on the active
menu, a status message is displayed in the toolbar while the
command is executed. Calling MenuEraseStatus on Palm OS 3.5
and higher deallocates the command toolbar data structure as well
as erasing the command toolbar from the screen.

Because the command toolbar takes up more of the display than the
pre-Palm OS 3.5 status message, you may find you need to call
MenuEraseStatus more frequently in Palm OS 3.5 than in earlier
versions.

See Also MenuInit

MenuGetActiveMenu

Purpose Returns a pointer to the currently active menu.

Prototype MenuBarType *MenuGetActiveMenu (void)

Parameters None.

Result Returns a pointer to the currently active menu, or NULL if there is
none.

Comments An active menu is not necessarily visible on the screen. A menu
might be active but not visible, for example, if a command shortcut
has been entered. In general, a form’s menu becomes active the first
time a keyDownEvent with a vchrMenu or vchrCommand is
generated, and it remains active until a new form (including a
modal form or alert panel) is displayed or until FrmSetMenu is
called to change the form’s menu.

Menus
Menu Functions

Palm OS SDK Reference 345

If you want to know if the menu is visible rather than merely active,
there are two options:

• You can check the visible attribute. For example:

myMenu = MenuGetActiveMenu();
if (myMenu && myMenu->attr.visible) {
// menu is visible

}

• You can check for winEnterEvent and winExitEvent.

When the system draws a menu, the menu’s window
becomes the active drawing window. The system generates a
winExitEvent for the previous active drawing window
and a winEnterEvent for the menu’s window. When the
menu is erased, the system generates a winExitEvent for
the menu’s window and a winEnterEvent for the window
that was active before the menu was drawn.

It’s common to want to check if the menu is visible in
applications that perform custom drawing to a window.
Such applications want to make sure that they don’t draw on
top of the menu. The recommended way to do this is to stop
drawing when you receive a winExitEvent matching your
drawing window and resume drawing when you receive the
corresponding winEnterEvent. For example, the following
code is excerpted from the Reptoids example application’s
main event loop:

EvtGetEvent (&event, TimeUntillNextPeriod());

if (event.eType == winExitEvent) {
if (event.data.winExit.exitWindow ==
(WinHandle) FrmGetFormPtr(MainView)) {

// stop drawing.
}

}

else if (event.eType == winEnterEvent) {
if (event.data.winEnter.enterWindow ==
(WinHandle) FrmGetFormPtr(MainView) &&
event.data.winEnter.enterWindow ==

Menus
Menu Functions

346 Palm OS SDK Reference

(WinHandle) FrmGetFirstForm ()) {
// start drawing

}
}

Note that the second method of checking to see if a menu is visible
is preferred because it is not specific to menus—your application
should stop drawing if any window obscures your drawing
window, and it will do so if you check for winEnterEvent and
winExitEvent.

See Also MenuHandleEvent, MenuSetActiveMenu

MenuHandleEvent

Purpose Handle events in the current menu. This routine handles two types
of events, penDownEvent and keyDownEvent.

Prototype Boolean MenuHandleEvent (MenuBarType *menuP,
EventType *event, Uint16 *error)

Parameters -> menuP Pointer to a MenuBarType data structure.

-> event Pointer to an EventType structure.

-> error Error (or 0 if no error).

Result Returns true if the event is handled; that is, if the event is a
penDownEvent within the menu bar or the menu, or the event is a
keyDownEvent that the menu supports. Returns false on any
other event.

Comments When a penDownEvent is received in the menu bar,
MenuHandleEvent tracks the pen until it comes up. If the pen
comes up within the bounds of the menu bar, the selected title is
inverted and the appropriate pull-down menu is drawn. Any
previous pull-down menu is erased. If the pen comes up outside of
the menu bar and pull-down menu, the menu is erased.

When a penDownEvent is received in a pull-down menu,
MenuHandleEvent tracks the pen until it comes up. If the pen

Menus
Menu Functions

Palm OS SDK Reference 347

comes up within the bounds of the menu, a menuEvent containing
the resource ID of the selected menu item is added to the event
queue. If the pen comes up outside of the bounds of the menu and
menu bar, the menu is erased.

If a keyDownEvent is received with a vchrMenu, the menu is
drawn if it is not visible and erased if it is visible.

If a keyDownEvent is received with a vchrCommand, a command
shortcut is in progress. Command shortcuts are handled differently
depending on which version of Palm OS is running. On versions
earlier than 3.5, the next keyDownEvent is checked to see if it is a
valid menu shortcut. If so, a menuEvent is added to the event
queue.

If a keyDownEvent is received with a vchrCommand on Palm OS
3.5 and higher, MenuHandleEvent enqueues a
menuCmdBarOpenEvent if the command toolbar is not already
open. The menuCmdBarOpenEvent provides a chance for
applications to add their own buttons to the command toolbar. The
next event might be either a keyDownEvent with a character that
completes the shortcut or a penDownEvent on one of the buttons
on the toolbar. The keyDownEvent is processed as with the earlier
releases— if it is a valid menu shortcut, a menuEvent is added to
the event queue. If the next event is a penDownEvent, the pen is
tracked until it comes up. If the pen comes up within the bounds of
a button, the appropriate action is taken. See the description of
MenuCmdBarAddButton for more information.

In Palm OS version 3.5 or higher, if either the vchrMenu or the
vchrCommand event causes a menu to be activated and initialized
for the first time, a menuOpenEvent containing the reason the
menu was initialized (menuButtonCause for a vchrMenu or
menuCommandCause for a vchrCommand) is added to the event
queue, and then the current event is added after it.

Menus
Menu Functions

348 Palm OS SDK Reference

MenuHideItem

Purpose Hide a menu item.

Prototype Boolean MenuHideItem (UInt16 id)

Parameters -> id ID of the menu item to hide.

Result Returns true if the menu item was hidden; false otherwise.

Comments You should call this function only in response to a
menuOpenEvent. This event is generated when the menu is first
made active. In general, a form’s menu becomes active the first time
a keyDownEvent with a vchrMenu or vchrCommand is generated,
and it remains active until a new form (including a modal form or
alert panel) is displayed or until FrmSetMenu is called to change
the form’s menu. Palm OS user interface guidelines discourage
adding or hiding menu items at any time other than when the menu
is first made active.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also MenuShowItem

MenuInit

Purpose Load a menu resource from a resource file.

Prototype MenuBarType *MenuInit (Uint16 resourceId)

Parameters -> resourceId ID that identifies the menu resource.

Result Returns the pointer to a memory block allocated to hold the menu
resource (a pointer to a MenuBarType).

Comments The menu is not usable until MenuSetActiveMenu is called.

Typically, you do not need to call this function directly. A form
stores the resource ID of the menu associated with it and initializes

Menus
Menu Functions

Palm OS SDK Reference 349

that menu as necessary. If you want to change the form’s menu, call
FrmSetMenu, which handles disposing of the form’s current menu,
associating the new menu with the form, and initializing when
needed.

See Also MenuSetActiveMenu, MenuDispose

MenuSetActiveMenu

Purpose Set the current menu.

Prototype MenuBarType *MenuSetActiveMenu
(MenuBarType *menuP)

Parameters -> menuP Pointer to the memory block that contains the
new menu, or NULL for none.

Result Returns a pointer to the menu that was active before the new menu
was set, or NULL if no menu was active.

Comments This function sets the active menu but does not associate it with a
form. It’s recommended that you call FrmSetMenu instead of
MenuSetActiveMenu. FrmSetMenu sets the active menu, frees the
old menu, and associates the newly active menu with the form,
which means the menu will be freed when the form is freed.

See Also MenuGetActiveMenu

MenuSetActiveMenuRscID

Purpose Set the current menu by resource ID.

Prototype void MenuSetActiveMenuRscID (Uint16 resourceId)

Parameters -> resourceId Resource ID of the menu to be made active.

Result Returns nothing.

Menus
Menu Functions

350 Palm OS SDK Reference

Comments This function is similar to MenuSetActiveMenu except that you
pass the menu’s resource ID instead of a pointer to a menu
structure. It is used as an optimization; with MenuSetActiveMenu,
you must initialize the menu before making it active. Potentially, the
application may exit before the menu is needed, making this
memory allocation unnecessary. MenuSetActiveMenuRscID
simply stores the resource ID. The next time a menu is requested,
the menu is initialized from this resource.

It’s recommended that you call FrmSetMenu instead of calling this
function for the reasons given in MenuSetActiveMenu.

Compatibility Implemented only if 2.0 New Feature Set is present.

MenuShowItem

Purpose Display a menu item that is currently hidden.

Prototype Boolean MenuShowItem (UInt16 id)

Parameters -> id ID of the menu item to display.

Result Returns true if the menu item was successfully displayed, false
otherwise.

Comments You should call this function only in response to a
menuOpenEvent. This event is generated when the menu is first
made active. In general, a form’s menu becomes active the first time
a keyDownEvent with a vchrMenu or vchrCommand is generated,
and it remains active until a new form (including a modal form or
alert panel) is displayed or until FrmSetMenu is called to change
the form’s menu. Palm OS user interface guidelines discourage
adding or hiding menu items at any time other than when the menu
is first made active.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also MenuHideItem

Palm OS SDK Reference 351

15
Private Records
This chapter describes the private records API as declared in
PrivateRecords.h. It discusses the following topics:

• Private Record Data Structures

• Private Record Functions

Private Record Data Structures

privateRecordViewEnum
The privateRecordViewEnum enumerated type provides the
available choices for displaying private records.

typedef enum privateRecordViewEnum {
showPrivateRecords = 0x00,
maskPrivateRecords,
hidePrivateRecords

} privateRecordViewEnum;

Value Descriptions

showPrivateRecords Display private records in the user
interface.

maskPrivateRecords Show a shaded rectangle in place of a
private record.

hidePrivateRecords Hide private records and provide no
indication in the user interface that they
exist.

Private Records
Private Record Functions

352 Palm OS SDK Reference

Private Record Functions

SecSelectViewStatus

Purpose Display a form that allows the user to select whether to hide, show,
or mask private records.

Prototype privateRecordViewEnum SecSelectViewStatus (void)

Parameters None

Result Returns a constant that indicates which option the user selected. See
privateRecordViewEnum.

Comments This function displays a dialog that allows users to change the
preference prefShowPrivateRecords, which controls how
private records are displayed.

When the user taps the OK button in this dialog, SecVerifyPW is
called to see if the user changed the preference setting and, if so, to
prompt the user to enter the appropriate password.

After calling this function, your code should check the return value
or the value of prefShowPrivateRecords and mask, display, or
hide the private records accordingly. See the description of
TblSetRowMasked for a partial example.

Compatibility Implemented only if 3.5 New Feature Set is present.

Private Records
Private Record Functions

Palm OS SDK Reference 353

SecVerifyPW

Purpose Display a password dialog, verify the password, and change the
private records preference.

Prototype Boolean SecVerifyPW
(privateRecordViewEnum newSecLevel)

Parameters -> newSecLevel The security level (display, hide, or mask)
selected on the private records dialog.

Result Returns true if the prefShowPrivateRecords preference was
successfully changed, false if not.

Comments This function checks newSecLevel against the current value for
the preference. If the two values differ and newSecLevel indicates
a decrease in security, a dialog is displayed prompting the user to
enter a password. (Hidden is considered the most secure, followed
by masked. Showing private records is considered the least secure.)
If the password is entered successfully, the preference is changed.

This function also displays an alert message if the security level has
changed to either hidden or masked.

Compatibility Implemented only if 3.5 New Feature Set is present.

Palm OS SDK Reference 355

16
Progress Manager
This chapter provides reference material for the Progress Manager.

• Progress Manager Functions

• Application-Defined Functions

The header file Progress.h declares the API that this chapter
describes. For more information on the progress manager, see the
section “Progress Dialogs” in the Palm OS Programmer’s Companion.

Progress Manager Functions

PrgHandleEvent

Purpose Handles events related to the active progress dialog.

Prototype Boolean PrgHandleEvent (ProgressPtr prgP,
EventType *eventP)

Parameters -> prgP Pointer to a progress structure created by
PrgStartDialog.

-> eventP Pointer to an event. You can pass a NULL event
to cause this function to immediately call your
PrgCallbackFunc function and then update
the dialog (for example, after you call
PrgUpdateDialog).

Result Returns true if the system handled the event. If it returns false,
you should check if the user canceled the dialog by calling
PrgUserCancel.

Progress Manager
Progress Manager Functions

356 Palm OS SDK Reference

Comments Use this function instead of SysHandleEvent when you have a
progress dialog. PrgHandleEvent internally calls
SysHandleEvent as needed.

Note that the auto power-off feature of the system is automatically
disabled when you use this function, unless the dialog is just
displaying an error. This function also prevents appStopEvent
events.

If an update to the dialog is pending (from a call to
PrgUpdateDialog, for example) this function handles that event
and causes the dialog to be updated. As part of this process, the
textCallback function you specified in your call to
PrgStartDialog is called. Your textCallback function should
set the textP buffer in the PrgCallbackData structure with the
new message to be displayed in the progress dialog. Optionally, you
can also set the bitmapId field to include an icon in the update
dialog. For more information about the textCallback function,
see the section “Application-Defined Functions.”

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also PrgStartDialog, PrgStopDialog, PrgUpdateDialog,
PrgUserCancel

PrgStartDialog

Purpose Displays a progress dialog that can be updated.

Prototype ProgressPtr PrgStartDialog (Char *title,
PrgCallbackFunc textCallback, void *userDataP)

Parameters -> title Pointer to a title for the progress dialog. Must
be a NULL-terminated string that is no longer
than progressMaxTitle (20).

-> textCallback Pointer to a callback function that supplies the
text and icons for the current progress state. See
PrgCallbackFunc.

Progress Manager
Progress Manager Functions

Palm OS SDK Reference 357

-> userDataP A pointer to data that you need to access in the
callback function. This address gets passed
directly to your function.

Result A pointer to a progress structure. This pointer must be passed to
other progress manager functions and must be released by calling
PrgStopDialog. NULL is returned if the system is unable to
allocate the progress structure.

Comments The dialog created by this function can be updated by another
process via the PrgUpdateDialog function. The dialog can
contain a Cancel or OK button. The initial dialog defaults to stage 0
and calls the textCallback function to get the initial text and icon
data for the progress dialog.

This function saves the screen bits behind the progress dialog, and
these are restored when you call PrgStopDialog. Because of this,
you should minimize changes to the screen while the progress
dialog is displayed, otherwise, the restored bits may not match with
what is currently being displayed.

Compatibility This version of the function is available only if 3.2 New Feature Set
is present. On earlier systems, PrgStartDialog has the prototype
shown for PrgStartDialogV31.

See Also PrgHandleEvent, PrgStopDialog, PrgUpdateDialog,
PrgUserCancel

PrgStartDialogV31

Purpose Displays a progress dialog that can be updated.

Prototype ProgressPtr PrgStartDialogV31 (Char *title,
PrgCallbackFunc textCallback)

Parameters -> title Pointer to a title for the progress dialog. Must
be a NULL-terminated string that is no longer
than progressMaxTitle (20).

Progress Manager
Progress Manager Functions

358 Palm OS SDK Reference

-> textCallback Pointer to a callback function that supplies the
text and icons for the current progress state. See
PrgCallbackFunc.

Result A pointer to a progress structure. This pointer must be passed to
other progress manager functions and must be released by calling
PrgStopDialog. NULL is returned if the system is unable to
allocate the progress structure.

Compatibility This function corresponds to version of PrgStartDialog
available on Palm OS® 3.0 and Palm OS 3.1.

See Also PrgHandleEvent, PrgStopDialog, PrgUpdateDialog,
PrgUserCancel

PrgStopDialog

Purpose Releases memory used by the progress dialog and restores the
screen to its initial state.

Prototype void PrgStopDialog (ProgressPtr prgP,
Boolean force)

Parameters -> prgP Pointer to a progress structure created by
PrgStartDialog.

-> force true removes the progress dialog immediately,
false causes the system to wait until the user
confirms an error, if one is displayed.

Result Returns nothing.

Comments If the progress dialog is in a state where it is displaying an error
message to the user, this function normally waits for the user to
confirm the dialog before it removes the dialog. If you specify true
for the force parameter, this causes the system to remove the
dialog immediately.

Progress Manager
Progress Manager Functions

Palm OS SDK Reference 359

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also PrgHandleEvent, PrgStartDialog, PrgUpdateDialog,
PrgUserCancel

PrgUpdateDialog

Purpose Updates the status of the current progress dialog.

Prototype void PrgUpdateDialog (ProgressPtr prgP,
UInt16 err, UInt16 stage, Char *messageP,
Boolean updateNow)

Parameters -> prgP Pointer to a progress structure created by
PrgStartDialog.

-> err If non-zero, causes the dialog to go into error
mode, to display an error message with only an
OK button.

-> stage Current stage of progress. The callback function
can use this to determine the correct string to
display in the updated dialog.

-> messageP Extra text that may be useful in displaying the
progress for this stage. Used by the callback
function, which can append it to the base
message that is based on the stage.

-> updateNow If true, the dialog is immediately updated.
Otherwise, the dialog is updated on the next
call to PrgHandleEvent.

Result Returns nothing.

Comments For more information about how the parameters are used and the
callback function, see the section “Application-Defined Functions.”

Progress Manager
Progress Manager Functions

360 Palm OS SDK Reference

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also PrgHandleEvent, PrgStartDialog, PrgStopDialog,
PrgUserCancel

PrgUserCancel

Purpose Macro that returns true if the user cancelled the process via the
progress dialog.

Prototype PrgUserCancel (prgP)

Parameters -> prgP Pointer to a progress structure (ProgressPtr)
created by PrgStartDialog.

Result Returns the value of the cancel field in the progress structure (as a
UInt16).

Comments This is a macro you can use to check if the user cancelled the
process. If the user did cancel, you can change the progress dialog
text to something like “Cancelling,” or “Disconnecting,” or
whatever is appropriate for your application. Then you should
cancel the process, end the communication session, or do whatever
processing is necessary.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also PrgHandleEvent, PrgStartDialog, PrgStopDialog,
PrgUpdateDialog

Progress Manager
Application-Defined Functions

Palm OS SDK Reference 361

Application-Defined Functions

PrgCallbackFunc

Purpose Supplies the text and icons for the current progress state.

Prototype Boolean (*PrgCallbackFunc)
(PrgCallbackDataPtr cbP)

Parameters <-> cbP A pointer to a PrgCallbackData structure.
See below.

Result Returns true if the progress dialog should be updated using the
values you specified in the PrgCallbackData structure. If you
specify false, the dialog is still updated, but with default status
messages. (Returning false is not recommended.)

Comments This is a callback function that you specify when you call
PrgStartDialog. The callback function is called by
PrgHandleEvent when it needs current progress information to
display in the progress dialog.

The system passes this function one parameter, a pointer to a
PrgCallbackData structure. Here are the important fields in that
data structure (note that -> indicates you set the field in the
textCallback function):

<- UInt16 stage Current stage (passed from
PrgUpdateDialog).

<-> Char *textP
Buffer to hold the text to display in the updated
dialog. You might want to look up a message in
a resource file, based on the value in the stage
field. Also, you should append the additional
text in the message field, to form the full string
to display. Be sure to include a null terminator
at the end of the string you return, and don’t
exceed the length in textLen.

Progress Manager
Application-Defined Functions

362 Palm OS SDK Reference

<- UInt16 textLen
Maximum length of the text buffer textP. Note
that this value is set for you by the caller. Be
careful not to exceed this length in textP.

<- Char *message
Additional text to display in the dialog (from
the messageP parameter to
PrgUpdateDialog). This should be no longer
than progressMaxMessage (128).

<- Err error Current error (passed from the err parameter
to PrgUpdateDialog).

-> UInt16 bitmapId
Resource ID of the bitmap to display in the
progress dialog, if any.

<- UInt16 canceled:1
true if user has pressed the cancel button.

<- UInt16 showDetails:1
true if user pressed the down arrow button on
the Palm device for more details. (Because this
is a non-standard user interface technique, you
shouldn’t use this feature to display details that
users need under normal conditions. It’s more
for debugging purposes.)

-> UInt16 textChanged:1
If true, then update text (defaults to true).
You can set this to false to avoid an update to
the text.

<- UInt16 timedOut:1
true if update caused by a timeout.

Progress Manager
Application-Defined Functions

Palm OS SDK Reference 363

<-> UInt32 timeout
Timeout in ticks to force next update. After this
number of ticks, an update is automatically
triggered (which sets the timedOut flag). You
can use this feature to do a simple animation
effect. Note that you must set the timeout for
EvtGetEvent to a value that is equal to or less
than this value, otherwise you won’t get update
events as frequently as you expect.

-> UInt16 delay:1
If true, delay for one second after updating
the dialog. Use this value when you are
displaying the final progress message so that
users have a chance to see the message before
the dialog closes. This field is available only if
3.2 New Feature Set is present.

<- void *userDataP
A pointer to any application-defined data that
the function needs to access. You specify this
pointer as a parameter to PrgStartDialog if
the callback function needs to access some
application data but does not have access to
application globals. This field is available only
if 3.2 New Feature Set is present.

In this function, you should set the value of the textP buffer to the
string you want to display in the progress dialog when it is updated.
You can use the value in the stage field to look up a message in a
string resource. You also might want to append the text in the
message field to your base string. Typically, the message field
would contain more dynamic information that depends on a user
selection, such as a phone number, device name, or network
identifier, etc.

For example, the PrgUpdateDialog function might have been
called with a stage of 1 and a messageP parameter value of a
phone number string, “555-1212”. Based on the stage, you might
find the string “Dialing” in a string resource, and append the phone
number, to form the final text “Dialing 555-1212” that you place in
the text buffer textP.

Progress Manager
Application-Defined Functions

364 Palm OS SDK Reference

Keeping the static strings corresponding to various stages in a
resource makes it easier to localize your application. More dynamic
information can be passed in via the messageP parameter to
PrgUpdateDialog.

NOTE: This function is called only if the parameters passed to
PrgUpdateDialog have changed from the last time it was
called. If PrgUpdateDialog is called twice with exactly the
same parameters, the textCallback function is called only
once.

Palm OS SDK Reference 365

17
Scroll Bars
This chapter provides reference material for the scroll bar API.

• Scroll Bar Data Structures

• Scroll Bar Resources

• Scroll Bar Functions

The header file ScrollBar.h declares the API that this chapter
describes. For more information on scroll bars, see the section
“Scroll Bars” on page 112 in the Palm OS Programmer’s Companion.

Scroll Bar Data Structures

ScrollBarAttrType
The ScrollBarAttrType bit field defines a scroll bar’s visible
characteristics.

typedef struct {
UInt16 usable: 1;
UInt16 visible: 1;
UInt16 hilighted: 1;
UInt16 shown: 1;
UInt16 activeRegion:4;

} ScrollBarAttrType;

Field Descriptions

usable If not set, the scroll bar object is not considered
part of the current interface of the application,
and it doesn’t appear on screen.

visible If set, the scroll bar is allowed to be displayed on
the screen. If both visible and shown are
true, then the scroll bar is actually displayed on
the screen.

Scroll Bars
Scroll Bar Data Structures

366 Palm OS SDK Reference

ScrollBarPtr
The ScrollBarPtr type defines a pointer to a ScrollBarType
structure.

typedef ScrollBarType *ScrollBarPtr;

You pass the ScrollBarPtr as an argument to all scroll bar
functions. You can obtain the ScrollBarPtr using the function
FrmGetObjectPtr in this way:

scrollBarPtr = FrmGetObjectPtr(frm,
FrmGetObjectIndex(frm, scrollBarID));

where scrollBarID is the resource ID assigned when you created
the scroll bar.

ScrollBarType
The ScrollBarType represents a scroll bar.

typedef struct {
RectangleType bounds;
UInt16 id;

hilighted true if either the up arrow or the down arrow is
highlighted.

shown Set if the scroll bar is visible and if maxValue >
minValue. (See ScrollBarType.)

activeRegion The region of the scroll bar that is receiving the
pen down events. Possible values are:

sclUpArrow The up arrow.

sclDownArrow The down arrow.

sclUpPage The region between the
scroll car and the up arrow.

sclDownPage The region between the
scroll car and the down
arrow.

sclCar The scroll car.

Scroll Bars
Scroll Bar Data Structures

Palm OS SDK Reference 367

ScrollBarAttrType attr;
Int16 value;
Int16 minValue;
Int16 maxValue;
Int16 pageSize;
Int16 penPosInCar;
Int16 savePos;

} ScrollBarType;

Your code should treat the ScrollBarType structure as opaque.
Use the functions described in this chapter to retrieve and set each
value. Do not attempt to change structure member values directly.

Field Descriptions

bounds Position (using absolute coordinates) and size
(in pixels) of the scroll bar on the screen.

id ID value you specified when you created the
scroll bar object.

attr Scroll bar’s attributes. See
ScrollBarAttrType.

value Current value of the scroll bar. This value is
used to determine where to position the scroll
car (the dark region in the scroll bar that
indicates the position in the document).

The number given is typically a number relative
to minValue and maxValue. These values
have nothing to do with any physical
characteristics of the object that the scroll bar is
attached to, such as the number of lines in the
object.

This value is typically set to 0 initially and then
adjusted programmatically with
SclSetScrollBar.

minValue Minimum value. When value equals
minValue, the scroll car is positioned at the
very top of the scrolling region. This value is
typically 0.

Scroll Bars
Scroll Bar Resources

368 Palm OS SDK Reference

Scroll Bar Resources
The Scroll Bar Resource (tSCL) represents a scroll bar.

Scroll Bar Functions

SclDrawScrollBar

Purpose Draw a scroll bar.

Prototype void SclDrawScrollBar (const ScrollBarPtr bar)

Parameters -> bar Pointer to a scroll bar structure (see
ScrollBarType).

Result Returns nothing.

Comments This function is called internally by SclSetScrollBar and
FrmDrawForm. You rarely need to call it yourself.

Compatibility Implemented only if 2.0 New Feature Set is present.

maxValue Maximum value. When value equals
maxValue, the scroll car is positioned at the
very bottom of the scrolling region. This value is
typically set to 0 initially and then adjusted
programmatically with SclSetScrollBar.

pageSize Number of lines to scroll when user scrolls one
page.

penPosInChar Used internally.

savePos Used internally.

Scroll Bars
Scroll Bar Functions

Palm OS SDK Reference 369

SclGetScrollBar

Purpose Retrieve a scroll bar’s current position, its range, and the size of a
page.

Prototype void SclGetScrollBar (const ScrollBarPtr bar,
Int16 *valueP, Int16 *minP, Int16 *maxP,
Int16 *pageSizeP)

Parameters -> bar Pointer to a scroll bar structure (see
ScrollBarType).

<- valueP A value representing the scroll car’s current
position. (The scroll car is the dark region that
indicates the position in the document.)

<-minP A value representing the top of the user
interface object.

<-maxP A value representing the bottom of the user
interface object.

<-pageSizeP Pointer to size of a page (used when page
scrolling).

Result Returns the scroll bar’s current values in valueP, minP, maxP, and
pageSizeP.

Comments You might use this function immediately before calling
SclSetScrollBar to update the scroll bar. SclGetScrollBar
returns the scroll bar’s current values, which you can then adjust as
necessary and pass to SclSetScrollBar.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also SclSetScrollBar

Scroll Bars
Scroll Bar Functions

370 Palm OS SDK Reference

SclHandleEvent

Purpose Handles events that affect a scroll bar.

Prototype Boolean SclHandleEvent (const ScrollBarPtr bar,
const EventType *event)

Parameters -> bar Pointer to a scroll bar structure (see
ScrollBarType).

-> event Pointer to an event (EventType).

Result Returns true if the event was handled.

Comment When a penDownEvent occurs, the scroll bar sends an
sclEnterEvent to the event queue.

When an sclEnterEvent occurs, the scroll bar determines what
its new value should be based on which region of the scroll bar is
receiving the pen down events. It then sends either an
sclRepeatEvent or an sclExitEvent to the event queue.

When the user holds and drags the scroll bar with the pen, the scroll
bar sends a sclRepeatEvent. Applications that implement
dynamic scrolling should catch this event and move the text each
time one arrives.

When the user releases the pen from the scroll bar, the scroll bar
sends a sclExitEvent. Applications that implement non-dynamic
scrolling should catch this event and move the text when
sclExitEvent arrives. Applications that implement dynamic
scrolling can ignore this event.

Compatibility Implemented only if 2.0 New Feature Set is present.

Scroll Bars
Scroll Bar Functions

Palm OS SDK Reference 371

SclSetScrollBar

Purpose Set the scroll bar’s current position, its range, and the size of a page.
If the scroll bar is visible and its minimum and maximum values are
not equal, it’s redrawn.

Prototype void SclSetScrollBar (const ScrollBarPtr bar,
Int16 value, const Int16 min, const Int16 max,
const Int16 pageSize)

Parameters -> bar Pointer to a scroll bar structure (see
ScrollBarType).

-> value The position the scroll car should move to. (The
scroll car is the dark region that indicates the
position in the document.)

-> min Minimum value.

-> max Maximum value.

-> pageSize Number of lines of text that can be displayed
on a the screen at one time (used when page
scrolling).

Result Returns nothing. May display a fatal error message if the min
parameter is greater than the max parameter.

Comments Call this function when the user adds or deletes text in a field or
when a table row is added or deleted.

For scrolling fields, your application should catch the
fldChangedEvent and update the scroll bar at that time.

The max parameter is computed as:

number of lines of text – page size + overlap

where number of lines of text is the total number of lines or rows
needed to display the entire object, page size is the number of lines
or rows that can be displayed on the screen at one time, and overlap
is the number of lines or rows from the bottom of one page to be
visible at the top of the next page.

Scroll Bars
Scroll Bar Functions

372 Palm OS SDK Reference

For example, if you have 100 lines of text and 10 lines show on a
page, the max value would be 90 or 91, depending on the overlap.
So if value is greater than or equal to 90 or 91, the scroll car is at the
very bottom of the scrolling region.

You can use the FldGetScrollValues function to compute the
values you pass for value, min, and max. For example:

FldGetScrollValues (fld, &scrollPos,
&textHeight, &fieldHeight);

if (textHeight > fieldHeight)
maxValue = textHeight - fieldHeight;

else if (scrollPos)
maxValue = scrollPos;

else
maxValue = 0;

SclSetScrollBar (bar, scrollPos, 0, maxValue,
fieldHeight-1);

In this case, textHeight is the number of lines of text and
fieldHeight is the page size. No lines overlap when you scroll
one page. Notice that if the page size is greater than the lines of text,
then max equals min, which means that the scroll bar is not
displayed.

For scrolling tables, there is no equivalent to
FldGetScrollValues. Your application must scroll the table itself
and keep track of the scroll values. See the
ListViewUpdateScrollers function in the Memo example
application (MemoMain.c) for an example of setting scroll bar
values for a table.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also SclGetScrollBar

Palm OS SDK Reference 373

18
System Dialogs
This chapter provides reference material for system dialogs declared
in the header files FatalAlert.h, Launcher.h,
GraffitiReference.h, and GraffitiUI.h.

System Dialog Functions

SysAppLauncherDialog

Purpose Display the launcher popup, get a choice, ask the system to launch
the selected application, clean up, and leave. If there are no
applications to launch, nothing happens.

Prototype void SysAppLauncherDialog()

Parameters None.

Result The system may be asked to launch an application.

Comments Typically, this routine is called by the system as necessary. Most
applications do not need to call this function themselves.

In Palm OS® version 3.0 and higher the launcher is an application,
rather than a popup. This function remains available for
compatibility purposes only.

See Also SysAppLaunch, the “Application Launcher” section in the Palm OS
Programmer’s Companion

System Dialogs
System Dialog Functions

374 Palm OS SDK Reference

SysFatalAlert

Purpose Display a fatal alert until the user taps a button in the alert.

Prototype UInt16 SysFatalAlert (const Char *msg)

Parameters msg Message to display in the dialog.

Result The button tapped; first button is zero.

SysGraffitiReferenceDialog

Purpose Pop up the Graffiti® Reference Dialog.

Prototype void SysGraffitiReferenceDialog
(ReferenceType referenceType)

Parameters referenceType Which reference to display. See
GraffitiReference.h for more
information.

Result Nothing returned.

Palm OS SDK Reference 375

19
Tables
This chapter describes the table API as declared in the header file
Table.h. It discusses the following topics:

• Table Data Structures

• Table Constants

• Table Resource

• Table Functions

• Application-Defined Functions

For more information on tables, see the section “Tables” in the Palm
OS Programmer’s Companion.

Table Data Structures

TableAttrType
The TableAttrType bit field defines the visible characteristics of
the table.

typedef struct {
UInt16 visible:1;
UInt16 editable:1;
UInt16 editing:1;
UInt16 selected:1;
UInt16 hasScrollBar:1;
UInt16 reserved:11;

} TableAttrType;

Your code should treat the TableAttrType bit field as opaque. Use
the functions specified in the descriptions below to retrieve and set
each value. Do not attempt to change member values directly.

Tables
Table Data Structures

376 Palm OS SDK Reference

Field Descriptions

TableColumnAttrType
The TableColumnAttrType structure defines a column in a table.

typedef struct {
Coord width;
UInt16 reserved1 : 5;
UInt16 masked : 1;
UInt16 editIndicator : 1;
UInt16 usable : 1;
UInt16 reserved2 : 8;
Coord spacing;
TableDrawItemFuncPtr drawCallback;
TableLoadDataFuncPtr loadDataCallback;
TableSaveDataFuncPtr saveDataCallback;

} TableColumnAttrType;

Your code should treat the TableColumnAttrType structure as
opaque. Use the functions specified in the descriptions below to
retrieve and set each value. Do not attempt to change structure
member values directly.

visible If set, the table is drawn on the screen. The value
of this field is set by TblDrawTable and cleared
by TblEraseTable.

editable If set, the user can modify the table. You specify
this when you create the table resource.

editing If set, the table is in edit mode. The table is in
edit mode while the user edits a text item. The
value of this field is returned by TblEditing.

selected If set, the current item (as identified by the
TableType fields currentRow and
currentColumn) is selected. Use
TblGetSelection to retrieve this value.

hasScrollBar If set, the table has a scroll bar. Note that this
attribute can only be set programmatically. See
TblHasScrollBar.

Tables
Table Data Structures

Palm OS SDK Reference 377

Field Descriptions

width The column’s width in pixels. See
TblGetColumnWidth and
TblSetColumnWidth.

reserved1 Reserved for future use.

masked If true and the item’s row also has a
masked attribute of true, the table cell is
drawn on the screen but is shaded to
obscure the information that it contains.
See TblSetColumnMasked.

editIndicator If true, items in the column should be
highlighted if selected while in edit mode.
If false, items in the column should not
be highlighted. By default, text field items
are highlighted in edit mode, but all other
types of items are not highlighted. The
default can be overridden with
TblSetColumnEditIndicator.

usable If false, the column is not considered part
of the current interface of the application,
and it doesn’t appear on screen. See
TblSetColumnUsable.

reserved2 Reserved for future use.

spacing The spacing in pixels between this column
and the next column. See
TblGetColumnSpacing and
TblSetColumnSpacing.

drawCallback Pointer to a function that draws custom
items in the column. This function is called
during TblDrawTable and
TblRedrawTable. See
TblSetCustomDrawProcedure.

Tables
Table Data Structures

378 Palm OS SDK Reference

Compatibility

The masked field is defined only if 3.5 New Feature Set is present.

TableItemPtr
A TableItemPtr points to a TableItemType.

typedef TableItemType *TableItemPtr;

TableItemType
The TableItemType structure defines an item, or cell, within the
table.

typedef struct {
TableItemStyleType itemType;
FontID fontID;
Int16 intValue;
Char * ptr;

} TableItemType;

Your code should treat the TableItemType structure as opaque.
Use the functions specified in the descriptions below to retrieve and
set each value. Do not attempt to change structure member values
directly.

loadDataCallback Pointer to a function that loads data into
the column. This function is called during
TblDrawTable and TblRedrawTable.
See TblSetLoadDataProcedure.

saveDataCallback Pointer to a function that saves the data in
the column. Called when the focus moves
from one table cell to another and when the
table loses focus entirely. See
TblSetSaveDataProcedure.

Tables
Table Data Structures

Palm OS SDK Reference 379

NOTE: None of the table items create memory that you need to
free. The table manager handles all of the allocating and
deallocating of memory for table items. The only memory you are
responsible for freeing is the memory handle containing the text
that you want displayed in editable text fields. (See
TableLoadDataFuncType.)

Field Descriptions

The following table lists the possible values for the itemType field,
describes how each type is drawn, describes which other fields are
used for each itemType, and provides special instructions for
setting those fields. Note in particular that the fontID field is often
not used. Instead, certain items are displayed in a standard font.
These are noted in the last column of this table.

itemType The type of the item, such as a control, a text label,
and so on. TblSetItemStyle sets this value. The
rest of the fields in this struct are either used or not
used depending on the itemType. See Table 19.1.

fontID ID of the font used to display the item’s text.
TblGetItemFont and TblSetItemFont retrieve
and set this value.

intValue Integer value of the item. TblGetItemInt and
TblSetItemInt retrieve and set this value.

ptr Pointer to the item’s text. TblGetItemPtr and
TblSetItemPtr retrieve and set this value.

All text items have a maximum of
tableMaxTextItemSize.

Tables
Table Data Structures

380 Palm OS SDK Reference

Table 19.1 TableItemType fields

itemType Description TableItemType Fields Used

checkboxTableItem A checkbox control. intValue

customTableItem Application-defined
cell.

None.

Custom items are drawn using
the custom drawing function
that you implement. See
TableDrawItemFuncType. If
you want, you can store data in
the intValue and ptr fields.

dateTableItem Non-editable date in
the form month/day,
or a dash if the date
value is -1. The date
is followed by an
exclamation point if
it has past.

intValue

The intValue field should be
a value that can be cast to
DateType. DateType is
currently defined as a 16-bit
number:

yyyyyyymmmmddddd

The first 7 bits are the year
given as the offset since 1904,
the next 4 bits are the month,
and the next 5 bits are the day.

Dates are always drawn in the
current font.

labelTableItem Non-editable text. ptr

Labels are displayed in the
system’s default font.

numericTableItem Non-editable
number.

intValue

Numbers are displayed in the
system’s default bold font.

Tables
Table Data Structures

Palm OS SDK Reference 381

popupTriggerTableItem A list with a pop-up
trigger.

intValue
ptr

intValue is the index of the
list item that should be
displayed.

ptr is a pointer to the list.

Lists are displayed in the
system’s default font.

textTableItem Editable text field. fontID
ptr

For this item type, implement
the callback function
TableLoadDataFuncType to
load text into the table cell and
implement the callback
TableSaveDataFuncType to
save data before the field is
freed.

textWithNoteTableItem Editable text field
and a note icon to the
right of the text.

fontID
ptr

For this item type, implement
the callback function
TableLoadDataFuncType to
load text into the table cell and
implement the callback
TableSaveDataFuncType to
save data before the field is
freed.

Table 19.1 TableItemType fields (continued)

itemType Description TableItemType Fields Used

Tables
Table Data Structures

382 Palm OS SDK Reference

TablePtr
The TablePtr type defines a pointer to a TableType.

typedef TableType * TablePtr;

You pass the table’s pointer as an argument to all table functions.
You can obtain the table’s pointer using the function
FrmGetObjectPtr in this way:

tblPtr = FrmGetObjectPtr(frm,
FrmGetObjectIndex(frm, tblID));

where tblID is the resource ID assigned when you created the
table.

timeTableItem Not implemented.

narrowTextTableItem Editable text with
space reserved on the
right side of the cell.

fontID
ptr
intValue

intValue is the number of
pixels to reserve on the right
side of the cell.

For this item type, implement
the callback function
TableDrawItemFuncType to
draw in the space reserved on
the right side of the cell, the
TableLoadDataFuncType
callback function to load text
into the table cell, and the
callback function
TableSaveDataFuncType to
save data before the field is
freed.

Table 19.1 TableItemType fields (continued)

itemType Description TableItemType Fields Used

Tables
Table Data Structures

Palm OS SDK Reference 383

TableRowAttrType
The TableRowAttrType structure defines a row in a table.

typedef struct {
UInt16 id;
Coord height;
UInt32 data;
UInt16 reserved1 : 7;
UInt16 usable : 1;
UInt16 reserved2 : 4;
UInt16 masked : 1;
UInt16 invalid : 1;
UInt16 staticHeight : 1;
UInt16 selectable : 1;
UInt16 reserved3;

} TableRowAttrType;

Your code should treat the TableRowAttrType structure as
opaque. Use the functions specified in the descriptions below to
retrieve and set each value. Do not attempt to change structure
member values directly.

Field Descriptions

id The ID of this row. See TblFindRowID,
TblGetRowID, and TblSetRowID.

height Height of the row in pixels. The functions
TblSetRowHeight and
TblGetRowHeight set and retrieve this
value.

data Any application-specific value you want to
store in this row. For example, the
Datebook and ToDo applications use this
field to store the unique ID of the database
record that is displayed in this table row.
See TblFindRowData, TblGetRowData,
and TblSetRowData.

reserved1 Reserved for future use.

Tables
Table Data Structures

384 Palm OS SDK Reference

Compatibility

The masked field is defined only if 3.5 New Feature Set is present.

TableType
The TableType structure represents a table.

usable If false, the row is not considered part of
the current interface of the application, and
it doesn’t appear on screen. Table rows
have usable set to false when they are
scrolled off the screen. See TblRowUsable
and TblSetRowUsable. The function
TblGetLastUsableRow returns the row
that appears at the bottom of the screen.

masked If true and the item’s column also has a
masked attribute of true, the table cell is
drawn on the screen but is shaded to
obscure the information that it contains.
See TblSetRowMasked and
TblRowMasked.

reserved2 Reserved for future use.

invalid If true, the row needs to be redrawn. See
TblRowInvalid, TblMarkRowInvalid,
and TblMarkTableInvalid.

staticHeight true if the row height cannot be changed,
false otherwise. If false, text fields in
this table row will dynamically resize to
multiple lines as necessary. See
TblSetRowStaticHeight.

selectable If true, the user can select individual cells
in this row. See TblSetRowSelectable
and TblRowSelectable.

reserved3 Reserved for future use.

Tables
Table Data Structures

Palm OS SDK Reference 385

typedef struct TableType {
UInt16 id;
RectangleType bounds;
TableAttrType attr;
Int16 numColumns;
Int16 numRows;
Int16 currentRow;
Int16 currentColumn;
Int16 topRow;
TableColumnAttrType * columnAttrs;
TableRowAttrType * rowAttrs;
TableItemPtr items;
FieldType currentField;

} TableType;

Your code should treat the TableType structure as opaque. Use the
functions specified in the descriptions below to retrieve and set each
value. Do not attempt to change structure member values directly.

Field Descriptions

id ID value you specified when you created the
table resource. This ID is included as part of the
event data of tblEnterEvent.

bounds Position and size of the table object. The
functions TblGetBounds,
FrmGetObjectBounds, TblSetBounds, and
FrmSetObjectBounds retrieve and set this
value.

attr The table’s attributes. See TableAttrType.

numColumns Number of columns displayed by the table
object. You specify the number of columns
when you create the table resource, and this
value cannot be changed.

Tables
Table Data Structures

386 Palm OS SDK Reference

numRows Maximum number of visible rows in the table
object.

You specify this value when you create the
table resource, and it does not change; however,
the total number of rows in a table can change if
you insert new rows in a table, and even the
number of currently visible rows can change if
a text field within a table cell is dynamically
resized.

The function TblGetNumberOfRows returns
the value of this field.

currentRow Row index of the currently selected table cell.
Rows are numbered from top to bottom
starting with 0.

currentColumn Column index of the currently selected table
cell. Columns are numbered from left to right
starting with 0. If the TableAttrType
selected is true, then this table cell is
highlighted. If selected is false, the table
still considers this the “current” item, but it is
not highlighted. The functions
TblGetSelection and TblSelectItem
retrieve and set the values of currentRow and
currentColumn.

topRow First visible row of the table object.

columnAttrs An array of each table column’s attributes. See
TableColumnAttrType.

rowAttrs An array of each row’s attributes, such as its ID,
height, and whether or not it is usable,
selectable, or invalid. See
TableRowAttrType.

Tables
Table Constants

Palm OS SDK Reference 387

Table Constants

Table Resource
The Table Resource (tTBL) represents a table on screen.

items An array of each item’s (table cell’s) attributes,
such as the item type, font ID, an integer value,
and a character pointer. See TableItemType.

currentField Field object the user is currently editing. The
function TblGetCurrentField retrieves the
value of this item.

Constant Value Description

tableDefaultColumnSpacing 1 Never used.

tableNoteIndicatorHeight 11 The height in pixels of the note indicator
for tables items of type
textWithNoteTableItem.

tableNoteIndicatorWidth 7 The width in pixels of the note indicator
for tables items of type
textWithNoteTableItem.

tableMaxTextItemSize 255 The maximum length of an editable text
field within a table cell.

tblUnusableRow 0xffff Value returned by
TblGetLastUsableRow if none of the
table’s rows are usable. This value is
only available in version 3.5 and higher.

Tables
Table Functions

388 Palm OS SDK Reference

Table Functions

TblDrawTable

Purpose Draw a table.

Prototype void TblDrawTable (TableType *tableP)

Parameters -> tableP Pointer to a table object. (See TableType.)

Result Returns nothing.

Comments This function is called as part of FrmDrawForm when the form
contains a table object.

This function draws the entire table, marking all rows valid before
drawing. See the TableItemType struct description for more
information about how each type of table cell is drawn.

When drawing cells with editable text fields (textTableItem,
textWithNoteTableItem, or narrowTextTableItem), this
function uses the TableLoadDataFuncType callback function to
load the text into the table cells. The text field does not retain the text
handle that your TableLoadDataFunc returns, meaning that you
are responsible for freeing the memory that you load into the table.

When drawing narrowTextTableItem cells or
customTableItem cells, this function uses the
TableDrawItemFuncType callback function to draw the extra
pixels after the text or to draw the entire cell.

On color systems, tables are always drawn using the same color as is
used for the field background color.

When the user has set the security setting to mask private records,
table cells that contain private database records are drawn as
shaded cells to obscure the information they contain. You must
explicitly tell the table which cells are masked by making the
appropriate calls to TblSetRowMasked and
TblSetColumnMasked.

Tables
Table Functions

Palm OS SDK Reference 389

Compatibility Color support and masked private records are only supported in
Palm OS® version 3.5 and higher.

In versions earlier than 3.5, this function did not erase table cells
before it drew them. In earlier releases, consider calling
TblEraseTable before calling this function, particularly if the
entire table has changed, as the visual effect of drawing over a white
background may be more pleasing.

See Also TblEraseTable, TblRedrawTable,
TblSetCustomDrawProcedure

TblEditing

Purpose Check whether a table is in edit mode.

Prototype Boolean TblEditing (const TableType *tableP)

Parameters -> tableP Pointer to a table object. (See TableType.)

Result Returns true if the table is in edit mode, false otherwise.

Comments The table is in edit mode while the user edits a text item. More
specifically, the table is in edit mode when a tblEnterEvent is
received on an editable table cell (textTableItem,
textWithNoteTableItem, or narrowTextTableItem), or
when TblGrabFocus is called.

The table is taken out of edit mode when a the user places the pen
on a note in a textWithNoteTableItem or when the table
releases the focus (TblReleaseFocus).

Tables
Table Functions

390 Palm OS SDK Reference

TblEraseTable

Purpose Erase a table object.

Prototype void TblEraseTable (TableType *tableP)

Parameters -> tableP Pointer to a table object. (See TableType.)

Result Returns nothing.

Comments This function sets the table’s visible and selected attributes to
false. It does not invalidate table rows.

See Also TblDrawTable, TblSetCustomDrawProcedure,
TblRedrawTable

TblFindRowData

Purpose Return the number of the row that contains the specified data value.

Prototype Boolean TblFindRowData (const TableType *tableP,
UInt32 data, Int16 *rowP)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> data Row data to find.

<- rowP Pointer to the row number (return value).

Result Returns true if a match was found, false otherwise.

Comments This function searches for a row whose attributes contain the
specified data. The data is any application-specific data that you
have set with TblSetRowData.

See Also TblGetRowData, TblFindRowID, TableRowAttrType

Tables
Table Functions

Palm OS SDK Reference 391

TblFindRowID

Purpose Return the number of the row with the specified ID.

Prototype Boolean TblFindRowID (const TableType *tableP,
UInt16 id, Int16 *rowP)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> id Row ID to find.

<- rowP Pointer to the row number (return value).

Result Returns true if a match was found, false otherwise.

See Also TblSetRowID, TblFindRowData, TableRowAttrType

TblGetBounds

Purpose Return the bounds of a table.

Prototype void TblGetBounds (const TableType *tableP,
RectangleType *r)

Parameters -> tableP Pointer to a table object. (See TableType.)

<- r A RectangleType structure in which the
bounds are returned.

Result Returns nothing. The r parameter contains the bounds.

See Also TblGetItemBounds

Tables
Table Functions

392 Palm OS SDK Reference

TblGetColumnSpacing

Purpose Return the spacing after the specified column.

Prototype Coord TblGetColumnSpacing
(const TableType *tableP, Int16 column)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> column Column number (zero-based).

Result Returns the spacing after column (in pixels).

This function may display a fatal error message if the column
parameter is invalid.

See Also TblGetColumnWidth, TblSetColumnSpacing,
TblSetColumnUsable

TblGetColumnWidth

Purpose Return the width of the specified column.

Prototype Coord TblGetColumnWidth (const TableType *tableP,
Int16 column)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> column Column number (zero-based).

Result Returns the width of a column (in pixels). This function may display
a fatal error message if the column parameter is invalid.

See Also TblGetColumnSpacing, TblSetColumnWidth,
TblSetColumnUsable

Tables
Table Functions

Palm OS SDK Reference 393

TblGetCurrentField

Purpose Return a pointer to the FieldType in which the user is currently
editing a text item.

Prototype FieldPtr TblGetCurrentField
(const TableType *tableP)

Parameters -> tableP Pointer to a table object. (See TableType.)

Result Returns a pointer to the currently selected field, or NULL if the table
is not in edit mode.

See Also TblGetSelection

TblGetItemBounds

Purpose Return the bounds of an item in a table.

Prototype void TblGetItemBounds (const TableType *tableP,
Int16 row, Int16 column, RectangleType *r)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number of the item (zero-based).

-> column Column number of the item (zero-based).

<- r Pointer to a structure that holds the bounds of
the item.

Result Returns nothing. Stores the bounds in r. This function may raise a
fatal exception if the row or column parameter specifies a row or
column that does not appear on screen.

Tables
Table Functions

394 Palm OS SDK Reference

TblGetItemFont

Purpose Return the font used to display a table item.

Prototype FontID TblGetItemFont (const TableType *tableP,
Int16 row, Int16 column)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number of the item (zero-based).

-> column Column number of the item (zero-based).

Result Returns the ID of the font used for the table item at the row and
column indicated. This function may display a fatal error message if
the row or column parameter specifies a row or column that is not
on the screen.

Comments This function returns the value stored in the fontID field for this
table item. Only certain types of table items use the font specified by
the fontID field when they are displayed. The TableItemType
description specifies what font is used to display each type of table
item.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also TblSetItemFont

TblGetItemInt

Purpose Return the integer value stored in a table item.

Prototype Int16 TblGetItemInt (const TableType *tableP,
Int16 row, Int16 column)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number of the item (zero-based).

Tables
Table Functions

Palm OS SDK Reference 395

-> column Column number of the item (zero-based).

Result Returns the integer value. This function may display a fatal message
if the row or column does not appear on the screen.

Comments This function returns the value stored in the intValue field for this
table item. Certain types of table items display the value stored in
intValue, and other types display the value pointed to by the ptr
field. See the TableItemType description for details. If the
intValue was never set for this table item, this function returns 0.

See Also TblSetItemInt, TblGetItemPtr

TblGetItemPtr

Purpose Return the pointer value stored in a table item

Prototype void * TblGetItemPtr (const TableType *tableP,
Int16 row, Int16 column)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number of the item (zero-based).

-> column Column number of the item (zero-based).

Result Returns the item’s pointer value or NULL if the item does not have a
pointer value. This function may display a fatal message if the row
or column parameter is invalid.

Comments This function returns the value stored in the ptr field for this table
item. Certain types of table items display the value pointed to by the
ptr, and other types display the value stored in the intValue
field. See the TableItemType description for details. An
application may have set the value of the ptr field anyway, even for
items that use the intValue. This function always returns that
value.

Compatibility Implemented only if 3.5 New Feature Set is present. In earlier
versions, you can implement this function using the following code:

Tables
Table Functions

396 Palm OS SDK Reference

return tableP->items[row * tableP->numColumns +
column].ptr;

See Also TblSetItemPtr

TblGetLastUsableRow

Purpose Return the last row in a table that is usable (visible).

Prototype Int16 TblGetLastUsableRow
(const TableType *tableP)

Parameters -> tableP Pointer to a table object. (See TableType.)

Result Returns the row index (zero-based) or tblUnusableRow if there
are no usable rows.

See Also TblGetRowData, TblGetRowID

TblGetNumberOfRows

Purpose Return the number of rows in a table.

Prototype Int16 TblGetNumberOfRows (const TableType *tableP)

Parameters -> tableP Pointer to a table object. (See TableType.)

Result Returns the maximum number of visible rows in the specified table.

Comments Note that even though you can add and remove rows to and from a
table, the value returned by this function does not change. The value
returned by this function indicates the maximum number of rows
that can be displayed on the screen at one time. It is set when you
create the table resource.

Tables
Table Functions

Palm OS SDK Reference 397

TblGetRowData

Purpose Return the data value of the specified row.

Prototype UInt32 TblGetRowData (const TableType *tableP,
Int16 row)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Number of the row (zero-based).

Result Returns the application-specific data stored for this row, if any.
Returns 0 if there is no application-specific data value.

This function may display a fatal error message if the row
parameter is invalid.

See Also TblFindRowData, TblSetRowData, TableRowAttrType

TblGetRowHeight

Purpose Return the height of the specified row.

Prototype Coord TblGetRowHeight (const TableType *tableP,
Int16 row)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Number of the row (zero-based).

Result Returns the height in pixels. This function may display a fatal error
message if the row parameter is invalid.

See Also TblGetItemBounds, TblSetRowHeight

Tables
Table Functions

398 Palm OS SDK Reference

TblGetRowID

Purpose Return the ID value of the specified row.

Prototype UInt16 TblGetRowID (const TableType *tableP,
Int16 row)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Number of the row (zero-based).

Result Returns the ID value of the row in the table.

This function may display a fatal error message if the row
parameter is invalid.

See Also TblGetRowData, TblSetRowID, TblFindRowID,
TableRowAttrType

TblGetSelection

Purpose Return the row and column of the currently selected table item.

Prototype Boolean TblGetSelection (const TableType *tableP,
Int16 *rowP, Int16 *columnP)

Parameters -> tableP Pointer to a table object. (See TableType.)

<- rowP, columnP
The row and column indexes (zero-based) of
the currently selected item.

Result Returns true if the item is highlighted, false if not.

See Also TblSetRowSelectable

Tables
Table Functions

Palm OS SDK Reference 399

TblGrabFocus

Purpose Put a table into edit mode.

Prototype void TblGrabFocus (TableType *tableP, Int16 row,
Int16 column)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Current row to be edited (zero-based).

-> column Current column to be edited (zero-based).

Result Returns nothing. This function may display a fatal error message if
the table already has the focus or if the row or column parameter is
invalid.

Comments This function puts the table into edit mode and sets the current item
to the one at the row and column passed in. An editable field must
exist in the coordinates passed to this function.

You must call FrmSetFocus before calling this function.
FrmSetFocus releases the focus from the object that previously
had it and sets the form’s internal structures. After calling this
function, you must call FldGrabFocus to display the insertion
point in the field. (You can use TblGetCurrentField to obtain a
pointer to the field.)

For example, the following function from the Address Book
application sets the focus in an editable field within a table:

static void EditViewRestoreEditState () {
Int16 row;
FormPtr frm;
TablePtr table;
FieldPtr fld;

if (CurrentFieldIndex == noFieldIndex)
return;

// Find the row that the current field is in.
table = GetObjectPtr (EditTable);

Tables
Table Functions

400 Palm OS SDK Reference

if (! TblFindRowID (table,
CurrentFieldIndex, &row))
return;

frm = FrmGetActiveForm ();
FrmSetFocus (frm, FrmGetObjectIndex (frm,
EditTable));

TblGrabFocus (table, row, editDataColumn);

// Restore the insertion point position.
fld = TblGetCurrentField (table);
FldSetInsPtPosition (fld, EditFieldPosition);
FldGrabFocus (fld);

}

See Also TblReleaseFocus

TblHandleEvent

Purpose Handle an event for the table.

Prototype Boolean TblHandleEvent (TableType *tableP,
EventType *event)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> event The event to be handled.

Result Returns true if the event was handled, false if it was not.

Comments Returns false if the table is not an editable table.

If the table is editable, this function passes along any
keyDownEvent, fldEnterEvent, or menuCmdBarOpenEvent to
the currently selected field.

When a fldHeightChangedEvent occurs, this function changes
the height of the specified field as indicated by the event. If the field
being resized is going to scroll off the bottom of the screen, then
instead the table scrolls the rows above it up off the top. Otherwise,

Tables
Table Functions

Palm OS SDK Reference 401

the table is scrolled downward and rows below the current row are
scrolled off the bottom as necessary.

Note that the fldHeightChangedEvent is only handled for
dynamically sized fields. See the descriptions of FieldAttrType
and FldMakeFullyVisible for more information.

When a penDownEvent occurs, the table checks to see if the focus is
being changed. If it is and the user was previously editing a text
field within the table, it saves the data in the table cell using the
TableSaveDataFuncType callback function, then it enqueues a
tblEnterEvent with the new row and column that are selected.

When a tblEnterEvent occurs, this function tracks the pen until
it is lifted. If the pen is lifted within the bounds of the same item it
went down in, a tblSelectEvent is added to the event queue; if
not, a tblExitEvent is added to the event queue.

TblHasScrollBar

Purpose Set the hasScrollBar attribute in the table. (See
TableAttrType.)

Prototype void TblHasScrollBar (TableType *tableP,
Boolean hasScrollBar)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> hasScrollBar true to set the attribute, false to unset it.

Result Returns nothing.

Comments Your application must scroll the table itself and keep track of the
scroll values. See the ListViewUpdateScrollers function in the
Memo example application (MemoMain.c) for an example of
setting scroll bar values for a table.

Compatibility Implemented only if 2.0 New Feature Set is present.

Tables
Table Functions

402 Palm OS SDK Reference

TblInsertRow

Purpose Insert a row into the table before the specified row.

Prototype void TblInsertRow (TableType *tableP, Int16 row)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row to insert (zero-based).

Result Returns nothing.

Comments The number of rows in a table is the maximum number of rows
displayed on the screen. Unlike a multi-line text field, there is no
notion of a table that is bigger than the available screen. For this
reason, this function does not increase the number of table rows.

Instead of keeping track of a total number of rows in the table and a
number of rows displayed on the screen, tables mark any row that
isn’t currently displayed with a usable value of false. (See
TableRowAttrType.)

The newly inserted row is marked as invalid, unusable, and not
masked. If you want to display the newly inserted row, call
TblSetRowUsable after making sure that the row displays a value
and then call TblRedrawTable when you are ready to draw the
table.

See Also TblRemoveRow, TblSetRowUsable, TblSetRowSelectable

TblMarkRowInvalid

Purpose Mark the row invalid.

Prototype void TblMarkRowInvalid (TableType *tableP,
Int16 row)

Parameters -> tableP Pointer to a table object. (See TableType.)

Tables
Table Functions

Palm OS SDK Reference 403

-> row Row number (zero-based).

Result Returns nothing.

Comments After calling this function, call TblRedrawTable to redraw all
rows marked invalid.

This function may display a fatal error message if the row
parameter is invalid.

See Also TblRemoveRow, TblSetRowUsable, TblSetRowSelectable,
TblMarkTableInvalid, TblRowInvalid, TableRowAttrType

TblMarkTableInvalid

Purpose Mark all the rows in a table invalid.

Prototype void TblMarkTableInvalid (TableType *tableP)

Parameters -> tableP Pointer to a table object. (See TableType.)

Result Returns nothing.

Comments After calling this function, you must call TblRedrawTable to
redraw all rows.

See Also TblEraseTable, TblRedrawTable, TableRowAttrType

TblRedrawTable

Purpose Redraw the rows of the table that are marked invalid.

Prototype void TblRedrawTable (TableType *tableP)

Parameters -> tableP Pointer to a table object. (See TableType.)

Result Returns nothing.

Tables
Table Functions

404 Palm OS SDK Reference

Comments This function draws the invalid rows in the table. See the
TableItemType struct description for more information about
how each type of table cell is drawn.

When drawing cells with editable text fields (textTableItem,
textWithNoteTableItem, or narrowTextTableItem), this
function uses the TableLoadDataFuncType callback function to
load the text into the table cells. The text field does not retain the text
handle that your TableLoadDataFunc returns, meaning that you
are responsible for freeing the memory that you load into the table.

When drawing narrowTextTableItem cells or
customTableItem cells, this function uses the
TableDrawItemFuncType callback function to draw the extra
pixels after the text or to draw the entire cell.

On color systems, tables are always drawn using the same color as is
used for the field background color.

When the user has set the security setting to mask private records,
table cells that contain private database records are drawn as
shaded cells to obscure the information they contain. You must
explicitly tell the table which cells are masked by making the
appropriate calls to TblSetRowMasked and
TblSetColumnMasked.

Compatibility Color support and masked private records are only supported in
Palm OS version 3.5 and higher.

See Also TblMarkTableInvalid, TblMarkRowInvalid, TblDrawTable

TblReleaseFocus

Purpose Release the focus.

Prototype void TblReleaseFocus (TableType *tableP)

Parameters -> tableP Pointer to a table object.

Result Returns nothing.

Tables
Table Functions

Palm OS SDK Reference 405

Comments You typically do not call this function yourself. Instead, call
FrmSetFocus with an object index of noFocus to notify the form
that the table has lost focus. The form code calls
TblReleaseFocus for you.

If the current item is a text item, the TableSaveDataFuncType
callback function is called to save the text in the currently selected
field, the memory allocated for editing is released, and the insertion
point is turned off.

Also note that you might have to call FldReleaseFocus if the
focus is in an editable text field and that field uses a custom drawing
function (TableDrawItemFuncType).

See Also TblGrabFocus

TblRemoveRow

Purpose Remove the specified row from the table.

Prototype void TblRemoveRow (TableType *tableP, Int16 row)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row to remove (zero-based).

Result Returns nothing. This function may raise a fatal error message if an
invalid row is specified.

Comments The number of rows in the table is not decreased; instead, this row is
moved from its current spot to the end of the table and is marked
unusable so that it won’t be displayed when the table is redrawn.

This function does not visually update the display. To update the
display, call TblRedrawTable.

See Also TblInsertRow, TblSetRowUsable, TblSetRowSelectable,
TblMarkRowInvalid

Tables
Table Functions

406 Palm OS SDK Reference

TblRowInvalid

Purpose Return whether a row is invalid.

Prototype Boolean TblRowInvalid (const TableType *tableP,
Int16 row)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number (zero-based).

Result Returns true if the row is invalid, false if it’s valid. This function
may raise a fatal error message if the row parameter is invalid.

Comments Invalid rows need to be redrawn. Use TblRedrawTable to do so.

See Also TblMarkRowInvalid, TblMarkTableInvalid

TblRowMasked

Purpose Return whether a row is masked.

Prototype Boolean TblRowMasked (const TableType * tableP,
Int16 row)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number (zero-based).

Result Returns true if the row is masked, false otherwise.

Comments Your code should set a row to masked if it contains a private
database record and the user has set the display preference for
private records to masked. Masked cells are displayed as shaded.

Note that a table cell is not masked unless both its row and column
are masked. This allows non-private information in the row item to
remain visible. For example, the Datebook application shows the
time for a private appointment, but it does not show the description.

Tables
Table Functions

Palm OS SDK Reference 407

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also TblSetRowMasked, TblSetColumnMasked,
TableRowAttrType, SecSelectViewStatus

TblRowSelectable

Purpose Return whether the specified row is selectable.

Prototype Boolean TblRowSelectable (const TableType *tableP,
Int16 row)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number (zero-based).

Result Returns true if the row is selectable, false if it’s not.

Comments Rows that are not selectable don’t highlight when touched.

See Also TableRowAttrType

TblRowUsable

Purpose Determine whether the specified row is usable.

Prototype Boolean TblRowUsable (const TableType *tableP,
Int16 row)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number (zero-based).

Result Returns true if the row is usable, false if it’s not.

This function may display a fatal error message if the column
parameter is invalid.

Tables
Table Functions

408 Palm OS SDK Reference

Comments Rows that are not usable do not display.

See Also TblRowSelectable, TblGetLastUsableRow,
TblSetRowUsable

TblSelectItem

Purpose Select (highlight) the specified item. If there is already a selected
item, it is unhighlighted.

Prototype void TblSelectItem (TableType *tableP, Int16 row,
Int16 column)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row of the item to select (zero-based).

-> column Column of the item to select (zero-based).

Result Returns nothing.

This function may display a fatal error message if the column or
row parameter point to an item that is not on the screen.

Comments If row contains a masked private database record, then the item
remains unselected.

This function cannot highlight an entire row; it can only highlight
one cell in a row, and it always unhighlights the previously selected
table cell. If you want to select an entire row, either create a table
that has a single column, or write your own selection code.

If the selected item is a multi-line text field or a text field with a
nonstandard height, this function only highlights the top eleven
pixels. If you want a larger area highlighted, you must write your
own selection code.

See Also TblRowSelectable, TblGetItemBounds, TblGetItemInt

Tables
Table Functions

Palm OS SDK Reference 409

TblSetBounds

Purpose Sets the bounds of a table.

Prototype void TblSetBounds (TableType *tableP,
const RectangleType *rP)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> rP Pointer to a RectangleType structure that
specifies the bounds for the table.

Result Returns nothing.

Compatibility Implemented only if 2.0 New Feature Set is present.

TblSetColumnEditIndicator

Purpose Set the column attribute that controls whether a column highlights
when the table is in edit mode.

Prototype void TblSetColumnEditIndicator (TableType *tableP,
Int16 column, Boolean editIndicator)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> column Column number (zero based).

-> editIndicator
true to highlight, false to turn off highlight.

Result Returns nothing.

Comments The edit indicator controls whether the item in the column is
highlighted when it is selected. By default, text field items have the
editIndicator value of true, and all other table item types have
an edit indicator of false.

When the table is drawn, only the leftmost contiguous set of items
with the edit indicator set are drawn as highlighted. That is, if

Tables
Table Functions

410 Palm OS SDK Reference

columns 1, 2, and 4 have an edit indicator of true and column 3 has
an edit indicator of false, only the items in column 1 and 2 are
drawn as highlighted when selected. Column 4 items are not drawn
as highlighted.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also TableColumnAttrType

TblSetColumnMasked

Purpose Set whether the column is masked.

Prototype void TblSetColumnMasked (TableType *tableP,
Int16 column, Boolean masked)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> column Column number (zero-based).

-> masked true to have the column be masked, false
otherwise.

Result Returns nothing.

Comments Masked cells are displayed as shaded. You should set a column to
masked if its contents should be hidden when it contains
information from a private database record and the user has set the
display preference for private records to masked.

A table cell is not masked unless both its row and column are
masked. This allows non-private information in the row item to
remain visible. For example, the Datebook application shows the
time for a private appointment, but it does not show the description.

Because the number of columns is static, you only need to call this
function once per column when you first set up the table. The
masked attribute on the row will determine if the contents of the
table cell are actually displayed as shaded.

Tables
Table Functions

Palm OS SDK Reference 411

Compatibility Implemented only if 3.5 New Feature Set if present.

See Also TblRowMasked, TblSetRowMasked, TableColumnAttrType,
SecSelectViewStatus

TblSetColumnSpacing

Purpose Set the spacing after the specified column.

Prototype void TblSetColumnSpacing (TableType *tableP,
Int16 column, Coord spacing)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> column Column number (zero-based).

-> spacing Spacing after the column in pixels.

Result Returns nothing.

This function may display a fatal error message if the column
parameter is invalid.

See Also TblSetColumnUsable, TableColumnAttrType

TblSetColumnUsable

Purpose Set a column in a table to usable or unusable.

Prototype void TblSetColumnUsable (TableType *tableP,
Int16 column, Boolean usable)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> column Column number (zero-based).

-> usable true for usable or false for not usable.

Result Returns nothing.

Tables
Table Functions

412 Palm OS SDK Reference

This function may display a fatal error message if the column
parameter is invalid.

Comments Columns that are not usable do not display.

See Also TblMarkRowInvalid, TableColumnAttrType

TblSetColumnWidth

Purpose Set the width of the specified column.

Prototype void TblSetColumnWidth (TableType *tableP,
Int16 column, Coord width)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> column Column number (zero-based).

-> width Width of the column (in pixels).

Result Returns nothing.

This function may display a fatal error message if the column
parameter is invalid.

See Also TblGetColumnWidth, TableColumnAttrType

TblSetCustomDrawProcedure

Purpose Set the custom draw callback procedure for the specified column.

Prototype void TblSetCustomDrawProcedure (TableType *tableP,
Int16 column, TableDrawItemFuncPtr drawCallback)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> column Column number.

-> drawCallback Callback function.

Result Returns nothing.

Tables
Table Functions

Palm OS SDK Reference 413

Comments The custom draw callback function is used to draw table items with
a TableItemStyleType of customTableItem. See the
TableItemType description for more information.

This function may display a fatal error message if the column
parameter is invalid.

See Also TableDrawItemFuncType, TblDrawTable,
TableColumnAttrType

TblSetItemFont

Purpose Set the font used to display a table item.

Prototype void TblSetItemFont (TableType *tableP, Int16 row,
Int16 column, FontID fontID)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number of the item (zero-based).

-> column Column number of the item (zero-based).

-> fontID ID of the font to be used.

Result Returns nothing.

Comments This function sets the value stored in the fontID field for this table
item. Only certain types of table items use the font specified by the
fontID field when they are displayed. The TableItemType
description specifies what font is used to display each type of table
item. It is not an error to set the fontID for a table item that does
not use it.

This function may display a fatal error message if the row or
column parameter specifies a row or column that is not on the
screen.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also TblGetItemFont

Tables
Table Functions

414 Palm OS SDK Reference

TblSetItemInt

Purpose Set the integer value of the specified item.

Prototype void TblSetItemInt (TableType *tableP, Int16 row,
Int16 column, Int16 value)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number of the item (zero-based).

-> column Column number of the item (zero-based).

-> value Any byte value (an integer).

Result Returns nothing.

This function may display a fatal error message if the row or
column parameter is invalid.

Comments You typically use this function when setting up and initializing a
table for the first time to set the value of each table cell.

This function sets the value stored in the intValue field for this
table item. Certain types of table items display the value stored in
intValue, and other types display the value pointed to by the ptr
field. See the TableItemType description for details. If you set the
intValue of an item that displays its ptr value, it is not an error.
An application can store whatever value it wants in the intValue
field; however, be aware that this has nothing to do with the value
displayed by such a table cell.

See Also TblGetItemInt, TblSetItemPtr

Tables
Table Functions

Palm OS SDK Reference 415

TblSetItemPtr

Purpose Set the item to the specified pointer value.

Prototype void TblSetItemPtr (TableType * tableP, Int16 row,
Int16 column, void *value)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number of the item (zero-based).

-> column Column number of the item (zero-based).

-> value Pointer to data to display in the table item.

Result Returns nothing.

This function may display a fatal error message if the row or
column parameter is invalid.

Comments This function sets the value stored in the ptr field for this table
item. Certain types of table items display the value pointed to by
ptr, and other types display the value stored in the intValue
field. See the TableItemType description for details. If you set the
ptr of an item that displays its intValue, it is not an error. An
application can store whatever value it wants in the ptr field;
however, be aware that this has nothing to do with the value
displayed by such a table cell.

See Also TblGetItemPtr, TblSetItemInt

TblSetItemStyle

Purpose Set the type of item to display; for example, text, numbers, dates,
and so on.

Prototype void TblSetItemStyle (TableType *tableP,
Int16 row, Int16 column, TableItemStyleType type)

Parameters -> tableP Pointer to a table object. (See TableType.)

Tables
Table Functions

416 Palm OS SDK Reference

-> row Row number of the item (zero-based).

-> column Column number of the item (zero-based).

-> type The type of item, such as an editable text field
or a check box. See TableItemType for a list
of possible values.

Result Returns nothing.

This function may display a fatal error message if the row or
column parameter is invalid.

Comments You typically use this function when first setting up and initializing
a table; you do not dynamically change item styles.

Follow this function with a call to either TblSetItemInt or
TblSetItemPtr to set the value displayed by the table item. You
should call one or the other of these functions depending on the
type of table item you specified. See the table in the
TableItemType description for details.

Note also that a table column always contains items of the same
type. For example, you might initialize a table using this code:

for (row = 0; row < rowsInTable; row++) {
TblSetItemStyle (table, row, completedColumn,
checkboxTableItem);

TblSetItemStyle (table, row, priorityColumn,
numericTableItem);

TblSetItemStyle (table, row, descColumn,
textTableItem);

TblSetItemStyle (table, row, dueDateColumn,
customTableItem);

TblSetItemStyle (table, row, categoryColumn,
customTableItem);

}

See Also TblSetCustomDrawProcedure

Tables
Table Functions

Palm OS SDK Reference 417

TblSetLoadDataProcedure

Purpose Set the load-data callback procedure for the specified column.

Prototype void TblSetLoadDataProcedure (TableType *tableP,
Int16 column,
TableLoadDataFuncPtr loadDataCallback)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> column Column number (zero-based).

-> loadDataCallback
Callback procedure. See
TableLoadDataFuncType.

Result Returns nothing.

Comments The callback procedure is used to load the data values of a table
item. See the TableLoadDataFuncType for more information on
writing the callback function.

You typically use this function when first setting up and initializing
a table.

See Also TblSetCustomDrawProcedure

TblSetRowData

Purpose Set the data value of the specified row. The data value is a
placeholder for application-specific values.

Prototype void TblSetRowData (TableType *tableP, Int16 row,
UInt32 data)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number (zero-based).

Tables
Table Functions

418 Palm OS SDK Reference

-> data Application-specific data value to store for this
row. For example, the Datebook and ToDo
applications use this field to store the unique ID
of the database record displayed by this row.

Result Returns nothing.

This function may display a fatal error message if the row
parameter is invalid.

See Also TblGetRowData, TblFindRowData

TblSetRowHeight

Purpose Set the height of the specified row.

Prototype void TblSetRowHeight (TableType *tableP,
Int16 row, Coord height)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number (zero-based).

-> height New height in pixels.

Result Returns nothing.

This function may display a fatal error message if the row
parameter is invalid.

See Also TblGetRowHeight, TblSetRowStaticHeight

TblSetRowID

Purpose Set the ID value of the specified row.

Prototype void TblSetRowID (TableType *tableP, Int16 row,
UInt16 id)

Parameters -> tableP Pointer to a table object. (See TableType.)

Tables
Table Functions

Palm OS SDK Reference 419

-> row Row number (zero-based).

-> id ID to identify a row.

Result Returns nothing.

This function may display a fatal error message if the row
parameter is invalid.

See Also TblGetRowID, TblFindRowID, TableRowAttrType

TblSetRowMasked

Purpose Set a row in a table to masked or unmasked.

Prototype void TblSetRowMasked (TableType *tableP,
Int16 row, Boolean masked)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number (zero-based).

-> masked true to have the row be masked, false
otherwise.

Result Returns nothing.

Comments Masked cells are displayed as shaded. You should call this function
before drawing or redrawing the table. If a table row contains a
private database record and the user has set the display preference
for private records to masked, you must call this function on that
row. For example:

UInt16 attr;
privateRecordViewEnum privateRecordStatus;
Boolean masked;

privateRecordStatus = (privateRecordViewEnum)
PrefGetPreference(prefShowPrivateRecords);

....
DmRecordInfo (ToDoDB, recordNum, &attr, NULL,
NULL);

Tables
Table Functions

420 Palm OS SDK Reference

masked = ((attr & dmRecAttrSecret) &&
(privateRecordStatus == maskPrivateRecords));

TblSetRowMasked(tableP, row, masked);

Note that a table cell is not masked unless both its row and column
are masked. This allows non-private information in the row item to
remain visible. For example, the Datebook application shows the
time for a private appointment, but it does not show the description.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also TblRowMasked, TblSetColumnMasked, TableRowAttrType,
SecSelectViewStatus

TblSetRowSelectable

Purpose Set a row in a table to selectable or nonselectable.

Prototype void TblSetRowSelectable (TableType *tableP,
Int16 row, Boolean selectable)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number (zero-based).

-> selectable true or false.

Result Returns nothing.

This function may display a fatal error message if the row
parameter is invalid.

Comments Rows that are not selectable don’t highlight when touched.

See Also TblRowSelectable, TblSetRowUsable, TableRowAttrType

Tables
Table Functions

Palm OS SDK Reference 421

TblSetRowStaticHeight

Purpose Set the static height attribute of a row.

Prototype void TblSetRowStaticHeight (TableType *tableP,
Int16 row, Boolean staticHeight)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number (zero-based).

-> staticHeight true to set the static height, false to unset it.

Result Nothing.

This function may display a fatal error message if the row
parameter is invalid.

Comments A row that has its static height attribute set will not expand or
contract the height of the row as text is added or removed from a
text item.

Compatibility Implemented only if 2.0 New Feature Set is present.

TblSetRowUsable

Purpose Set a row in a table to usable or unusable. Rows that are not usable
do not display.

Prototype void TblSetRowUsable (TableType *tableP,
Int16 row, Boolean usable)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number (zero-based).

-> usable true or false.

Result Returns nothing.

Tables
Table Functions

422 Palm OS SDK Reference

This function may display a fatal error message if the row
parameter is invalid.

See Also TblRowUsable, TblSetRowSelectable

TblSetSaveDataProcedure

Purpose Set the save-data callback procedure for the specified column.

Prototype void TblSetSaveDataProcedure (TableType *tableP,
Int16 column,
TableSaveDataFuncPtr saveDataCallback)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> column Column number (zero-based).

-> saveDataCallback
Callback function. See
TableSaveDataFuncType.

Result Returns nothing.

This function may display a fatal error message if the column
parameter is invalid.

Comments The callback procedure is called when the table object determines
the data of a text object needs to be saved.

See Also TblSetCustomDrawProcedure

TblUnhighlightSelection

Purpose Unhighlight the currently selected item in a table.

Prototype void TblUnhighlightSelection (TableType *tableP)

Parameters -> tableP Pointer to a table object. (See TableType.)

Result Returns nothing.

Tables
Application-Defined Functions

Palm OS SDK Reference 423

Application-Defined Functions

TableDrawItemFuncType

Purpose Draw a custom table item.

Prototype void TableDrawItemFuncType (void *tableP,
Int16 row, Int16 column, RectangleType *bounds)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number of the item to be drawn (zero-
based).

-> column Column number of the item to be drawn (zero-
based).

-> bounds The area of the screen in which the item is to be
drawn.

Result Returns nothing.

Comments This function is called during TblDrawTable and
TblRedrawTable.

You implement a custom drawing function when your table
contains items of type customTableItem (to draw the entire item)
or narrowTextTableItem (to draw whatever is required in the
space between the text and the right edge of the table cell).

You may implement a custom drawing function to include any style
of information in the table. If you don’t like the way a predefined
item is drawn, you may prefer to use a customTableItem instead.
For example, if you want to include a date in your table but you
want it to show the year as well as the month and day, you should
implement a custom drawing function.

See Also TblSetCustomDrawProcedure, TableItemType

Tables
Application-Defined Functions

424 Palm OS SDK Reference

TableLoadDataFuncType

Purpose Load data into a column.

Prototype Err TableLoadDataFuncType (void *tableP,
Int16 row, Int16 column, Boolean editable,
MemHandle *dataH, Int16 *dataOffset,
Int16 *dataSize, FieldPtr fld)

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number of the table item to load.

-> column Column number of the table item to load.

-> editable If true, the table is currently being edited. If
false, the table is being drawn but not
necessarily being edited.

<- dataH Unlocked handle of a block containing a null-
terminated text string.

<- dataOffset Offset from start of block to start of the text
string.

<- dataSize Allocated size of text string, not the string
length.

-> fld Pointer to the text field in this table cell.

Result Returns 0 upon success or an error if unsuccessful.

Comments This function is called in two cases: when a text field item is being
drawn (TblDrawTable or TblRedrawTable) and when a text
field item is being selected (part of TblHandleEvent’s handling of
tblEnterEvent). If this function returns an error (any nonzero
value) and the item is being selected, then the item is not selected
and the table’s editing attribute is set to false.

You return the same values for dataH, dataOffset, and
dataSize that you would pass to FldSetText. That is, you can
use this function to point the table cell’s text field to a string in a
database record so that you can edit that string directly using text
field routines. To do so, return the handle to a database record in

Tables
Application-Defined Functions

Palm OS SDK Reference 425

dataH, the offset from the start of the record to the start of the string
in dataOffset, and the allocated size of the string in dataSize.

The handle that you return from this function is assumed to contain
a null-terminated string starting at dataOffset bytes in the
memory chunk. The string should be between 0 and dataSize - 1
bytes in length.

As with FldSetText, you are responsible for freeing the memory
associated with the dataH parameter. You can do so in the
TableSaveDataFuncType function, but it is only called for a cell
that has been edited. For non-editable text cells or text cells that are
editable but were never selected, free the memory when you close
the form.

The fld pointer passed to your function has already been
initialized with default values by the table code. If you want to
override a field’s attributes (for example, if you want to change the
underline mode) you can do so in this function.

See Also TblDrawTable, TblHandleEvent, TableLoadDataFuncType

TableSaveDataFuncType

Purpose Save the data associated with a text field.

Prototype Boolean TableSaveDataFuncType (void *tableP,
Int16 row, Int16 column);

Parameters -> tableP Pointer to a table object. (See TableType.)

-> row Row number of the table item to load.

-> column Column number of the table item to load.

Result Return true if the table should be redrawn, or false if the table
does not need to be redrawn.

Comments This is called before the memory associated with the currently
selected text field in a table cell is freed. Implement this function if
you need to do any special cleanup before this memory is freed.

Tables
Application-Defined Functions

426 Palm OS SDK Reference

This function is called only when the currently selected editable text
field is releasing the focus. You can use TblGetCurrentField to
retrieve a pointer to this field. It is called only on the currently
selected field, not on any other fields in the table.

Note that the table manager already disassociates the memory
handle from the text field for you so that the memory associated
with your data is not freed when the field is freed. The table
manager also calls FldCompactText for you.

If the text handle you returned in your TableLoadDataFuncType
callback points to a string on the dynamic heap, you should
implement this callback function to store or free the handle. You can
use FldGetTextHandle to obtain the handle.

If you return true from this function, TblRedrawTable is called.
You should mark invalid any table rows that you want redrawn
before returning.

See Also TblSetSaveDataProcedure

Palm OS SDK Reference 427

20
UI Color List
This chapter provides information about the UI color list by
discussing the following topics:

• UI Color Data Types

• UI Color Functions

The header file UIColor.h declares the API that this chapter
describes. For more information on the color list, see “Color and
Grayscale Support” on page 120 in the Palm OS Programmer’s
Companion.

UI Color Data Types

UIColorTableEntries
The UIColorTableEntries enum declares symbolic color
constants for the various UI elements.

Do not confuse the UI color list with the system color table. The
system color table (or system palette) defines all available colors for
the display or draw window, whether they are in use or not. The UI
color list defines the colors used to draw the interface objects.

typedef enum UIColorTableEntries {
UIObjectFrame = 0,
UIObjectFill,
UIObjectForeground,
UIObjectSelectedFill,
UIObjectSelectedForeground,

UIMenuFrame,
UIMenuFill,
UIMenuForeground,
UIMenuSelectedFill,
UIMenuSelectedForeground,

UI Color List
UI Color Data Types

428 Palm OS SDK Reference

UIFieldBackground,
UIFieldText,
UIFieldTextLines,
UIFieldCaret,
UIFieldTextHighlightBackground,
UIFieldTextHighlightForeground,
UIFieldFepRawText,
UIFieldFepRawBackground,
UIFieldFepConvertedText,
UIFieldFepConvertedBackground,
UIFieldFepUnderline,

UIFormFrame,
UIFormFill,

UIDialogFrame,
UIDialogFill,

UIAlertFrame,
UIAlertFill,

UIOK,
UICaution,
UIWarning,

UILastColorTableEntry
} UIColorTableEntries;

UI Color List
UI Color Data Types

Palm OS SDK Reference 429

Field Descriptions

UIObjectFrame Color for the border of user interface objects
(such as command buttons, push buttons,
selector triggers, menus, arrows checkboxes,
and other controls).

UIObjectFill The background color for a solid or “filled”
user interface object.

Note that UI objects in tables use the
UIField... colors instead of the UIObject...
colors.

UIObjectForeground The color for foreground items (such as labels
or graphics) in a user interface object.

UIObjectSelectedFill The background color of the currently
selected user interface object, whether that
object is solid or not.

UIObjectSelectedForeground The color of foreground items in a selected
user interface object.

UIMenuFrame The color of the border around the menu.

UIMenuFill The background color of a menu item.

UIMenuForeground The color of the menu’s text.

UIMenuSelectedFill The background color of a selected menu
item.

UIMenuSelectedForeground The color of the text of a selected menu item.

UIFieldBackground The background color of an editable text field.

UIFieldText The color of the text in the editable field.

UIFieldTextLines The color of underlines in an editable field.

UIFieldCaret The color of the cursor in an editable text
field.

UIFieldTextHighlightBackground The background color for selected text in an
editable text field.

UI Color List
UI Color Data Types

430 Palm OS SDK Reference

UIFieldTextHighlightForeground The color of the selected text in an editable
text field.

UIFieldFepRawText Color used for unconverted text in the inline
conversion area when a FEP is used as a text
input method (for example, on Japanese
devices).

If the FEP colors are identical to field colors,
unconverted text has a solid underline.

UIFieldFepRawBackground The background color for unconverted text in
the inline conversion area when a FEP is used
as a text input method.

If the FEP colors are identical to field colors,
unconverted text has a solid underline.

UIFieldFepConvertedText Color used for converted text in the inline
conversion area when a FEP is used as a text
input method (for example, on Japanese
devices).

If the FEP colors are identical to field colors,
converted text has a double-thick underline.

UIFieldFepConvertedBackground The background color used for converted text
in the inline conversion area.

If the FEP colors are identical to field colors,
converted text has a double-thick underline.

UIFieldFepUnderline The color used for underlines in the inline
conversion area.

UIFormFrame The color of the border and titlebar on a form.

UIFormFill The background color of a form. White is
recommended for this value.

UIDialogFrame The color of a border and titlebar on a modal
form.

UIDialogFill The background color of a modal form.

UI Color List
UI Color Functions

Palm OS SDK Reference 431

Compatibility

Implemented only if 3.5 New Feature Set is present.

UI Color Functions

UIColorGetTableEntryIndex

Purpose Return the index value for a UI color for the current system palette.

Prototype IndexedColorType UIColorGetTableEntryIndex
(UIColorTableEntries which)

Parameters -> which One of the symbolic color constants. See
UIColorTableEntries.

Result Returns the system color table index of the color used for the
specified symbolic color.

Comments One way to find out the indexes of all the colors that the OS is using
is to loop through the UI color list, calling
UIColorGetTableEntryIndex for each slot, and keep a list
(excluding duplicates).

UIAlertFrame The color of the border and titlebar on an alert
panel.

UIAlertFill The background color of an alert panel.

UIOK The color for an informational icon.

UICaution The color for a caution icon.

UIWarning The color for a warning icon.

Palm OS® does not currently use the UIOK,
UICaution, and UIWarning constants.

UILastColorTableEntry Placeholder to indicate end of enum.

UI Color List
UI Color Functions

432 Palm OS SDK Reference

IndexedColorType
colorsUsed[UILastColorTableEntry];

UInt16 numColors = 0;
...
for (i = 0; i < UILastColorTableEntry; i++) {
IndexedColorType currentColor;
Boolean isNew = true;

currentColor = UIColorGetTableEntryIndex(i);

for (j = 0; ((j < numColors) && isNew); j++)
if (colorsUsed[j] == currentColor)
isNew = false; /* exit loop */

if (isNew) {
numColors++;
colorsUsed[j] = currentColor;

}

To get the RGB values of the colors, do the same thing but call
UIColorGetTableEntryRGB.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also IndexedColorType, WinIndexToRGB

UIColorGetTableEntryRGB

Purpose Return the RGB value for the UI color.

Prototype void UIColorGetTableEntryRGB
(UIColorTableEntries which, RGBColorType *rgbP)

Parameters -> which One of the symbolic color constants. See
UIColorTableEntries.

<- rgbP Pointer to an RGB color value corresponding to
the current color used for the symbolic color.
(See RGBColorType.)

Result Returns nothing.

UI Color List
UI Color Functions

Palm OS SDK Reference 433

Comments In general, it is more efficient to work with indexed color entries
instead of RGB color entries.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also UIColorGetTableEntryIndex, WinRGBToIndex

UIColorSetTableEntry

Purpose Change a value in the UI color list.

Prototype Err UIColorSetTableEntry
(UIColorTableEntries which,
const RGBColorType *rgbP)

Parameters -> which One of the symbolic color constants. See
UIColorTableEntries.

-> rgbP The RGB value of the color that should be used
for the specified UI object. (See
RGBColorType.)

Result Returns 0 upon success.

Comments Sets the value of a UI color entry to the passed RGB value. Updates
the index for that UI color entry to the current best fit for that RGB
value according to the palette used by the current draw window.

It is best to use this function only if the draw window is currently
onscreen. Otherwise, the best-fit algorithm may choose a color that
is not available on the current screen.

See Also WinIndexToRGB, UIColorGetTableEntryIndex,
UIColorGetTableEntryRGB

Palm OS SDK Reference 435

21
UI Controls
This chapter describes the UI controls API as declared in
UIControls.h.

UI Control Functions

UIBrightnessAdjust

Purpose Displays the brightness adjust dialog.

Prototype void UIBrightnessAdjust()

Parameters None

Result Returns nothing.

Comments On hardware that supports a brightness setting, this function
displays a dialog that allows the user to change the brightness level.
On hardware that has a backlight, this function toggles the
backlight.

Compatibility Implemented only if 3.5 New Feature Set is present.

UI Controls
UI Control Functions

436 Palm OS SDK Reference

UIContrastAdjust

Purpose Displays the contrast adjust dialog (currently only available on the
Palm V™ Connected Organizer).

Prototype void UIContrastAdjust()

Parameters None.

Result Returns nothing.

Compatibility This function was renamed from ContrastAdjust to
UIContrastAdjust in Palm OS® release 3.5. The
ContrastAdjust function is available if 3.1 New Feature Set is
present.

UIPickColor

Purpose Displays a dialog that allows the user to choose a color.

Prototype Boolean UIPickColor (IndexedColorType *indexP,
RGBColorType *rgbP, UIPickColorStartType start,
const Char *titleP, const Char *tipP)

Parameters <-> indexP Index value of the selected color. (See
IndexedColorType.) Upon entry, this points
to the index value of the color initially selected.
Upon return, this points to the index value of
the color the user selected. Pass NULL to not set
or return this value.

<-> rgbP RGB value of the selected color. (See
RGBColorType.) Upon entry, this points to the
RGB value of the color initially selected when
the dialog is displayed. Upon return, this points
to the RGB value that the user selected. Pass
NULL to not set or return this value.

UI Controls
UI Control Functions

Palm OS SDK Reference 437

-> start Either UIPickColorStartPalette to
display the system palette as a series of color
squares or UIPickColorStartRGB to display
individual sliders for the red, green, and blue
values. This parameter is only used if both
indexP and rgbP are not NULL.

-> titleP String to display as the title of the dialog.
Specify NULL to use the default title, which is
“Pick Color.”

-> tipP Not used.

Result Returns true if a new color was selected, false otherwise.

Comments Use this function to allow users to choose a color used in your user
interface. (The system never calls UIPickColor.)

This function can display two versions of the dialog: palette or RGB.
The palette version of the dialog displays a series of squares, each
containing a different color defined on the system palette. The
indexP value contains the index of the square that is initially
selected.

The RGB version of the dialog displays three sliders that allow the
user to select the level of red, green, and blue in the color. The rgbP
parameter contains the red, green, and blue values initially shown
in the dialog. The sliders only allow values that are defined in the
current system color table.

If indexP is initially NULL, only the RGB dialog is displayed.
Similarly, if rgbP is NULL, only the palette version is displayed. If
both parameters are non-NULL, the system adds a pull-down list
that allows the user to switch between the palette dialog and the
RGB dialog, and the start parameter controls which version of the
dialog is initially shown. In this case, both indexP and rgbP
contain the value of the user-selected color upon return.

Palm OS 3.5 supports a maximum of 256 colors. The number of
possible RGB colors greatly exceeds this amount. For this reason,
the chosen RGB may not have an exact match. If this is the case, the
indexP parameter (if not NULL) contains the closest match using a
luminance best-fit if the color lookup table is entirely grayscale (red,

UI Controls
UI Control Functions

438 Palm OS SDK Reference

green, and blue values for each entry are identical), or a shortest-
distance fit in the RGB space is used if the palette contains colors.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinSetBackColor, WinSetForeColor, WinSetTextColor,
UIColorSetTableEntry

Palm OS SDK Reference 439

22
Miscellaneous User
Interface Functions
This chapter provides descriptions of miscellaneous user interface
functions. You can find declarations for the functions described in
this chapter in the header files PhoneLookup.h, and
UIResources.h.

Miscellaneous User Interface Functions

PhoneNumberLookup

Purpose This routine calls the Address Book application to lookup a phone
number.

Prototype void PhoneNumberLookup (FieldType *fldP)

Parameters fldP Field object in which the text to match is found.

Comments When trying to match a field, this function first tries to match
selected text.

• If there is some selected text, the function replaces it with the
phone number if there is a match.

• If there is no selected text, the function replaces the text in
which the insertion point is with the phone number if there is
a match.

• If there is no match, the function displays the Address Book
short list.

Result Nothing returned; it’s locked.

Miscellaneous User Interface Functions
Miscellaneous User Interface Functions

440 Palm OS SDK Reference

Compatibility Implemented only if 2.0 New Feature Set is present.

ResLoadConstant

Purpose Load a constant from a 'tint' resource and return its value.

Prototype UInt32 ResLoadConstant (UInt16 rscID)

Parameters -> rscID The ID of the 'tint' resource (symbolically
named constantRscType) to load.

Result The four-byte value of the constant in the resource, or 0 if the
resource could not be found. The return value may be cast as
necessary.

Comments Use this function to load constant values that are stored as 'tint'
resources. (All open resource databases are searched for the
resource ID you specify.) You should store a constant value as a
resource when its value changes depending on the locale.

As an example, consider the maximum length of the Alarm Sound
trigger label in the Datebook application’s preferences panel. The
list displayed by this trigger uses the localized name for each sound
stored in the system. Because localized names are used, the
maximum length that the Datebook application allows for the label
differs depending on the current locale. The maximum length is
stored as a resource constant so that each overlay database can
specify a different value for the constant.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also DmGetResource, DmGet1Resource

Miscellaneous User Interface Functions
Miscellaneous User Interface Functions

Palm OS SDK Reference 441

ResLoadForm

Purpose Copy and initialize a form resource. The structures are complete
except pointers updating. Pointers are stored as offsets from the
beginning of the form.

Prototype void* ResLoadForm (UInt16 rscID)

Parameters rscID The resource ID of the form.

Result The handle of the memory block that the form is in, since the form
structure begins with the WindowType, this is also a WinHandle.

ResLoadMenu

Purpose Copy and initialize a menu resource. The structures are complete
except pointers updating. Pointers are stored as offsets from the
beginning of the menu.

Prototype void* ResLoadMenu (UInt16 rscID)

Parameters rscID The resource ID of the menu.

Result The handle of the memory block that the form is in, since the form
structure begins with the WindowType this is also a WinHandle.

Part II: System
Management

Palm OS SDK Reference 445

23
Alarm Manager
This chapter provides reference material for the alarm manager:

• Alarm Manager Functions

• Application-Defined Functions

The alarm manager API is declared in the header file AlarmMgr.h.

For more information on the alarm manager, see the section
“Alarms” in the Palm OS Programmer’s Companion.

Alarm Manager Functions

AlmGetAlarm

Purpose Return the date and time for the application’s alarm, if one is set.

Prototype UInt32 AlmGetAlarm (UInt16 cardNo, LocalID dbID,
UInt32* refP)

Parameters -> cardNo Number of the storage card on which the
application resides.

-> dbID Local ID of the application.

<- refP The alarm’s reference value is returned here.
This value is passed to the application when the
alarm is triggered.

Result The date and time the alarm will trigger, given in seconds since 1/
1/1904; if no alarm is active for the application, 0 is returned for the
alarm seconds and the reference value is undefined.

See Also AlmSetAlarm

Alarm Manager
Alarm Manager Functions

446 Palm OS SDK Reference

AlmGetProcAlarm

Purpose Macro that returns the date and time that a procedure alarm will
trigger. Also returns the caller-defined alarm reference value.

Prototype AlmGetProcAlarm (procP, refP)

Parameters -> procP Pointer to a function that will be called when
alarm is triggered. See AlmAlarmProcPtr.

<- refP A UInt32 pointer to a location where the
alarm’s reference value is returned. This value
is passed to the procedure when the alarm is
triggered.

Result The date and time the alarm will trigger, given in seconds since 1/
1/1904; if no alarm is active for the procedure, 0 is returned for the
alarm seconds and the reference value is undefined.

Compatibility Implemented only if 3.2 New Feature Set is present.

See Also AlmSetProcAlarm

AlmSetAlarm

Purpose Set or cancel an alarm for the given application.

Prototype Err AlmSetAlarm (UInt16 cardNo, LocalID dbID,
UInt32 ref, UInt32 alarmSeconds, Boolean quiet)

Parameters -> cardNo Number of the storage card on which the
application resides.

-> dbID Local ID of the application.

-> ref Caller-defined value. This value is passed with
the launch code that notifies the application
that the alarm has been triggered.

-> alarmSeconds Alarm date/time in seconds since 1/1/1904, or
0 to cancel the current alarm (if any).

Alarm Manager
Alarm Manager Functions

Palm OS SDK Reference 447

-> quiet Reserved for future upgrade. This value is not
currently used.

Result 0 No error.

almErrMemory Insufficient memory.

almErrFull Alarm table is full.

Comments This function sets an alarm for the specified application. An
application can have only one alarm set at a time. If an alarm for this
application has already been set, it is replaced with the new alarm.

The alarmSeconds parameter specifies the time at which the
alarm will be triggered. As soon as possible after this time, the alarm
manager sends the sysAppLaunchCmdAlarmTriggered launch
code to the specified application. If there is another alarm that
should be set for this application, you can set it in response to this
launch code. Following the sysAppLaunchCmdAlarmTriggered
launch code, the alarm manager sends a
sysAppLaunchCmdDisplayAlarm launch code. This is where
your application should do things such as display a modal dialog
indicating that the event has occurred. Read more about these
launch codes in Chapter 1, “Application Launch Codes.”

If your application needs access to any particular value to respond
to the alarm, pass a pointer to that value in the ref parameter. The
system will pass this pointer back to the application in the launch
codes’ parameter blocks.

See Also AlmGetAlarm

AlmSetProcAlarm

Purpose Macro that sets or cancels a procedure alarm.

Prototype AlmSetProcAlarm (procP, ref, alarmSeconds)

Parameters -> procP Pointer to a function that should be called
when alarm is triggered. See
AlmAlarmProcPtr.

Alarm Manager
Alarm Manager Functions

448 Palm OS SDK Reference

-> ref A caller-defined UInt32 value. This value is
passed with the launch code that notifies the
application that the alarm has been triggered.

-> alarmSeconds A UInt32 indicating the alarm date/time in
seconds since 1/1/1904, or 0 to cancel the
current alarm (if any).

Result Returns one of the following error codes:

0 No error.

almErrMemory Insufficient memory.

almErrFull Alarm table is full.

Comments This macro is similar to the AlmSetAlarm function, but it specifies
a procedure to be called at the specified date and time rather than an
application to be launched. With this macro, you can set alarms that
are independent of any application. For example, a shared library
can set procedure alarms that call a procedure implemented in the
library.

Procedure alarms also differ from regular system alarms in that if
they trigger when the device is in sleep mode, the LCD does not
light up. Thus, you can use procedure alarms to perform a
scheduled task in a manner that is entirely hidden from the user.

IMPORTANT: Because the procP pointer is used to directly call
the procedure, the pointer must remain valid from the time
AlmSetProcAlarm is called to the time the alarm is triggered. If
the procedure is in a shared library, you must keep the library
open. If the procedure is in a separately loaded code resource,
the resource must remain locked until the alarm is triggered.
When you close a library or unlock a resource, you must remove
any pending alarms. If you don’t, the system will crash when the
alarm is triggered.

Alarm Manager
Application-Defined Functions

Palm OS SDK Reference 449

Compatibility Implemented only if 3.2 New Feature Set is present.

See Also AlmGetProcAlarm

Application-Defined Functions

AlmAlarmProcPtr

Purpose A procedure to be executed when an alarm is triggered.

Prototype void (*AlmAlarmProcPtr) (UInt16 almProcCmd,
SysAlarmTriggeredParamType *paramP)

Parameters -> almProcCmd One of the AlmProcCmdEnum constants. These
are commands that your function must handle.
Possible values are:

almProcCmdTriggered
The alarm’s date and time has passed and the
alarm has been triggered. The function should
perform its main task in response to this
command.

almProcCmdReschedule
A system time change occurred, so the function
must reschedule the alarm.

-> paramP Pointer to a SysAlarmTriggeredParamType
structure. See below.

Result Returns nothing.

Comments AlmAlarmProcPtr procedures are called when an alarm set by
AlmSetProcAlarm is triggered. Your implementation should
check the value of almProcCmd and respond accordingly.

The paramP parameter is a pointer to a
SysAlarmTriggeredParamType structure. This structure is
defined as:

Alarm Manager
Application-Defined Functions

450 Palm OS SDK Reference

typedef struct SysAlarmTriggeredParamType {
UInt32 ref;
UInt32 alarmSeconds;
Boolean purgeAlarm;

} SysAlarmTriggeredParamType;

ref and alarmSeconds are both values specified in
AlmSetProcAlarm when the alarm is set. The purgeAlarm field
specifies if the alarm will be removed from the alarm table when the
function returns so that the sysAppLaunchCmdDisplayAlarm
launch code is not triggered. This should be true for all procedure
alarms; the alarm manager set it to true for you after your function
returns.

If necessary, you can define new values for the almProcCmd
parameter to call the procedure for something other than a triggered
alarm or a system time change. The value you use must be greater
than the constant almProcCmdCustom as defined in AlarmMgr.h.

Compatibility Implemented only if 3.2 New Feature Set is present.

See Also AlmGetProcAlarm

Palm OS SDK Reference 451

24
Bitmaps
This chapter provides information about bitmaps by discussing
these topics:

• Bitmap Data Structures

• Bitmap Constants

• Bitmap Resources

• Bitmap Functions

The header file Bitmap.h declares the API that this chapter
describes. For more information on windows, see the section
“Bitmaps” on page 109 in the Palm OS Programmer’s Companion.

Bitmap Data Structures

BitmapCompressionType
The BitmapCompressionType enum specifies possible bitmap
compression types. These are the possible values for the
compressionType field of BitmapType. You can compress or
uncompress a bitmap using a call to BmpCompress.

typedef enum {
BitmapCompressionTypeScanLine = 0,
BitmapCompressionTypeRLE,
BitmapCompressionTypeNone = 0xFF

} BitmapCompressionType;

Bitmaps
Bitmap Data Structures

452 Palm OS SDK Reference

Value Descriptions

Compatibility

This type is only defined if 3.5 New Feature Set is present. Earlier
releases do support compressed bitmaps, but in scan line format
only.

BitmapFlagsType
The BitmapFlagsType bit field defines the flags field of
BitmapType. It specifies the bitmap’s attributes.

typedef struct BitmapFlagsType {
UInt16 compressed:1;
UInt16 hasColorTable:1;
UInt16 hasTransparency:1;
UInt16 indirect:1;
UInt16 forScreen:1;
UInt16 reserved:11;

} BitmapFlagsType;

BitmapCompressionTypeScanLine Use scan line compression.
Scan line compression is
compatible with Palm OS®
2.0 and higher.

BitmapCompressionTypeRLE Use RLE compression. RLE
compression is supported
in Palm OS 3.5 only.

BitmapCompressionTypeNone No compression is used.

This value should only be
used as an argument to
BmpCompress.

Bitmaps
Bitmap Data Structures

Palm OS SDK Reference 453

Field Descriptions

Compatibility

All flags other than compressed and hasColorTable are only
defined if 3.5 New Feature Set is present. Note that the size of this
structure did not change.

BitmapPtr
The BitmapPtr type defines a pointer to a BitmapType structure.

compressed If true, the bitmap is compressed and the
compressionType field specifies the
compression used. If false, the bitmap is
uncompressed. The BmpCompress function
sets this field.

hasColorTable If true, the bitmap has its own color table. If
false, the bitmap uses the system color table.
You specify whether the bitmap has its own
color table when you create the bitmap.

hasTransparency If true, the OS will not draw pixels that have a
value equal to the transparentIndex. If
false, the bitmap has no transparency value.
You specify the transparent color when you
create the bitmap using Constructor.

indirect If true, the address to the bitmap’s data is
stored where the bitmap itself would normally
be stored. The actual bitmap data is stored
elsewhere. If false, the bitmap data is stored
directly following the bitmap header or
directly following the bitmap’s color table if it
has one.

Never set this flag. Only the display (screen)
bitmap has the indirect bit set.

forScreen If true, the bitmap is the bitmap for the
display (screen) window. Never set this flag.

reserved Reserved for future use.

Bitmaps
Bitmap Data Structures

454 Palm OS SDK Reference

typedef BitmapType *BitmapPtr;

BitmapType
The BitmapType structure represents a bitmap. This structure
defines both the bitmaps representing the window display and
bitmap resources ('Tbmp' and 'tAIB') that you create using
Constructor or some other application and load into your program.

typedef struct BitmapType {
Int16 width;
Int16 height;
UInt16 rowBytes;
BitmapFlagsType flags;
UInt8 pixelSize;
UInt8 version;
UInt16 nextDepthOffset;
UInt8 transparentIndex;
UInt8 compressionType;
UInt16 reserved;

} BitmapType;

Field Descriptions

width The width of the bitmap in pixels. You
specify this value when you create the
bitmap.

height The height of the bitmap in pixels. You
specify this value when you create the
bitmap.

rowBytes The number of bytes stored for each row of
the bitmap where height is the number of
rows.

flags The bitmap’s attributes. See
BitmapFlagsType.

pixelSize The pixel depth. Currently supported pixel
depths are 1, 2, 4, and 8-bit. You specify this
value when you create the bitmap.

Bitmaps
Bitmap Data Structures

Palm OS SDK Reference 455

Note the following about the BitmapType structure:

• None of these fields contains the actual bitmap data. Instead,
the bitmap data is stored immediately following this
BitmapType header structure. If the bitmap has its own
color table, the color table is stored in between the header
and the data. You can retrieve a bitmap’s data by passing its
BitmapType structure to BmpGetBits, and you can
retrieve its color table with BmpGetColortable.

• Unlike most other user interface structures, the BitmapType
does not store the bitmap’s location on the screen. The
WindowType or the FormBitmapType with which this
bitmap is associated contains that information.

• A bitmap may be part of a bitmap family. A bitmap family is
a group of bitmaps, each containing the same drawing but at
a different pixel depth (see Figure 24.1). When requested to

version The version of bitmap encoding used. See
Bitmap Constants.

nextDepthOffset For bitmap families, this field specifies the
start of the next bitmap in the family. The
value it contains is the number of 4-byte
words to the next BitmapType from the
beginning of this one. If the bitmap is not
part of a bitmap family or it is the last bitmap
in the family, the nextDepthOffset is 0.

transparentIndex The color index for the transparent color.
Only used for version 2 bitmaps and only
when the transparent flag is set in flags.
You specify this value when you create the
bitmap using Constructor.

compressionType The compression type used. Only used for
version 2 bitmaps and only when the
compressed flag is set in flags. See
BitmapCompressionType for possible
values. The BmpCompress function sets this
field.

reserved Reserved for future use. Must be set to 0.

Bitmaps
Bitmap Data Structures

456 Palm OS SDK Reference

draw a bitmap family, the operating system chooses the
version of the bitmap with the pixel depth closest to the
display. When BitmapType represents a bitmap family, the
nextDepthOffset field contains the offset from the start of
this bitmap to the next bitmap in the family.

Figure 24.1 Bitmap Family

Compatibility

The transparentIndex and compressionType flags are
defined only if 3.5 New Feature Set is present.

ColorTableType
The ColorTableType structure defines a color table. Bitmaps can
have color tables attached to them; however, doing so is not
recommended for performance reasons.

typedef struct ColorTableType {
UInt16 numEntries;
// RGBColorType entry[];

} ColorTableType;

Bitmap
Type
header

Color
table

Bitmap
data

nextDepthOffset

pixelDepth = 1

nextDepthOffset

pixelDepth = 2

nextDepthOffset

pixelDepth = 4 pixelDepth = 8

nextDepthOffset = 0

Bitmaps
Bitmap Data Structures

Palm OS SDK Reference 457

Field Descriptions

The color table entries themselves are of type RGBColorType, and
there is one per numEntries. Use the macro
ColorTableEntries to retrieve these entries.

Care should be taken not to confuse a full color table (which
includes the count) with an array of RGB color values. Some
routines operate on entire color tables; others operate on lists of
color entries.

Compatibility

This type is defined only if 3.5 New Feature Set is present.

RGBColorType
The RGBColorType structure defines a color. It is used as an entry
in the color table. RGBColorTypes can also be created manually
and passed to several user interface functions.

typedef struct RGBColorType {
UInt8 index;
UInt8 r;
UInt8 g;
UInt8 b;

} RGBColorType;

numEntries The number of entries in table. High bits
(numEntries > 256) reserved.

Bitmaps
Bitmap Constants

458 Palm OS SDK Reference

Field Descriptions

Compatibility

This type is defined only if 3.5 New Feature Set is present.

Bitmap Constants

index The index of this color in the color table. Not all
functions that use RGBColorType use the index field.

In Palm OS® 3.5, the maximum supported number of
colors is 256. The number of possible RGB colors greatly
exceeds this amount. For this reason, some drawing
functions use a color look up table (CLUT). If the CLUT
is used, the index field contains the index of an
available color that is the closest match to the color
specified by the r, g, and b fields.

r Amount of red (0 to 255).

g Amount of green (0 to 255).

b Amount of blue (0 to 255).

Constant Value Description

BitmapVersionZero 0 Uses the version 0 encoding of a bitmap.
Version 0 encoding is supported in Palm OS®
1.0 and later.

Bitmaps
Bitmap Resources

Palm OS SDK Reference 459

Bitmap Resources
You can create a bitmap resource and include it as part of your
application’s PRC file. Use the resource type 'Tbmp' for most
images and the resource type 'tAIB' for application icons.
Symbolically, these two resource types are bitmapRsc an
iconType, respectively.

Note that if you are creating a bitmap or a bitmap family in
Constructor, you create a 'tbmf' resource (or 'taif' resource for
icons) and one or more 'PICT' images, and the PalmRez post linker
converts them into a single 'Tbmp' or 'tAIB' resource. Note that
the PalmRez post linker takes PICT images even on the Microsoft
Windows operating system.

BitmapVersionOne 1 Uses the version 1 encoding of a bitmap.
Version 1 encoding is supported in Palm OS
3.0 and later.

PalmRez automatically creates version 1
bitmaps unless you’ve specified a
transparency index or a compressed type
when creating the bitmap in Constructor.

BitmapVersionTwo 2 Uses the version 2 encoding of a bitmap. Palm
OS 3.5 supports version 2 bitmaps. Version 2
bitmaps either use the transparency index or
are compressed. If you programmatically
create a bitmap using BmpCreate, a version 2
bitmap is created.

Constant Value Description

Bitmaps
Bitmap Functions

460 Palm OS SDK Reference

Bitmap Functions

BmpBitsSize

Purpose Return the size of the bitmap’s data.

Prototype UInt16 BmpBitsSize (BitmapType *bitmapP)

Parameters -> bitmapP Pointer to the bitmap. (See BitmapType.)

Result Returns the size in bytes of the bitmap’s data, excluding the header
and the color table.

Comments This function returns the bitmap’s data size even if the bitmap’s
indirect flag is set. (See BitmapFlagsType.)

If the bitmap is compressed, this function returns the compressed
size of the bitmap.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also BmpSize, BmpColortableSize, BmpGetBits

BmpColortableSize

Purpose Return the size of the bitmap’s color table.

Prototype UInt16 BmpColortableSize (BitmapType *bitmapP)

Parameters -> bitmapP Pointer to the bitmap. (See BitmapType.)

Result Returns the size in bytes of the bitmap’s color table or 0 if the
bitmap does not use its own color table.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also BmpBitsSize, BmpSize, BmpGetColortable

Bitmaps
Bitmap Functions

Palm OS SDK Reference 461

BmpCompress

Purpose Compress or uncompress a bitmap.

Prototype Err BmpCompress (BitmapType *bitmapP,
BitmapCompressionType compType)

Parameters -> bitmapP Pointer to the bitmap to compress. (See
BitmapType.)

-> compType The type of compression to use. (See
BitmapCompressionType.) If set to
BitmapCompressionTypeNone and
bitmapP is compressed, this function
uncompresses the bitmap.

Result Returns one of the following values:

errNone Success.

sysErrParamErr Either the compType parameter does not
specify a compression type or the bitmap is
already compressed, is in the storage heap, or
represents the screen.

memErrNotEnoughSpace
There is not enough memory available to
complete the operation.

Comments This function performs the specified compression and resizes the
bitmap’s allocated memory. The bitmap must be in the dynamic
heap.

Compatibility Implemented only if 3.5 New Feature Set is present.

Bitmaps
Bitmap Functions

462 Palm OS SDK Reference

BmpCreate

Purpose Create a bitmap.

Prototype BitmapType *BmpCreate (Coord width, Coord height,
UInt8 depth, ColorTableType *colortableP,
UInt16 *error)

Parameters -> width The width of the bitmap in pixels. Must not be
0.

-> height The height of the bitmap in pixels. Must not be
0.

-> depth The pixel depth of the bitmap. Must be 1, 2, 4 or
8. This value is used as the pixelSize field of
BitmapType.

-> colortableP A pointer to the color table associated with the
bitmap, or NULL if the bitmap should not
include a color table. If specified, the number of
colors in the color table must match the depth
parameter. (2 for 1-bit, 4 for 2-bit, 16 for 4-bit,
and 256 for 8-bit).

<- error Contains the error code if an error occurs.

Result Returns a pointer to the new bitmap structure (see BitmapType) or
NULL if an error occurs. The parameter error contains one of the
following:

errNone Success.

sysErrParamErr The width, height, depth, or colorTableP
parameter is invalid. See the descriptions above
for acceptable values.

memErrNotEnoughSpace
There is not enough memory available to
allocate the structure.

Bitmaps
Bitmap Functions

Palm OS SDK Reference 463

Comments This function creates an uncompressed, non-transparent
BitmapVersionTwo bitmap with the width, height, and depth that
you specify.

If you pass a color table, the bitmap’s hasColorTable flag is set.
For performance reasons, attaching a custom color table to a bitmap
is strongly discouraged. An alternative is to use the WinPalette
command to change the color table as needed, draw the bitmap, and
then undo your changes after you have finished displaying the
bitmap.

The newly created bitmap contains no data. To create data for this
bitmap, use the window drawing functions. First, you must use
WinCreateBitmapWindow to create a offscreen window wrapper
around the bitmap, then draw to that window:

BitmapType *bmpP;
WinHandle win;
Err error;
RectangleType onScreenRect;

bmpP = BmpCreate(10, 10, 8, NULL, &error);
if (bmpP) {
win = WinCreateBitmapWindow(bmpP, &error);
if (win) {
WinSetDrawWindow(win);
WinDrawLines(win, ...);
/* etc */
WinSetWindowBounds(win, onScreenRect);

}
}

You cannot use this function to create a bitmap written directly to a
database; that is, you must create the bitmap on the dynamic heap
first, then write it to the storage heap.

It’s not necessary to use BmpCreate to load a bitmap stored in a
resource. Instead, you simply load the resource and lock its handle.
The returned pointer is a pointer to a BitmapType. For example:

MemHandle resH =
DmGetResource (bitmapRsc, rscID);

BitmapType *bitmap = MemHandleLock (resH);

Bitmaps
Bitmap Functions

464 Palm OS SDK Reference

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also BmpDelete

BmpDelete

Purpose Delete a bitmap structure.

Prototype Err BmpDelete (BitmapType *bitmapP)

Parameters -> bitmapP Pointer to the structure of the bitmap to be
deleted. (See BitmapType.)

Result Returns errNone upon success, sysErrParamErr if the bitmap’s
forScreen flag is set or the bitmap resides in the storage heap.
Returns one of the memory errors if the freeing the pointer fails.

Comments Only delete bitmaps that you’ve created using BmpCreate.

You cannot use this function on a bitmap located in a database. To
delete a bitmap from a database, use the standard data manager
calls.

Compatibility Implemented only if 3.5 New Feature Set is present.

BmpGetBits

Purpose Retrieve the bitmap’s data.

Prototype void *BmpGetBits (BitmapType *bitmapP)

Parameters -> bitmapP Pointer to the bitmap’s structure. (See
BitmapType.)

Result Returns a pointer to the bitmap’s data.

Comments This function returns the bitmap’s data even if the bitmap’s
indirect flag is set. (See BitmapFlagsType.)

Bitmaps
Bitmap Functions

Palm OS SDK Reference 465

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also BmpBitsSize

BmpGetColortable

Purpose Retrieve the bitmap’s color table.

Prototype ColorTableType *BmpGetColortable
(BitmapType *bitmapP)

Parameters -> bitmapP A pointer to the bitmap. See BitmapType.

Result Returns a pointer to the color table or NULL if the bitmap uses the
system color table.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also BmpColortableSize

BmpSize

Purpose Return the size of the bitmap.

Prototype UInt16 BmpSize (BitmapType *bitmapP)

Parameters -> bitmapP A pointer to the bitmap. See BitmapType.

Result Returns the size in bytes of the bitmap, including its header and
color table (if any).

Comments If the bitmap has its indirect flag set (see BitmapFlagsType),
the bitmap data is not included in the size returned by this function.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also BmpBitsSize, BmpColortableSize

Bitmaps
Bitmap Functions

466 Palm OS SDK Reference

ColorTableEntries

Purpose Macro that returns the color table.

Prototype ColorTableEntries (ctP)

Parameters -> ctP A pointer to a ColorTableType structure.

Result Returns an array of RGBColorType structures, one for each entry in
the color table.

Comments You can use this macro to retrieve the RGB values in use by a
bitmap. For example:

BitmapType *bmpP;
RGBColorType *tableP =
ColorTableEntries(BmpGetColorTable(bmpP));

If you want to retrieve the RGB values in use by the system color
table, you can simply use the WinPalette function instead of this
macro:

RGBColorType table;
Err e;

/* allocate space for table */
e = WinPalette(winPaletteGet, 0, 256, &table);

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also BmpGetColortable

Palm OS SDK Reference 467

25
Character Attributes
This chapter provides reference material for character attributes
functions defined in CharAttr.h.

Character Attribute Functions

ChrHorizEllipsis

Purpose Macro that returns the appropriate character code for the horizontal
ellipsis.

Prototype ChrHorizEllipsis (chP)

Parameters <- chP Pointer to a variable in which to return the
horizontal ellipsis character code.

Result Returns nothing. Upon return, the variable pointed to by chP
contains the horizontal ellipsis character.

Comments Version 3.1 of the Palm OS® uses different character codes for the
horizontal ellipsis character and the numeric space character than
earlier versions did. Use this macro to return the appropriate code
for horizontal ellipsis regardless of which version of Palm OS your
application is run on.

Character Attr ibutes
Character Attribute Functions

468 Palm OS SDK Reference

ChrIsHardKey

Purpose Macro that returns true if the character is one of the hard keys on the
device.

Prototype ChrIsHardKey (ch)

Parameters -> ch The character from the keyDownEvent.

Result true if the character is one of the four built-in hard keys on the
device, false otherwise.

Compatibility This macro is obsolete and replaced by TxtCharIsHardKey if the
International Feature Set is present.

ChrNumericSpace

Purpose Macro that returns the appropriate character code for the numeric
space.

Prototype ChrNumericSpace (chP)

Parameters <- chP Pointer to a variable in which to return the
numeric space character code.

Result Returns nothing. Upon return, the variable pointed to by chP
contains the numeric space character.

Comments Version 3.1 of the Palm OS uses different character codes for the
horizontal ellipsis character and the numeric space character than
earlier versions did. Use this macro to return the appropriate code
for numeric space regardless of which version of Palm OS your
application is run on.

Character Attr ibutes
Character Attribute Functions

Palm OS SDK Reference 469

GetCharAttr

Purpose Return a pointer to the character attribute array. This array is used
by the character classification and character conversion macros
(such as isalpha).

Prototype UInt16* GetCharAttr (void)

Parameters None

Result A pointer to the attributes array. This is an array of 256 UInt16
values, one for each possible character code. See CharAttr.h for
an explanation of the attributes.

Compatibility This function is not implemented if International Feature Set is
present.

NOTE: This function is provided for backwards compatibility
only. Use Text Manager functions instead on systems that
support the text manager.

See Also TxtCharAttr, TxtCharXAttr

Character Attr ibutes
Character Attribute Functions

470 Palm OS SDK Reference

GetCharCaselessValue

Purpose Return a pointer to an array that maps all characters to an assigned
caseless and accentless value. Use this function for finding text.

Prototype UInt8* GetCharCaselessValue (void)

Parameters None.

Result Returns a pointer to the sort array.

The compiler pads each byte out to a word so each index position
contains two characters.

Note: array[x].high = sort value for character 2x+1.

Comment The GetCharCaselessValue conversion table converts each
character into a numeric value that is caseless and sorted according
to Microsoft Windows sorting rules:

• Punctuation characters have the lowest values,

• followed by numbers,

• followed by alpha characters.

All forms of each alpha character have equivalent values, so
that e = E = e-grave = e-circumflex, etc.

This conversion table is used by all the Palm OS sorting and
comparison routines to yield caseless searches and caseless sorts in
the almost same order as Windows-based programs, except that
Palm OS routines produce the same sorting for all locales.

Compatibility This function is not implemented if International Feature Set is
present.

NOTE: This function is provided for backwards compatibility
only. Use Text Manager functions instead on systems that
support the text manager.

Character Attr ibutes
Character Attribute Functions

Palm OS SDK Reference 471

GetCharSortValue

Purpose Return a pointer to an array that maps all characters to an assigned
sorting value. Use this function for ordering (sorting) text.

Prototype UInt8* GetCharSortValue (void)

Parameters None.

Result Returns a pointer to the attributes array. This is an array of 256
UInt8 values, one for each possible character code.

The compiler pads each byte out to a word so each index position
contains two characters.

NOTE: array[x].low = sort value for character 2x.

Compatibility This function is not implemented if International Feature Set is
present.

NOTE: This function is provided for backwards compatibility
only. Use Text Manager functions instead on systems that
support the text manager.

Palm OS SDK Reference 473

26
Data and Resource
Manager
This chapter describes the data manager and the resource manager
API declared in the header file DataMgr.h. It discusses the
following topics:

• Data Manager Data Structures

• Data Manager Constants

• Data Manager Functions

• Application-Defined Functions

For more information on the data and resource managers, see the
chapter “Files and Databases” in the Palm OS Programmer’s
Companion.

Data Manager Data Structures

DmOpenRef
The DmOpenRef type defines a pointer to an open database. The
database pointer is created and returned by DmOpenDatabase. It is
used in any function that requires access to an open database.

typedef void* DmOpenRef

DmResID
The DmResID type defines a resource identifier. You assign each
resource an ID at creation time. Note that resource IDs greater than
10000 are reserved for system use.

Data and Resource Manager
Data Manager Constants

474 Palm OS SDK Reference

typedef UInt16 DmResID;

DmResType
The DmResType type defines the type of a resource. The resource
type is a four-character code such as 'Tbmp' for bitmap resources.

typedef UInt32 DmResType;

SortRecordInfoType
The SortRecordInfoType structure specifies information that
might be used to sort a record. It is used in the database sorting
functions. To create this structure, you can call DmRecordInfo,
which returns these values for a given record.

typedef struct {
UInt8 attributes;
UInt8 uniqueID[3];

} SortRecordInfoType;

typedef SortRecordInfoType * SortRecordInfoPtr;

Field Descriptions

Data Manager Constants

Category Constants
The following constants are used to specify information about
categories:

attributes The record’s attributes. See “Record Attribute
Constants.”

uniqueID The unique identifier for the record.

Data and Resource Manager
Data Manager Constants

Palm OS SDK Reference 475

Record Attribute Constants
The following constants specify a database record’s attributes.

Database Attribute Constants
The following constants define a database’s attributes:

Constant Value Description

dmAllCategories 0xFF A mask used to represent all categories.

dmCategoryLength 16 The length of a category name. Currently, this
is 16 bytes, which includes the null
terminator.

dmRecAttrCategoryMask 0x0F A mask used to retrieve the category
information from the record’s attributes field.

dmRecNumCategories 16 The number of categories allowed. Currently,
this is 16, which includes the “Unfiled”
category.

dmUnfiledCategory 0 A mask used to indicate the Unfiled category.

Constant Value Description

dmMaxRecordIndex 0xFFFF Indicates the highest record index allowed.

dmAllRecAttrs 0xF0 A mask used to specify all record attributes.

dmRecAttrBusy 0x20 Busy. (The application has locked access to this
record. A call to DmGetRecord fails on a record
that has this bit set.)

dmRecAttrDelete 0x80 Deleted

dmRecAttrDirty 0x40 Dirty (has been modified since last sync)

dmRecAttrSecret 0x10 Private

dmSysOnlyRecAttrs 0x20 A mask used to specify record attributes that only
the system can change. (In other words, the busy
attribute.)

Data and Resource Manager
Data Manager Constants

476 Palm OS SDK Reference

Constant Description

dmAllHdrAttrs A mask used to specify all header attributes.

dmDBNameLength Maximum length of a database’s name.
Currently, this is 32 bytes, which include the
null terminator. Note that database names must
use only 7-bit ASCII characters (0x20 through
0x7E).

dmHdrAttrAppInfoDirty The application info block is dirty (has been
modified since the last sync).

dmHdrAttrBackup The database should be backed up to the
desktop computer if no application-specific
conduit is available.

dmHdrAttrCopyPrevention Prevents the database from being copied by
methods such as IR beaming.

dmHdrAttrHidden This database should be hidden from view. For
example, this attribute is set to hide some
applications in the launcher’s main view.
This attribute applies to Palm OS® version 3.2
and higher.

dmHdrAttrLaunchableData This database is a data database but it can be
“launched” from the launcher. For example,
this attribute is set in Palm Query Applications
(PQAs) launched by the Web Clipper
application.

dmHdrAttrOpen The database is open.

dmHdrAttrOKToInstallNewer The backup conduit can install a newer version
of this database with a different name if the
current database is open. This mechanism is
used to update the Graffiti® Shortcuts database,
for example.

dmHdrAttrReadOnly The database is a read-only database.

dmHdrAttrResDB The database is a resource database.

Data and Resource Manager
Data Manager Constants

Palm OS SDK Reference 477

Error Codes
The following constants define error codes that are returned by the
data manager and resource manager functions. Several functions
return a failure value such as NULL or 0 instead of an error code. In
many cases, you can call DmGetLastErr upon receiving this value
and receive a more descriptive error code.

Also, note that on releases prior to Palm OS release 3.5, many data
manager functions display a fatal error message using the
ErrFatalDisplayIf macro if certain error conditions are true.
Because the Palm OS ROMs are usually shipped with error checking
set to partial, you receive the fatal error message. If a ROM is built
with error checking set to none, the function returns one of the error
codes listed here. (Note that Palm has never released a ROM with
error checking set to none and has no plans to do so.)

dmHdrAttrResetAfterInstall The device must be reset after this database is
installed. That is, the HotSync® application
forces a reset after installing this database.

dmHdrAttrStream The database is a file stream.

dmSysOnlyHdrAttrs A mask specifying the attributes that only the
system can change (open and resource
database).

Constant Description

Constant Description

dmErrAlreadyExists Another database with the
same name already exists
in RAM store.

dmErrAlreadyOpenForWrites The database is already
open with write access.

dmErrCantFind The specified resource
can’t be found.

dmErrCantOpen The database cannot be
opened.

Data and Resource Manager
Data Manager Constants

478 Palm OS SDK Reference

dmErrCorruptDatabase The database is corrupted.

dmErrDatabaseOpen The function cannot be
performed on an open
database, and the database
is open.

dmErrDatabaseNotProtected DmDatabaseProtect
failed to protect the
specified database.

dmErrIndexOutOfRange The specified index is out
of range.

dmErrInvalidDatabaseName The name you’ve specified
for the database is invalid.

dmErrInvalidParam The function received an
invalid parameter.

dmErrMemError A memory error occurred.

dmErrNoOpenDatabase The function is to search all
open databases, but there
are none.

dmErrNotRecordDB You’ve attempted to
perform a record function
on a resource database.

dmErrNotResourceDB You’ve attempted to
perform a resource
manager function on a
record database.

dmErrNotValidRecord The record handle is
invalid.

dmErrOpenedByAnotherTask You’ve attempted to open
a database that another
task already has open.

Constant Description

Data and Resource Manager
Data Manager Constants

Palm OS SDK Reference 479

dmErrReadOnly You’ve attempted to write
to or modify a database
that is in read-only mode.

dmErrRecordArchived The function requires that
the record not be archived,
but it is.

dmErrRecordBusy The function requires that
the record not be busy, but
it is.

dmErrRecordDeleted The record has been
deleted.

dmErrRecordInWrongCard You’ve attempted to attach
a record to a database
when the record and
database reside on
different memory cards.

dmErrResourceNotFound The resource can’t be
found.

dmErrROMBased You’ve attempted to delete
or modify a ROM-based
database.

dmErrSeekFailed The operation of seeking
the next record in the
category failed.

dmErrUniqueIDNotFound A record with the specified
unique ID can’t be found.

dmErrWriteOutOfBounds A write operation
exceeded the bounds of the
record.

memErrCardNotPresent The specified card can’t be
found.

Constant Description

Data and Resource Manager
Data Manager Constants

480 Palm OS SDK Reference

Open Mode Constants
The following constants define the mode in which a database can be
opened. You pass one or more of these as a parameter to
DmOpenDatabase, DmOpenDatabaseByTypeCreator, or
DmOpenDBNoOverlay:

memErrChunkLocked The associated memory
chunk is locked.

memErrInvalidParam
memErrNotEnoughSpace

A memory error occurred.

memErrInvalidStoreHeader
memErrRAMOnlyCard

The specified card has no
storage RAM.

omErrBaseRequiresOverlay An attempt was made to
open a stripped resource
database, but no associated
overlay could be found.

omErrUnknownLocale An attempt was made to
open a resource database
with overlays using an
unknown locale.

Constant Description

Constant Description

dmModeReadWrite Read-write access.

dmModeReadOnly Read-only access.

dmModeWrite Write-only access.

dmModeLeaveOpen Leave database open even after
application quits.

dmModeExclusive Don’t let anyone else open this
database.

dmModeShowSecret Show records marked private.

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 481

Data Manager Functions

DmArchiveRecord

Purpose Mark a record as archived by leaving the record’s chunk intact and
setting the delete bit for the next sync.

Prototype Err DmArchiveRecord (DmOpenRef dbP, UInt16 index)

Parameters -> dbP DmOpenRef to open database.

-> index Which record to archive.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrReadOnly

• dmErrIndexOutOfRange

• dmErrRecordArchived

• dmErrRecordDeleted

• memErrInvalidParam

Some releases may display a fatal error message instead of returning
the error code.

Comments When a record is archived, the deleted bit is set but the chunk is not
freed and the local ID is preserved. This way, the next time the user
synchronizes with the desktop system, the desktop can save the
record data on the PC before it permanently removes the record
entry and data from the Palm OS device.

See Also DmRemoveRecord, DmDetachRecord, DmNewRecord,
DmDeleteRecord

Data and Resource Manager
Data Manager Functions

482 Palm OS SDK Reference

DmAttachRecord

Purpose Attach an existing chunk ID handle to a database as a record.

Prototype Err DmAttachRecord (DmOpenRef dbP, UInt16* atP,
MemHandle newH, MemHandle* oldHP)

Parameters -> dbP DmOpenRef to open database.

<-> atP Pointer to the index where the new record
should be placed. Specify the value
dmMaxRecordIndex to add the record to the
end of the database.

-> newH Handle of the new record.

<-> oldHP If non-NULL upon entry, indicates that the
record at *atP should be replaced. Upon
return, contains the handle to the replaced
record.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrMemError

• memErrChunkLocked

• memErrInvalidParam

• memErrNotEnoughSpace

• dmErrReadOnly

• dmErrNotRecordDB

• dmErrRecordInWrongCard

• dmErrIndexOutOfRange

Some releases may display a fatal error message instead of returning
some of these error codes.

Comments Given the handle of an existing chunk, this routine makes that
chunk a new record in a database and sets the dirty bit. The
parameter atP points to an index variable. If oldHP is NULL, the
new record is inserted at index *atP and all record indices that

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 483

follow are shifted down. If *atP is greater than the number of
records currently in the database, the new record is appended to the
end and its index is returned in *atP. If oldHP is not NULL, the new
record replaces an existing record at index *atP and the handle of
the old record is returned in *oldHP so that the application can free
it or attach it to another database.

This function is useful for cutting and pasting between databases.

See Also DmDetachRecord, DmNewRecord, DmNewHandle,
DmFindSortPosition

DmAttachResource

Purpose Attach an existing chunk ID to a resource database as a new
resource.

Prototype Err DmAttachResource (DmOpenRef dbP,
MemHandle newH, DmResType resType, DmResID resID)

Parameters -> dbP DmOpenRef to open database.

-> newH Handle of new resource’s data.

-> resType Type of the new resource.

-> resID ID of the new resource.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrMemError

• memErrChunkLocked

• memErrInvalidParam

• memErrNotEnoughSpace

• dmErrReadOnly

• dmErrRecordInWrongCard

Some releases may display a fatal error message instead of returning
some of these error codes. All releases may display a fatal error
message if the database is not a resource database.

Data and Resource Manager
Data Manager Functions

484 Palm OS SDK Reference

Comments Given the handle of an existing chunk with resource data in it, this
routine makes that chunk a new resource in a resource database.
The new resource will have the given type and ID.

See Also DmDetachResource, DmRemoveResource, DmNewHandle,
DmNewResource

DmCloseDatabase

Purpose Close a database.

Prototype Err DmCloseDatabase (DmOpenRef dbP)

Parameters -> dbP Database access pointer.

Result Returns errNone if no error, or dmErrInvalidParam if an error
occurs. Some releases may display a fatal error message instead of
returning the error code.

Comments This routine doesn’t unlock any records that were left locked.
Records and resources should not be left locked. If a record/
resource is left locked, you should not use this reference because the
record can disappear if the database is deleted by the user or during
a HotSync®. To prevent the database from being deleted, you can
use DmDatabaseProtect before closing.

If there is an overlay associated with the database passed in,
DmCloseDatabase closes the overlay as well.

Compatibility Starting with Palm OS 2.0, DmCloseDatabase updates the
database’s modification date.

• On Palm OS 2.0, the modification date is updated if the
database was opened with write access.

• On Palm OS 3.0 and higher, the modification date is updated
only if a change has been made and the database was opened
with write access. Changes that trigger an update include
adding, deleting, archiving, rearranging, or resizing records,
setting a record’s dirty bit in DmReleaseRecord,

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 485

rearranging or deleting categories, or updating the database
header fields using DmSetDatabaseInfo.

Under Palm OS 1.0, the modification date was never updated.

If you need to ensure that the modification date is updated the same
way regardless of the operating system version, use
DmSetDatabaseInfo to set the modification date explicitly.

See Also DmOpenDatabase, DmDeleteDatabase,
DmOpenDatabaseByTypeCreator

DmCreateDatabase

Purpose Create a new database on the specified card with the given name,
creator, and type.

Prototype Err DmCreateDatabase (UInt16 cardNo,
const Char * nameP, UInt32 creator, UInt32 type,
Boolean resDB)

Parameters -> cardNo The card number to create the database on.

-> nameP Name of new database, up to 32 ASCII bytes
long, including the null terminator (as specified
by dmDBNameLength). Database names must
use only 7-bit ASCII characters (0x20 through
0x7E).

-> creator Creator of the database.

-> type Type of the database.

-> resDB If true, create a resource database.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrInvalidDatabaseName

• dmErrAlreadyExists

• memErrCardNotPresent

• dmErrMemError

Data and Resource Manager
Data Manager Functions

486 Palm OS SDK Reference

• memErrChunkLocked

• memErrInvalidParam

• memErrInvalidStoreHeader

• memErrNotEnoughSpace

• memErrRAMOnlyCard

May display a fatal error message if the master database list cannot
be found.

Comments Call this routine to create a new database on a specific card. If
another database with the same name already exists in RAM store,
this routine returns a dmErrAlreadyExists error code. Once
created, the database ID can be retrieved by calling
DmFindDatabase. The database can be opened using the database
ID. To create a resource database instead of a record-based database,
set the resDB Boolean to true.

After you create a database, it’s recommended that you call
DmSetDatabaseInfo to set the version number. Databases default
to version 0 if the version isn’t explicitly set.

See Also DmCreateDatabaseFromImage, DmOpenDatabase,
DmDeleteDatabase

DmCreateDatabaseFromImage

Purpose Create an entire database from a single resource that contains an
image of the database.

Prototype Err DmCreateDatabaseFromImage (MemPtr bufferP)

Parameters -> bufferP Pointer to locked resource containing database
image.

Result Returns errNone if no error.

Comments An image is the same as a desktop file representation of a prc or pdb
file.

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 487

This function is intended for applications in the ROM to install
default databases after a hard reset. RAM-based applications that
want to install a default database should install a pdb file separately
to save storage heap space.

See Also DmCreateDatabase, DmOpenDatabase

DmDatabaseInfo

Purpose Retrieve information about a database.

Prototype Err DmDatabaseInfo (UInt16 cardNo, LocalID dbID,
Char* nameP, UInt16* attributesP,
UInt16* versionP, UInt32* crDateP,
UInt32* modDateP, UInt32* bckUpDateP,
UInt32* modNumP, LocalID* appInfoIDP,
LocalID* sortInfoIDP, UInt32* typeP,
UInt32* creatorP)

Parameters -> cardNo Number of the card the database resides on.

-> dbID Database ID of the database.

<- nameP The database’s name. Pass a pointer to 32-byte
character array for this parameter, or NULL if
you don’t care about the name.

<- attributesP The database’s attribute flags. The section
“Database Attribute Constants” lists constants
you can use to query the values returned in this
parameter. Pass NULL for this parameter if you
don’t want to retrieve it.

<- versionP The application-specific version number. The
default version number is 0. Pass NULL for this
parameter if you don’t want to retrieve it.

<- crDateP The date the database was created, expressed as
the number of seconds since the first instant of
Jan 1, 1904. Pass NULL for this parameter if you
don’t want to retrieve it.

Data and Resource Manager
Data Manager Functions

488 Palm OS SDK Reference

<- modDateP The date the database was last modified,
expressed as the number of seconds since the
first instant of Jan 1, 1904. Pass NULL for this
parameter if you don’t want to retrieve it.

<- bckUpDateP The date the database was backed up,
expressed as the number of seconds since the
first instant of Jan 1, 1904. Pass NULL for this
parameter if you don’t want to retrieve it.

<- modNumP The modification number, which is
incremented every time a record in the
database is added, modified, or deleted. Pass
NULL for this parameter if you don’t want to
retrieve it.

<- appInfoIDP The local ID of the application info block, or
NULL. The application info block is an optional
field that the database may use to store
application-specific information about the
database. Pass NULL for this parameter if you
don’t want to retrieve it.

<- sortInfoIDP The local ID of the database’s sort table. This is
an optional field in the database header. Pass
NULL for this parameter if you don’t want to
retrieve it.

<- typeP The database’s type, specified when it is
created. Pass NULL for this parameter if you
don’t want to retrieve it.

<- creatorP The database’s creator, specified when it is
created. Pass NULL for this parameter if you
don’t want to retrieve it.

Result Returns errNone if no error, or dmErrInvalidParam if an error
occurs.

Compatibility Updating of the modification date differs based on which version of
the OS your application is running on.

• Under Palm OS 1.0, the modification date is never updated.

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 489

• Under Palm OS 2.0, the modification date is updated every
time a database opened with write access is closed.

• Beginning with Palm OS 3.0, the modification date is
updated only if a change has been made to the database
opened with write access. (The update still occurs upon
closing the database.) Changes that trigger an update include
adding, deleting, archiving, rearranging, or resizing records,
setting a record’s dirty bit in DmReleaseRecord,
rearranging or deleting categories, or updating the database
header fields using DmSetDatabaseInfo.

If you need to ensure that the modification date is updated the same
way regardless of the operating system version, use
DmSetDatabaseInfo to set the modification date explicitly.

See Also DmSetDatabaseInfo, DmDatabaseSize,
DmOpenDatabaseInfo, DmFindDatabase,
DmGetNextDatabaseByTypeCreator,
TimSecondsToDateTime

DmDatabaseProtect

Purpose Increment or decrement the database’s protection count.

Prototype Err DmDatabaseProtect (UInt16 cardNo,
LocalID dbID, Boolean protect)

Parameters -> cardNo Card number of database to protect/unprotect.

-> dbID Local ID of database to protect/unprotect.

-> protect If true, protect count will be incremented. If
false, protect count will be decremented.

Result Returns errNone if no error, or one of the following if an error
occurs:

• memErrCardNotPresent

• dmErrROMBased

• dmErrCantFind

• memErrNotEnoughSpace

Data and Resource Manager
Data Manager Functions

490 Palm OS SDK Reference

• dmErrDatabaseNotProtected

Comments This routine can be used to prevent a database from being deleted
(by passing true for the protect parameter). It increments the
protect count if protect is true and decrements it if protect is
false. All true calls should be balanced by false calls before the
application terminates.

Use this function if you want to keep a particular record or resource
in a database locked down but don’t want to keep the database
open. This information is kept in the dynamic heap, so all databases
are “unprotected” at system reset.

If the database is a resource database that has an overlay associated
with it for the current locale, the overlay is also protected or
unprotected by this call.

Compatibility Implemented only if 2.0 New Feature Set is present. Overlay
support is only available if 3.5 New Feature Set is present.

DmDatabaseSize

Purpose Retrieve size information on a database.

Prototype Err DmDatabaseSize (UInt16 cardNo, LocalID dbID,
UInt32* numRecordsP, UInt32* totalBytesP,
UInt32* dataBytesP)

Parameters -> cardNo Card number the database resides on.

-> dbID Database ID of the database.

<- numRecordsP The total number of records in the database.
Pass NULL for this parameter if you don’t want
to retrieve it.

<- totalBytesP The total number of bytes used by the database
including the overhead. Pass NULL for this
parameter if you don’t want to retrieve it.

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 491

<- dataBytesP The total number of bytes used to store just
each record’s data, not including overhead.
Pass NULL for this parameter if you don’t want
to retrieve it.

Result Returns errNone if no error, or dmErrMemError if an error occurs.

See Also DmDatabaseInfo, DmOpenDatabaseInfo, DmFindDatabase,
DmGetNextDatabaseByTypeCreator

DmDeleteCategory

Purpose Delete all records in a category. The category name is not changed.

Prototype Err DmDeleteCategory (DmOpenRef dbR,
UInt16 categoryNum)

Parameters -> dbR Database access pointer.

-> categoryNum Category of records to delete. Category masks
such as dmAllCategories are invalid.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrReadOnly

• memErrInvalidParam

Some releases may display a fatal error message instead of returning
the error code.

Comments This function deletes all records in a category, but does not delete
the category itself. For each record in the category,
DmDeleteCategory marks the delete bit in the database header
for the record and disposes of the record’s data chunk. The record
entry in the database header remains, but its localChunkID is set
to NULL.

If the category contains no records, this function does nothing and
returns errNone to indicate success. The categoryNum parameter
is assumed to represent a single category. If you pass a category

Data and Resource Manager
Data Manager Functions

492 Palm OS SDK Reference

mask to specify more than one category, this function interprets that
value as a single category, finds no records to delete in that category,
and returns errNone.

You can use the DmRecordInfo call to obtain a category index from
a given record. For example:

DmOpenRef myDB;
UInt16 record, attr, category, total;

DmRecordInfo(myDB, record, &attr, NULL, NULL);
category = attr & dmRecAttrCategoryMask;
err = DmDeleteCategory(myDB, category);

Compatibility Implemented only if 2.0 New Feature Set is present.

DmDeleteDatabase

Purpose Delete a database and all its records.

Prototype Err DmDeleteDatabase (UInt16 cardNo, LocalID dbID)

Parameters -> cardNo Card number the database resides on.

-> dbID Database ID.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrCantFind

• dmErrCantOpen

• memErrChunkLocked

• dmErrDatabaseOpen

• dmErrROMBased

• memErrInvalidParam

• memErrNotEnoughSpace

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 493

Comments Call this routine to delete a database. This routine deletes the
database, the application info block, the sort info block, and any
other overhead information that is associated with this database.

If the database has an overlay associated with it, this function does
not delete the overlay. You can delete the overlay with a separate
call to DmDeleteDatabase.

This routine accepts a database ID as a parameter. To determine the
database ID, call either DmFindDatabase or DmGetDatabase
with a database index.

See Also DmDeleteRecord, DmRemoveRecord, DmRemoveResource,
DmCreateDatabase, DmGetNextDatabaseByTypeCreator,
DmFindDatabase

DmDeleteRecord

Purpose Delete a record’s chunk from a database but leave the record entry
in the header and set the delete bit for the next sync.

Prototype Err DmDeleteRecord (DmOpenRef dbP, UInt16 index)

Parameters -> dbP DmOpenRef to open database.

-> index Which record to delete.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrReadOnly

• dmErrIndexOutOfRange

• dmErrRecordArchived

• dmErrRecordDeleted

• memErrInvalidParam

Some releases may display a fatal error message instead of returning
the error code.

Data and Resource Manager
Data Manager Functions

494 Palm OS SDK Reference

Comments Marks the delete bit in the database header for the record and
disposes of the record’s data chunk. Does not remove the record
entry from the database header, but simply sets the localChunkID
of the record entry to NULL.

See Also DmDetachRecord, DmRemoveRecord, DmArchiveRecord,
DmNewRecord

DmDetachRecord

Purpose Detach and orphan a record from a database but don’t delete the
record’s chunk.

Prototype Err DmDetachRecord (DmOpenRef dbP, UInt16 index,
MemHandle* oldHP)

Parameters -> dbP DmOpenRef to open.

-> index Index of the record to detach.

<-> oldHP Pointer to return handle of the detached record.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrReadOnly

• dmErrIndexOutOfRange

• dmErrNotRecordDB

• memErrChunkLocked

• memErrInvalidParam

Some releases may display a fatal error message instead of returning
the error code.

Comments This routine detaches a record from a database by removing its
entry from the database header and returns the handle of the
record’s data chunk in *oldHP. Unlike DmDeleteRecord, this

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 495

routine removes its entry in the database header but it does not
delete the actual record.

See Also DmAttachRecord, DmRemoveRecord, DmArchiveRecord,
DmDeleteRecord

DmDetachResource

Purpose Detach a resource from a database and return the handle of the
resource’s data.

Prototype Err DmDetachResource (DmOpenRef dbP, UInt16 index,
MemHandle* oldHP)

Parameters -> dbP DmOpenRef to open database.

-> index Index of resource to detach.

<-> oldHP Pointer to return handle of the detached record.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrReadOnly

• dmErrIndexOutOfRange

• dmErrCorruptDatabase

• memErrChunkLocked

• memErrInvalidParam

Some releases may display a fatal error message instead of returning
the error code. All releases may display a fatal error message if the
database is not a resource database.

Comments This routine detaches a resource from a database by removing its
entry from the database header and returns the handle of the
resource’s data chunk in *oldHP.

See Also DmAttachResource, DmRemoveResource

Data and Resource Manager
Data Manager Functions

496 Palm OS SDK Reference

DmFindDatabase

Purpose Return the database ID of a database by card number and name.

Prototype LocalID DmFindDatabase (UInt16 cardNo,
const Char* nameP)

Parameters -> cardNo Number of card to search.

-> nameP Name of the database to look for.

Result Returns the database ID. If the database can’t be found, this function
returns 0, and DmGetLastErr returns an error code indicating the
reason for failure.

See Also DmGetNextDatabaseByTypeCreator, DmDatabaseInfo,
DmOpenDatabase

DmFindRecordByID

Purpose Return the index of the record with the given unique ID.

Prototype Err DmFindRecordByID (DmOpenRef dbP,
UInt32 uniqueID, UInt16* indexP)

Parameters -> dbP Database access pointer.

-> uniqueID Unique ID to search for.

<- indexP Return index.

Result Returns 0 if found, otherwise dmErrUniqueIDNotFound. May
display a fatal error message if the unique ID is invalid.

See Also DmQueryRecord, DmGetRecord, DmRecordInfo

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 497

DmFindResource

Purpose Search the given database for a resource by type and ID, or by
pointer if it is non-NULL.

Prototype UInt16 DmFindResource (DmOpenRef dbP,
DmResType resType, DmResID resID, MemHandle resH)

Parameters -> dbP Open resource database access pointer.

-> resType Type of resource to search for.

-> resID ID of resource to search for.

->resH Pointer to locked resource, or NULL.

Result Returns index of resource in resource database, or -1 if not found.

May display a fatal error message if the database is not a resource
database.

Comments Use this routine to find a resource in a particular resource database
by type and ID or by pointer. It is particularly useful when you want
to search only one database for a resource and that database is not
the topmost one.

IMPORTANT: This function searches for the resource only in
the database you specify. If you pass a pointer to a base resource
database, its overlay is not searched. To search both a base
database and its overlay for a localized resource, use
DmGet1Resource instead of this function.

If resH is NULL, the resource is searched for by type and ID.

If resH is not NULL, resType and resID are ignored and the index
of the given locked resource is returned.

Once the index of a resource is determined, it can be locked down
and accessed by calling DmGetResourceIndex.

See Also DmGetResource, DmSearchResource, DmResourceInfo,
DmGetResourceIndex, DmFindResourceType

Data and Resource Manager
Data Manager Functions

498 Palm OS SDK Reference

DmFindResourceType

Purpose Search the given database for a resource by type and type index.

Prototype UInt16 DmFindResourceType (DmOpenRef dbP,
DmResType resType, UInt16 typeIndex)

Parameters -> dbP Open resource database access pointer.

-> resType Type of resource to search for.

-> typeIndex Index of given resource type.

Result Index of resource in resource database, or -1 if not found.

May display a fatal error message if the database is not a resource
database.

Comments Use this routine to retrieve all the resources of a given type in a
resource database. By starting at typeIndex 0 and incrementing
until an error is returned, the total number of resources of a given
type and the index of each of these resources can be determined.
Once the index of a resource is determined, it can be locked down
and accessed by calling DmGetResourceIndex.

IMPORTANT: This function searches for resources only in the
database you specify. If you pass a pointer to a base resource
database, its overlay is not searched. To search both a base
database and its overlay for a localized resource, use
DmGet1Resource instead of this function.

See Also DmGetResource, DmSearchResource, DmResourceInfo,
DmGetResourceIndex, DmFindResource

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 499

DmFindSortPosition

Purpose Return where a record should be. Useful to find where to insert a
record with DmAttachRecord. Uses a binary search.

Prototype UInt16 DmFindSortPosition (DmOpenRef dbP,
void* newRecord, SortRecordInfoPtr newRecordInfo,
DmComparF *compar, Int16 other)

Parameters -> dbP Database access pointer.

-> newRecord Pointer to the new record.

-> newRecordInfo
Sort information about the new record. See
SortRecordInfoType.

-> compar Pointer to comparison function. See
DmComparF.

-> other Any value the application wants to pass to the
comparison function.

Result The position where the record should be inserted.

The position should be viewed as between the record returned and
the record before it. Note that the return value may be one greater
than the number of records.

Comments If newRecord has the same key as another record in the database,
DmFindSortPosition assumes that newRecord should be
inserted after that record. If there are several records with the same
key, newRecord is inserted after all of them. For this reason, if you
use DmFindSortPosition to search for the location of a record
that you know is already in the database, you must subtract 1 from
the result. (Be sure to check that the value is not 0.)

If there are deleted records in the database, DmFindSortPosition
only works if those records are at the end of the database.
DmFindSortPosition always assumes that a deleted record is
greater than or equal to any other record.

Data and Resource Manager
Data Manager Functions

500 Palm OS SDK Reference

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also DmFindSortPositionV10

DmFindSortPositionV10

Purpose Return where a record should be. Useful to find where to insert a
record with DmAttachRecord. Uses a binary search.

Prototype UInt16 DmFindSortPositionV10 (DmOpenRef dbP,
void* newRecord, DmComparF *compar, Int16 other)

Parameters -> dbP Database access pointer.

-> newRecord Pointer to the new record.

-> compar Pointer to comparison function. See
DmComparF.

-> other Any value the application wants to pass to the
comparison function.

Result Returns the position where the record should be inserted. The
position should be viewed as between the record returned and the
record before it. Note that the return value may be one greater than
the number of records.

Comments If there are deleted records in the database,
DmFindSortPositionV10 only works if those records are at the
end of the database. DmFindSortPositionV10 always assumes
that a deleted record is greater than or equal to any other record.

Compatibility This function corresponds to the 1.0 version of
DmFindSortPosition.

See Also DmFindSortPosition, DmQuickSort, DmInsertionSort

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 501

DmGetAppInfoID

Purpose Return the local ID of the application info block.

Prototype LocalID DmGetAppInfoID (DmOpenRef dbP).

Parameters -> dbP Database access pointer.

Result Returns local ID of the application info block.

See Also DmDatabaseInfo, DmOpenDatabase

DmGetDatabase

Purpose Return the database header ID of a database by index and card
number.

Prototype LocalID DmGetDatabase (UInt16 cardNo,
UInt16 index)

Parameters -> cardNo Card number of database.

-> index Index of database.

Result Returns the database ID, or 0 if an invalid parameter is passed.

Comments Call this routine to retrieve the database ID of a database by index.
The index should range from 0 to DmNumDatabases-1.

This routine is useful for getting a directory of all databases on a
card. The databases returned may reside in either the ROM or the
RAM. The order in which databases are returned is not fixed;
therefore, you should not rely on receiving a list of databases in a
particular order.

See Also DmOpenDatabase, DmNumDatabases, DmDatabaseInfo,
DmDatabaseSize

Data and Resource Manager
Data Manager Functions

502 Palm OS SDK Reference

DmGetDatabaseLockState

Purpose Return information about the number of locked and busy records in
a database.

Prototype void DmGetDatabaseLockState (DmOpenRef dbR,
UInt8* highest, UInt32* count, UInt32* busy)

Parameters -> dbR Database access pointer.

<- highest The highest lock count found for all of the
records in the database. If a database has two
records, one has a lock count of 2 and one has a
lock count of 1, the highest lock count is 2. Pass
NULL for this parameter if you don’t want to
retrieve it.

<- count The number of records that have the lock count
that is returned in the highest parameter. Pass
NULL for this parameter if you don’t want to
retrieve it.

<- busy The number of records that have the busy bit
set. Pass NULL for this parameter if you don’t
want to retrieve it.

Result No return value. Returns all information in the parameters you
pass.

Comments This function is intended to be used for debugging purposes. You
can use it to obtain information about how many records are busy
and how much locking occurs.

Compatibility Implemented only if 3.2 New Feature Set is present.

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 503

DmGetLastErr

Purpose Return error code from last data manager call.

Prototype Err DmGetLastErr (void)

Parameters None.

Result Error code from last unsuccessful data manager call.

Comments Use this routine to determine why a data manager call failed. In
particular, calls like DmGetRecord return 0 if unsuccessful, so
calling DmGetLastErr is the only way to determine why they
failed.

Note that DmGetLastErr does not always reflect the error status of
the last data manager call. Rather, it reflects the error status of data
manager calls that don’t return an error code. For some of those
calls, the saved error code value is not set to 0 when the call is
successful.

For example, if a call to DmOpenDatabaseByTypeCreator returns
NULL for database reference (that is, it fails), DmGetLastErr
returns something meaningful; otherwise, it returns the error value
of some previous data manager call.

Only the following data manager functions currently affect the
value returned by DmGetLastErr:

DmFindDatabase DmOpenDatabaseByTypeCrea
tor

DmOpenDatabase DmNewRecord

DmQueryRecord DmGetRecord

DmQueryNextInCategory DmPositionInCategory

DmSeekRecordInCategory DmResizeRecord

DmGetResource DmGet1Resource

DmNewResource DmGetResourceIndex

Data and Resource Manager
Data Manager Functions

504 Palm OS SDK Reference

DmGetNextDatabaseByTypeCreator

Purpose Return a database header ID and card number given the type and/
or creator. This routine searches all memory cards for a match.

Prototype Err DmGetNextDatabaseByTypeCreator
(Boolean newSearch, DmSearchStatePtr stateInfoP,
UInt32 type, UInt32 creator,
Boolean onlyLatestVers, UInt16* cardNoP,
LocalID* dbIDP)

Parameters -> newSearch true if starting a new search.

<-> stateInfoP If newSearch is false, this must point to the
same data used for the previous invocation.

-> type Type of database to search for, pass 0 as a
wildcard.

-> creator Creator of database to search for, pass 0 as a
wildcard.

-> onlyLatestVers
If true, only the latest version of a database
with a given type and creator is returned.

<- cardNoP On exit, the card number of the found database.

<- dbIDP Database local ID of the found database.

Result Returns errNone if no error, or dmErrCantFind if no matches
were found.

Comments You may need to call this function successively to discover all
databases having a specified type/creator pair.

To start the search, pass true for newSearch. Allocate a
DmSearchStateType structure and pass it as the stateInfoP

DmNewHandle DmOpenDBNoOverlay

DmResizeResource

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 505

parameter. DmGetNextDatabaseByTypeCreator stores private
information in stateInfoP and uses it if the search is continued.

To continue a search where the previous one left off, pass false for
newSearch and pass the same stateInfoP that you used during
the previous call to this function.

You can pass NULL as a wildcard operator for the type or creator
parameter to conduct searches of wider scope. If the type
parameter is NULL, this routine can be called successively to return
all databases of the given creator. If the creator parameter is NULL,
this routine can be called successively to return all databases of the
given type. You can also pass NULL as the value for both of these
parameters to return all available databases without regard to type
or creator.

Because databases are scattered freely throughout memory space,
they are not returned in any particular order—any database
matching the specified type/creator criteria can be returned.Thus, if
the value of the onlyLatestVers parameter is false, this
function may return a database which is not the most recent version
matching the specified type/creator pair. To obtain only the latest
version of a database matching the search criteria, set the value of
the onlyLatestVers parameter to true.

When determining which is the latest version of the database, RAM
databases are considered newer than ROM databases that have the
same version number. Because of this, you can replace any ROM-
based application with your own version of it. Also, a RAM
database on card 1 is considered newer than a RAM database on
card 0 if the version numbers are identical.

Compatibility In Palm OS version 3.1 and higher, if onlyLatestVers is true,
you only receive one matching database for each type/creator pair.
In version 3.0 and earlier, you could receive multiple matching
databases if onlyLatestVers was true.

Note that the behavior is different only when you have specified a
value for both type and creator and onlyLatestVers is true.

For example, suppose your application maintains three databases
that all have the same type, creator, and version number and you
write this code to process them in some way:

Data and Resource Manager
Data Manager Functions

506 Palm OS SDK Reference

DmSearchStateType state;
Boolean latestVer;
UInt16 card;
LocalID currentDB = 0;

theErr = DmGetNextDatabaseByTypeCreator(true,
&state, myType, myCreator, latestVer, &card,
¤tDB);

while (!theErr && currentDB) {
/* do something with currentDB */
/* now get the next DB */
theErr = DmGetNextDatabaseByTypeCreator(
false, &state, myType, myCreator,
latestVer, &card, ¤tDB);

}

If latestVer is false, then your code will work the same on all
versions of Palm OS and will return all three databases whose type
and creator match those specified. If latestVer is true, this code
returns all three databases on Palm OS version 3.0 and earlier, but
only returns one database on version 3.1 and higher. (Exactly which
database it returns is unspecified.)

If you expect multiple databases to match your search criteria, make
sure you call DmGetNextDatabaseByTypeCreator in one of the
following ways to ensure that your code operates the same on all
Palm OS versions:

• Set onlyLatestVers to false if you specify both a type
and creator.

• Specify NULL for either the type or creator parameter (or
both).

See Also DmGetDatabase, DmFindDatabase, DmDatabaseInfo,
DmOpenDatabaseByTypeCreator, DmDatabaseSize

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 507

DmGetRecord

Purpose Return a handle to a record by index and mark the record busy.

Prototype MemHandle DmGetRecord (DmOpenRef dbP,
UInt16 index)

Parameters -> dbP DmOpenRef to open database.

-> index Which record to retrieve.

Result Returns a handle to record data. If another call to DmGetRecord for
the same record is attempted before the record is released, NULL is
returned and DmGetLastErr returns an error code indicating the
reason for failure.

Comments Returns a handle to given record and sets the busy bit for the
record.

If the record is ROM-based (pointer accessed), this routine makes a
fake handle to it and stores this handle in the DmAccessType
structure.

DmReleaseRecord should be called as soon as the caller finishes
viewing or editing the record.

See Also DmSearchRecord, DmFindRecordByID, DmRecordInfo,
DmReleaseRecord, DmQueryRecord

DmGetResource

Purpose Search all open resource databases and return a handle to a
resource, given the resource type and ID.

Prototype MemHandle DmGetResource (DmResType type,
DmResID resID)

Parameters -> type The resource type.

Data and Resource Manager
Data Manager Functions

508 Palm OS SDK Reference

->resID The resource ID.

Result Handle to resource data. If the specified resource cannot be found,
this function returns NULL and DmGetLastErr returns an error
code indicating the reason for failure.

Comments Searches all open resource databases starting with the most recently
opened one for a resource of the given type and ID. If found, the
resource handle is returned. The application should call
DmReleaseResource as soon as it finishes accessing the resource
data. The resource handle is not locked by this function.

This function always returns the resource located in the overlay if
any open overlay has a resource matching that type and ID. If there
is no overlay version of the resource, this function returns the
resource from the base database.

See Also DmGet1Resource, DmReleaseResource, ResLoadConstant

DmGetResourceIndex

Purpose Return a handle to a resource by index.

Prototype MemHandle DmGetResourceIndex (DmOpenRef dbP,
UInt16 index)

Parameters -> dbP Access pointer to open database.

-> index Index of resource to lock down.

Result Handle to resource data. If the specified index is out of range, this
function returns NULL and DmGetLastErr returns an error code
indicating the reason for failure.

May display a fatal error message if the database is not a resource
database.

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 509

IMPORTANT: This function accesses the resource only in the
database you specify. If you pass a pointer to a base resource
database, its overlay is not accessed. Therefore, you should use
care when using this function to access a potentially localized
resource. You can use DmSearchResource to obtain a pointer
to the overlay database if the resource is localized; however, it’s
more convenient to use DmGetResource or DmGet1Resource.

See Also DmFindResource, DmFindResourceType, DmSearchResource

DmGet1Resource

Purpose Search the most recently opened resource database and return a
handle to a resource given the resource type and ID.

Prototype MemHandle DmGet1Resource (DmResType type,
DmResID resID)

Parameters -> type The resource type.

-> resID The resource ID.

Result Handle to resource data. If unsuccessful, this function returns NULL
and DmGetLastErr returns an error code indicating the reason for
failure.

Comments Searches the most recently opened resource database for a resource
of the given type and ID. If the database has an overlay associated
with it, the overlay is searched first, and then the base database is
searched if the overlay does not contain the resource. If found, the
resource handle is returned. The application should call
DmReleaseResource as soon as it finishes accessing the resource
data. The resource handle is not locked by this function.

See Also DmGetResource, DmReleaseResource, ResLoadConstant

Data and Resource Manager
Data Manager Functions

510 Palm OS SDK Reference

DmInsertionSort

Purpose Sort records in a database.

Prototype Err DmInsertionSort (DmOpenRef dbR,
DmComparF *compar, Int16 other)

Parameters -> dbR Database access pointer.

-> compar Comparison function. See DmComparF.

-> other Any value the application wants to pass to the
comparison function.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrReadOnly

• dmErrNotRecordDB

Some releases may display a fatal error message instead of returning
the error code.

Comments Deleted records are placed last in any order. All others are sorted
according to the passed comparison function. Only records which
are out of order move. Moved records are moved to the end of the
range of equal records. If a large number of records are being sorted,
try to use the quick sort.

The following insertion-sort algorithm is used: Starting with the
second record, each record is compared to the preceding record.
Each record not greater than the last is inserted into sorted position
within those already sorted. A binary insertion is performed. A
moved record is inserted after any other equal records.

See Also DmQuickSort

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 511

DmMoveCategory

Purpose Move all records in a category to another category.

Prototype Err DmMoveCategory (DmOpenRef dbP,
UInt16 toCategory, UInt16 fromCategory,
Boolean dirty)

Parameters -> dbP DmOpenRef to open database.

->toCategory Category to which the records should be
added.

-> fromCategory Category from which to remove records.

-> dirty If true, set the dirty bit.

Result Returns 0 if successful, or dmErrReadOnly if the database is in
read-only mode. Some releases may display a fatal error message
instead of returning the error code.

Comments If dirty is true, the moved records are marked as dirty.

The toCategory and fromCategory parameters hold category
index values. You can learn which category a record is in with the
DmRecordInfo call and use that value in this function. For
example, the following code, ensures that the records rec1 and
rec2 are in the same category:

DmOpenRef myDB;
UInt16 rec1, rec2;
UInt16 rec1Attr, rec2Attr;
UInt16 category1, category2;

DmRecordInfo (myDB, rec1, &rec1Attr, NULL,
NULL);

category1 = rec1Attr & dmRecAttrCategoryMask;
DmRecordInfo(myDB, rec2, &rec2Attr, NULL,
NULL);

category2 = rec2Attr & dmRecAttrCategoryMask;
if (category1 != category2)
DmMoveCategory(myDB, category1, category2,

Data and Resource Manager
Data Manager Functions

512 Palm OS SDK Reference

true);

DmMoveRecord

Purpose Move a record from one index to another.

Prototype Err DmMoveRecord (DmOpenRef dbP, UInt16 from,
UInt16 to)

Parameters -> dbP DmOpenRef to open database.

-> from Index of record to move.

-> to Where to move the record.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrReadOnly

• dmErrIndexOutOfRange

• dmErrNotRecordDB

• dmErrMemError

• memErrInvalidParam

• memErrChunkLocked

Some releases may display a fatal error message instead of returning
the error code.

Comments Insert the record at the to index and move other records down. The
to position should be viewed as an insertion position. This value
may be one greater than the index of the last record in the database.
In cases where to is greater than from, the new index of the record
becomes to–1 after the move is complete.

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 513

DmNewHandle

Purpose Attempt to allocate a new chunk in the same data heap or card as
the database header of the passed database access pointer. If there is
not enough space in that data heap, try other heaps.

Prototype MemHandle DmNewHandle (DmOpenRef dbP, UInt32 size)

Parameters -> dbP DmOpenRef to open database.

-> size Size of new handle.

Result Returns the chunkID of new chunk. If an error occurs, returns 0,
and DmGetLastErr returns an error code indicating the reason for
failure.

Comments Allocates a new handle of the given size. Ensures that the new
handle is in the same memory card as the given database. This
guarantees that you can attach the handle to the database as a
record to obtain and save its LocalID in the appInfoID or
sortInfoID fields of the header.

The handle should be attached to a database as soon as possible. If it
is not attached to a database and the application crashes, the
memory used by the new handle is unavailable until the next soft
reset.

DmNewRecord

Purpose Return a handle to a new record in the database and mark the record
busy.

Prototype MemHandle DmNewRecord (DmOpenRef dbP, UInt16* atP,
UInt32 size)

Parameters -> dbP DmOpenRef to open database.

<-> atP Pointer to index where new record should be
placed. Specify the value dmMaxRecordIndex
to add the record to the end of the database.

Data and Resource Manager
Data Manager Functions

514 Palm OS SDK Reference

-> size Size of new record.

Result Handle to record data. If an error occurs, this function returns 0 and
DmGetLastErr returns an error code indicating the reason for
failure.

Some releases may display a fatal error message if the database is
opened in read-only mode or it is a resource database.

Comments Allocates a new record of the given size, and returns a handle to the
record data. The parameter atP points to an index variable. The
new record is inserted at index *atP and all record indices that
follow are shifted down. If *atP is greater than the number of
records currently in the database, the new record is appended to the
end and its index is returned in *atP.

Both the busy and dirty bits are set for the new record and a
unique ID is automatically created.

DmReleaseRecord should be called as soon as the caller finishes
viewing or editing the record.

See Also DmAttachRecord, DmRemoveRecord, DmDeleteRecord

DmNewResource

Purpose Allocate and add a new resource to a resource database.

Prototype MemHandle DmNewResource (DmOpenRef dbP,
DmResType resType, DmResID resID, UInt32 size)

Parameters -> dbP DmOpenRef to open database.

-> resType Type of the new resource.

-> resID ID of the new resource.

-> size Desired size of the new resource.

Result Returns a handle to the new resource. If an error occurs, this
function returns NULL and DmGetLastErr returns an error code
indicating the reason for failure.

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 515

May display a fatal error message if the database is not a resource
database.

Comments Allocates a memory chunk for a new resource and adds it to the
given resource database. The new resource has the given type and
ID. If successful, the application should call DmReleaseResource
as soon as it finishes initializing the resource.

See Also DmAttachResource, DmRemoveResource

DmNextOpenDatabase

Purpose Return DmOpenRef to next open database for the current task.

Prototype DmOpenRef DmNextOpenDatabase (DmOpenRef currentP)

Parameters -> currentP Current database access pointer or NULL.

Result DmOpenRef to next open database, or NULL if there are no more.

Comments Call this routine successively to get the DmOpenRefs of all open
databases. Pass NULL for currentP to get the first one.
Applications don’t usually call this function, but is useful for system
information.

See Also DmOpenDatabaseInfo, DmDatabaseInfo

DmNextOpenResDatabase

Purpose Return access pointer to next open resource database in the search
chain.

Prototype DmOpenRef DmNextOpenResDatabase (DmOpenRef dbP)

Parameters -> dbP Database reference, or 0 to start search from the
top.

Result Pointer to next open resource database.

Data and Resource Manager
Data Manager Functions

516 Palm OS SDK Reference

Comments Returns pointer to next open resource database. To get a pointer to
the first one in the search chain, pass NULL for dbP. This is the
database that is searched when DmGet1Resource is called.

If you use this function to access a resource database that might
have an overlay associated with it, be careful how you use the
result. The DmOpenRef returned by this function is a pointer to the
overlay database, not the base database. If you subsequently pass
this pointer to DmFindResource, you’ll receive a handle to the
overlaid resource. If you’re searching for a resource that is found
only in the base, you won’t find it. Instead, always use
DmGetResource or DmGet1Resource to obtain a resource. Both
of those functions search both the overlay databases and their
associated base databases.

DmNumDatabases

Purpose Determine how many databases reside on a memory card.

Prototype UInt16 DmNumDatabases (UInt16 cardNo)

Parameters -> cardNo Number of the card to check.

Result The number of databases found.

Comments This routine is helpful for getting a directory of all databases on a
card. The routine DmGetDatabase accepts an index from 0 to
DmNumDatabases -1 and returns a database ID by index.

See Also DmGetDatabase

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 517

DmNumRecords

Purpose Return the number of records in a database.

Prototype UInt16 DmNumRecords (DmOpenRef dbP)

Parameters -> dbP DmOpenRef to open database.

Result The number of records in a database.

Comments Records that have that have the deleted bit set (that is, records that
will be deleted during the next synchronization because the user has
marked them deleted) are included in the count. If you want to
exclude these records from your count, use
DmNumRecordsInCategory and pass dmAllCategories as the
category.

See Also DmNumRecordsInCategory, DmRecordInfo,
DmSetRecordInfo

DmNumRecordsInCategory

Purpose Return the number of records of a specified category in a database.

Prototype UInt16 DmNumRecordsInCategory (DmOpenRef dbP,
UInt16 category)

Parameters -> dbP DmOpenRef to open database.

-> category Category index.

Result The number of records in the category.

Comments Because this function must examine all records in the database, it
can be slow to return, especially when called on a large database.

Records that have the deleted bit set are not counted, and if the
user has specified to hide or mask private records, private records
are not counted either.

Data and Resource Manager
Data Manager Functions

518 Palm OS SDK Reference

You can use the DmRecordInfo call to obtain a category index from
a given record. For example:

DmOpenRef myDB;
UInt16 record, attr, category, total;

DmRecordInfo(myDB, record, &attr, NULL, NULL);
category = attr & dmRecAttrCategoryMask;
total = DmNumRecordsInCategory(myDB, category);

See Also DmNumRecords, DmQueryNextInCategory,
DmPositionInCategory, DmSeekRecordInCategory,
DmMoveCategory

DmNumResources

Purpose Return the total number of resources in a given resource database.

Prototype UInt16 DmNumResources (DmOpenRef dbP)

Parameters -> dbP DmOpenRef to open database.

Result The total number of resources in the given database.

May display a fatal error message if the database is not a resource
database.

Comments DmNumResources only counts the resources in the database
indicated by the DmOpenRef parameter. If the database is a resource
database that has an overlay associated with it, this function only
returns the number of resources in the base database, not in the
overlay.

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 519

DmOpenDatabase

Purpose Open a database and return a reference to it. If the database is a
resource database, also open its overlay for the current locale.

Prototype DmOpenRef DmOpenDatabase (UInt16 cardNo,
LocalID dbID, UInt16 mode)

Parameters -> cardNo Card number database resides on.

-> dbID The database ID of the database.

-> mode Which mode to open database in (see “Open
Mode Constants”).

Result Returns DmOpenRef to open database. May display a fatal error
message if the database parameter is NULL. On all other errors, this
function returns 0 and DmGetLastErr returns an error code
indicating the reason for failure.

Comments Call this routine to open a database for reading or writing.

This routine returns a DmOpenRef which must be used to access
particular records in a database. If unsuccessful, 0 is returned and
the cause of the error can be determined by calling DmGetLastErr.

When you use this routine to open a resource database in read-only
mode, it also opens the overlay associated with this database for the
current locale, if it exists. (The function OmGetCurrentLocale
returns the current locale.) Overlays are resource databases typically
used to localize applications, shared libraries, and panels. They
have the same creator as the base database, a type of 'ovly'
(symbolically named omOverlayDBType), and contain resources
with the same IDs and types as the resources in the base database.
When you request a resource from the database using
DmGetResource or DmGet1Resource, the overlay is searched
first. If the overlay contains a resource for the given ID, it is
returned. If not, the resource from the base database is returned.

The DmOpenRef returned by this function is the pointer to the base
database, not to the overlay database, so care should be taken when

Data and Resource Manager
Data Manager Functions

520 Palm OS SDK Reference

passing this pointer to functions such as DmFindResource because
this circumvents the overlay.

It’s possible to create a “stripped” base resource database, one that
does not contain any user interface resources. DmOpenDatabase
only opens a stripped database if its corresponding overlay exists. If
the overlay does not exist or if the overlay doesn’t match the
resource database, DmOpenDatabase returns NULL and
DmGetLastErr returns the error code omErrBaseRequiresOverlay.

If you open a resource database in a writable mode, the associated
overlay is not opened. If you make changes to the resource database,
the overlay database is invalidated if those changes affect any
resources that are also in the overlay. This means that on future
occasions where you open the resource database in read-only mode,
the overlay will not be opened because Palm OS considers it to be
invalid.

TIP: If you want to prevent your resource database from being
overlaid, include an 'xprf' resource (symbolically named
sysResTExtPrefs) in the database with the ID 0
(sysResIDExtPrefs) and set its disableOverlays flag. This
resource is defined in UIResources.r.

Compatibility Overlay support is only available if 3.5 New Feature Set is present.
On earlier releases, this function opens resource databases without
looking for an associated overlay.

See Also DmCloseDatabase, DmCreateDatabase, DmFindDatabase,
DmOpenDatabaseByTypeCreator, DmDeleteDatabase,
DmOpenDBNoOverlay

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 521

DmOpenDatabaseByTypeCreator

Purpose Open the most recent revision of a database with the given type and
creator. If the database is a resource database, also open its overlay
for the current locale.

Prototype DmOpenRef DmOpenDatabaseByTypeCreator
(UInt32 type, UInt32 creator, UInt16 mode)

Parameters -> type Type of database.

-> creator Creator of database.

-> mode Which mode to open database in (see “Open
Mode Constants”).

Result DmOpenRef to open database. If the database couldn’t be found,
this function returns 0 and DmGetLastErr returns an error code
indicating the reason for failure.

Comments If you use this routine to open a resource database in read-only
mode, it also opens the overlay associated with this database for the
current locale. See DmOpenDatabase for more information on
overlays and resource databases.

Compatibility Overlay support is only available if 3.5 New Feature Set is present.
On earlier releases, this function opens resource databases without
looking for an associated overlay.

See Also DmCreateDatabase, DmOpenDatabase, DmOpenDatabaseInfo,
DmCloseDatabase, DmOpenDBNoOverlay

Data and Resource Manager
Data Manager Functions

522 Palm OS SDK Reference

DmOpenDatabaseInfo

Purpose Retrieve information about an open database.

Prototype Err DmOpenDatabaseInfo (DmOpenRef dbP,
LocalID* dbIDP, UInt16* openCountP, UInt16* modeP,
UInt16* cardNoP, Boolean* resDBP)

Parameters -> dbP DmOpenRef to open database.

<- dbIDP The ID of the database. Pass NULL for this
parameter if you don’t want to retrieve this
information.

<- openCountP The number of applications that have this
database open. Pass NULL for this parameter if
you don’t want to retrieve this information.

<- modeP The mode used to open the database (see
“Open Mode Constants”). Pass NULL for this
parameter if you don’t want to retrieve this
information.

<- cardNoP The number of the card on which this database
resides. Pass NULL for this parameter if you
don’t want to retrieve this information.

<- resDBP If true upon return, the database is a resource
database, false otherwise. Pass NULL for this
parameter if you don’t want to retrieve this
information.

Result Returns errNone if no error.

See Also DmDatabaseInfo

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 523

DmOpenDBNoOverlay

Purpose Open a database and return a reference to it.

Prototype DmOpenRef DmOpenDBNoOverlay (UInt16 cardNo,
LocalID dbID, UInt16 mode)

Parameters -> cardNo Card number database resides on.

-> dbID The database ID of the database.

-> mode Which mode to open database in (see “Open
Mode Constants”).

Result DmOpenRef to open database. May display a fatal error message if
the database parameter is NULL. On all other errors, this function
returns 0 and DmGetLastErr returns an error code indicating the
reason for failure.

Comments Call this routine to open a database for reading or writing, while
ignoring any overlay databases that might be associated with it.

This routine returns a DmOpenRef which must be used to access
particular records in a database. If unsuccessful, 0 is returned and
the cause of the error can be determined by calling DmGetLastErr.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also DmCloseDatabase, DmCreateDatabase, DmFindDatabase,
DmOpenDatabaseByTypeCreator, DmDeleteDatabase,
DmOpenDatabase

DmPositionInCategory

Purpose Return a position of a record within the specified category.

Prototype UInt16 DmPositionInCategory (DmOpenRef dbP,
UInt16 index, UInt16 category)

Parameters -> dbP DmOpenRef to open database.

Data and Resource Manager
Data Manager Functions

524 Palm OS SDK Reference

-> index Index of the record.

-> category Index of category to search.

Result Returns the position (zero-based). If the specified index is out of
range, this function returns 0 and DmGetLastErr returns an error
code indicating the reason for failure. Note that this means a 0
return value might indicate either success or failure. If this function
returns 0 and DmGetLastErr returns errNone, the return value
indicates that this is the first record in the category.

Comments Because this function must examine all records up to the current
record, it can be slow to return, especially when called on a large
database.

If the record is ROM-based (pointer accessed) this routine makes a
fake handle to it and stores this handle in the DmAccessType
structure.

To learn which category a record is in, use DmRecordInfo.

See Also DmQueryNextInCategory, DmSeekRecordInCategory,
DmMoveCategory

DmQueryNextInCategory

Purpose Return a handle to the next record in the specified category for
reading only (does not set the busy bit).

Prototype MemHandle DmQueryNextInCategory (DmOpenRef dbP,
UInt16* indexP, UInt16 category)

Parameters -> dbP DmOpenRef to open database.

-> indexP Index of a known record (often retrieved with
DmPositionInCategory).

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 525

-> category Index of category to query, or
dmAllCategories to find the next record in
any category.

Result Returns a handle to the record following a known record. If a record
couldn’t be found, this function returns NULL, and DmGetLastErr
returns an error code indicating the reason for failure.

Comments This function begins searching the database from the record at
*indexP for a record that is in the specified category. If the record at
*indexP belongs to that category, then a handle to it is returned. If
not, the function continues searching until it finds a record in the
category.

Thus, if you want to find the next record in the category after the
one you have an index for, increment the index value before calling
this function. For example:

DmOpenRef myDB;
UInt16 record, attr, category, pos;
MemHandle newRecH;

DmRecordInfo(myDB, record, &attr, NULL, NULL);
category = attr & dmRecAttrCategoryMask;
pos = DmPositionInCategory(myDB, record,
category);

pos++;
newRecH = DmQueryNextInCategory(myDB, &pos,
category);

See Also DmNumRecordsInCategory, DmPositionInCategory,
DmSeekRecordInCategory

Data and Resource Manager
Data Manager Functions

526 Palm OS SDK Reference

DmQueryRecord

Purpose Return a handle to a record for reading only (does not set the busy
bit).

Prototype MemHandle DmQueryRecord (DmOpenRef dbP,
UInt16 index)

Parameters -> dbP DmOpenRef to open database.

-> index Which record to retrieve.

Result Returns a record handle. If an error occurs, this function returns
NULL, and DmGetLastErr returns an error code indicating the
reason for failure.

Some releases may display a fatal error message if the specified
index is out of range.

Comments Returns a handle to the given record. Use this routine only when
viewing the record. This routine successfully returns a handle to the
record even if the record is busy.

If the record is ROM-based (pointer accessed) this routine returns
the fake handle to it.

DmQuickSort

Purpose Sort records in a database.

Prototype Err DmQuickSort (DmOpenRef dbP, DmComparF *compar,
Int16 other)

Parameters -> dbP Database access pointer.

-> compar Comparison function. See DmComparF.

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 527

-> other Any value the application wants to pass to the
comparison function.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrReadOnly

• dmErrNotRecordDB

Some releases may display a fatal error message instead of returning
the error code.

Comments Deleted records are placed last in any order. All others are sorted
according to the passed comparison function.

After DmQuickSort returns, equal database records do not have a
consistent order. That is, if DmQuickSort is passed two equal
records, their resulting order is unpredictable. To prevent records
that contain the same data from being rearranged in an
unpredictable order, pass the record’s unique ID to the comparison
function (using the SortRecordInfoType structure).

See Also DmFindSortPositionV10, DmInsertionSort

DmRecordInfo

Purpose Retrieve the record information as stored in the database header.

Prototype Err DmRecordInfo (DmOpenRef dbP, UInt16 index,
UInt16* attrP, UInt32* uniqueIDP,
LocalID* chunkIDP)

Parameters -> dbP DmOpenRef to open database.

-> index Index of the record.

<- attrP The record’s attributes. See “Record Attribute
Constants.” Pass NULL for this parameter if you
don’t want to retrieve this value.

Data and Resource Manager
Data Manager Functions

528 Palm OS SDK Reference

<- uniqueIDP The record’s unique ID. Pass NULL for this
parameter if you don’t want to retrieve this
value.

<- chunkIDP The record’s local ID. Pass NULL for this
parameter if you don’t want to retrieve this
value.

Result Returns errNone if no error or dmErrIndexOutOfRange if the
specified record can’t be found. Some releases may display a fatal
error message instead of returning the error code.

See Also DmNumRecords, DmSetRecordInfo, DmQueryNextInCategory

DmReleaseRecord

Purpose Clear the busy bit for the given record and set the dirty bit if dirty
is true.

Prototype Err DmReleaseRecord (DmOpenRef dbP, UInt16 index,
Boolean dirty)

Parameters -> dbP DmOpenRef to open database.

-> index The record to unlock.

-> dirty If true, set the dirty bit.

Result Returns errNone if no error, or dmErrIndexOutOfRange if the
specified index is out of range. Some releases may display a fatal
error message instead of returning the error code.

Comments Call this routine when you finish modifying or reading a record that
you’ve called DmGetRecord on or created using DmNewRecord.

See Also DmGetRecord

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 529

DmReleaseResource

Purpose Release a resource acquired with DmGetResource.

Prototype Err DmReleaseResource (MemHandle resourceH)

Parameters -> resourceH Handle to resource.

Result Returns errNone if no error.

Comments Marks a resource as being no longer needed by the application.

See Also DmGet1Resource, DmGetResource

DmRemoveRecord

Purpose Remove a record from a database and dispose of its data chunk.

Prototype Err DmRemoveRecord (DmOpenRef dbP, UInt16 index)

Parameters -> dbP DmOpenRef to open database.

-> index Index of the record to remove.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrReadOnly

• dmErrIndexOutOfRange

• dmErrNotRecordDB

• memErrChunkLocked

• memErrInvalidParam

Some releases may display a fatal error message instead of returning
the error code.

Data and Resource Manager
Data Manager Functions

530 Palm OS SDK Reference

Comments Disposes of a the record’s data chunk and removes the record’s
entry from the database header.

See Also DmDetachRecord, DmDeleteRecord, DmArchiveRecord,
DmNewRecord

DmRemoveResource

Purpose Delete a resource from a resource database.

Prototype Err DmRemoveResource (DmOpenRef dbP, UInt16 index)

Parameters -> dbP DmOpenRef to open database.

-> index Index of resource to delete.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrCorruptDatabase

• dmErrIndexOutOfRange

• dmErrReadOnly

• memErrChunkLocked

• memErrInvalidParam

• memErrNotEnoughSpace

May display a fatal error message if the database is not a resource
database.

Comments This routine disposes of the memory manager chunk that holds the
given resource and removes its entry from the database header.

See Also DmDetachResource, DmRemoveResource, DmAttachResource

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 531

DmRemoveSecretRecords

Purpose Remove all secret records.

Prototype Err DmRemoveSecretRecords (DmOpenRef dbP)

Parameters -> dbP DmOpenRef to open database.

Result Returns errNone if no error, or one of the following if an error
occurs:

• dmErrReadOnly

• dmErrNotRecordDB

Some releases may display a fatal error message instead of returning
the error code.

See Also DmRemoveRecord, DmRecordInfo, DmSetRecordInfo

DmResizeRecord

Purpose Resize a record by index.

Prototype MemHandle DmResizeRecord (DmOpenRef dbP,
UInt16 index, UInt32 newSize)

Parameters -> dbP DmOpenRef to open database.

-> index Which record to retrieve.

-> newSize New size of record.

Result Handle to resized record. Returns NULL if there is not enough space
to resize the record, and DmGetLastErr returns an error code
indicating the reason for failure. Some releases may display a fatal
error message instead of returning the error code.

Comments This routine reallocates the record in another heap of the same
memory card if the current heap is not big enough. If this happens,

Data and Resource Manager
Data Manager Functions

532 Palm OS SDK Reference

the handle changes, so be sure to use the returned handle to access
the resized record.

DmResizeResource

Purpose Resize a resource and return the new handle.

Prototype MemHandle DmResizeResource (MemHandle resourceH,
UInt32 newSize)

Parameters -> resourceH Handle to resource.

-> newSize Desired new size of resource.

Result Returns a handle to newly sized resource. Returns NULL if there is
not enough space to resize the resource, and DmGetLastErr
returns an error code indicating the reason for failure. Some releases
may display a fatal error message instead of returning the error
code.

Comments Resizes the resource and returns a new handle. If necessary in order
to grow the resource, this routine will reallocate it in another heap
on the same memory card that it is currently in.

The handle may change if the resource had to be reallocated in a
different data heap because there was not enough space in its
present data heap.

DmResourceInfo

Purpose Retrieve information on a given resource.

Prototype Err DmResourceInfo (DmOpenRef dbP, UInt16 index,
DmResType* resTypeP, DmResID* resIDP,
LocalID* chunkLocalIDP)

Parameters -> dbP DmOpenRef to open database.

-> index Index of resource to get info on.

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 533

<- resTypeP The resource type. Pass NULL if you don’t want
to retrieve this information.

<- resIDP The resource ID. Pass NULL if you don’t want to
retrieve this information.

<- chunkLocalIDP
The memory manager local ID of the resource
data. Pass NULL if you don’t want to retrieve
this information.

Result Returns errNone if no error or dmErrIndexOutOfRange if an
error occurred. May display a fatal error message if the database is
not a resource database.

Comments If dbP is a pointer to a base resource database, the information
returned is about the resource from that database alone; this
function ignores any associated overlay.

See Also DmGetResource, DmGet1Resource, DmSetResourceInfo,
DmFindResource, DmFindResourceType

DmSearchRecord

Purpose Search all open record databases for a record with the handle
passed.

Prototype UInt16 DmSearchRecord (MemHandle recH,
DmOpenRef* dbPP)

Parameters -> recH Record handle.

<- dbPP The database that contains the record recH.

Result Returns the index of the record and database access pointer; if not
found, returns -1 and *dbPP is 0.

See Also DmGetRecord, DmFindRecordByID, DmRecordInfo

Data and Resource Manager
Data Manager Functions

534 Palm OS SDK Reference

DmSearchResource

Purpose Search all open resource databases for a resource by type and ID, or
by pointer if it is non-NULL.

Prototype UInt16 DmSearchResource (DmResType resType,
DmResID resID, MemHandle resH, DmOpenRef* dbPP)

Parameters -> resType Type of resource to search for.

-> resID ID of resource to search for.

-> resH Pointer to locked resource, or NULL.

<- dbPP The resource database that contains the
specified resource.

Result Returns the index of the resource, stores DmOpenRef in dbPP.

Comments This routine can be used to find a resource in all open resource
databases by type and ID or by pointer. If resH is NULL, the
resource is searched for by type and ID. If resH is not NULL,
resType and resID is ignored and the index of the resource
handle is returned. On return, *dbPP contains the access pointer of
the resource database that the resource was eventually found in.
Once the index of a resource is determined, it can be locked down
and accessed by calling DmGetResourceIndex.

If any of the open databases are overlaid, this function finds and
returns the localized version of the resource when searching by type
and creator. In this case, the dbPP return value is a pointer to the
overlay database, not the base resource database.

See Also DmGetResource, DmFindResourceType, DmResourceInfo,
DmFindResource

DmSeekRecordInCategory

Purpose Return the index of the record nearest the offset from the passed
record index whose category matches the passed category. (The

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 535

offset parameter indicates the number of records to move
forward or backward.)

Prototype Err DmSeekRecordInCategory (DmOpenRef dbP,
UInt16* indexP, Int16 offset, Int16 direction,
UInt16 category)

Parameters -> dbP DmOpenRef to open database.

<-> index The index to start the search at. Upon return,
contains the index of the record at offset
from the index that you passed in.

-> offset Offset of the passed record index. This must be
a positive number; use dmSeekBackward for
the direction parameter to search
backwards.

-> direction Must be either dmSeekForward or
dmSeekBackward.

-> category Category index.

Result Returns errNone if no error; returns dmErrIndexOutOfRange or
dmErrSeekFailed if an error occurred.

Comments DmSeekRecordInCategory searches for a record in the specified
category. The search begins with the record at index. When it finds
a record in the specified category, it decrements the offset
parameter and continues searching until a match is found and
offset is 0.

Because of this, if you use DmSeekRecordInCategory to find the
nearest matching record in a particular category, you must pass
different offset parameters if the starting record is in the category
than if it isn’t. If the record at index is in the category, then you
must pass an offset of 1 to find the next record in the category
because the comparison is performed before the index value
changes. If the record at index isn’t in the category, you must pass

Data and Resource Manager
Data Manager Functions

536 Palm OS SDK Reference

an offset of 0 to find the next record in the category. In this case,
an offset of 1 skips the first matching record.

See Also DmNumRecordsInCategory, DmQueryNextInCategory,
DmPositionInCategory, DmMoveCategory

DmSet

Purpose Write a specified value into a section of a record. This function also
checks the validity of the pointer for the record and makes sure the
writing of the record information doesn’t exceed the bounds of the
record.

Prototype Err DmSet (void* recordP, UInt32 offset,
UInt32 bytes, UInt8 value)

Parameters -> recordP Pointer to locked data record (chunk pointer).

-> offset Offset within record to start writing.

-> bytes Number of bytes to write.

-> value Byte value to write.

Result Returns errNone if no error. May display a fatal error message if
the record pointer is invalid or the function overwrites the record.

Comments Must be used to write to data manager records because the data
storage area is write-protected.

See Also DmWrite

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 537

DmSetDatabaseInfo

Purpose Set information about a database.

Prototype Err DmSetDatabaseInfo (UInt16 cardNo,
LocalID dbID, const Char* nameP,
UInt16* attributesP, UInt16* versionP,
UInt32* crDateP, UInt32* modDateP,
UInt32* bckUpDateP, UInt32* modNumP,
LocalID* appInfoIDP, LocalID* sortInfoIDP,
UInt32* typeP, UInt32* creatorP)

Parameters -> cardNo Card number the database resides on.

-> dbID Database ID of the database.

-> nameP Pointer to 32-byte character array for new
name, or NULL.

-> attributesP Pointer to new attributes variable, or NULL. See
“Database Attribute Constants” for a list of
possible values.

-> versionP Pointer to new version, or NULL.

-> crDateP Pointer to new creation date variable, or NULL.
Specify the value as a number of seconds since
Jan 1, 1904.

-> modDateP Pointer to new modification date variable, or
NULL. Specify the value as a number of seconds
since Jan 1, 1904.

-> bckUpDateP Pointer to new backup date variable, or NULL.
Specify the value as a number of seconds since
Jan 1, 1904.

-> modNumP Pointer to new modification number variable,
or NULL.

-> appInfoIDP Pointer to new appInfoID variable, or NULL.

-> sortInfoIDP Pointer to new sortInfoID variable, or NULL.

-> typeP Pointer to new type variable, or NULL.

Data and Resource Manager
Data Manager Functions

538 Palm OS SDK Reference

-> creatorP Pointer to new creator variable, or NULL.

Result Returns errNone if no error or one of the following if an error
occurred:

• dmErrInvalidDatabaseName

• dmErrAlreadyExists

• dmErrInvalidParam

Comments When this call changes appInfoID or sortInfoID, the old chunk
ID (if any) is marked as an orphan chunk and the new chunk ID is
unorphaned. Consequently, you shouldn’t replace an existing
appInfoID or sortInfoID if that chunk has already been
attached to another database.

Call this routine to set any or all information about a database
except for the card number and database ID. This routine sets the
new value for any non-NULL parameter.

See Also DmDatabaseInfo, DmOpenDatabaseInfo, DmFindDatabase,
DmGetNextDatabaseByTypeCreator,
TimDateTimeToSeconds

DmSetRecordInfo

Purpose Set record information stored in the database header.

Prototype Err DmSetRecordInfo (DmOpenRef dbP, UInt16 index,
UInt16* attrP, UInt32* uniqueIDP)

Parameters -> dbP DmOpenRef to open database.

-> index Index of record.

-> attrP Pointer to new attribute variable, or NULL. See
“Record Attribute Constants” for a list of
possible values.

Data and Resource Manager
Data Manager Functions

Palm OS SDK Reference 539

-> uniqueIDP Pointer to new unique ID variable, or NULL.

Result Returns errNone if no error, or one of the following if an error
occurred:

• dmErrReadOnly

• dmErrNotRecordDB

• dmErrIndexOutOfRange

Some releases may display a fatal error message instead of returning
the error code.

Comments Sets information about a record.

Normally, the unique ID for a record is automatically created by the
data manager when a record is created using DmNewRecord, so an
application would not typically change the unique ID.

See Also DmNumRecords, DmRecordInfo

DmSetResourceInfo

Purpose Set information on a given resource.

Prototype Err DmSetResourceInfo (DmOpenRef dbP,
UInt16 index, DmResType* resTypeP,
DmResID* resIDP)

Parameters -> dbP DmOpenRef to open database.

-> index Index of resource to set info for.

-> resTypeP Pointer to new resType (resource type), or
NULL.

-> resIDP Pointer to new resource ID, or NULL.

Result Returns errNone if no error, or one of the following if an error
occurred:

• dmErrIndexOutOfRange

• dmErrReadOnly

Data and Resource Manager
Data Manager Functions

540 Palm OS SDK Reference

May display a fatal error message if the database is not a resource
database.

Comments Use this routine to set all or a portion of the information on a
particular resource. Any or all of the new info pointers can be NULL.
If not NULL, the type and ID of the resource are changed to
*resTypeP and *resIDP.

DmStrCopy

Purpose Check the validity of the chunk pointer for the record and make
sure that writing the record will not exceed the chunk bounds.

Prototype Err DmStrCopy (void* recordP, UInt32 offset,
const Char * srcP)

Parameters <-> recordP Pointer to data record (chunk pointer).

-> offset Offset within record to start writing.

-> srcP Pointer to null-terminated string.

Result Returns errNone if no error. May display a fatal error message if
the record pointer is invalid or the function overwrites the record.

See Also DmWrite, DmSet

DmWrite

Purpose Must be used to write to data manager records because the data
storage area is write-protected. This routine checks the validity of
the chunk pointer for the record and makes sure that the write will
not exceed the chunk bounds.

Prototype Err DmWrite (void* recordP, UInt32 offset,
const void * srcP, UInt32 bytes)

Parameters <-> recordP Pointer to locked data record (chunk pointer).

-> offset Offset within record to start writing.

Data and Resource Manager
Application-Defined Functions

Palm OS SDK Reference 541

-> srcP Pointer to data to copy into record.

-> bytes Number of bytes to write.

Result Returns errNone if no error. May display a fatal error message if
the record pointer is invalid or the function overwrites the record.

See Also DmSet

DmWriteCheck

Purpose Check the parameters of a write operation to a data storage chunk
before actually performing the write.

Prototype Err DmWriteCheck (void* recordP, UInt32 offset,
UInt32 bytes)

Parameters -> recordP Locked pointer to recordH.

-> offset Offset into record to start writing.

-> bytes Number of bytes to write.

Result Returns errNone if no error; returns dmErrNotValidRecord or
dmErrWriteOutOfBounds if an error occurred.

Application-Defined Functions

DmComparF

Purpose Compares two records in a database.

Prototype typedef Int16 DmComparF (void* rec1, void* rec2,
Int16 other, SortRecordInfoPtr rec1SortInfo,
SortRecordInfoPtr rec2SortInfo,
MemHandle appInfoH)

Parameters -> rec1, rec2 Pointers to the two records to sort.

Data and Resource Manager
Application-Defined Functions

542 Palm OS SDK Reference

-> other Any other custom information you want
passed to the comparison function.

-> rec1SortInfo, rec2SortInfo
Pointers to SortRecordInfoType structures
that specify unique sorting information for the
two records.

-> appInfoH A handle to the database’s application info
block.

Result Returns:

• 0 if rec1 = rec2.

• < 0 if rec1 < rec2.

• > 0 if rec1 > rec2.

Comments This function is used to sort the records in a database. It is
specifically called by DmFindSortPosition, DmInsertionSort,
and DmQuickSort.

Compatibility The DmComparF prototype changed in Palm OS® version 2.0.
Previously, the prototype only defined the first three parameters.

As a rule, the change in the number of arguments from three to six
doesn’t cause problems when a 1.0 application is run on a 2.0 device
because the system only pulls the arguments from the stack that are
there.

Keep in mind, however, that some optimized applications built with
tools other than Metrowerks CodeWarrior for Palm OS may have
problems as a result of the change in arguments when running on a
2.0 or later device.

Palm OS SDK Reference 543

27
Time Manager
This chapter provides reference material for the time manager.

• Time Manager Data Structures

• Time Manager Functions

The header file DateTime.h declares the API that this chapter
describes. For more information on the time manager, see the
section “Time” in the Palm OS Programmer’s Companion.

Time Manager Data Structures
The time manager uses these structures to store information.

TimeFormatType
typedef enum
{
tfColon,

tfColonAMPM, // 1:00 pm
tfColon24h, // 13:00
tfDot,
tfDotAMPM, // 1.00 pm
tfDot24h, // 13.00
tfHoursAMPM, // 1 pm
tfHours24h, // 13
tfComma24h // 13,00

} TimeFormatType;

typedef TimeFormatType* TimeFormatPtr;

DaylightSavingsTypes
typedef enum {
dsNone, //Daylight Savings Time not

//observed

Time Manager
Time Manager Data Structures

544 Palm OS SDK Reference

dsUSA, //United States Daylight
//Savings Time

dsAustralia, //Australian Daylight
//Savings Time

dsWesternEuropean,//Western European Daylight
//Savings Time

dsMiddleEuropean, //Middle European Daylight
//Savings Time

dsEasternEuropean,//Eastern European Daylight
//Savings Time

dsGreatBritain, //Great Britain and Eire
//Daylight Savings Time

dsRumania, //Rumanian Daylight Savings
//Time

dsTurkey, //Turkish Daylight Savings
//Time

dsAustraliaShifted//Australian Daylight
//Savings Time with shift
//in 1986

} DaylightSavingsTypes;

DateFormatType
typedef enum {

dfMDYWithSlashes, // 12/31/95
dfDMYWithSlashes, // 31/12/95
dfDMYWithDots, // 31.12.95
dfDMYWithDashes, // 31-12-95
dfYMDWithSlashes, // 95/12/31
dfYMDWithDots, // 95.12.31
dfYMDWithDashes, // 95-12-31

dfMDYLongWithComma,// Dec 31, 1995
dfDMYLong, // 31 Dec 1995
dfDMYLongWithDot, // 31. Dec 1995
dfDMYLongNoDay, // Dec 1995
dfDMYLongWithComma,// 31 Dec, 1995
dfYMDLongWithDot, // 1995.12.31
dfYMDLongWithSpace,// 1995 Dec 31

Time Manager
Time Manager Data Structures

Palm OS SDK Reference 545

dfMYMed, // Dec '95
dfMYMedNoPost // Dec 95

//added for French 2.0 ROM)
} DateFormatType;

DateTimeType
typedef struct{
Int16 second;
Int16 minute;
Int16 hour;
Int16 day;
Int16 month;
Int16 year;
Int16 weekDay; //Days since Sunday (0 to 6)
}DateTimeType;

typedef DateTimeType* DateTimePtr;

TimeType
typedef struct {
UInt8 hours;
UInt8 minutes;
}TimeType;

typedef TimeType * TimePtr;

DateType
typedef struct{
UInt16 year :7; //years since 1904 (Mac format)
UInt16 month:4;
UInt16 day :5;
}DateType;

typedef DateType * DatePtr;

Time Manager
Time Manager Constants

546 Palm OS SDK Reference

Time Manager Constants
Maximum lengths of strings returned by the date and time
formatting routines DateToAscii, DateToDOWDMFormat, and
TimeToAscii.

Time Manager Functions

DateAdjust

Purpose Return a new date +/- the days adjustment.

Prototype void DateAdjust (DatePtr dateP, Int32 adjustment)

Parameters dateP A “DateType” structure with the date to be
adjusted (see DateTime.h).

adjustment The adjustment in number of days.

Result Changes dateP to contain the new date.

Constant Value Description

dateStringLength 9 Max length of string returned by
DateToAscii for short date formats.

longDateStrLength 15 Max length of string returned by
DateToAscii
for medium and long date formats.

timeStringLength 9 Max length of string returned by
TimeToAscii.

dowDateStringLength 19 Max length of string returned by
DateToDOWDMFormat for short date
formats.

dowLongDateStrLength 25 Max length of string returned by
DateToDOWDMFormat for long date
formats

Time Manager
Time Manager Functions

Palm OS SDK Reference 547

Comments This function is useful for advancing a day or week and not
worrying about month and year wrapping.

If the time is advanced out of bounds, it is cut at the bounds
surpassed.

DateDaysToDate

Purpose Return the date, given days.

Prototype void DateDaysToDate (UInt32 days, DatePtr date)

Parameters days Days since 1/1/1904.

date Pointer to “DateType” structure (returned).

Result Returns nothing, stores the date in date.

See Also TimAdjust, DateToDays

DateSecondsToDate

Purpose Return the date given seconds.

Prototype void DateSecondsToDate (UInt32 seconds,
DatePtr date)

Parameters seconds Seconds since 1/1/1904.

date Pointer to “DateType” structure (returned).

Result Returns nothing; stores the date in date.

Time Manager
Time Manager Functions

548 Palm OS SDK Reference

DateTemplateToAscii

Purpose Convert the date passed to a string, using the formatting specified
by the templateP string.

Prototype UInt16 DateTemplateToAscii(const Char *templateP,
UInt8 months, UInt8 days, UInt16 years, Char
*stringP, Int16 stringLen)

Parameters templateP pointer to template string used to format date. Max
length is maxDateTemplateLen bytes, excluding the
terminating null.

months months (1-12)

days days (1-31)

years years. For example, 1995.

stringP pointer to string which gets the result. Up to
stringLen bytes (excluding the terminating null
byte.) Can be NULL, in which case the required string
length is still returned by the function. If not NULL,
then the formatted string is written to it,

stringLen size of string buffer, excluding the terminating NULL
byte.

Result The length of the formatted string (without the terminating null
byte) is always returned, even if the stringP parameter is null.

This then lets you allocate a buffer at run time, without having to
previously fix it to some max size.

Comments The stringP parameter can be NULL, in which case the required
string length is still returned.

NOTE: This routine is only available in PalmOS 3.5 or later
ROMs.

Time Manager
Time Manager Functions

Palm OS SDK Reference 549

This routine uses the template text contained in templateP, and
creates a properly formatted date string in stringP for the values
passed in months, days, and years.

Template strings:

A template string contains a mixture of regular text and formatting
substrings. Each formatting substring has the format

"^<number><modifier>". The possible values for number are:

The possible values for modifier are:

The meaning of each modifier depends on what type of formatting
string it's part of. An example of each is as follows:

dateTemplateDayNum = '0', // Day number (1..31)

 dateTemplateDOWName, // Day name (e.g. Tue)

 dateTemplateMonthName, // Month name (e.g. Aug)

 dateTemplateMonthNum, // Month number (1..12)

 dateTemplateYearNum // Year (e.g. 1995)

#define dateTemplateShortModifier 's'

 #define dateTemplateRegularModifier 'r'

 #define dateTemplateLongModifier 'l'

 #define dateTemplateLeadZeroModifier 'z'

Format Short Regular Long Zero

DayNum 5 5 5 05

DOWName T Tue Tuesda
y

n/a

MonthName A Aug August n/a

MonthNum 8 8 8 08

YearNum 00 2000 2000 n/a

Time Manager
Time Manager Functions

550 Palm OS SDK Reference

So, for example, the formatting string to get "02 February 2000"
would be:

"^0z ^2l ^4r"

See Also DateToAscii, DateToDOWDMFormat

DateToAscii

Purpose Convert the date passed to a string using the format specified by the
dateFormat parameter.

Prototype void DateToAscii (UInt8 months, UInt8 days,
UInt16 years, DateFormatType dateFormat,
Char* pString)

Parameters months Months (1-12).

days Days (1-31).

years Years (for example 1995).

dateFormat Any “DateFormatType” format.

pString Pointer to string which gets the result. Must be
of length dateStringLength for standard
formats or longDateStrLength for medium
or long formats. (See “Time Manager
Constants” for allowed lengths.

Result Returns nothing. Stores the result in pString.

Comments NOTE: If you are using a debug ROM, the string buffer is filled
with dateStringLength or longStrLength debugging bytes,
depending on the dateFormat parameter.

Common situations where buffers overflow on debug ROMs
include stack-based or global variables, form titles, form labels, and
control labels. Overflowing a form object is sometimes very hard to
catch, because often what happens is that the following form

Time Manager
Time Manager Functions

Palm OS SDK Reference 551

object’s data (such as its position) is overwritten, and so suddenly
the form object disappears.

See Also TimeToAscii, DateToDOWDMFormat, DateTemplateToAscii

DateToDays

Purpose Return the date in days since 1/1/1904.

Prototype UInt32 DateToDays (DateType date)

Parameters date “DateType” structure.

Result Returns the days since 1/1/1904.

See Also TimAdjust, DateDaysToDate

DateToDOWDMFormat

Purpose Convert a date to a formatted string using the format specified by
the dateFormat parameter. The string passed must include the name
of the day of the week.

Prototype void DateToDOWDMFormat (UInt8 month, UInt8 day,
UInt16 year, DateFormatType dateFormat,
Char * pString)

Parameters month Month (1-12).

day Days (1-31).

year Years (for example 1995).

dateFormat Any “DateFormatType” format.

Time Manager
Time Manager Functions

552 Palm OS SDK Reference

pString Pointer to string which gets the result. Must be
of length dateStringLength for standard
formats or longDateStrLength for medium
or long date formats. (See “Time Manager
Constants” for string buffer lengths.)

Result Returns nothing; stores formatted string in pString.

Comments For the routines that return the day-of-week name in addition to the
date, the size of the buffers has been expanded, so developers need
to check the maximum lengths defined in DateTime.h.

Common situations where buffers overflow on debug ROMs
include stack-based or global variables, form titles, form labels, and
control labels. Overflowing a form object is sometimes very hard to
catch, because often what happens is that the following form
object’s data (such as its position) is overwritten, and so suddenly
the form object disappears.

See Also DateToAscii, DateTemplateToAscii

DayOfMonth

Purpose Return the day of a month on which the specified date occurs.

Prototype Int16 DayOfMonth (Int16 month, Int16 day,
Int16 year)

Parameters month Month (1-12).

day Day (1-31).

year Year (for example 1995).

Result Returns the day of the month; see DateTime.h.

Comments For example, “first Monday” is returned for 2/7/00.

Time Manager
Time Manager Functions

Palm OS SDK Reference 553

DayOfWeek

Purpose Return the day of the week.

Prototype Int16 DayOfWeek (Int16 month, Int16 day,
Int16 year)

Parameters month Month (1-12).

day Day (1-31).

year Year (for example 1995).

Result Returns the day of the week (Sunday = 0, Monday = 1, etc.).

DaysInMonth

Purpose Return the number of days in the month.

Prototype Int16 DaysInMonth (Int16 month, Int16 year)

Parameters month Month (1-12).

year Year (for example, 1995).

Result Returns the number of days in the month for that year.

TimAdjust

Purpose Return a new date, +/- the time adjustment.

Prototype void TimAdjust (DateTimePtr dateTimeP,
Int32 adjustment)

Parameters dateTimeP A “DateType” structure (see DateTime.h).

adjustment The adjustment in seconds.

Result Returns nothing. Changes dateTimeP to the new date and time.

Time Manager
Time Manager Functions

554 Palm OS SDK Reference

Comments This function is useful for advancing a day or week and not
worrying about month and year wrapping.

If the time is advanced out of bounds it is cut at the bounds
surpassed.

See Also DateAdjust

TimDateTimeToSeconds

Purpose Return the number of seconds since 1/1/1904 to the passed date
and time.

Prototype UInt32 TimDateTimeToSeconds
(DateTimePtr dateTimeP)

Parameters dateTimeP Pointer to a “DateTimeType” structure (see
DateTime.h).

Result The time in seconds since 1/1/1904.

See Also TimSecondsToDateTime

TimGetSeconds

Purpose Return the current date and time of the device in seconds since 1/1/
1904 12AM.

Prototype UInt32 TimGetSeconds (void)

Parameters None.

Result Returns the number of seconds.

See Also TimSetSeconds

Time Manager
Time Manager Functions

Palm OS SDK Reference 555

TimGetTicks

Purpose Return the tick count since the last reset. The tick count does not
advance while the device is in sleep mode.

Prototype UInt32 TimGetTicks (void)

Parameters None.

Result Returns the tick count.

Comments Use to determine the number of ticks per second.

TimSecondsToDateTime

Purpose Return the date and time, given seconds.

Prototype void TimSecondsToDateTime (UInt32 seconds,
DateTimePtr dateTimeP)

Parameters seconds Seconds to advance from 1/1/1904.

dateTimeP A “DateTimeType” structure that’s filled by the
function.

Result Returns nothing. Stores the date and time given seconds since 1/1/
1904 in dateTimeP.

See Also TimDateTimeToSeconds

Time Manager
Time Manager Functions

556 Palm OS SDK Reference

TimSetSeconds

Purpose Set the clock of the device to the date and time passed as the number
of seconds since 1/1/1904 12AM.

Prototype void TimSetSeconds (UInt32 seconds)

Parameters seconds The seconds since 1/1/1904.

Result Returns nothing.

Comments On systems where the Notification Feature Set is present, this
function broadcasts the sysNotifyTimeChangeEvent to all
interested parties. See the “Notification Manager” chapter for more
information.

See Also TimGetSeconds

Time Manager
Time Manager Functions

Palm OS SDK Reference 557

TimeToAscii

Purpose Convert the time passed to a formatted string.

Prototype void TimeToAscii (UInt8 hours, UInt8 minutes,
TimeFormatType timeFormat, Char* pString)

Parameters hours Hours (0-23).

minutes Minutes (0-59).

timeFormat FALSE to use AM and PM.

pString Pointer to string which gets the result. Must be
of length timeStringLength. See “Time
Manager Constants” for information on string
buffer lengths.

Result Returns nothing. Stores the formatted string in pString.

Comments NOTE: If you are using a debug ROM in PalmOS 3.5, the string
buffer is filled with timeStringLength debugging bytes.

For the routines that return the day-of-week name in addition to the
date, the size of the buffers has been expanded, so developers need
to check the maximum lengths defined in DateTime.h. See “Time
Manager Constants”.

See Also DateToAscii

Palm OS SDK Reference 559

28
Error Manager
This chapter provides reference material for the error manager. The
error manager API is declared in the header files ErrorMgr.h and
ErrorBase.h. This chapter covers:

• ERROR_CHECK_LEVEL Define

• Error Manager Functions

For more information on the error manager, see the chapter
“Debugging Strategies” in the Palm OS Programmer’s Companion.

ERROR_CHECK_LEVEL Define
The error manager uses the compiler define ERROR_CHECK_LEVEL
to control the level of error messages displayed. You can set the
value of the compiler define to control which level of error checking
and display is compiled into the application. Three levels of error
checking are supported: none, partial, and full.

If you set
ERR_CHECK_LEVEL to...

The compiler...

ERROR_CHECK_NONE (0) Doesn’t compile in any error calls.

ERROR_CHECK_PARTIAL
(1)

Compiles in only ErrDisplay
and ErrFatalDisplayIf calls.

ERROR_CHECK_FULL (2) Compiles in all three calls.

Error Manager
Error Manager Functions

560 Palm OS SDK Reference

Error Manager Functions

ErrAlert

Purpose Macro that displays an alert dialog for runtime errors.

Prototype ErrAlert (err)

Parameters -> err An error code (as type Err).

Result Returns 0, which indicates that the OK button has been clicked to
dismiss the dialog.

Comments This macro is intended for use by applications that are likely to
receive runtime errors when the application itself is not at fault. For
example, a networking application might use it to display an alert if
the remote server cannot be found.

The error message displayed on the dialog is stored in a 'tSTL'
resource. A 'tSTL' resource contains a list of strings that can be
looked up by index. The err parameter is used as the index into
this list.

To use application-defined error codes in ErrAlert, make sure that
all of your error codes are greater than or equal to appErrorClass.
This way, the error manager looks up the code in the application’s
'tSTL' resource number 0. All other error codes are taken from 'tSTL'
resource stored in the system.

Compatibility Implemented only if 3.2 New Feature Set is present.

Error Manager
Error Manager Functions

Palm OS SDK Reference 561

ErrDisplay

Purpose Macro that displays an error alert if error checking is set to partial or
full.

Prototype ErrDisplay (msg)

Parameters -> msg Error message text as a string.

Result No return value.

Comments Call this macro to display an error message, source code filename,
and line number. This macro is compiled into the code only if the
compiler define ERROR_CHECK_LEVEL is set to 1 or 2
(ERROR_CHECK_PARTIAL or ERROR_CHECK_FULL).

See Also ErrFatalDisplayIf, ErrNonFatalDisplayIf

ErrDisplayFileLineMsg

Purpose Display a nonexitable dialog with an error message. Do not allow
the user to continue.

Prototype void ErrDisplayFileLineMsg
(const Char * const filename, UInt16 lineno,
const Char * const msg)

Parameters -> filename Source code filename.

-> lineno Line number in the source code file.

-> msg Message to display.

Result Never returns.

Comment Called by ErrFatalDisplayIf and ErrNonFatalDisplayIf.
This function is useful when the application is already on the device
and being tested by users.

Error Manager
Error Manager Functions

562 Palm OS SDK Reference

On Japanese systems, the system displays a generic message
indicating that an error has occurred instead of displaying the
English message.

See Also ErrFatalDisplayIf, ErrNonFatalDisplayIf, ErrDisplay

ErrFatalDisplayIf

Purpose Macro that displays an error alert dialog if condition is true and
error checking is set to partial or full.

Prototype ErrFatalDisplayIf (condition, msg)

Parameters -> condition A boolean value. If true, display the error.

-> msg Error message text as a string.

Result No return value.

Comments Call this macro to display a fatal error message, source code
filename, and line number. The alert is displayed only if
condition is true. The dialog is cleared only when the user resets
the system by responding to the dialog.

This macro is compiled into the code if the compiler define
ERROR_CHECK_LEVEL is set to 1 or 2 (ERROR_CHECK_PARTIAL or
ERROR_CHECK_FULL).

See Also ErrNonFatalDisplayIf, ErrDisplay,

ErrNonFatalDisplayIf

Purpose Macro that displays an error alert dialog if condition is true and
error checking is set to full.

Prototype ErrNonFatalDisplayIf (condition, msg)

Parameters -> condition A boolean value. If true, display the error.

Error Manager
Error Manager Functions

Palm OS SDK Reference 563

-> msg Error message text as a string.

Result No return value.

Comments Call this macro to display a nonfatal error message, source code
filename, and line number. The alert is displayed only if
condition is true. The alert dialog is cleared when the user
selects to continue (or resets the system).

This macro is compiled into the code only if the compiler define
ERROR_CHECK_LEVEL is set to 2 (ERROR_CHECK_FULL).

See Also ErrFatalDisplayIf, ErrDisplay,

ErrThrow

Purpose Cause a jump to the nearest Catch block.

Prototype void ErrThrow (Int32 err)

Parameters -> err Error code.

Result Never returns.

Comments Use the macros ErrTry, ErrCatch, and ErrEndCatch in conjunction with
this function.

See Also ErrFatalDisplayIf, ErrNonFatalDisplayIf, ErrDisplay

Palm OS SDK Reference 565

29
Feature Manager
This chapter provides reference material for the feature manager.
The feature manager API is declared in the header file
FeatureMgr.h.

For more information on the feature manager, see the section
“Features” in the Palm OS Programmer’s Companion.

To learn how to use the predefined Palm OS® features to test for the
existence of certain OS features, see the “Compatibility Guide”
appendix.

Feature Manager Functions

FtrGet

Purpose Get a feature.

Prototype Err FtrGet (UInt32 creator, UInt16 featureNum,
UInt32 *valueP)

Parameters -> creator Creator ID, which must be registered with Palm
Computing®. This is usually the same as the
creator ID for the application that owns this
feature.

-> featureNum Feature number of the feature.

<- valueP Value of the feature is returned here.

Result Returns 0 if no error, or ftrErrNoSuchFtr if the specified feature
number doesn’t exist for the specified creator.

Feature Manager
Feature Manager Functions

566 Palm OS SDK Reference

Comments The value of the feature is application-dependent.

See Also FtrSet

FtrGetByIndex

Purpose Get a feature by index.

Prototype Err FtrGetByIndex (UInt16 index, Boolean romTable,
UInt32 *creatorP, UInt16 *numP, UInt32 *valueP)

Parameters -> index Index of feature.

-> romTable If true, index into ROM table; otherwise, index
into RAM table.

<- creatorP Feature creator is returned here.

<- numP Feature number is returned here.

<- valueP Feature value is returned here.

Result Returns 0 if no error, or ftrErrNoSuchFeature if the index is out
of range.

Comments This function is intended for system use only. It is used by shell
commands. Most applications don’t need it.

Until the caller gets back ftrErrNoSuchFeature, it should pass
indices for each table (ROM, RAM) starting at 0 and incrementing.
Note that in Palm OS 3.1 and higher, the RAM feature table serves
the entire system. At system startup, the values in the ROM feature
table are copied into the RAM feature table.

FtrPtrFree

Purpose Release memory previous allocated with FtrPtrNew.

Prototype Err FtrPtrFree (UInt32 creator, UInt16 featureNum)

Parameters -> creator The creator ID for the feature.

Feature Manager
Feature Manager Functions

Palm OS SDK Reference 567

-> featureNum Feature number of the feature.

Result Returns 0 if no error, or ftrErrNoSuchFtr if an error occurs.

Comments This function unregisters the feature before freeing the memory
associated with it.

Compatibility Implemented only if 3.1 New Feature Set is present.

FtrPtrNew

Purpose Allocate feature memory.

Prototype Err FtrPtrNew (UInt32 creator, UInt16 featureNum,
UInt32 size, void **newPtrP)

Parameters -> creator Creator ID, which must be registered with Palm
Computing. This is usually the same as the
creator ID for the application that owns this
feature.

-> featureNum Feature number of the feature.

-> size Size in bytes of the temporary memory to
allocate. The maximum chunk size is 64K.

<- newPtrP Pointer to the memory chunk is returned here.

Result Returns 0 if no error, memErrInvalidParam if the value of size
is 0, or memErrNotEnoughSpace if there is not enough space to
allocate a chunk of the specified size.

Comments This function allocates a chunk of memory and stores a pointer to
that chunk in the feature table. The same pointer is returned in
newPtrP. The memory chunk remains allocated and locked until
the next system reset or until you free the chunk with FtrPtrFree.

FtrPtrNew is useful if you want quick, efficient access to data that
persists from one invocation of the application to the next.
FtrPtrNew stores values on the storage heap rather than the
dynamic heap, where free space is often extremely limited. The

Feature Manager
Feature Manager Functions

568 Palm OS SDK Reference

disadvantage to using feature memory is that writing to storage
memory is slower than writing to dynamic memory.

NOTE: Starting with Palm OS 3.5 FtrPtrNew allows
allocating chunks larger than 64k. Do keep in mind standard
issues with allocating large chunks of memory: there might not be
enough contiguous space, and it can impact system performance.

You can obtain the pointer to the chunk using FtrGet. To write to
the chunk, you must use DmWrite because the chunk is in the
storage heap, not the dynamic heap.

For example, if you allocate a memory chunk in this way:

FtrPtrNew(appCreator,
myFtrMemFtr, 32, &ftrMem);

You can later access that memory and write to it using the following:

void* data;
if (!FtrGet(appCreator,

myFtrMemFtr, (UInt32*)&data))
DmWrite(data, 0, &someVal, sizeof(someVal));

Compatibility Implemented only if 3.1 New Feature Set is present.

See Also FtrPtrResize

FtrPtrResize

Purpose Resize feature memory.

Prototype Err FtrPtrResize (UInt32 creator,
UInt16 featureNum, UInt32 newSize, void **newPtrP)

Parameters -> creator The creator ID for the feature.

-> featureNum Feature number of the feature.

-> newSize New size in bytes for the chunk.

Feature Manager
Feature Manager Functions

Palm OS SDK Reference 569

<- newPtrP Pointer to the memory chunk is returned here.

Result Returns 0 if no error, or ftrErrNoSuchFtr if the specified feature
number doesn’t exist for the specified creator,
memErrInvalidParam if newSize is 0, or
memErrNotEnoughSpace if there’s not enough free space
available to allocate a chunk of that size.

Comments Use this function to resize a chunk of memory previously allocated
by FtrPtrNew.

This function may move the chunk to a new location in order to
resize it, so it is important to use the pointer returned by this
function when accessing the memory chunk. The pointer in the
feature table is automatically updated to be the same as the pointer
returned by this function.

If this function fails, the old memory pointer still exists and its data
is unchanged.

Compatibility Implemented only if 3.1 New Feature Set is present.

See Also MemHandleResize

FtrSet

Purpose Set a feature.

Prototype Err FtrSet (UInt32 creator, UInt16 featureNum,
UInt32 newValue)

Parameters -> creator Creator ID, which must be registered with Palm
Computing. This is usually the same as the
creator ID for the application that owns this
feature.

-> featureNum Feature number for this feature.

Feature Manager
Feature Manager Functions

570 Palm OS SDK Reference

-> newValue New value.

Result Returns 0 if no error, or memErrNotEnoughSpace if the feature
table must be resized to add a new feature and no space is available.

Comments The value of the feature is application-dependent.

A feature that you define in this manner remains defined until the
next system reset or until you explicitly undefine the feature with
FtrUnregister.

See Also FtrGet, FtrPtrNew

FtrUnregister

Purpose Unregister a feature.

Prototype Err FtrUnregister (UInt32 creator,
UInt16 featureNum)

Parameters -> creator Creator ID for the feature.

-> featureNum Feature number of the feature.

Result Returns 0 if no error, or ftrErrNoSuchFeature if the specified
feature number doesn’t exist for the specified creator.

Palm OS SDK Reference 571

30
File Streaming
This chapter provides reference material for the file streaming API.

• File Streaming Constants

• File Streaming Functions

• File Streaming Error Codes

The header file FileStream.h declares the API that this chapter
describes. For more information on file streaming, see the chapter
“Files and Databases” in the Palm OS Programmer’s Companion.

File Streaming Constants

Primary Open Mode Constants
This section lists constants passed in the openMode parameter to
the FileOpen function. These constants specify the mode in which
a file stream is opened.

For each file stream, you must pass to the FileOpen function only
one of the primary mode selectors listed.

Constant Values

fileModeReadOnly Open for read-only access

fileModeReadWrite Open/create for read/write access,
discarding any previous version of stream

fileModeUpdate Open/create for read/write, preserving
previous version of stream if it exists

fileModeAppend Open/create for read/write, always
writing to the end of the stream

File Streaming
File Streaming Constants

572 Palm OS SDK Reference

Secondary Open Mode Constants
You can use the | operator (bitwise inclusive OR) to append to a
primary mode selector one or more of the secondary mode selectors
listed below.

fileModeDontOverwrite Prevents fileModeReadWrite
from discarding an existing
stream having the same name;
may only be specified together
with fileModeReadWrite

fileModeLeaveOpen Leave stream open when
application quits. Most
applications should not use this
option.

fileModeExclusive No other application can open the
stream until the application that
opened it in this mode closes it.

fileModeAnyTypeCreator Accept any type/creator when
opening or replacing an existing
stream. Normally, the FileOpen
function opens only streams
having the specified creator and
type. Setting this option enables
the FileOpen function to open
streams having a type or creator
other than those specified.

fileModeTemporary Delete the stream automatically
when it is closed. For more
information, see Comment section
of FileOpen function
description.

File Streaming
File Streaming Functions

Palm OS SDK Reference 573

File Streaming Functions

FileClearerr

Purpose Clear I/O error status, end of file error status, and last error.

Prototype Err FileClearerr (FileHand stream)

Parameters --> stream Handle to open stream.

Result 0 if no error, or a fileErr code if an error occurs. See the section
“File Streaming Error Codes” for more information.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileGetLastError, FileRewind

FileClose

Purpose Close the file stream and destroy its handle. If the stream was
opened with fileModeTemporary, it is deleted upon closing.

Prototype Err FileClose (FileHand stream)

Parameters --> stream Handle to open stream.

Result 0 if no error, or a fileErr code if an error occurs. See the section
“File Streaming Error Codes” for more information.

Compatibility Implemented only if 3.0 New Feature Set is present.

File Streaming
File Streaming Functions

574 Palm OS SDK Reference

FileControl

Purpose Perform the operation specified by the op parameter on the stream
file stream.

Prototype Err FileControl (FileOpEnum op, FileHand stream,
void* valueP, Int32* valueLenP)

Parameters op The operation to perform, and its associated
formal parameters. See the Comments section
for a list of possible values.

--> stream Open stream handle if required for file stream
operation.

<--> valueP Pointer to value or buffer, as required. This
parameter is defined by the selector passed as
the value of the op parameter. For details, see
the Comments section.

<--> valueLenP Pointer to value or buffer, as required. This
parameter is defined by the selector passed as
the value of the op parameter. For details, see
the Comments section.

Result Returns either a value defined by the selector passed as the
argument to the op parameter, or an error code resulting from the
requested operation. For details, see the Comments section.

Comments Normally, you do not call the FileControl function yourself; it is
called for you by most of the other file streaming functions and
macros to perform common file streaming operations. You can call
FileControl yourself to enable specialized read modes.

fileOpNone No-op.

fileOpDestructiveReadMode Enter destructive read mode, and rewind stream to
its beginning. Once in this mode, there is no
turning back: stream's contents after closing (or
crash) are undefined.

File Streaming
File Streaming Functions

Palm OS SDK Reference 575

Destructive read mode deletes blocks as data are
read, thus freeing storage automatically. Once in
destructive read mode, you cannot re-use the file
stream—the contents of the stream are undefined
after it is closed or after a crash.

Writing to files opened without write access or
those that are in destructive read state is not
allowed; thus, you cannot call the FileWrite,
FileSeek, or FileTruncate functions on a
stream that is in destructive read mode. One
exception to this rule applies to streams that were
opened in “write + append” mode and then
switched into destructive read state. In this case,
the FileWrite function can append data to the
stream, but it also preserves the current stream
position so that subsequent reads pick up where
they left off (you can think of this as a pseudo-
pipe).

ARGUMENTS:
stream = open stream handle
valueP = NULL
valueLenP = NULL

RETURNS:
zero on success;
fileErr... on error

fileOpGetEOFStatus Get end-of-file status (like C runtime’s feof) (err =
fileErrEOF). Indicates end of file condition. Use
FileClearerr to clear this error status.

ARGUMENTS:
stream = open stream handle
valueP = NULL
valueLenP = NULL

RETURNS:
zero if not end of file;
non-zero if end of file

File Streaming
File Streaming Functions

576 Palm OS SDK Reference

fileOpGetLastError Get error code from last operation on stream, and
clear the last error code value. Doesn’t change
status of EOF or I/O errors —use FileClearerr
to reset all error codes.

ARGUMENTS:
stream = open stream handle
valueP = NULL
valueLenP = NULL

RETURNS:
Error code from last file stream operation

fileOpClearError Clear I/O and EOF error status and last error.

ARGUMENTS:
stream = open stream handle
valueP = NULL
valueLenP = NULL

RETURNS:
zero on success; fileErr... on error

fileOpGetIOErrorStatus Get I/O error status (like C runtime's ferror). Use
FileClearerr to clear this error status.

ARGUMENTS:
stream = open stream handle
valueP = NULL
valueLenP = NULL

RETURNS:
zero if not I/O error;
non-zero if I/O error is pending.

fileOpGetCreatedStatus Find out whether file was created by FileOpen
function

ARGUMENTS:
stream = open stream handle
valueP = Pointer to Boolean
valueLenP = Pointer to Int32 variable set to
sizeof(Boolean)

File Streaming
File Streaming Functions

Palm OS SDK Reference 577

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileClearerr, FileEOF, FileError, FileFlush,
FileGetLastError, FileRewind

RETURNS:
zero on success; fileErr... on error. The Boolean
variable will be set to non-zero if the file was
created.

fileOpGetOpenDbRef Get the open database reference (handle) of the
underlying database that implements the stream
(NULL if none); this is needed for performing Palm
OS-specific operations on the underlying database,
such as changing or getting creator and type,
version, backup/reset bits, and so on.

ARGUMENTS:
stream = open stream handle
valueP = Pointer to DmOpenRef variable
valueLenP = Pointer to Int32 variable set to
sizeof(DmOpenRef)

RETURNS:
zero on success; fileErr... on error. The
DmOpenRef variable will be set to the file's open db
reference that may be passed to Data Manager calls;

WARNING: Do not make any changes to the data
of the underlying database -- doing so will corrupt
the file stream.

fileOpFlush Flush any cached data to storage.

ARGUMENTS:
stream = open stream handle
valueP = NULL
valueLenP = NULL

RETURNS:
zero on success; fileErr... on error;

File Streaming
File Streaming Functions

578 Palm OS SDK Reference

FileDelete

Purpose Deletes the specified file stream from the specified card. Only a
closed stream may be passed to this function.

Prototype Err FileDelete (UInt16 cardNo, Char* nameP)

Parameters cardNo Card on which the file stream to delete resides.
Currently, no Palm OS® devices support
multiple cards, so this value must be 0.

nameP String that is the name of the stream to delete.

Result 0 if no error, or a fileErr code if an error occurs. See the section
“File Streaming Error Codes” for more information.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileOpen

FileDmRead

Purpose Read data from a file stream into a chunk, record, or resource
residing in a database.

Prototype Int32 FileDmRead (FileHand stream,
void* startOfDmChunkP, Int32 destOffset,
Int32 objSize, Int32 numObj, Err* errP)

Parameters --> stream Handle to open stream.

--> startOfDmChunkP
Pointer to beginning of chunk, record or
resource residing in a database.

destOffset Offset from startOfDmChunkP (base pointer)
to the destination area (must be >= 0).

objSize Size of each stream object to read.

numObj Number of stream objects to read.

File Streaming
File Streaming Functions

Palm OS SDK Reference 579

<--> errP Pointer to variable that is to hold the error code
returned by this function. Pass NULL to ignore.
See the section “File Streaming Error Codes”
for more information.

Result The number of whole objects that were read—note that the number
of objects actually read may be less than the number requested.

Comments When the number of objects actually read is less than the number
requested, you may be able to determine the cause of this result by
examining the return value of the errP parameter or by calling the
FileGetLastError function. If the cause is insufficient data in the
stream to satisfy the full request, the current stream position is at
end-of-file and the “end of file” indicator is set. If a non-NULL
pointer was passed as the value of the errP parameter when the
FileDmRead function was called and an error was encountered,
*errP holds a non-zero error code when the function returns. In
addition, the FileError and FileEOF functions may be used to
check for I/O errors.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileRead, FileError, FileEOF

FileEOF

Purpose Get end-of-file status (err = fileErrEOF indicates end of file
condition).

Prototype Err FileEOF (FileHand stream)

Parameters --> stream Handle to open stream.

Result 0 if not end of file; non-zero if end of file. See the section “File
Streaming Error Codes” for more information.

Comments This function’s behavior is similar to that of the feof function
provided by the C programming language runtime library.

File Streaming
File Streaming Functions

580 Palm OS SDK Reference

Use FileClearerr to clear the I/O error status.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileClearerr, FileGetLastError, FileRewind

FileError

Purpose Get I/O error status.

Prototype Err FileError (FileHand stream)

Parameters --> stream Handle to open stream.

Result 0 if no error, and non-zero if an I/O error indicator has been set for
this stream. See the section “File Streaming Error Codes” for more
information.

Comments This function’s behavior is similar to that of the C programming
language’s ferror runtime function.

Use FileClearerr to clear the I/O error status.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileClearerr, FileGetLastError, FileRewind

FileFlush

Purpose Flush cached data to storage.

Prototype Err FileFlush (FileHand stream)

Parameters --> stream Handle to open stream.

Result 0 if no error, or a fileErr code if an error occurs. See the section
“File Streaming Error Codes” for more information.

File Streaming
File Streaming Functions

Palm OS SDK Reference 581

Comments It is not always necessary to call this function explicitly—certain
operations flush the contents of a stream automatically; for example,
streams are flushed when they are closed. Because this function’s
behavior is similar to that of the fflush function provided by the C
programming language runtime library, you only need to call it
explicitly under circumstances similar to those in which you would
call fflush explicitly.

Compatibility Implemented only if 3.0 New Feature Set is present.

FileGetLastError

Purpose Get error code from last operation on file stream, and clear the last
error code value (will not change end of file or I/O error status --
use FileClearerr to reset all error codes)

Prototype Err FileGetLastError (FileHand stream)

Parameters --> stream Handle to open stream.

Result Error code returned by the last file stream operation. See the section
“File Streaming Error Codes” for more information.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileClearerr, FileEOF, FileError

File Streaming
File Streaming Functions

582 Palm OS SDK Reference

FileOpen

Purpose Open existing file stream or create an open file stream for I/O in the
mode specified by the openMode parameter.

Prototype FileHand FileOpen (UInt16 cardNo, Char* nameP,
UInt32 type, UInt32 creator, UInt32 openMode,
Err* errP)

Parameters cardNo Card on which the file stream to open resides.
Currently, no Palm OS devices support
multiple cards, so this value must be 0.

--> nameP Pointer to text string that is the name of the file
stream to open or create. This value must be a
valid name—no wildcards allowed, must not
be NULL.

type File type of stream to open or create. Pass 0 for
wildcard, in which case
sysFileTFileStream is used if the stream
needs to be created and fileModeTemporary
is not specified. If type is 0 and
fileModeTemporary is specified, then
sysFileTTemp is used for the file type of the
stream this function creates.

creator Creator of stream to open or create. Pass 0 for
wildcard, in which case the current
application's creator ID is used for the creator
of the stream this function creates.

openMode Mode in which to open the file stream. You
must specify only one primary mode selector.
Additionally, you can use the | operator
(bitwise inclusive OR) to append one or more
secondary mode selectors to the primary mode
selector. See “Primary Open Mode Constants”
and “Secondary Open Mode Constants” for the
list of possible values.

File Streaming
File Streaming Functions

Palm OS SDK Reference 583

<--> errP Pointer to variable that is to hold the error code
returned by this function. Pass NULL to ignore.
See the section “File Streaming Error Codes”
for a list of error codes.

Result If successful, returns a handle to an open file stream; otherwise,
returns 0.

Comments The fileModeReadOnly, fileModeReadWrite,
fileModeUpdate, and fileModeAppend modes are mutually
exclusive—pass only one of them to the FileOpen function!

When the fileModeTemporary open mode is used and the file
type passed to FileOpen is 0, the FileOpen function uses
sysFileTTemp (defined in SystemMgr.rh) for the file type, as
recommended. In future versions of Palm OS, this configuration
will enable the automatic cleanup of undeleted temporary files after
a system crash. Automatic post-crash cleanup is not implemented in
current versions of Palm OS.

To open a file stream even if it has a different type and creator than
specified, pass the fileModeAnyTypeCreator selector as a flag in
the openMode parameter to the FileOpen function.

The fileModeLeaveOpen mode is an esoteric option that most
applications should not use. It may be useful for a library that needs
to open a stream from the current application’s context and keep it
open even after the current application quits. By default, Palm OS
automatically closes all databases that were opened in a particular
application’s context when that application quits. The
fileModeLeaveOpen option overrides this default behavior.

Compatibility Implemented only if 3.0 New Feature Set is present.

File Streaming
File Streaming Functions

584 Palm OS SDK Reference

FileRead

Purpose Reads data from a stream into a buffer. Do not use this function to
read data into a chunk, record or resource residing in a database—
you must use the FileDmRead function for such operations.

Prototype Int32 FileRead (FileHand stream, void* bufP,
Int32 objSize, Int32 numObj, Err* errP)

Parameters --> stream Handle to open stream.

--> bufP Pointer to beginning of buffer into which data
is read

objSize Size of each stream object to read.

numObj Number of stream objects to read.

<--> errP Pointer to variable that is to hold the error code
returned by this function. Pass NULL to ignore.
See the section “File Streaming Error Codes”
for a list of error codes.

Result The number of whole objects that were read—note that the number
of objects actually read may be less than the number requested.

Comments Do not use this function to read data into a chunk, record or
resource residing in a database—you must use the FileDmRead
function for such operations.

When the number of objects actually read is fewer than the number
requested, you may be able to determine the cause of this result by
examining the return value of the errP parameter or by calling the
FileGetLastError function. If the cause is insufficient data in the
stream to satisfy the full request, the current stream position is at
end-of-file and the “end of file” indicator is set. If a non-NULL
pointer was passed as the value of the errP parameter when the
FileRead function was called and an error was encountered,
*errP holds a non-zero error code when the function returns. In
addition, the FileError and FileEOF functions may be used to
check for I/O errors.

File Streaming
File Streaming Functions

Palm OS SDK Reference 585

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileDmRead

FileRewind

Purpose Reset position marker to beginning of stream and clear all error
codes.

Prototype Err FileRewind (FileHand stream)

Parameters --> stream Handle to open stream.

Result 0 if no error, or a fileErr code if an error occurs. See the section
“File Streaming Error Codes” for more information.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileSeek, FileTell, FileClearerr, FileEOF, FileError,
FileGetLastError

FileSeek

Purpose Set current position within a file stream, extending the stream as
necessary if it was opened with write access.

Prototype Err FileSeek (FileHand stream, Int32 offset,
FileOriginEnum origin)

Parameters --> stream Handle to open stream.

offset Position to set, expressed as the number of
bytes from origin. This value may be positive,
negative, or 0.

origin Describes the origin of the position change.
Possible values are:

fileOriginBeginning
From the beginning (first data byte of file).

File Streaming
File Streaming Functions

586 Palm OS SDK Reference

fileOriginCurrent
From the current position.

fileOriginEnd
From the end of file (one position beyond last
data byte).

Result 0 if no error, or a fileErr code if an error occurs. See the section
“File Streaming Error Codes” for more information.

Comments Attempting to seek beyond end-of-file in a read-only stream results
in an I/O error.

This function’s behavior is similar to that of the fseek function
provided by the C programming language runtime library.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileRewind, FileTell

FileTell

Purpose Get current position and, optionally, file size.

Prototype Int32 FileTell (FileHand stream, Int32* fileSizeP,
Err* errP)

Parameters --> stream Handle to open stream.

<-> fileSizeP Pointer to variable that holds value describing
size of stream in bytes when this function
returns. Pass NULL to ignore.

<--> errP Pointer to variable that is to hold the error code
returned by this function. Pass NULL to ignore.
See the section “File Streaming Error Codes”
for a list of possible error codes.

Result If successful, returns current position, expressed as an offset in bytes
from the beginning of the stream. If an error was encountered,
returns -1 as a signed long integer.

File Streaming
File Streaming Functions

Palm OS SDK Reference 587

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileRewind, FileSeek

FileTruncate

Purpose Truncate the file stream to a specified size; not allowed on streams
open in destructive read mode or read-only mode.

Prototype Err FileTruncate (FileHand stream, Int32 newSize)

Parameters --> stream Handle of open stream.

newSize New size; must not exceed current stream size.

Result 0 if no error, or a fileErr code if an error occurs. See the section
“File Streaming Error Codes” for a list of possible error codes.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FileTell

FileWrite

Purpose Write data to a stream.

Prototype Int32 FileWrite (FileHand stream, void* dataP,
Int32 objSize, Int32 numObj, Err* errP)

Parameters --> stream Handle to open stream.

--> dataP Pointer to buffer holding data to write.

objSize Size of each stream object to write; must be ≥ 0.

numObj Number of stream objects to write.

File Streaming
File Streaming Error Codes

588 Palm OS SDK Reference

<--> errP Optional pointer to variable that holds the error
code returned by this function. Pass NULL to
ignore. See the section “File Streaming Error
Codes” for a list of possible error codes.

Result The number of whole objects that were written—note that the
number of objects actually written may be less than the number
requested. Should available storage be insufficient to satisfy the
entire request, as much of the requested data as possible is written
to the stream, which may result in the last object in the stream being
incomplete.

Comments Writing to files opened without write access or those that are in
destructive read state is not allowed; thus, you cannot call the
FileWrite, FileSeek, or FileTruncate functions on a stream
that is in destructive read mode. One exception to this rule applies
to streams that were opened in "write + append" mode and then
switched into destructive read state. In this case, the FileWrite
function can append data to the stream, but it also preserves the
current stream position so that subsequent reads pick up where they
left off (you can think of this as a pseudo-pipe).

Compatibility Implemented only if 3.0 New Feature Set is present.

File Streaming Error Codes
This section lists all error codes returned by the file streaming
functions.

Error Code Value Meaning

fileErrMemErr (fileErrorClass|1) Out of memory error

fileErrInvalidParam (fileErrorClass|2) Invalid parameter
value passed

fileErrCorruptFile (fileErrorClass|3) Alleged stream is
corrupted, invalid,
or not a stream

File Streaming
File Streaming Error Codes

Palm OS SDK Reference 589

fileErrNotFound (fileErrorClass|4) Couldn't find the
stream

fileErrTypeCreatorMismatch (fileErrorClass|5) Type and/or creator
not what was
specified

fileErrReplaceError (fileErrorClass|6) Couldn't replace
existing stream

fileErrCreateError (fileErrorClass|7) Couldn't create new
stream

fileErrOpenError (fileErrorClass|8) Generic open error

fileErrInUse (fileErrorClass|9) Stream couldn't be
opened or deleted
because it is in use

fileErrReadOnly (fileErrorClass|10) Couldn't open in
write mode because
existing stream is
read-only

fileErrInvalidDescriptor (fileErrorClass|11) Invalid file
descriptor
(FileHandle)

fileErrCloseError (fileErrorClass|12) Error closing the
stream

fileErrOutOfBounds (fileErrorClass|13) Attempted operation
went out of bounds
of the stream

fileErrPermissionDenied (fileErrorClass|14) Couldn't write to a
stream open for
read-only access

fileErrIOError (fileErrorClass|15) Generic I/O error

Error Code Value Meaning

File Streaming
File Streaming Error Codes

590 Palm OS SDK Reference

fileErrEOF (fileErrorClass|16) End-of-File error

fileErrNotStream (fileErrorClass|17) Attempted to open
an entity that is not a
stream

Error Code Value Meaning

Palm OS SDK Reference 591

31
Float Manager
This section provides reference material for the float manager. The
float manager API is declared in the header file FloatMgr.h.

For more information on the float manager, see the section
“Floating-Point” in the Palm OS Programmer’s Companion.

Float Manager Functions

FplAdd

Purpose Add two floating-point numbers (returns a + b).

Prototype FloatType FplAdd (FloatType a, FloatType b)

Parameters a, b The floating-point numbers.

Result Returns the normalized floating-point result of the addition.

Comment Under Palm OS® 2.0 and later, most applications will want to use the
arithmetic symbols instead. See the “Floating-Point” section in the
Palm OS Programmer’s Companion.

Float Manager
Float Manager Functions

592 Palm OS SDK Reference

FplAToF

Purpose Convert a zero-terminated ASCII string to a floating-point number.
The string must be in the format: [-]x[.]yyyyyyyy[e[-]zz]

Prototype FloatType FplAToF (char* s)

Parameters s Pointer to the ASCII string.

Result Returns the floating-point number.

Comment The mantissa of the number is limited to 32 bits.

See Also FplFToA

FplBase10Info

Purpose Extract detailed information on the base 10 form of a floating-point
number: the base 10 mantissa, exponent, and sign.

Prototype Err FplBase10Info (FloatType a, ULong* mantissaP,
Int* exponentP, Int* signP)

Parameters a The floating-point number.

mantissaP The base 10 mantissa (return value).

exponentP The base 10 exponent (return value).

signP The sign, 1 or -1 (return value).

Result Returns an error code, or 0 if no error.

Comments The mantissa is normalized so it contains at least
kMaxSignificantDigits significant digits when printed as an
integer value.

FlpBase10Info reports that zero is "negative"; that is, it returns a
one for xSign. If this is a problem, a simple workaround is:

Float Manager
Float Manager Functions

Palm OS SDK Reference 593

 if (xMantissa == 0) {
 xSign = 0;

FplDiv

Purpose Divide two floating-point numbers (result = dividend/divisor).

Prototype FloatType FplDiv (FloatType dividend,
FloatType divisor)

Parameters dividend Floating-point dividend.

divisor Floating-point divisor.

Result Returns the normalized floating-point result of the division.

Under Palm OS 2.0 and later, most applications will want to use the
arithmetic symbols instead. See the “Floating-Point” section in the
Palm OS Programmer’s Companion.

FplFloatToLong

Purpose Convert a floating-point number to a long integer.

Prototype Long FplFloatToLong (FloatType f)

Parameters f Floating-point number to be converted.

Result Returns the long integer.

See Also FplLongToFloat, FplFloatToULong

Float Manager
Float Manager Functions

594 Palm OS SDK Reference

FplFloatToULong

Purpose Convert a floating-point number to an unsigned long integer.

Prototype ULong FplFloatToULong (FloatType f)

Parameters f Floating-point number to be converted.

Result Returns an unsigned long integer.

See Also FplLongToFloat, FplFloatToLong

FplFree

Purpose Release all memory allocated by the floating-point initialization.

Prototype void FplFree()

Parameters None.

Result Returns nothing.

Comments Applications must call this routine after they’ve called other
functions that are part of the float manager.

See Also FplInit

FplFToA

Purpose Convert a floating-point number to a zero-terminated ASCII string
in exponential format: [-]x.yyyyyyyye[-]zz

Prototype Err FplFToA (FloatType a, char* s)

Parameters a Floating-point number.

Float Manager
Float Manager Functions

Palm OS SDK Reference 595

s Pointer to buffer to contain the ASCII string.

Result Returns an error code, or 0 if no error.

See Also FplAToF

FplInit

Purpose Initialize the floating-point conversion routines.

Allocate space in the system heap for floating-point globals.

Initialize the tenPowers array in the globals area to the powers of
10 from -99 to +99 in floating-point format.

Prototype Err FplInit()

Parameters None.

Result Returns an error code, or 0 if no error.

Comments Applications must call this routine before calling any other Fpl
function.

See Also FplFree

FplLongToFloat

Purpose Convert a long integer to a floating-point number.

Prototype FloatType FplLongToFloat (Long x)

Parameters x A long integer.

Result Returns the floating-point number.

Float Manager
Float Manager Functions

596 Palm OS SDK Reference

FplMul

Purpose Multiply two floating-point numbers.

Prototype FloatType FplMul (FloatType a, FloatType b)

Parameters a, b The floating-point numbers.

Result Returns the normalized floating-point result of the multiplication.

Comment Under Palm OS 2.0 and later, most applications will want to use the
arithmetic symbols instead. See the “Floating-Point” section in the
Palm OS Programmer’s Companion.

FplSub

Purpose Subtract two floating-point numbers (returns a - b).

Prototype FloatType FplSub (FloatType a, FloatType b)

Parameters a, b The floating-point numbers.

Result Returns the normalized floating-point result of the subtraction.

Comment Under Palm OS 2.0 and later, most applications will want to use the
arithmetic symbols instead. See the “Floating-Point” section in the
Palm OS Programmer’s Companion.

Palm OS SDK Reference 597

32
Fonts
This chapter provides reference material for font support. The API
that this chapter describes is declared in the header files Font.h
and FontSelect.h. For more information on fonts, see the “Text”
section in the Palm OS Programmer’s Companion.

Font Functions

FntAverageCharWidth

Purpose Return the average character width in the current font.

Prototype Int16 FntAverageCharWidth (void)

Parameters None.

Result Returns the average character width (in pixels).

FntBaseLine

Purpose Return the distance from the top of character cell to the baseline for
the current font.

Prototype Int16 FntBaseLine (void)

Parameters None.

Result Returns the baseline of the font (in pixels).

Fonts
Font Functions

598 Palm OS SDK Reference

FntCharHeight

Purpose Return the character height, in the current font including accents
and descenders.

Prototype Int16 FntCharHeight (void)

Parameters None

Result Height of the characters in the current font, expressed in pixels.

FntCharsInWidth

Purpose Find the length in bytes of the characters from a specified string that
fit within a passed width.

Prototype void FntCharsInWidth (Char const * string,
Int16 *stringWidthP, Int16 *stringLengthP,
Boolean *fitWithinWidth)

Parameters string Pointer to the character string.

stringWidthP Maximum width to allow (in pixels).

stringLengthP Maximum length of text to allow, in bytes
(assumes current font).

fitWithinWidth Set to true if string is considered truncated.

Result When the call is completed, the information is updated as follows:

stringWidthP Set to the width of the characters allowed.

stringLengthP Set to the length in bytes of the text that can
appear within the width.

fitWithinWidth true if the string is considered truncated,
false if it isn’t.

Comments Spaces at the end of a string are ignored and removed. Characters
after a carriage return are ignored, the string is considered
truncated.

Fonts
Font Functions

Palm OS SDK Reference 599

FntCharsWidth

Purpose Return the width of the specified character string. The Missing
Character Symbol is substituted for any character which does not
exist in the current font.

Prototype Int16 FntCharsWidth (Char const *chars, Int16 len)

Parameters chars Pointer to a string of characters.

len Length in bytes of the string.

Result Returns the width of the string, in pixels.

FntCharWidth

Purpose Return the width of the specified character. If the specified character
does not exist within the current font, the Missing Character Symbol
is substituted.

Prototype Int16 FntCharWidth (Char ch)

Parameters ch Character whose width is needed.

Result Returns the width of the specified character (in pixels).

Comments FntCharWidth works with single-byte characters only. To
determine the pixel width of a single-byte character or a multi-byte
character, use TxtCharWidth instead of this function on systems
that support the Text Manager.

FntDefineFont

Purpose Makes a custom font available to your application. The custom font
is available only when the application that called this function is

Fonts
Font Functions

600 Palm OS SDK Reference

running; when the application quits, the custom font is uninstalled
automatically.

Prototype Err FntDefineFont (FontID font, FontPtr fontP)

Parameters font An application-defined value greater than 128
that identifies the custom font to the system.
Although this value is local to the application
that called the FntDefineFont function, it
must be greater than 128 because values less
than 128 are reserved for system use.

fontP Pointer to the custom font resource to be used
by this function. This resource must remain
locked until the calling application undefines
the custom font or quits.

Result 0 no error

memErrNotEnoughSpace
Insufficient dynamic heap space

Comments The font this function specifies is not available at build time; as a
result, some UI elements—labels, for example—cannot determine
their bounds automatically as they do when using the built-in fonts.
This mechanism and its associated tools may be augmented in the
near future; for more information, stay in contact with Palm.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FontSelect, FntSetFont

Fonts
Font Functions

Palm OS SDK Reference 601

FntDescenderHeight

Purpose Return the height of a character’s descender in the current font. The
height of a descender is the distance between the base line an the
bottom of the character cell.

Prototype Int16 FntDescenderHeight (void)

Parameters None.

Result Returns the height of a descender, expressed in pixels.

FntGetFont

Purpose Return the Font ID of the current font.

Prototype FontID FntGetFont (void)

Parameters None.

Result Returns the Font ID of the current font.

FntGetFontPtr

Purpose Return a pointer to the current font.

Prototype FontPtr FntGetFontPtr (void)

Parameters None.

Result Returns the FontPtr of the current font.

Fonts
Font Functions

602 Palm OS SDK Reference

FntGetScrollValues

Purpose Return the values needed to update a scroll bar based on a specified
string and the position within the string.

Prototype void FntGetScrollValues (Char const *chars,
UInt16 width, UInt16 scrollPos, UInt16 *linesP,
UInt16 *topLine)

Parameters chars Null-terminated string.

width Width to word wrap at, in pixels.

scrollPos Character position of the first visible character.

linesP (returned) number of lines of text.

topLine (returned) top visible line.

Result Returns nothing. Stores the number of lines of text in linesP and
the top visible line in topLine.

Compatibility Implemented only if 2.0 New Feature Set is present.

FntLineHeight

Purpose Return the height of a line in the current font. The height of a line is
the height of the character cell plus the space between lines (the
external leading).

Prototype Int16 FntLineHeight (void)

Parameters None.

Result Returns the height of a line in the current font.

FntLineWidth

Purpose Return the width of the specified line of text, taking tab characters in
to account. The function assumes that the characters passed are left-

Fonts
Font Functions

Palm OS SDK Reference 603

aligned and that the first character in the string is the first character
drawn on a line. In other words, this routine doesn’t work for
characters that don’t start at the beginning of a line.

Prototype Int16 FntLineWidth (Char const *pChars,
UInt16 length)

Parameters pChars Pointer to a string of characters.

length Length in bytes of the string.

Result Returns the line width (in pixels).

FntSetFont

Purpose Set the current font.

Prototype FontID FntSetFont (FontID font)

Parameters font ID of the font to make the active font.

Result Returns the ID of the current font before the change.

FntWidthToOffset

Purpose Given a pixel position, return the offset of the character displayed at
that location.

Prototype Int16 FntWidthToOffset (Char const *pChars,
UInt16 length, Int16 pixelWidth,
Boolean *leadingEdge, Int16 *truncWidth)

Parameters -> pChars Pointer to the character string. Must not be
NULL.

-> length Length in bytes of pChars.

-> pixelWidth A horizontal location on the screen, given in
pixels.

Fonts
Font Functions

604 Palm OS SDK Reference

<- leadingEdge Set to true if the pixel position pixelWidth
falls on the left side of the character. Pass NULL
for this parameter if you don’t need this
information.

<- truncWidth The width of the text (in pixels) up to the
returned offset. Pass NULL for this parameter if
you don’t need this information.

Result Returns the offset into pChars of the character displayed at the
location pixelWidth.

Compatibility Implemented only if 3.1 New Feature Set is present.

FntWordWrap

Purpose Given a string, determine how many bytes of text can be displayed
within the specified width.

Prototype UInt16 FntWordWrap (Char const *chars,
UInt16 maxWidth)

Parameters chars Pointer to a null-terminated string.

maxWidth Maximum line width in pixels.

Result Returns the length of the line, in bytes.

Compatibility Implemented only if 2.0 New Feature Set is present.

Fonts
Font Functions

Palm OS SDK Reference 605

FntWordWrapReverseNLines

Purpose Word wrap a text string backwards by the number of lines specified.
The character position of the start of the first line and the number of
lines that are actually word wrapped are returned.

Prototype void FntWordWrapReverseNLines
(Char const *const chars, UInt16 maxWidth,
UInt16 *linesToScrollP, UInt16 *scrollPosP)

Parameters chars Pointer to a null-terminated string.

maxWidth Maximum line width in pixels.

linesToScrollP The number of lines to scroll. Upon return,
contains the number lines that were scrolled.

scrollPosP Byte offset of the first character. Upon return,
contains the first character after wrapping.

Result Returns nothing. Stores the first character after wrapping and the
number of lines scrolled in scrollPosP and linesToScrollP.

Compatibility Implemented only if 2.0 New Feature Set is present.

FontSelect

Purpose Displays a dialog box in which the user can choose one of three
system-supplied fonts, and returns a FontID value representing the
user’s choice.

Prototype FontID FontSelect (FontID fontID)

Parameters fontID A fontID value specifying the font to be
highlighted as the default choice in the dialog
box this function displays. This value must be
one of the following system-supplied constants:

stdFont
Standard plain text font

Fonts
Font Functions

606 Palm OS SDK Reference

boldFont
Bold version of stdFont

largeBoldFont
Larger version of boldFont

Result Returns a fontID value representing the font that the user chose in
the dialog box this function displays.

Comments When your application starts up for the first time, it should use the
features sysFtrDefaultFont and sysFtrDefaultBoldFont to
determine the default font for the application. For example:

FtrGet(sysFtrCreator, sysFtrDefaultFont,
&fntID)

After this call returns, fntID contains an ID compatible with the
FontSelect function.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FntGetFont, FntSetFont

Palm OS SDK Reference 607

33
Graffiti Manager
This chapter provides reference material for the Graffiti® manager.
The Graffiti manager API is declared in the header file
Graffiti.h.

For more information on the Graffiti manager, see the section
“Receiving User Input” in the Palm OS Programmer’s Companion.

Graffiti Manager Functions

GrfAddMacro

Purpose Add a macro to the macro list.

Prototype Err GrfAddMacro (Char* nameP, UInt8* macroDataP,
UInt16 dataLen)

Parameters nameP Name of macro.

macroDataP Data of macro.

dataLen Size of macro data in bytes.

Result Returns 0 if no error; returns grfErrNoMacros,
grfErrMacroPtrTooSmall, dmErrNotValidRecord,
dmErrWriteOutOfBounds if an error occurs.

See Also GrfGetMacro, GrfGetMacroName, GrfDeleteMacro

Graff it i Manager
Graffiti Manager Functions

608 Palm OS SDK Reference

GrfAddPoint

Purpose Add a point to the Graffiti point buffer.

Prototype Err GrfAddPoint (PointType* pt)

Parameters pt Pointer to point buffer.

Result Returns 0 if no error; returns grfErrPointBufferFull if an error
occurs.

See Also GrfFlushPoints

GrfCleanState

Purpose Remove any temporary shifts from the dictionary state.

Prototype Err GrfCleanState (void)

Parameters None

Result Returns 0 if no error, or grfErrNoDictionary if an error occurs.

See Also GrfInitState

GrfDeleteMacro

Purpose Delete a macro from the macro list.

Prototype Err GrfDeleteMacro (UInt16 index)

Parameters index Index of the macro to delete.

Result Returns 0 if no error, or grfErrNoMacros,
grfErrMacroNotFound if an error occurs.

See Also GrfAddMacro

Graffit i Manager
Graffiti Manager Functions

Palm OS SDK Reference 609

GrfFilterPoints

Purpose Filter the points in the Graffiti point buffer.

Prototype Err GrfFilterPoints (void)

Parameters None.

Result Always returns 0.

See Also GrfMatch

GrfFindBranch

Purpose Locate a branch in the Graffiti dictionary by flags.

Prototype Err GrfFindBranch (UInt16 flags)

Parameters flags Flags of the branch you’re searching for.

Result Returns 0 if no error, or grfErrNoDictionary or
grfErrBranchNotFound if an error occurs.

See Also GrfCleanState, GrfInitState

GrfFlushPoints

Purpose Dispose of all points in the Graffiti point buffer.

Prototype Err GrfFlushPoints (void)

Parameters None.

Result Always returns 0.

See Also GrfAddPoint

Graff it i Manager
Graffiti Manager Functions

610 Palm OS SDK Reference

GrfGetAndExpandMacro

Purpose Look up and expand a macro in the current macros.

Prototype Err GrfGetAndExpandMacro (Char* nameP,
UInt8* macroDataP, UInt16* dataLenP)

Parameters nameP Name of macro to look up.

macroDataP Macro contents returned here.

dataLenP On entry, size of macroDataP buffer; on exit,
number of bytes in macro data.

Result Returns 0 if no error, or grfErrNoMacros or
grfErrMacroNotFound if an error occurs.

See Also GrfAddMacro, GrfGetMacro

GrfGetGlyphMapping

Purpose Look up a glyph in the dictionary and return the text.

Prototype Err GrfGetGlyphMapping (UInt16 glyphID,
UInt16* flagsP, void* dataPtrP, UInt16* dataLenP,
UInt16* uncertainLenP)

Parameters glyphID Glyph ID to look up.

flagsP Returned dictionary flags.

dataPtrP Where returned text goes.

dataLenP On entry, size of dataPtrP; on exit, number of
bytes returned.

uncertainLenP Return number of uncertain characters in text.

Result Returns 0 if no error, or grfErrNoDictionary or
grfErrNoMapping if an error occurs.

See Also GrfMatch

Graffit i Manager
Graffiti Manager Functions

Palm OS SDK Reference 611

GrfGetMacro

Purpose Look up a macro in the current macros.

Prototype Err GrfGetMacro (Char* nameP, UInt8* macroDataP,
UInt16* dataLenP)

Parameters nameP Name of macro to lookup.

macroDataP Macro contents returned here.

dataLenP On entry: size of macroDataP buffer. On exit:
number of bytes in macro data.

Result Returns 0 if no error or grfErrNoMacros,
grfErrMacroNotFound.

See Also GrfAddMacro

GrfGetMacroName

Purpose Look up a macro name by index.

Prototype Err GrfGetMacroName (UInt16 index, Char* nameP)

Parameters index Index of macro.

nameP Name returned here.

Result Returns 0 if no error, or grfErrNoMacros or
grfErrMacroNotFound if an error occurs.

See Also GrfAddMacro, GrfGetMacro

Graff it i Manager
Graffiti Manager Functions

612 Palm OS SDK Reference

GrfGetNumPoints

Purpose Return the number of points in the point buffer.

Prototype Err GrfGetNumPoints (UInt16* numPtsP)

Parameters numPtsP Returned number of points.

Result Always returns 0.

See Also GrfAddPoint

GrfGetPoint

Purpose Return a point out of the Graffiti point buffer.

Prototype Err GrfGetPoint (UInt16 index, PointType* pointP)

Parameters index Index of the point to get.

pointP Returned point.

Result Returns 0 if no error, or grfErrBadParam if an error occurs.

See Also GrfAddPoint, GrfGetNumPoints

GrfGetState

Purpose Return the current Graffiti shift state.

Prototype Err GrfGetState (Boolean* capsLockP,
Boolean* numLockP, UInt16* tempShiftP,
Boolean* autoShiftedP)

Parameters capsLockP Returns true if caps lock on.

numLockP Returns true if num lock on.

tempShiftP Current temporary shift.

Graffit i Manager
Graffiti Manager Functions

Palm OS SDK Reference 613

autoShiftedP Returns TRUE if shift not set by the user but by
the system, for example, at the beginning of a
line.

Result Always returns 0.

Compatibility
Note

Palm OS® 2.0 and later has more user-friendly auto shifting. It uses
an upper case letter under these conditions:

• after an empty field

• after a period or other sentence terminator (such as ? or !).

• after two spaces

See Also GrfSetState

GrfInitState

Purpose Reinitialize the Graffiti dictionary state.

Prototype Err GrfInitState (void)

Parameters None.

Result Always returns 0.

See Also GrfGetState, GrfSetState

GrfMatch

Purpose Recognize the current stroke in the Graffiti point buffer and return
with the recognized text.

Prototype Err GrfMatch (UInt16* flagsP, void* dataPtrP,
UInt16* dataLenP, UInt16* uncertainLenP,
GrfMatchInfoPtr matchInfoP)

Parameters flagsP Glyph flags are returned here.

Graff it i Manager
Graffiti Manager Functions

614 Palm OS SDK Reference

dataPtrP Return text is placed here.

dataLenP Size of dataPtrP on exit; number of characters
returned on exit.

uncertainLenP Return number of uncertain characters.

matchInfoP Array of grfMaxMatches, or nil.

Result Returns 0 if no error, or grfErrNoGlyphTable,
grfErrNoDictionary, or grfErrNoMapping if an error occurs.

See Also GrfAddPoint, GrfFlushPoints

GrfMatchGlyph

Purpose Recognize the current stroke as a glyph.

Prototype Err GrfMatchGlyph (GrfMatchInfoPtr matchInfoP,
Int16 maxUnCertainty, UInt16 maxMatches)

Parameters matchInfoP Pointer to array of matches to fill in.

maxUnCertainty Maximum number of errors to tolerate.

maxMatches Size of matchInfoP array.

Result Returns 0 if no error, or grfErrNoGlyphTable if an error occurs.

See Also GrfMatch

GrfProcessStroke

Purpose Translate a stroke to keyboard events using Graffiti.

Prototype Err GrfProcessStroke (PointType* startPtP,
PointType* endPtP, Boolean upShift)

Parameters startPtP Start point of stroke.

endPtP End point of stroke.

Graffit i Manager
Graffiti Manager Functions

Palm OS SDK Reference 615

upShift Set to true to feed an artificial upshift into the
engine.

Result Returns 0 if recognized.

Comments Called by SysHandleEvent when a penUpEvent is detected in
the writing area. This routine recognizes the stroke and sends the
recognized characters into the key queue. It also flushes the stroke
out of the pen queue after recognition.

See Also SysHandleEvent

GrfSetState

Purpose Set the current shift state of Graffiti.

Prototype Err GrfSetState (Boolean capsLock,
Boolean numLock, Boolean upperShift)

Parameters capsLock Set to true to turn on caps lock.

numLock Set to true to turn on num lock.

upperShift Set to true to put into upper shift.

Result Always returns 0.

See Also GrfGetState

Palm OS SDK Reference 617

34
Key Manager
This chapter provides reference material for the key manager. The
key manager API is declared in the header file KeyMgr.h.

For more information on the key manager, see the section
“Receiving User Input” in the Palm OS Programmer’s Companion.

Key Manager Functions

KeyCurrentState

Purpose Return bit field with bits set for each key that is currently depressed.

Prototype UInt32 KeyCurrentState (void)

Parameters None.

Result Returns a UInt32 with bits set for keys that are depressed. See
keyBitPower, keyBitPageUp, keyBitPageDown, etc., in
KeyMgr.h.

Comments Called by applications that need to poll the keys.

See Also KeyRates

Key Manager
Key Manager Functions

618 Palm OS SDK Reference

KeyRates

Purpose Get or set the key repeat rates.

Prototype Err KeyRates (Boolean set, UInt16* initDelayP,
UInt16* periodP, UInt16* doubleTapDelayP,
Boolean* queueAheadP)

Parameters set If true, settings are changed; if false, current
settings are returned.

initDelayP Initial delay in ticks for a auto-repeat event.

periodP Auto-repeat rate specified as period in ticks.

doubleTapDelayPMaximum double-tap delay, in ticks.

queueAheadP If true, auto-repeating keeps queueing up key
events if the queue has keys in it. If false,
auto-repeat doesn’t enqueue keys unless the
queue is already empty.

Result Returns 0 if no error.

See Also KeyCurrentState

KeySetMask

Purpose Specify which keys generate keyDownEvents.

You can specify this either by using this function or by using the
poweredOnKeyMask modifier.

Prototype UInt32 KeySetMask (UInt32 keyMask)

Parameters keyMask Mask with bits set for those keys to generate
keyDownEvents for.

Result Returns the old key Mask.

Compatibility Implemented only if 2.0 New Feature Set is present.

Palm OS SDK Reference 619

35
Memory Manager
This chapter provides reference information for the memory
manager. The memory manager API is declared in the header file
MemoryMgr.h.

For more information on the memory manager, see the chapter
“Memory” in the Palm OS Programmer’s Companion.

Memory Manager Functions

MemCardInfo

Purpose Return information about a memory card.

Prototype Err MemCardInfo (UInt16 cardNo, Char* cardNameP,
Char* manufNameP, UInt16* versionP,
UInt32* crDateP, UInt32* romSizeP,
UInt32* ramSizeP, UInt32* freeBytesP)

Parameters cardNo Card number.

cardNameP Pointer to character array (32 bytes), or 0.

manufNameP Pointer to character array (32 bytes), or 0.

versionP Pointer to version variable, or 0.

crDateP Pointer to creation date variable, or 0.

romSizeP Pointer to ROM size variable, or 0.

ramSizeP Pointer to RAM size variable, or 0.

freeBytesP Pointer to free byte-count variable, or 0.

Result Returns 0 if no error.

Memory Manager
Memory Manager Functions

620 Palm OS SDK Reference

Comments Pass 0 for those variables that you don’t want returned.

MemCmp

Purpose Compare two blocks of memory.

NOTE: Blocks are compared as unsigned bytes.

Prototype Int16 MemCmp (const void* s1, const void* s2,
Int32 numBytes)

Parameters s1, s2 Pointers to block of memory.

numBytes Number of bytes to compare.

Result Zero if they match, non-zero if not:

+ if s1 > s2

- if s1 < s2

Compatibility Implemented only if 2.0 New Feature Set is present.

MemCmp can be used to test the equality of blocks in memory on all
versions that support MemCmp; however, testing the sort ordering of
blocks in memory works reliably only on Palm OS® versions 3.5 and
higher. On versions earlier than 3.2, MemCmp always returns a
positive value if the blocks are unequal. On versions 3.2 and 3.3,
MemCmp reliably returns positive to indicate s1 > s2 and negative to
indicate s1 < s2 only if the characters that differ are less than 128
apart. If the difference is greater than that, MemCmp may return
positive when it should return negative and vice versa.

Memory Manager
Memory Manager Functions

Palm OS SDK Reference 621

MemDebugMode

Purpose Return the current debugging mode of the memory manager.

Prototype UInt16 MemDebugMode(void)

Parameters No parameters.

Result Returns debug flags as described for MemSetDebugMode.

MemHandleCardNo

Purpose Return the card number a chunk resides in.

Prototype UInt16 MemHandleCardNo (MemHandle h)

Parameters -> h Chunk handle.

Result Returns the card number.

Comments Call this routine to retrieve the card number (0 or 1) a movable
chunk resides on.

See Also MemPtrCardNo

MemHandleDataStorage

Purpose Return true if the given handle is part of a data storage heap. If not,
it’s a handle in the dynamic heap.

Prototype Boolean MemHandleDataStorage (MemHandle h)

Parameters -> h Chunk handle.

Result Returns true if the handle is part of a data storage heap.

Memory Manager
Memory Manager Functions

622 Palm OS SDK Reference

Comments Called by Fields package routines to determine if they need to
worry about data storage write-protection when editing a text field.

See Also MemPtrDataStorage

MemHandleFree

Purpose Dispose of a movable chunk.

Prototype Err MemHandleFree (MemHandle h)

Parameters -> h Chunk handle.

Result Returns 0 if no error, or memErrInvalidParam if an error occurs.

Comments Call this routine to dispose of a movable chunk.

See Also MemHandleNew

MemHandleHeapID

Purpose Return the heap ID of a chunk.

Prototype UInt16 MemHandleHeapID (MemHandle h)

Parameters -> h Chunk handle.

Result Returns the heap ID of a chunk.

Comments Call this routine to get the heap ID of the heap a chunk resides in.

See Also MemPtrHeapID

Memory Manager
Memory Manager Functions

Palm OS SDK Reference 623

MemHandleLock

Purpose Lock a chunk and obtain a pointer to the chunk’s data.

Prototype MemPtr MemHandleLock (MemHandle h)

Parameters -> h Chunk handle.

Result Returns a pointer to the chunk.

Comments Call this routine to lock a chunk and obtain a pointer to the chunk.

MemHandleLock and MemHandleUnlock should be used in pairs.

See Also MemHandleNew, MemHandleUnlock

MemHandleNew

Purpose Allocate a new movable chunk in the dynamic heap and returns a
handle to it.

Prototype MemHandle MemHandleNew (UInt32 size)

Parameters -> size The desired size of the chunk.

Result Returns a handle to the new chunk, or 0 if unsuccessful.

Comments Use this call to allocate dynamic memory. Before you can write data
to the memory chunk that MemHandleNew allocates, you must call
MemHandleLock to lock the chunk and get a pointer to it.

See Also MemPtrFree, MemPtrNew, MemHandleFree, MemHandleLock

Memory Manager
Memory Manager Functions

624 Palm OS SDK Reference

MemHandleResize

Purpose Resize a chunk.

Prototype Err MemHandleResize (MemHandle h, UInt32 newSize)

Parameters -> h Chunk handle.

-> newSize The new desired size.

Result 0 No error.

memErrInvalidParam
Invalid parameter passed.

memErrNotEnoughSpace
Not enough free space in heap to grow chunk.

memErrChunkLocked
Can’t grow chunk because it’s locked.

Comments Call this routine to resize a chunk. This routine is always successful
when shrinking the size of a chunk, even if the chunk is locked.
When growing a chunk, it first attempts to grab free space
immediately following the chunk so that the chunk does not have to
move. If the chunk has to move to another free area of the heap to
grow, it must be movable and have a lock count of 0.

On devices running version 2.0 or earlier of Palm OS, the
MemHandleResize function tries to resize the chunk only within
the same heap, whereas DmResizeRecord will look for space in
other data heaps if it can’t find enough space in the original heap.

See Also MemHandleNew, MemHandleSize

Memory Manager
Memory Manager Functions

Palm OS SDK Reference 625

MemHandleSetOwner

Purpose Set the owner ID of a chunk.

Prototype Err MemHandleSetOwner (MemHandle h, UInt16 owner)

Parameters -> h Chunk handle.

-> owner New owner ID of the chunk. Specify 0 to set the
owner to the operating system.

Result Returns 0 if no error, or memErrInvalidParam if an error occurs.

Comments When you allocate a parameter block to pass to SysUIAppSwitch
or SysAppLaunch, you must call MemPtrSetOwner to grant
ownership of the parameter block chunk to the OS (your application
is originally set as the owner). If the parameter block structure
references any chunks by handle, you also must call
MemHandleSetOwner to grant ownership of those blocks to the
OS. If you don’t change the ownership of these chunks, they will get
freed before the application you’re launching has a chance to use
them.

MemHandleSize

Purpose Return the requested size of a chunk.

Prototype UInt32 MemHandleSize (MemHandle h)

Parameters -> h Chunk handle.

Result Returns the requested size of the chunk.

Comments Call this routine to get the size originally requested for a chunk.

See Also MemHandleResize

Memory Manager
Memory Manager Functions

626 Palm OS SDK Reference

MemHandleToLocalID

Purpose Convert a handle into a local chunk ID which is card relative.

Prototype LocalID MemHandleToLocalID (MemHandle h)

Parameters -> h Chunk handle.

Result Returns local ID, or NULL (0) if unsuccessful.

Comments Call this routine to convert a chunk handle to a local ID.

See Also MemLocalIDToGlobal, MemLocalIDToLockedPtr

MemHandleUnlock

Purpose Unlock a chunk given a chunk handle.

Prototype Err MemHandleUnlock (MemHandle h)

Parameters -> h The chunk handle.

Result 0 No error.

memErrInvalidParam
Invalid parameter passed.

Comments Call this routine to decrement the lock count for a chunk.

MemHandleLock and MemHandleUnlock should be used in pairs.

See Also MemHandleLock

Memory Manager
Memory Manager Functions

Palm OS SDK Reference 627

MemHeapCheck

Purpose Check validity of a given heap.

Prototype Err MemHeapCheck (UInt16 heapID)

Parameters heapID ID of heap to check.

Result Returns 0 if no error.

See Also MemDebugMode, MemSetDebugMode

MemHeapCompact

Purpose Compact a heap.

Prototype Err MemHeapCompact (UInt16 heapID)

Parameters -> heapID ID of the heap to compact.

Result Always returns 0.

Comments Most applications never need to call this function explicitly. The
system software calls this function at various times; for example,
during memory allocation (if sufficient free space is not available)
and during system reboot.

Call this routine to compact a heap and merge all free space. This
routine attempts to move all movable chunks to the start of the heap
and merge all free space in the center of the heap.

Memory Manager
Memory Manager Functions

628 Palm OS SDK Reference

MemHeapDynamic

Purpose Return true if the given heap is a dynamic heap.

Prototype Boolean MemHeapDynamic (UInt16 heapID)

Parameters heapID ID of the heap to be tested.

Result Returns true if dynamic, false if not.

Comments Dynamic heaps are used for volatile storage, application stacks,
globals, and dynamically allocated memory.

NOTE: In Palm OS 3.5, the dynamic heap is sized based on the
amount of memory available, and is generally larger than before.

See Also MemNumHeaps, MemHeapID

MemHeapFlags

Purpose Return the heap flags for a heap.

Prototype UInt16 MemHeapFlags (UInt16 heapID)

Parameters -> heapID ID of heap.

Result Returns the heap flags.

Comments Call this routine to retrieve the heap flags for a heap. The flags can
be examined to determine if the heap is ROM based or not. ROM-
based heaps have the memHeapFlagReadOnly bit set.

See Also MemNumHeaps, MemHeapID

Memory Manager
Memory Manager Functions

Palm OS SDK Reference 629

MemHeapFreeBytes

Purpose Return the total number of free bytes in a heap and the size of the
largest free chunk in the heap.

Prototype Err MemHeapFreeBytes (UInt16 heapID,
UInt32* freeP, UInt32* maxP)

Parameters -> heapID ID of heap.

<-> freeP Pointer to a variable of type UInt32 for free
bytes.

<-> maxP Pointer to a variable of type UInt32 for max
free chunk size.

Result Always returns 0.

Comments This routine doesn’t compact the heap but may be used to
determine in advance whether an allocation request will succeed.
Before allocating memory, call this function and test the return value
of maxP to determine whether enough free space to fulfill your
allocation request exists. If not, you may make more space available
by calling the MemHeapCompact function. An alternative approach
is to just call the MemHeapCompact function as necessary when an
error is returned by the MemPtrNew or MemHandleNew functions.

See Also MemHeapSize, MemHeapID, MemHeapCompact

MemHeapID

Purpose Return the heap ID for a heap, given its index and the card number.

Prototype UInt16 MemHeapID (UInt16 cardNo, UInt16 heapIndex)

Parameters -> cardNo The card number, either 0 or 1.

Memory Manager
Memory Manager Functions

630 Palm OS SDK Reference

-> heapIndex The heap index, anywhere from 0 to
MemNumHeaps - 1.

Result Returns the heap ID.

Comments Call this routine to retrieve the heap ID of a heap, given the heap
index and the card number. A heap ID must be used to obtain
information on a heap such as its size, free bytes, etc., and is also
passed to any routines which manipulate heaps.

See Also MemNumHeaps

MemHeapScramble

Purpose Scramble the specified heap.

Prototype Err MemHeapScramble (UInt16 heapID)

Parameters heapID ID of heap to scramble.

Comments The system attempts to move each movable chunk.

Useful for debugging.

Result Always returns 0.

See Also MemDebugMode, MemSetDebugMode

Memory Manager
Memory Manager Functions

Palm OS SDK Reference 631

MemHeapSize

Purpose Return the total size of a heap including the heap header.

Prototype UInt32 MemHeapSize (UInt16 heapID)

Parameters -> heapID ID of heap.

Result Returns the total size of the heap.

See Also MemHeapFreeBytes, MemHeapID

MemLocalIDKind

Purpose Return whether or not a local ID references a handle or a pointer.

Prototype LocalIDKind MemLocalIDKind (LocalID local)

Parameters -> local Local ID to query

Result Returns LocalIDKind, or a memIDHandle or memIDPtr (see
MemoryMgr.h).

Comments This routine determines if the given local ID is to a nonmovable
(memIDPtr) or movable (memIDHandle) chunk.

MemLocalIDToGlobal

Purpose Convert a local ID, which is card relative, into a global pointer in the
designated card.

Prototype MemPtr MemLocalIDToGlobal (LocalID local,
UInt16 cardNo)

Parameters -> local The local ID to convert.

Memory Manager
Memory Manager Functions

632 Palm OS SDK Reference

-> cardNo Memory card the chunk resides in.

Result Returns pointer or handle to chunk.

See Also MemLocalIDKind, MemLocalIDToLockedPtr

MemLocalIDToLockedPtr

Purpose Return a pointer to a chunk given its local ID and card number.

If the local ID references a movable chunk handle, this routine
automatically locks the chunk before returning.

Prototype MemPtr MemLocalIDToLockedPtr (LocalID local,
UInt16 cardNo)

Parameters local Local chunk ID.

cardNo Card number.

Result Returns pointer to chunk, or 0 if an error occurs.

See Also MemLocalIDToGlobal, MemLocalIDToPtr, MemLocalIDKind,
MemPtrToLocalID, MemHandleToLocalID

MemLocalIDToPtr

Purpose Return pointer to chunk, given the local ID and card number.

Prototype MemPtr MemLocalIDToPtr (LocalID local,
UInt16 cardNo)

Parameters -> local Local ID to query.

-> cardNo Card number the chunk resides in.

Result Returns a pointer to the chunk, or 0 if error.

Memory Manager
Memory Manager Functions

Palm OS SDK Reference 633

Comments If the local ID references a movable chunk and that chunk is not
locked, this function returns 0 to indicate an error.

See Also MemLocalIDToGlobal, MemLocalIDToLockedPtr

MemMove

Purpose Move a range of memory to another rangein the dynamic heap.

Prototype Err MemMove (void* dstP, const void* sP,
Int32 numBytes)

Parameters dstP Pointer to destination.

sP Pointer to source.

numBytes Number of bytes to move.

Result Always returns 0.

Comments Handles overlapping ranges.

For operations where the destination is in a data heap, see DmSet,
DmWrite, and related functions.

MemNumCards

Purpose Return the number of memory card slots in the system. Not all slots
need to be populated.

Prototype UInt16 MemNumCards (void)

Parameters None.

Result Returns number of slots in the system.

Memory Manager
Memory Manager Functions

634 Palm OS SDK Reference

MemNumHeaps

Purpose Return the number of heaps available on a particular card.

Prototype UInt16 MemNumHeaps (UInt16 cardNo)

Parameters -> cardNo The card number; either 0 or 1.

Result Number of heaps available, including ROM- and RAM-based
heaps.

Comments Call this routine to retrieve the total number of heaps on a memory
card. The information can be obtained by calling MemHeapSize,
MemHeapFreeBytes, and MemHeapFlags on each heap using its heap
ID. The heap ID is obtained by calling MemHeapID with the card
number and the heap index, which can be any value from 0 to
MemNumHeaps.

MemNumRAMHeaps

Purpose Return the number of RAM heaps in the given card.

Prototype UInt16 MemNumRAMHeaps (UInt16 cardNo)

Parameters cardNo The card number.

Result Returns the number of RAM heaps.

See Also MemNumCards

Memory Manager
Memory Manager Functions

Palm OS SDK Reference 635

MemPtrCardNo

Purpose Return the card number (0 or 1) a nonmovable chunk resides on.

Prototype UInt16 MemPtrCardNo (MemPtr p)

Parameters -> p Pointer to the chunk.

Result Returns the card number.

See Also MemHandleCardNo

MemPtrDataStorage

Purpose Return true if the given pointer is part of a data storage heap; if
not, it is a pointer in the dynamic heap.

Prototype Boolean MemPtrDataStorage (MemPtr p)

Parameters p Pointer to a chunk.

Result Returns true if the chunk is part of a data storage heap.

Comments Called by Fields package to determine if it needs to worry about
data storage write-protection when editing a text field.

See Also MemHeapDynamic

Memory Manager
Memory Manager Functions

636 Palm OS SDK Reference

MemPtrFree

Purpose Macro to dispose of a chunk.

Prototype Err MemPtrFree (MemPtr p)

Parameters -> p Pointer to a chunk.

Result 0 If no error or memErrInvalidParam (invalid
parameter).

Comments Call this routine to dispose of a nonmovable chunk.

MemPtrHeapID

Purpose Return the heap ID of a chunk.

Prototype UInt16 MemPtrHeapID (MemPtr p)

Parameters -> p Pointer to the chunk.

Result Returns the heap ID of a chunk.

Comments Call this routine to get the heap ID of the heap a chunk resides in.

MemPtrNew

Purpose Allocate a new nonmovable chunk in the dynamic heap.

Prototype MemPtr MemPtrNew (UInt32 size)

Parameters -> size The desired size of the chunk.

Result Returns pointer to the new chunk, or 0 if unsuccessful.

Memory Manager
Memory Manager Functions

Palm OS SDK Reference 637

Comments This routine allocates a nonmovable chunk in the dynamic heap and
returns a pointer to the chunk. Applications can use it when
allocating dynamic memory.

In Palm OS 3.5, the dynamic heap is sized based on the amount of
memory available, and is generally larger than before.

NOTE: You cannot allocate a zero-size reference block.

MemPtrRecoverHandle

Purpose Recover the handle of a movable chunk, given a pointer to its data.

Prototype MemHandle MemPtrRecoverHandle (MemPtr p)

Parameters -> p Pointer to the chunk.

Result Returns the handle of the chunk, or 0 if unsuccessful.

Comments Don’t call this function for pointers in ROM or nonmovable data
chunks.

MemPtrResize

Purpose Resize a chunk.

Prototype Err MemPtrResize (MemPtr p, UInt32 newSize)

Parameters -> p Pointer to the chunk.

-> newSize The new desired size.

Result Returns 0 if no error, or memErrNotEnoughSpace memErrInvalidParam,
or memErrChunkLocked if an error occurs.

Comments Call this routine to resize a locked chunk. This routine is always
successful when shrinking the size of a chunk. When growing a

Memory Manager
Memory Manager Functions

638 Palm OS SDK Reference

chunk, it attempts to use free space immediately following the
chunk.

See Also MemPtrSize, MemHandleResize

MemPtrSetOwner

Purpose Set the owner ID of a chunk.

Prototype Err MemPtrSetOwner (MemPtr p, UInt16 owner)

Parameters -> p Pointer to the chunk.

-> owner New owner ID of the chunk. Specify 0 to set the
owner to the operating system.

Result Returns 0 if no error, or memErrInvalidParam if an error occurs.

Comments When you allocate a parameter block to pass to SysUIAppSwitch
or SysAppLaunch, you must call MemPtrSetOwner or
MemHandleSetOwner to grant ownership of the parameter block
chunk, and any other chunks referenced in it, to the OS (your
application is originally set as the owner). If you don’t change the
ownership of the parameter block, it will get freed before the
application you’re launching has a chance to use it.

MemPtrSize

Purpose Return the size of a chunk.

Prototype UInt32 MemPtrSize (MemPtr p)

Parameters -> p Pointer to the chunk.

Result The requested size of the chunk.

Comments Call this routine to get the original requested size of a chunk.

Memory Manager
Memory Manager Functions

Palm OS SDK Reference 639

MemPtrToLocalID

Purpose Convert a pointer into a card-relative local chunk ID.

Prototype LocalID MemPtrToLocalID (MemPtr p)

Parameters -> p Pointer to a chunk.

Result Returns the local ID of the chunk.

Comments Call this routine to convert a chunk pointer to a local ID.

See Also MemLocalIDToPtr

MemPtrUnlock

Purpose Unlock a chunk, given a pointer to the chunk.

Prototype Err MemPtrUnlock (MemPtr p)

Parameters p Pointer to a chunk.

Result 0 if no error, or memErrInvalidParam if an error occurs.

Comments A chunk must not be unlocked more times than it was locked.

See Also MemHandleLock

MemSet

Purpose Set a memory range in a dynamic heap to a specific value.

Prototype Err MemSet (void* dstP, Int32 numBytes,
UInt8 value)

Parameters dstP Pointer to the destination.

numBytes Number of bytes to set.

Memory Manager
Memory Manager Functions

640 Palm OS SDK Reference

value Value to set.

Result Always returns 0.

Comments For operations where the destination is in a data heap, see DmSet,
DmWrite, and related functions.

MemSetDebugMode

Purpose Set the debugging mode of the memory manager.

Prototype Err MemSetDebugMode (UInt16 flags)

Parameters flags Debug flags.

Comments Use the logical OR operator (|) to provide any combination of one,
more, or none of the following flags:

memDebugModeCheckOnChange
memDebugModeCheckOnAll
memDebugModeScrambleOnChange
memDebugModeScrambleOnAll
memDebugModeFillFree
memDebugModeAllHeaps
memDebugModeRecordMinDynHeapFree

Result Returns 0 if no error, or -1 if an error occurs.

Memory Manager
Memory Manager Functions

Palm OS SDK Reference 641

MemStoreInfo

Purpose Return information on either the RAM store or the ROM store for a
memory card.

Prototype Err MemStoreInfo (UInt16 cardNo,
UInt16 storeNumber, UInt16* versionP,
UInt16* flagsP, Char* nameP, UInt32* crDateP,
UInt32* bckUpDateP, UInt32* heapListOffsetP,
UInt32* initCodeOffset1P,
UInt32* initCodeOffset2P, LocalID* databaseDirIDP)

Parameters -> cardNo Card number, either 0 or 1.

-> storeNumber Store number; 0 for ROM, 1 for RAM.

<-> versionP Pointer to version variable, or 0.

<-> flagsP Pointer to flags variable, or 0.

<-> nameP Pointer to character array (32 bytes), or 0.

<-> crDateP Pointer to creation date variable, or 0.

<-> bckUpDateP Pointer to backup date variable, or 0.

<-> heapListOffsetP
Pointer to heapListOffset variable, or 0.

<-> initCodeOffset1P
Pointer to initCodeOffset1 variable, or 0.

<-> initCodeOffset2P
Pointer to initCodeOffset2 variable, or 0.

<-> databaseDirIDP
Pointer to database directory chunk ID
variable, or 0.

Result Returns 0 if no error, or memErrCardNotPresent,
memErrRAMOnlyCard, or memErrInvalidStoreHeader if an error
occurs.

Memory Manager
Memory Manager Functions

642 Palm OS SDK Reference

Comments Call this routine to retrieve any or all information on either the RAM
store or the ROM store for a card. Pass 0 for variables that you don’t
wish returned.

Palm OS SDK Reference 643

36
Notification Manager
This chapter provides information about the notification manager
by discussing these topics:

• Notification Data Structures

• Notification Constants

• Notification Functions

• Application-Defined Functions

The header file NotifyMgr.h declares the API that this chapter
describes. For more information on the notification manager, see the
section “Notifications” on page 192 in the “Palm System Features”
chapter of the Palm OS Programmer’s Companion.

Notification Data Structures

SleepEventParamType
The SleepEventParamType struct is used in notifications of type
sysNotifySleepRequestEvent to indicate why the system is
going to sleep and whether sleep should be deferred.

typedef struct {
UInt16 reason;
UInt16 deferSleep;

} SleepEventParamType;

Field Descriptions

reason The reason the system is going to sleep. The
possible values are:

sysSleepAutoOff
The idle time limit has been
reached.

Notif icat ion Manager
Notification Data Structures

644 Palm OS SDK Reference

SysNotifyDisplayChangeDetailsType
The SysNotifyDisplayChangeDetailsType struct is used in
notifications of type sysNotifyDisplayChangeEvent to
indicate how the bit depth changed. If the two values in the struct
are equal, it means that the color palette has changed instead of the
bit depth.

typedef struct {
UInt32 oldDepth;
UInt32 newDepth;

} SysNotifyDisplayChangeDetailsType;

Field Descriptions

SysNotifyParamType
The SysNotifyParamType struct defines a notification event. This
struct is sent along with the sysAppLaunchCmdNotify launch

sysSleepPowerButton
The user pressed the power off
button.

sysSleepResumed
The sleep event was deferred
by one of the notification
handlers but has been resumed
through the use of the
resumeSleepChr.

sysSleepUnknown
Unknown reason.

deferSleep Initially set to 0. If a notification handler wants to
defer sleep, then it should increment this value.
When deferSleep is greater than 0, the system
waits before going to sleep.

oldDepth The old bit depth.

newDepth The new bit depth.

Notif ication Manager
Notification Data Structures

Palm OS SDK Reference 645

code or is passed as a parameter to the notification callback
function.

typedef struct SysNotifyParamType {
UInt32 notifyType;
UInt32 broadcaster;
void * notifyDetailsP;
void * userDataP;
Boolean handled;
UInt8 reserved2;

} SysNotifyParamType;

Field Descriptions

notifyType The type of event that occurred. See
Notification Manager Event Constants.

broadcaster The creator ID of the application that
broadcast the notification (the application that
called SysNotifyBroadcast or
SysNotifyBroadcastDeferred), or
sysNotifyBroadcasterCode if the system
broadcast the event.

notifyDetailsP Pointer to data specific to this notification.
Most notifications do not use this parameter.
See Notification Manager Event Constants for
the specific instances where this parameter is
used.

userDataP Pointer to custom data that your notification
handler requires. You create this data and
pass its pointer to SysNotifyRegister.

handled true if event is handled yet; false
otherwise. In some cases, notification
handlers can set this field to true to indicate
that they have handled an event. See
Notification Manager Event Constants.

reserved2 Reserved for future use.

Notif icat ion Manager
Notification Constants

646 Palm OS SDK Reference

Notification Constants

Notification Manager Event Constants
The constants in the table below identify events for which the
system posts notifications. In general, notifications regarding the
creation of information are broadcast after the information has been
created. Notifications regarding the deletion of information are
broadcast before the information is deleted.

Several notifications are broadcast at various stages when the
system goes to sleep and when the system wakes up. These
notifications are not guaranteed to be broadcast. For example, if the
system goes to sleep because the user removes the batteries, sleep
notifications are not sent. Thus, these notifications are unsuitable for
applications where external hardware must be shut off to conserve
power before the system goes to sleep.

Constant Description

sysNotifyAntennaRaisedEvent Sent during SysHandleEvent when the
antenna is raised on a Palm VII™ series
device.

Notification handlers may set the handled
parameter to true to indicate that the
antenna key down event has been handled.

sysNotifyDisplayChangeEvent Sent just after the color table has been set to
use a specific palette or just after
WinScreenMode has changed the bit depth.

For this notification, the notifyDetailsP
parameter is a pointer to a
SysNotifyDisplayChangeDetailsType
struct.

sysNotifyEarlyWakeupEvent Sent during SysHandleEvent immediately
after the system has finished sleeping. The
screen may still be turned off, and the system
may quickly go back to sleep after handling a
procedure alarm or charger event.

Notif ication Manager
Notification Constants

Palm OS SDK Reference 647

sysNotifyForgotPasswordEvent Sent if the user taps the Lost Password
button in the Security application. The
notification is sent after the user has
confirmed that all private records should be
deleted but before the deletion actually
occurs.

sysNotifyLateWakeupEvent Sent during SysHandleEvent immediately
after the device has finished waking up. This
is sent at the late stage of wakeup, after the
screen has been turned on.

sysNotifyMenuCmdBarOpenEvent Sent during MenuHandleEvent when it is
about to display the menu shortcut
command bar.

This notification allows system extensions
(such as “hacks” installed with the
HackMaster program) to add their own
buttons to the menu command bar. The
handler should do so by calling
MenuCmdBarAddButton. It also allows
suppression of the command toolbar by
setting handled to true.

Applications that need to add their own
buttons to the menu command bar should do
so in response to a menuCmdBarOpenEvent.
They should not register for this notification
because an application should only add
buttons if it is already the active application.
The notification is sent after the event,
immediately before the command toolbar is
displayed.

sysNotifyResetFinishedEvent Sent immediately after the system has
finished a reset.

Constant Description

Notif icat ion Manager
Notification Constants

648 Palm OS SDK Reference

sysNotifySleepNotifyEvent Sent during SysHandleEvent immediately
before the system is put to sleep. After the
broadcast is complete, the system is put to
sleep.

sysNotifySleepRequestEvent Sent during SysHandleEvent processing
when the system has decided to go to sleep.

For this notification, the notifyDetailsP
parameter is a pointer to a
SleepEventParamType struct. If the
deferSleep field is greater than 0, the
system does not go to sleep. If you defer
sleep, you must post a keyDownEvent with
a resumeSleepChr to the event queue so
that the system eventually goes to sleep. You
must also set the command key bit in the
keyDownEvent to signal that
resumeSleepChr is a virtual character.

Note that you may receive this notification
several times before the system goes to sleep
because notification handlers can delay the
system sleep and resume it later.

sysNotifySyncFinishEvent Sent immediately after a HotSync® operation
is complete.

sysNotifySyncStartEvent Sent immediately before a HotSync
operation is begun.

sysNotifyTimeChangeEvent Sent just after the system time has been
changed using TimSetSeconds.

Constant Description

Notif ication Manager
Notification Functions

Palm OS SDK Reference 649

Miscellaneous Constants

Notification Functions

SysNotifyBroadcast

Purpose Synchronously send a notification to all applications registered for
the given event type.

Prototype Err SysNotifyBroadcast
(SysNotifyParamType *notify)

Parameters <-> notify Information about the notification to broadcast.

Result Returns one of the following error codes:

errNone No error.

sysNotifyErrBroadcastBusy
The broadcast stack limit has already been
reached.

Constant Value Description

sysNotifyBroadcasterCode 'psys' Value passed as the creator ID of
the broadcaster for notifications
broadcast by the system.

sysNotifyDefaultQueueSize 15 Maximum number of nested
broadcasts allowed.

sysNotifyNormalPriority 0 Typical priority value used when
registering for notifications.

sysNotifyVersionNum 1 Current notification manager
version. This number is stored in
the system feature
sysFtrNumNotifyMgrVersion.

Notif icat ion Manager
Notification Functions

650 Palm OS SDK Reference

sysErrParamErr
The background thread is broadcasting the
notification and the notify parameter is NULL.

sysNotifyErrNoStackSpace
There is not enough space on the stack for the
notification.

Comments When you call this function, the notification you specify is broadcast
to all interested parties. The broadcast is performed synchronously,
meaning that the system broadcasts the notification immediately
and waits for each interested party to perform its notification
handler and return before the SysNotifyBroadcast call returns.
This notification occurs in priority order.

The system allows nested notifications; that is, the recipient of a
notification might broadcast a new notification, whose recipient
might broadcast another new notification and so on. The constant
sysNotifyDefaultQueueSize specifies how many levels of
nested notification are allowed. If you reach this limit, the error
sysNotifyErrBroadcastBusy is returned and your notification
is not broadcast. To avoid reaching the limit, use
SysNotifyBroadcastDeferred instead of
SysNotifyBroadcast in your notification handlers. This ensures
that the notification will not be broadcast until the top of the event
loop.

WARNING! Do not call SysNotifyBroadcast from code that
might be called from a background task (such as a trap patch)
with the memory semaphore reserved. Use
SysNotifyBroadcastDeferred instead.

Compatibility Implemented only if Notification Feature Set is present.

Notif ication Manager
Notification Functions

Palm OS SDK Reference 651

SysNotifyBroadcastDeferred

Purpose Enqueue a notification for later broadcast.

Prototype Err SysNotifyBroadcastDeferred
(SysNotifyParamType *notify, Int16 paramSize)

Parameters <-> notify The notification to enqueue. See
SysNotifyParamType.

-> paramSize Size of the data pointed to by the field
notify->notifyDetailsP.

Result Returns one of the following error codes:

errNone No error.

memErrNotEnoughSpace
There is not enough memory to allocate a new
notification entry in the queue.

sysErrParamErr paramSize is a negative number.

sysNotifyErrQueueFull
The queue has reached its maximum number of
entries.

Comments This function is similar to SysNotifyBroadcast except that the
broadcast does not take place until the top of the event loop
(specifically, the next time EvtGetEvent is called). The system
copies the notify structure to a new memory chunk, which is
disposed of upon completion of the broadcast. (The paramSize
parameter is used when copying the notifyDetailsP portion of
the notify structure.)

Compatibility Implemented only if Notification Feature Set is present.

Notif icat ion Manager
Notification Functions

652 Palm OS SDK Reference

SysNotifyRegister

Purpose Register to receive a notification.

Prototype Err SysNotifyRegister (UInt16 cardNo,
LocalID dbID, UInt32 notifyType,
SysNotifyProcPtr callbackP, Int8 priority,
void *userDataP)

Parameters -> cardNo Number of the storage card on which the
application or code resource resides.

-> dbID Local ID of the application or code resource.

-> notifyType The event that the application wants to receive
notifications about. See Notification Manager
Event Constants.

-> callbackP NULL to receive the notification as an
application launch code. If your code does not
have a PilotMain function (for example, if it
is a shared library), pass a pointer to a function
that should be called when the notification is
broadcast. See SysNotifyProcPtr.

-> priority The priority with which the application should
receive the event. Most applications and other
code resources should always use
sysNotifyNormalPriority. In rare
circumstances, you may need to ensure that
your code is notified toward the beginning or
toward the end of the notification sequence. If
so, specify a value between –15 and +15. The
smaller the priority, the earlier your code is
notified.

-> userDataP Caller-defined data to pass to the notification
handler.

Result Returns one of the following error codes:

errNone No error.

Notif ication Manager
Notification Functions

Palm OS SDK Reference 653

sysErrParamErr The database ID is NULL.

sysNotifyErrDuplicateEntry
This application is already registered to receive
this notification.

Comments Call this function when your code should receive a notification that
a specific event has occurred or is about to occur. See Notification
Manager Event Constants for a list of the events about which you
can receive notifications. Once you register for a notification, you
remain registered to receive it until a system reset occurs or until
you explicitly unregister using SysNotifyUnregister.

If you’re writing an application, you should pass NULL as the
callbackP parameter. In this case, the system notifies your
application by sending it the sysAppLaunchCmdNotify launch
code. This launch code’s parameter block points to a
SysNotifyParamType structure containing details about the
notification.

If your code is not in an application, for example, it is in a shared
library or a separately loaded code resource, then receiving a launch
code is not possible. In this case, pass a pointer to a callback function
in callbackP. This callback should follow the prototype shown in
SysNotifyProcPtr. Note that you should always supply a card
number and database ID to SysNotifyRegister, even if you
specify a callback function.

IMPORTANT: Because the callbackP pointer is used to
directly call the function, the pointer must remain valid from the
time SysNotifyRegister is called to the time the notification is
broadcast. If the function is in a shared library, you must keep the
library open. If the function is in a separately loaded code
resource, the resource must remain locked while registered for
the notification. When you close a library or unlock a resource,
you must first unregister for any notifications. If you don’t, the
system will crash when the notification is broadcast.

Whether the notification handler is responding to
sysAppLaunchCmdNotify or uses the callback function, the

Notif icat ion Manager
Notification Functions

654 Palm OS SDK Reference

notification handler may perform any processing necessary. As with
most launch codes, it’s not possible to access global variables. If the
handler needs access to any particular value to respond to the
notification, pass a pointer to that value in the userDataP
parameter. The system passes this pointer back to your application
or callback function in the launch code’s parameter block.

The notification handler may unregister for this notification or
register for other notifications. It may also broadcast another
notifications; however, it’s recommended that you use
SysNotifyBroadcastDeferred to do this so as not to overflow
the broadcast stack.

You may display a user interface in your notification handler;
however, you should be careful when you do so. Many of the
notifications are broadcast during SysHandleEvent, which means
your application event loop might not have progressed to the point
where it is possible for you to display a user interface, or you may
overflow the stack by displaying a user interface at this stage. See
Notification Manager Event Constants to learn which notifications
are broadcast during SysHandleEvent.

Compatibility Implemented only if Notification Feature Set is present.

SysNotifyUnregister

Purpose Cancel notification of the given event.

Prototype Err SysNotifyUnregister(UInt16 cardNo,
LocalID dbID, UInt32 notifyType, Int8 priority)

Parameters -> cardNo Number of the storage card on which the
application or code resource resides.

-> dbID Local ID of the application or code resource.

-> notifyType The event to unregister for. See Notification
Manager Event Constants.

Notif ication Manager
Application-Defined Functions

Palm OS SDK Reference 655

-> priority The priority value you passed as part of
SysNotifyRegister.

Result Returns one of the following error codes:

errNone No error.

sysNotifyErrEntryNotFound
The application wasn’t registered to receive
these notifications.

Comments Use this function to remove your code from the list of those that
receive notifications about a particular event. This function is
particularly necessary if you are writing a shared library or a
separately loaded code resource that receives notifications. When
the resource is unloaded, it must unregister for all of its
notifications, or the system will crash when the notification is
broadcast.

Compatibility Implemented only if Notification Feature Set is present.

Application-Defined Functions

SysNotifyProcPtr

Purpose Handle a notification.

Prototype Err (*SysNotifyProcPtr)
(SysNotifyParamType *notifyParamsP)

Parameters -> notifyParamsP
Pointer to a structure that contains the
notification event that occurred and any other
information about it. See
SysNotifyParamType.

Result Always return 0.

Notif icat ion Manager
Application-Defined Functions

656 Palm OS SDK Reference

Comments You pass this function as a parameter to SysNotifyRegister
when registering code that does not have a PilotMain for a
notification. See the description of SysNotifyRegister for advice
on writing a notification handler.

IMPORTANT: Because the callbackP pointer is used to
directly call the function, the pointer must remain valid from the
time SysNotifyRegister is called to the time the notification is
broadcast. If the function is in a shared library, you must keep the
library open. If the function is in a separately loaded code
resource, the resource must remain locked while registered for
the notification. When you close a library or unlock a resource,
you must first unregister for any notifications. If you don’t, the
system will crash when the notification is broadcast.

Palm OS SDK Reference 657

37
Overlay Manager
This chapter describes the overlay manager API as declared in the
header file OverlayMgr.h. It discusses the following topics:

• Overlay Manager Data Structures

• Overlay Manager Constants

• Overlay Manager Functions

For more information on the overlay manager, see the section
“Using Overlays to Localize Resources” on page 318 in the
“Localized Applications” chapter of the Palm OS Programmer’s
Companion.

Overlay Manager Data Structures

OmLocaleType
The OmLocaleType struct specifies a locale.

typedef struct {
UInt16 language;
UInt16 country;

} OmLocaleType;

Field Descriptions

language The language spoken in the locale. This value is one of
the LanguageType constants.

country The country or region where the language is spoken.
This value is one of the CountryType constants.

Overlay Manager
Overlay Manager Data Structures

658 Palm OS SDK Reference

OmOverlayRscType
The OmOverlayRscType struct specifies an overlay of one
resource. You create a resource overlay using the tools provided in
the Palm OS® SDK.

typedef struct {
OmOverlayKind overlayType;
UInt32 rscType;
UInt16 rscID;
UInt32 rscLength;
UInt32 rscChecksum;

} OmOverlayRscType;

Your code should treat the OmOverlayRscType structure as
opaque. Do not attempt to change structure member values directly.

Field Descriptions

overlayType Specifies the action to take with the resource. This
can be one of the following:

omOverlayKindAdd
Add a resource that doesn’t
exist in the base database.
Supported in overlay manager
versions 3 and up.

omOverlayKindBase
Description of a base resource.
(This appears only in the base
database.) Supported in overlay
manager versions 3 and up.

omOverlayKindReplace
Replace a resource in the base
database.

rscType The type of the resource to be overlaid.

rscID The ID of the resource to be overlaid.

Overlay Manager
Overlay Manager Data Structures

Palm OS SDK Reference 659

OmOverlaySpecType
The OmOverlaySpecType struct defines a resource of type
'ovly'. This resource is required in the overlay database and may
optionally exist in the corresponding base database as well.

typedef struct {
UInt16 version;
UInt32 flags;
UInt32 baseChecksum;
OmLocaleType targetLocale;
UInt32 baseDBType;
UInt32 baseDBCreator;
UInt32 baseDBCreateDate;
UInt32 baseDBModDate;
UInt16 numOverlays;
OmOverlayRscType overlays[0];

} OmOverlaySpecType;

Your code should treat the OmOverlaySpecType structure as
opaque. Do not attempt to change structure member values directly.

rscLength The size in bytes of the resource to be overlaid as it
appears in the base database.

rscChecksum A checksum of the resource to be overlaid as it
appears in the base database.

Overlay Manager
Overlay Manager Constants

660 Palm OS SDK Reference

Field Descriptions

Overlay Manager Constants

version Version number for the overlay manager. The
current version is omOverlayVersion.

flags 0, or one or more of the following flags:

omSpecAttrForBase
An 'ovly' resource in
the base database
describes the overlay.

omSpecAttrStripped
Localized resources in
the base database are
stripped.

baseChecksum Checksum of all of the checksum values for
the overlaid resources.

targetLocale Locale of this database. See OmLocaleType.

baseDBType Type of the base database.

baseDBCreator Creator of the base database.

baseDBCreateDate Creation date of the base database.

baseDBModDate Modification date of the base database.

numOverlays Number of elements in the overlays array.

overlays An array of OmOverlayRscType structs
identifying each change or action the overlay
is making to a resource.

Constant Value Description

omOverlayVersion 0x0004 Current version for the overlay manager. This
version number controls which types of
overlay actions are supported.

omOverlayDBType 'ovly' Database type for overlay databases.

Overlay Manager
Overlay Manager Functions

Palm OS SDK Reference 661

Overlay Manager Functions

OmGetCurrentLocale

Purpose Return the current locale.

Prototype void OmGetCurrentLocale
(OmLocaleType *currentLocale)

Parameters <- currentLocale
Points to an OmLocaleType struct that
identifies the current locale.

Result Returns nothing.

omOverlayRscType 'ovly' Symbolic name of an overlay resource that is
contained in both the base database and the
overlay database. This resource is defined by
the OmOverlaySpecType struct.

omOverlayRscID 1000 Resource ID of the overlay resource in both the
base database and the overlay database.

omFtrCreator 'ovly' Creator value used for the
omFtrShowErrorsFlag feature.

omFtrShowErrorsFlag 0 Feature that controls the number of error
messages displayed by the overlay manager. If
this feature is set to true, the overlay manager
may display several more error messages
when validating an overlay against its base
database. This feature only takes effect when
the error checking level is set to full (common
on debug ROMs, not on release ROMs). Use
FtrGet and FtrSet to retrieve and set this
value.

Constant Value Description

Overlay Manager
Overlay Manager Functions

662 Palm OS SDK Reference

Comments This function returns the current locale. The current locale controls
which overlays are used for resource databases. For example,
suppose you have one application and two associated overlays
installed, one for US English and one for British English. In this case,
if the country specified in the locale returned by this function is
cUnitedKingdom, the British English overlay is used for the
application. If the country returned is cUnitedStates, the US
English overlay is used.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also OmGetSystemLocale

OmGetIndexedLocale

Purpose Return a system locale by index.

Prototype Err OmGetIndexedLocale (UInt16 localeIndex,
OmLocaleType *theLocale)

Parameters -> localeIndex Zero-based index of the locale to return.

<- theLocale Points to an OmLocaleType struct that
identifies the locale at that index.

Result Returns errNone upon success, or omErrInvalidLocaleIndex
if the index is out of bounds.

Comments You can use this function in a loop to determine how many overlays
are installed for system resources. Each system overlay found
determines a separate valid system locale. Any locale returned by
this function can be sent to OmSetSystemLocale to change the
system locale.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also OmGetSystemLocale

Overlay Manager
Overlay Manager Functions

Palm OS SDK Reference 663

OmGetRoutineAddress

Purpose Return the address of an overlay manager function.

Prototype void *OmGetRoutineAddress (OmSelector inSelector)

Parameters -> inSelector One of the routine selectors defined in
OverlayMgr.h.

Result Returns the address of the corresponding function. Returns NULL if
an invalid routine selector is passed.

Comments You typically use this function to determine whether an overlay
manager function exists on the device. As future releases of Palm OS
add new functions, older devices with earlier versions of the
overlay manager will not implement these newer functions. If
OmGetRoutineAddress returns NULL, the function is unavailable.

Compatibility Implemented only if 3.5 New Feature Set is present.

OmGetSystemLocale

Purpose Return the system locale.

Prototype void OmGetSystemLocale
(OmLocaleType *systemLocale)

Parameters <- systemLocale Points to an OmLocaleType struct that
identifies the system locale.

Result Returns nothing.

Comments You typically don’t use this function. Instead, use
OmGetCurrentLocale, which returns the locale that determines
which overlays are used.

The system locale is saved in the storage heap header and persists
across soft resets. When the device is reset, the system locale is used
to set the current locale.

Overlay Manager
Overlay Manager Functions

664 Palm OS SDK Reference

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also OmGetCurrentLocale

OmLocaleToOverlayDBName

Purpose Return the overlay database’s name given the base database name
and the locale.

Prototype Err OmLocaleToOverlayDBName
(const Char *baseDBName,
const OmLocaleType *targetLocale,
Char *overlayDBName)

Parameters -> baseDBName The name of the base resource database
associated with the overlay.

-> targetLocale The locale to which this overlay applies. See
OmLocaleType. Pass NULL to use the current
locale.

<- overlayDBName
The overlay database name given the base
database name and the target locale. This buffer
must be at least dmDBNameLength bytes.

Result Returns errNone upon success, or omErrUnknownLocale if the
targetLocale parameter is invalid.

Comments The appropriate overlay database name is currently:

baseDBName_llCC

where:

baseDBName The name of the base database as you passed it
in.

ll A two-character code identifying the language.

CC A two-character code identifying the country.

The base database name is truncated if necessary to allow for this
suffix.

Overlay Manager
Overlay Manager Functions

Palm OS SDK Reference 665

For example, the base database “MemoPad” might have an overlay
for US English named “MemoPad_enUS”.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also OmOverlayDBNameToLocale

OmOverlayDBNameToLocale

Purpose Return an overlay database’s locale given its name.

Prototype Err OmOverlayDBNameToLocale
(const Char *overlayDBName,
OmLocaleType *overlayLocale)

Parameters -> overlayDBName
The name of the overlay database.

<- overlayLocale
Points to an OmLocaleType structure
identifying the overlay’s locale.

Result Returns errNone upon success, omErrBadOverlayDBName if the
string overlayDBName is not long enough to have a locale suffix,
or omErrUnknownLocale if the locale cannot be determined.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also OmLocaleToOverlayDBName

Overlay Manager
Overlay Manager Functions

666 Palm OS SDK Reference

OmSetSystemLocale

Purpose Set the system locale and reset the device.

Prototype Err OmSetSystemLocale
(const OmLocaleType *systemLocale)

Parameters -> systemLocale An OmLocaleType structure specifying the
locale to switch the system to.

Result Returns errNone upon success, or one of the following if an error
occurs:

omErrUnknownLocale
There is no system overlay for systemLocale.

omErrInvalidLocale
The system overlay for systemLocale has
been found but is invalid.

dmErrInvalidParam
An error occurred while opening the overlay.

dmErrMemError A memory error occurred while opening the
overlay.

dmErrDatabaseOpen
The system overlay was already open.

Comments This function changes the system locale to the specified locale if it
exists. It first determines that the system overlay exists for the
requested locale and that it matches the base system database. If so,
it updates the system locale information saved in the storage heap
header and resets the device. After the device is reset, the current
locale is set to the system locale.

A Palm OS device has a default system locale hard-coded into the
ROM. This locale is used to set the system locale after a hard reset or
any time that the storage heap header is invalid. The storage heap
header is typically only invalid when the device is turned on for the
first time.

Overlay Manager
Overlay Manager Functions

Palm OS SDK Reference 667

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also OmGetSystemLocale

Palm OS SDK Reference 669

38
Password
This chapter provides reference material for the password API. The
password API is declared in the header file Password.h.

Password Functions

PwdExists

Purpose Return true if the system password is set.

Prototype Boolean PwdExists()

Parameters None

Result Returns true if the system password is set.

PwdRemove

Purpose Remove the encrypted password string and recover data hidden in
databases.

Prototype void PwdRemove(void)

Parameters None

Result Returns nothing.

Password
Password Functions

670 Palm OS SDK Reference

PwdSet

Purpose Use a passed string as the new password. The password is stored in
an encrypted form.

Prototype void PwdSet (Char* oldPassword, Char* newPassword)

Parameters oldPassword The old password must be successfully verified
or the new password isn’t accepted

newPassword Char* to a string to use as the password. NULL
means no password.

Result Returns nothing.

PwdVerify

Purpose Verify that the string passed matches the system password.

Prototype Boolean PwdVerify (Char* string)

Parameters string String to compare to the system password.
NULL means no current password.

Result Returns true if the string matches the system password.

Palm OS SDK Reference 671

39
Pen Manager
This chapter provides reference material for the pen manager. The
pen manager API is declared in the header file PenMgr.h.

For more information on the pen manager, see the section
“Receiving User Input” in the Palm OS Programmer’s Companion.

Pen Manager Functions

PenCalibrate

Purpose Set the calibration of the pen.

Prototype Err PenCalibrate (PointType* digTopLeftP,
PointType* digBotRightP, PointType* scrTopLeftP,
PointType* scrBotRightP)

Parameters digTopLeftP Digitizer output from top-left coordinate.

digBotRightP Digitizer output from bottom-right coordinate.

scrTopLeftP Screen coordinate near top-left corner.

scrBotRightP Screen coordinate near bottom-right corner.

Result Returns 0 if no error.

Comments Called by Preferences application when calibrating pen.

See Also PenResetCalibration

Pen Manager
Pen Manager Functions

672 Palm OS SDK Reference

PenResetCalibration

Purpose Reset the calibration in preparation for calibrating the pen again.

Prototype Err PenResetCalibration (void)

Parameters None.

Result Always returns 0.

Comments Called by Preferences application before capturing points when
calibrating the pen.

See Also PenCalibrate

WARNING! The digitizer is off after calling this routine and must
be calibrated again!

Palm OS SDK Reference 673

40
Preferences
This chapter provides reference material for the preferences API.
The preferences API is declared in the header file Preferences.h.

Preferences Functions

PrefGetAppPreferences

Purpose Return a copy of an application’s preferences. Sometimes, for
variable length resources, this routine is called twice:

• Once with a NULL pointer and size of zero to find out how
many bytes need to be read.

• A second time with an allocated buffer allocated of the
correct size. Note that the application should always check
that the return value is greater than or equal to prefsSize.

Prototype Int16 PrefGetAppPreferences (UInt32 creator,
UInt16 id, void* prefs, UInt16* prefsSize,
Boolean saved)

Parameters creator Application creator.

id ID number (lets an application have multiple
preferences).

prefs Pointer to a buffer to hold preferences.

prefsSize Pointer to size the buffer passed.

Preferences
Preferences Functions

674 Palm OS SDK Reference

saved If true, retrieve the saved preferences. If
false, retrieve the current preferences.

Result Returns the constant noPreferenceFound if the preference
resource wasn’t found.

If the preference resource was found, the application should check
that the value in prefsSize is equal or less than the return value. If
it’s greater than the size passed, then some bytes were not retrieved.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also PrefSetPreferences, PrefGetAppPreferencesV10

PrefGetAppPreferencesV10

Purpose Return a copy of an application’s preferences.

Prototype Boolean PrefGetAppPreferencesV10 (UInt32 type,
Int16 version, void* prefs, UInt16 prefsSize)

Parameters type Application creator type.

version Version number of the application.

prefs Pointer to a buffer to hold preferences.

prefsSize Size of the buffer passed.

Result Returns false if the preference resource was not found or the
preference resource contains the wrong version number.

Comments The content and format of an application preference is application-
dependent.

Compatibility This function corresponds to the 1.0 version of
PrefGetAppPreferences.

See Also PrefSetPreferences, PrefGetAppPreferences

Preferences
Preferences Functions

Palm OS SDK Reference 675

PrefGetPreference

Purpose Return a system preference. Use this instead of PrefGetPreferences.

Prototype UInt32 PrefGetPreference
(SystemPreferencesChoice choice)

Parameters choice System preference choice; see Preferences.h
for available options.

Result Returns the system preference.

Comments This function replaces the 1.0 function PrefGetPreferences. While
PrefGetPreferences only let you retrieve the whole system
preferences structure, this function lets you specify which
preferences to retrieve. You can also choose among different
preferences using an ID, or choose to access the saved or unsaved
preferences.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also PrefSetPreferences, PrefGetAppPreferences,
PrefGetAppPreferencesV10

PrefGetPreferences

Purpose Return a copy of the system preferences.

Prototype void PrefGetPreferences (SystemPreferencesPtr p)

Parameters p Pointer to system preferences.

Result Returns nothing. Stores the system preferences in p.

Comments The p parameter points to a memory block allocated by the caller
that is filled in by this function.

Preferences
Preferences Functions

676 Palm OS SDK Reference

This function is often called in StartApplication to get localized
settings.

See Also PrefSetPreferences

PrefOpenPreferenceDBV10

Purpose Return a handle to the system preference database.

Prototype DmOpenRef PrefOpenPreferenceDBV10 (void)

Parameters Nothing.

Result Returns the handle, or 0 if an error results.

Comments This function is for system use only in Palm OS® 2.0 and later.

Compatibility This function corresponds to the 1.0 version of
PrefOpenPreferenceDB.

See Also PrefGetPreferences, PrefSetPreferences

PrefSetAppPreferences

Purpose Set an application’s preferences in the preferences database.

Prototype void PrefSetAppPreferences (UInt32 creator,
UInt16 id, Int16 version, void* prefs,
UInt16 prefsSize, Boolean saved)

Parameters creator Application creator type.

id Resource ID (usually 0).

version Version number of the application.

prefs Pointer to a buffer that holds preferences.

prefsSize Size of the buffer passed.

Preferences
Preferences Functions

Palm OS SDK Reference 677

saved If true, set the saved preferences. If not, set the
current preferences.

Result Returns nothing.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also PrefSetAppPreferencesV10

PrefSetAppPreferencesV10

Purpose Save an application’s preferences in the preferences database.

Prototype void PrefSetAppPreferencesV10 (UInt32 creator,
Int16 version, void* prefs, UInt16 prefsSize)

Parameters creator Application creator type.

version Version number of the application.

prefs Pointer to a buffer holding preferences.

prefsSize Size of the buffer passed.

Result Returns nothing.

Comments The content and format of an application preference is application-
dependent.

Compatibility This function corresponds to the 1.0 version of
PrefSetAppPreferences.

See Also PrefSetAppPreferences, PrefGetPreferences

Preferences
Preferences Functions

678 Palm OS SDK Reference

PrefSetPreference

Purpose Set a system preference. Using this function instead of
PrefSetPreferences allows you to set selected preferences
without having to access the whole structure.

Prototype void PrefSetPreference
(SystemPreferencesChoice choice, UInt32 value)

Parameters choice A SystemPreferencesChoice (see
Preferences.h)

value Value to assign to the item in
SystemPreferencesChoice.

Result Returns the system preference.

Compatibility Implemented only if 2.0 New Feature Set is present.

PrefSetPreferences

Purpose Set the system preferences.

Prototype void PrefSetPreferences (SystemPreferencesPtr p)

Parameters p Pointer to system preferences.

Result Returns nothing.

Comments Unless there’s a reason for you to access the whole preferences
structure, call PrefSetPreference instead.

See Also PrefGetPreferences

Palm OS SDK Reference 679

41
Rectangles
This chapter provides reference material for the rectangles API,
declared in the header file Rect.h.

Rectangle Functions

RctCopyRectangle

Purpose Copy the source rectangle to the destination rectangle.

Prototype void RctCopyRectangle
(const RectangleType* srcRectP,
RectangleType* dstRectP)

Parameters srcRectP A pointer to the rectangle to be copied.

dstRectP A pointer to the destination rectangle.

See Also RctSetRectangle

RctGetIntersection

Purpose Determine the intersection of two rectangles.

Prototype void RctGetIntersection (const RectangleType* r1P,
const RectangleType* r2P, RectangleType* r3P)

Parameters r1P A pointer to a source rectangle.

r2P A pointer to the other source rectangle.

r3P Upon return, points to a rectangle representing
the intersection of r1 and r2.

Rectangles
Rectangle Functions

680 Palm OS SDK Reference

Comments The rectangle type RectangleType, which is pointed to by
RectanglePtr, stores the coordinates for the top-left corner of the
rectangle plus the rectangle’s width and height. This function
returns in the r3 parameter a pointer to the rectangle that represents
the intersection of the first two rectangles.

If rectangles r1 and r2 do not intersect, r3 contains a rectangle that
begins at coordinates (0, 0) and has 0 width and 0 height.

RctInsetRectangle

Purpose Move all of the boundaries of a rectangle by a specified offset.

Prototype void RctInsetRectangle (RectangleType* rP,
Coord insetAmt)

Parameters rP A pointer to the rectangle.

insetAmt Number of pixels to move the boundaries. This
can be a negative number.

Comments The rectangle type RectangleType, which is pointed to by
RectanglePtr, stores the coordinates for the top-left corner of the
rectangle plus the rectangle’s width and height. This function adds
insetAmt to the x and y values of the top-left coordinate and then
adjusts the width and the height accordingly so that all of the sides
of the rectangle are contracted or expanded by the same amount.

A positive insetAmt creates a smaller rectangle that is contained
inside the old rectangle’s boundaries. A negative insetAmt creates
a larger rectangle that surrounds the old rectangle.

See Also RctOffsetRectangle

Rectangles
Rectangle Functions

Palm OS SDK Reference 681

RctOffsetRectangle

Purpose Move the top and left boundaries of a rectangle by the specified
values.

Prototype void RctOffsetRectangle (RectangleType* rP,
Coord deltaX, Coord deltaY)

Parameters rP A pointer to the rectangle.

deltaX Number of pixels to move the left boundary.
This can be a negative number.

deltaY Number of pixels to move the top boundary.
This can be a negative number.

Comments The rectangle type RectangleType, which is pointed to by
RectanglePtr, stores the coordinates for the top-left corner of the
rectangle plus the rectangle’s width and height. This function adds
deltaX to the x value of the top-left coordinate and deltaY to the
y value. The width and height are unchanged. Thus, this function
shifts the position of the rectangle by the deltaX and deltaY
amounts.

See Also RctInsetRectangle

RctPtInRectangle

Purpose Determine if a point lies within a rectangle’s boundaries.

Prototype Boolean RctPtInRectangle (Coord x, Coord y,
const RectangleType* rP)

Parameters x The x coordinate of the point.

y The y coordinate of the point.

rP The rectangle.

Result Returns true if the point (x, y) lies within the boundaries of
rectangle r, false otherwise.

Rectangles
Rectangle Functions

682 Palm OS SDK Reference

RctSetRectangle

Purpose Sets a rectangle’s values.

Prototype void RctSetRectangle (RectangleType* rP,
Coord left, Coord top, Coord width, Coord height)

Parameters rP A pointer to the rectangle to be set.

left The x value for the top-left coordinate of the
rectangle.

top The y value for the top-left coordinate of the
rectangle.

width The rectangle’s width.

height The rectangle’s height.

See Also RctCopyRectangle

Palm OS SDK Reference 683

42
Sound Manager
This chapter provides reference material for the sound manager.

• Sound Manager Data Structures

• Application-Defined Functions

• Sound Manager Functions

The header file SoundMgr.h declares the API that this chapter
describes. For more information on the sound manager, see the
section “Sound” in the Palm OS Programmer’s Companion.

Sound Manager Data Structures
This section describes the data structures that define the MIDI
records and parameter blocks used by sound manager functions.
Figure 42.1 depicts a Palm OS® MIDI record graphically.

Sound Manager
Sound Manager Data Structures

684 Palm OS SDK Reference

Figure 42.1 Palm OS Midi Record

SndCallbackInfoType
The SndCallbackInfoType structure wraps the sound manager
callback functions that you implement. See “Application-Defined
Functions” for more information.

typedef struct SndCallbackInfoType {
MemPtr funcP;
UInt32 dwUserData;

} SndCallbackInfoType;

Field Descriptions

sndMidiRecHdrTypesndMidiRecType

signature(4 bytes)

bDataOffset(1 byte)

reserved(1 byte)

name(1 or more bytes)
•null-terminated
•size varies

SMF0
(standard
MIDI track)

funcP Pointer to the callback function (NULL = no
function).

dwUserData Value to pass in dwUserData parameter of
callback function.

Sound Manager
Sound Manager Data Structures

Palm OS SDK Reference 685

SndCmdIDType
The SndCmdIDType enumerated type defines the commands that
may be specified in the cmd field of the SndCommandType. Each
command defines its own specific use of the param1, param2, and
param3 fields.

typedef enum SndCmdIDType {
sndCmdFreqDurationAmp = 1,
sndCmdNoteOn,
sndCmdFrqOn,
sndCmdQuiet

} SndCmdIDType;

Value Descriptions

sndCmdFreqDurationAmp Play a sound, blocking for the entire
duration (except for zero
amplitude).

param1 = frequency in Hz

param2 = duration in milliseconds

param3 = amplitude (0 to
sndMaxAmp)

If value of param3 is 0, returns
immediately.

sndCmdNoteOn Play sound at specified MIDI key
index with max duration and
velocity; return immediately,
without waiting for playback to
complete. Any other sound play
request made before this one
completes will interrupt it.

param1 = MIDI key index (0-127)

param2 = maximum duration in
milliseconds

param3 = velocity (0 to 127) to be
interpolated as amplitude.

Sound Manager
Sound Manager Data Structures

686 Palm OS SDK Reference

IMPORTANT: SndDoCmd in versions of Palm OS before 3.0 will
generate a fatal error on anything other than
sndCmdFreqDurationAmp. For this reason, applications
wishing to take advantage of these new commands while staying
compatible with the earlier version of the OS, must avoid using
these commands when running on OS versions less than v3.0.
Beginning with v3.0, SndDoCmd returns sndErrBadParam when
an unknown command is passed.

SndCommandType
The SndCommandType structure is passed as the value of the cmdP
parameter to the SndDoCmd function. Its parameters are defined by
the SndCmdIDType.

typedef struct SndCommandType {
SndCmdIDType cmd;
UInt8 reserved;
Int32 param1;
UInt16 param2;

sndCmdFrqOn Similar to sndCmdNoteOn except
note to play is specified as frequency
in Hz.

param1 = frequency in Hz

param2 = maximum duration in
milliseconds

param3 = amplitude (0 -
sndMaxAmp)

sndCmdQuiet Stop playback of current sound.

param1 = 0

param2 = 0

param3 = 0

Sound Manager
Sound Manager Data Structures

Palm OS SDK Reference 687

UInt16 param3;
} SndCommandType;

Field Descriptions

SndMidiListItemType
When the SndCreateMidiList function returns true, its entHP
parameter holds a handle to a memory chunk containing an array of
SndMidiListItemType structures.

typedef struct SndMidiListItemType{
Char name[sndMidiNameLength];
UInt32 uniqueRecID;
LocalID dbID;
UInt16 cardNo;

} SndMidiListItemType;

Field Descriptions

SndMidiRecHdrType
The SndMidiRecHdrType structure defines the fixed-size portion
of a Palm OS MIDI record. (See SndCallbackInfoType.)

typedef struct SndMidiRecHdrType {
UInt32 signature;
UInt8 bDataOffset;

cmd Command ID.

reserved Reserved for future use.

param1, param2, param3 Use varies according to value of cmd.

name MIDI name including NULL
terminator.

uniqueRecID Unique ID of the record
containing the MIDI file.

dbID Database (file) ID.

cardNo Number of the memory card on
which the MIDI file resides.

Sound Manager
Sound Manager Data Structures

688 Palm OS SDK Reference

UInt8 reserved;
} SndMidiRecHdrType;

Field Descriptions

SndMidiRecType
The SndMidiRecType structure defines a variable-length header
precedes the actual MIDI data in a Palm OS MIDI record. It consists
of a fixed-size MIDI record header followed by the name of the
MIDI track.

typedef struct SndMidiRecType {
SndMidiRecHdrType hdr;
Char name[1];

} SndMidiRecType;

Field Descriptions

SndSmfCallbacksType
The SndSmfCallbacksType structure is passed as the value of the
callbacksP parameter to the SndPlaySmf function.

typedef struct SndSmfCallbacksType {
SndCallbackInfoType completion;
SndCallbackInfoType blocking;
SndCallbackInfoType reserved;

signature Set to sndMidiRecSignature.

bDataOffset Offset from the beginning of the record to the
Standard MIDI File data stream.

reserved Set to zero.

hdr Fixed-size portion of the Palm OS MIDI record header. See
SndMidiRecHdrType.

name Track name: 1 or more characters including NULL
terminator. The length of name, including NULL terminator,
must not be greater than sndMidiNameLength. The NULL
character must always be provided, even for tracks that
have no name.

Sound Manager
Sound Manager Data Structures

Palm OS SDK Reference 689

} SndSmfCallbacksType;

Field Descriptions

SndSmfChanRangeType
This SndSmfChanRangeType structure is passed as the value of
the chanRangeP parameter to the SndPlaySmf function. It
specifies a range of enabled channels. Events for channels outside
this range are ignored.

If this structure is not passed, all channels in the track are ignored.

typedef struct SndSmfChanRangeType {
UInt8 bFirstChan;
UInt8 bLastChan;

} SndSmfChanRangeType;

Field Descriptions

SndSmfOptionsType
The SndSmfOptionsType structure is passed as the value of the
selP parameter to the SndPlaySmf function.

typedef struct SndSmfOptionsType {
UInt32 dwStartMilliSec;
UInt32 dwEndMilliSec;
UInt16 amplitude;
Boolean interruptible;
UInt8 reserved1;

completion Completion callback function (see
SndComplFuncType).

blocking Blocking hook callback function (see
SndBlockingFuncType).

reserved Reserved. Set to 0 before passing.

bFirstChan First MIDI channel (0-15 decimal).

bLastChan Last MIDI channel (0-15 decimal).

Sound Manager
Sound Manager Data Structures

690 Palm OS SDK Reference

UInt32 reserved;
} SndSmfOptionsType;

Field Descriptions

dwStartMilliSec Position at which to begin playback,
expressed as number of milliseconds from
beginning of the track. 0 means start from
the beginning of the track.

This field is used as input for
sndSmfCmdPlay and output for
sndSmfCmdDuration.

dwEndMilliSec Position at which to stop playback,
expressed as number of milliseconds from
beginning of track.
sndSmfPlayAllMilliSec means play the
entire track; the default is to play the entire
track if this structure is not passed in.

This field is used as input for
sndSmfCmdPlay and output for
sndSmfCmdDuration.

amplitude Used only for sndSmfCmdPlay. Specifies
relative volume. Possible values range from
0 to sndMaxAmp, inclusively. The default is
sndMaxAmp if this structure is not passed in.
If 0, the sound is not played and the call
returns immediately.

interruptible Used only for sndSmfCmdPlay. If true,
sound play will be interrupted if user
interacts with the controls (digitizer, buttons,
etc.) even if the interaction does not generate
a sound command. If false, playback is not
interrupted. The default behavior is true if
this structure is not passed in.

reserved1 Reserved for future use.

reserved Reserved. Set to 0 before passing.

Sound Manager
Sound Manager Functions

Palm OS SDK Reference 691

Sound Manager Functions

SndCreateMidiList

Purpose Generate a list of MIDI records having a specified creator.

Prototype Boolean SndCreateMidiList (UInt32 creator,
Boolean multipleDBs, UInt16* wCountP,
MemHandle *entHP)

Parameters ->creator Creator of database in which to find MIDI
records. Pass 0 for wildcard.

->multipleDBs Pass true to search multiple databases for
MIDI records. Pass false to search only in the
first database found that meets search criteria.

<->wCountP When the function returns, contains the
number of MIDI records found.

<->entHP When the function returns, this handle holds a
a memory chunk containing an array of
SndMidiListItemType if MIDI records were
found.

Result Returns false if no MIDI records were found, true if MIDI
records were found. When this function returns true, it updates the
wCountP parameter to hold the number of MIDI records found and
updates the entHP parameter to hold a handle to an array of
SndMidiListItemType structures. Each record of this type holds
the name, record ID, database ID, and card number of a MIDI
record.

Comments This function is useful for displaying lists of sounds residing on the
Palm device as MIDI records.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also DmFindRecordByID, DmOpenDatabase, DmQueryRecord,
DmOpenDatabaseByTypeCreator,"Rock Music" sample code

Sound Manager
Sound Manager Functions

692 Palm OS SDK Reference

SndDoCmd

Purpose Send a sound manager command to a specified sound channel.

Prototype Err SndDoCmd (void* channelP, SndCommandPtr cmdP,
Boolean noWait)

Parameters -> channelP Pointer to sound channel. Present
implementation doesn’t support multiple
channels. Must be NULL.

Passing NULL for the channel pointer causes the
command to be sent to the shared sound
channel; currently, this is the only option.

-> cmdP Pointer to a SndCommandType holding a
parameter block that specifies the note to play,
its duration, and amplitude.

-> noWait Because asynchronous mode is not yet
supported for all commands, you must pass 0
for this value.

In the future, pass 0 to await completion
(synchronous) and pass a nonzero value to
specify immediate return (asynchronous).

Result 0 No error.

sndErrBadParam Invalid parameter.

sndErrBadChannel
Invalid channel pointer.

sndErrQFull Sound queue is full.

Comments This function is useful for simple sound playback applications, such
as playing a single note to provide user feedback. In addition to
providing the same behavior it did in versions 1.0 and 2.0 of Palm
OS, (specify the frequency, duration, and amplitude of a single note
to be played) new command selectors provided in Palm OS 3.0 and
higher allow you to use MIDI values to specify pitch, duration, and

Sound Manager
Sound Manager Functions

Palm OS SDK Reference 693

amplitude of the note to play, and to stop the note currently being
played.

Compatibility Commands (see SndCmdIDType) other than
sndCmdFreqDurationAmp are implemented only if 3.0 New
Feature Set is present.

See Also SndPlaySmf

SndGetDefaultVolume

Purpose Return default sound volume levels cached by sound manager.

Prototype void SndGetDefaultVolume (UInt16* alarmAmpP,
UInt16* sysAmpP, UInt16* masterAmpP)

Parameters <-> alarmAmpP Pointer to storage for alarm amplitude.

<-> sysAmpP Pointer to storage for system sound amplitude.

<-> masterAmpP Pointer to storage for master amplitude.

Result Returns nothing.

Comments Any pointer arguments may be passed as NULL. In that case, the
corresponding setting is not returned.

Sound Manager
Sound Manager Functions

694 Palm OS SDK Reference

SndPlaySmf

Purpose Performs the operation specified by the cmd parameter: play the
specified standard MIDI file (SMF) or return the number of
milliseconds required to play the entire SMF.

Prototype Err SndPlaySmf (void* chanP, SndSmfCmdEnum cmd,
UInt8* smfP, SndSmfOptionsType* selP,
SndSmfChanRangeType* chanRangeP,
SndSmfCallbacksType* callbacksP, Boolean bNoWait)

Parameters chanP The sound channel used to play the sound. This
value must always be NULL because current
versions of Palm OS provide only one sound
channel that all applications share.

cmd The operation to perform, as specified by one of
the following selectors:

sndSmfCmdPlay
Play the selection synchronously.

sndSmfCmdDuration
Return the duration of the entire SMF,
expressed in milliseconds.

-> smfP Pointer to the SMF data in memory. This
pointer can reference a valid
SndCallbackInfoType followed by MIDI
data, or it can point directly to the beginning of
the SMF data.

-> selP NULL or a pointer to a SndSmfOptionsType
specifying options for playback volume,
position in the SMF from which to begin
playback, and whether playback can be
interrupted by user interaction with the display.
See the SndSmfOptionsType for the default
behavior specified by a NULL value.

Sound Manager
Sound Manager Functions

Palm OS SDK Reference 695

-> chanRangeP NULL or a pointer to a
SndSmfChanRangeType specifying a
continuous range of MIDI channels 0 -15 to use
for playback. If this value is NULL, all tracks are
played.

-> callbacksP NULL or a pointer to a
SndSmfCallbacksType that holds your
callback functions. Functions of type
SndBlockingFuncType execute periodically
while a note is playing, and functions of type
SndComplFuncType execute after playback of
the SMF completes. For more information, see
the “Application-Defined Functions” section.

bNoWait This value is ignored. This function always
finishes playing the SMF selection before
returning; however, you can execute a callback
function while the SMF is playing.

Result Returns 0 if no error. When an error occurs, this function returns one
of the following values; for more information see the SoundMgr.h
file included with the Palm OS 3.X SDK:

Comments Although this call is synchronous, a callback function can be called
while a note is playing. If the callback does not return before the

sndErrBadParam Bogus value passed to this function.

sndErrBadChannel Invalid sound channel.

sndErrMemory Insufficient memory.

sndErrOpen Tried to open channel that’s already open.

sndErrQFull Can’t accept more notes.

sndErrQEmpty Internal use; never returned to
applications.

sndErrFormat Unsupported data format.

sndErrBadStream Invalid data stream.

sndErrInterrupted Play was interrupted.

Sound Manager
Sound Manager Functions

696 Palm OS SDK Reference

number of system ticks required to play the current sound have
elapsed, the next note in the SMF will not start on time.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also SndPlaySmfResource, SndDoCmd,SndCreateMidiList

SndPlaySmfResource

Purpose Plays a MIDI sound read out of an open resource database.

Prototype Err SndPlaySmfResource (UInt32 resType,
Int16 resID,
SystemPreferencesChoice volumeSelector)

Parameters -> resType Card number of the database containing the
SMF resource.

-> resID Resource ID of the SMF resource.

-> volumeSelector
Volume setting to use. The volume is read out
of the system preferences. Possible values for
this parameter are:

prefSysSoundVolume
prefGameSoundVolume
prefAlarmSoundVolume

Result Returns 0 upon success, otherwise one of the following:

or any error code returned by SndPlaySmf.

sndErrBadParam The volumeSelector
parameter has an invalid value or
the SMF resource has invalid
data.

dmErrCantFind The specified resource does not
exist on the specified card.

Sound Manager
Application-Defined Functions

Palm OS SDK Reference 697

Comments This is a convenience function to be used in place of SndPlaySmf. It
plays an SMF sound stored in a resource database. This function
plays the entire sound on all MIDI channels at the volume specified
and allows the sound to be interrupted by a key down event or a
digitizer event. No callbacks are specified.

Compatibility Implemented only if 3.2 New Feature Set is present.

SndPlaySystemSound

Purpose Play a standard system sound.

Prototype void SndPlaySystemSound (SndSysBeepType beepID)

Parameters -> beepID System sound to play.

Result Returns nothing.

Comments The SndSysBeepType enum is defined in SoundMgr.h as follows:

typedef enum SndSysBeepType {
sndInfo = 1,
sndWarning,
sndError,
sndStartUp,
sndAlarm,
sndConfirmation,
sndClick
} SndSysBeepType;

Note that in versions of Palm OS prior to 3.0, all of these sounds
were synchronous and blocking. In Palm OS 3.0 and higher,
sndAlarm still blocks, but the rest of these system sounds are
implemented asynchronously.

Application-Defined Functions
This section describes callback functions to be executed by the
SndPlaySmf function.

Sound Manager
Application-Defined Functions

698 Palm OS SDK Reference

SndComplFuncType

Purpose Executed after playback of the SMF completes.

Prototype void SndComplFuncType (void* chanP,
UInt32 dwUserData)

Parameters -> chanP The sound channel used to play the sound. This
value must always be NULL because current
versions of Palm OS provide only one sound
channel that all applications share.

-> dwUserData Application-defined data that this function
needs to access, or NULL.

Result Returns nothing.

See Also SndSmfCallbacksType

SndBlockingFuncType

Purpose A non-blocking callback function that is executed periodically
during playback of the SMF.

Prototype Boolean SndBlockingFuncType (void* chanP,
UInt32 dwUserData, Int32 sysTicksAvailable)

Parameters -> chanP The sound channel used to play the sound. This
value must always be NULL because current
versions of Palm OS provide only one sound
channel that all applications share.

-> dwUserData Application-defined data that this function
needs to access.

-> sysTicksAvailable
The maximum amount of time available for
completion of this function, or NULL.

Result Returns true to continue playback, or false to cancel playback.

Sound Manager
Application-Defined Functions

Palm OS SDK Reference 699

Comments Suggested uses for this function include updating the user interface
or checking for user input.

See Also SndSmfCallbacksType, SndPlaySmf

Palm OS SDK Reference 701

43
Standard IO
This chapter provides reference material for the standard IO API:

• Standard IO Functions

• Standard IO Provider Functions

• Application-Defined Function

The header files StdIOPalm.h and StdIOProvider.h declare the
standard IO API. For more information on using the standard IO
API, see the chapter “Standard IO Applications”in the Palm OS
Programmer’s Companion.

Standard IO Functions
The macros and functions in this section enable standard IO.

fgetc

Purpose Macro that calls Siofgetc to return the next character from the
input stream.

Prototype fgetc(fs)

Parameters -> fs An input stream from which to read the next
character. You can specify only the value stdin
for this parameter; alternate streams are not
currently implemented.

Result The next character from the input stream. The return value EOF
indicates an error occurred.

Standard IO
Standard IO Functions

702 Palm OS SDK Reference

fgets

Purpose Macro that calls Siofgets to return a string from the input stream.

Prototype fgets(strP, maxChars, fs)

Parameters <- strP A pointer to the returned string.

-> maxChars The number of characters to read from the
input stream, plus one for the null terminator.

-> fs An input stream from which to read the next
character. You can specify only the value stdin
for this parameter; alternate streams are not
currently implemented.

Result A pointer to the string read from the input stream. If an error or EOF
occurs before any characters are read, returns NULL.

Comments The returned string is always terminated by a null character.

fprintf

Purpose Macro that calls Siofprintf to write formatted output to an
output stream.

Prototype fprintf(fs, formatP, ...)

Parameters -> fs An output stream to which to write the
formatted output. You can specify only the
value stdout for this parameter; alternate
streams are not currently implemented.

-> formatP A pointer to a format string that controls how
subsequent arguments are converted for
output.

Standard IO
Standard IO Functions

Palm OS SDK Reference 703

-> ... Zero or more parameters to be formatted as
specified by the formatP string.

Result Returns the number of characters written out (not including the null
terminator used to end output strings). Returns a negative number
if there is an error.

Comments This function internally calls StrVPrintF to do the formatting. See
that function for details on which format specifications are
supported.

fputc

Purpose Macro that calls Siofputc to write a character to the output
stream.

Prototype fputc(c, fs)

Parameters -> c A character to write to the output stream.

-> fs An output stream to which to write the
character. You can specify only the value
stdout for this parameter; alternate streams
are not currently implemented.

Result The character that was written. If an error occurs, the value EOF is
returned.

fputs

Purpose Macro that calls Siofputs to write a string to the output stream.

Prototype fputs(strP, fs)

Parameters -> strP A pointer to the string to write.

Standard IO
Standard IO Functions

704 Palm OS SDK Reference

-> fs An output stream to which to write the string.
You can specify only the value stdout for this
parameter; alternate streams are not currently
implemented.

Result Returns 0 on success and the value EOF on error.

getchar

Purpose Macro that calls Siofgetc to read the next character from the stdin
input stream.

Prototype getchar()

Result The next character from the input stream. The return value EOF
indicates an error occurred.

gets

Purpose Macro that calls Siogets to read a string from the stdin input
stream.

Prototype gets(strP)

Parameters <- strP A pointer to the returned string.

Result A pointer to the string read from the input stream. If an error or EOF
occurs before any characters are read, returns NULL.

Comments The returned string does not include a null terminator. You must
ensure that the input line, if any, is sufficiently short to fit in the
string.

Standard IO
Standard IO Functions

Palm OS SDK Reference 705

printf

Purpose Macro that calls Sioprintf to write formatted output to the stdout
output stream.

Prototype printf(formatP, ...)

Parameters -> formatP A pointer to a format string that controls how
subsequent arguments are converted for
output.

-> ... Zero or more parameters to be formatted as
specified by the formatP string.

Result Returns the number of characters written out (not including the null
terminator used to end output strings).

Comments This function internally calls StrVPrintF to do the formatting. See
that function for details on which format specifications are
supported. Returns a negative number if there is an error.

putc

Purpose Macro that calls Siofputc to write a character to the output
stream.

Prototype putc(c, fs)

Parameters -> c A character to write to the output stream.

-> fs An output stream to which to write the
character. You can specify only the value
stdout for this parameter; alternate streams
are not currently implemented.

Result The character that was written. If an error occurs, the value EOF is
returned.

Standard IO
Standard IO Functions

706 Palm OS SDK Reference

putchar

Purpose Macro that calls Siofputc to write a character to the stdout output
stream.

Prototype putchar(c)

Parameters -> c A character to write to the stdout output
stream.

Result The character that was written. If an error occurs, the value EOF is
returned.

puts

Purpose Macro that calls Sioputs to write a string to the output stream
stdout.

Prototype puts(strP)

Parameters -> strP A pointer to the string to write to stdout.

Result Returns a nonnegative value on success and the value EOF on error.

SioAddCommand

Purpose Adds a built-in command that is supplied by the standard IO
provider application.

Prototype void SioAddCommand (Char* cmdStr,
SioMainProcPtr cmdProcP)

Parameters -> cmdStr Pointer to a string that is the command name.

-> cmdProcP Pointer to the command entry point function
(the SioMain function).

Result Returns nothing.

Standard IO
Standard IO Functions

Palm OS SDK Reference 707

Comments This routine is useful for registering a command that is inside the
standard IO provider application instead of in its own database.

This routine must be used to test commands under the Simulator
since it can't launch application databases.

sprintf

Purpose Macro that calls StrPrintF to write formatted output to the stdout
output stream.

Prototype sprintf (formatP, ...)

Parameters -> formatP A pointer to a format string that controls how
subsequent arguments are converted for
output.

-> ... Zero or more parameters to be formatted as
specified by the formatP string.

Result Returns the number of characters written out (not including the null
terminator used to end output strings).

Comments See StrVPrintF for details on which format specifications are
supported. Returns a negative number if there is an error.

system

Purpose Macro that calls Siosystem to execute another Stdio command.

Prototype system(cmdStrP)

Parameters -> cmdStrP A pointer to a string containing the command
line to execute.

Result Returns a value >= 0 on success or < 0 on failure.

Comments This function first looks for a built-in command with the specified
name. If none is found, it looks for a Stdio application database with

Standard IO
Standard IO Functions

708 Palm OS SDK Reference

the name "Cmd-cmdname" where cmdname is the first word in the
command string cmdStrP.

See Also SioExecCommand

vfprintf

Purpose Macro that calls Siovfprintf to write formatted output to the
stdout output stream.

Prototype vfprintf (fs, formatP, args)

Parameters -> fs An output stream to which to write the
formatted output. You can specify only the
value stdout for this parameter; alternate
streams are not currently implemented.

-> formatP A pointer to a format string that controls how
subsequent arguments are converted for
output.

-> args A pointer to a list of zero or more parameters to
be formatted as specified by the formatP
string.

Result Returns the number of characters written out (not including the null
terminator used to end output strings). Returns a negative number
if there is an error.

Comments This function internally calls StrVPrintF to do the formatting. See
that function for details on which format specifications are
supported.

Standard IO
Standard IO Provider Functions

Palm OS SDK Reference 709

vsprintf

Purpose Macro that calls StrVPrintF to write formatted output to the stdout
output stream.

Prototype vsprintf (fs, formatP, args)

Parameters -> fs An output stream to which to write the
formatted output. You can specify only the
value stdout for this parameter; alternate
streams are not currently implemented.

-> formatP A pointer to a format string that controls how
subsequent arguments are converted for
output.

-> args A pointer to a list of zero or more parameters to
be formatted as specified by the y string.

Result Returns the number of characters written out (not including the null
terminator used to end output strings). Returns a negative number
if there is an error.

Comments See StrVPrintF for details on which format specifications are
supported.

Standard IO Provider Functions
These functions are used by a standard IO provider application.

Standard IO
Standard IO Provider Functions

710 Palm OS SDK Reference

SioClearScreen

Purpose Clears the entire standard IO output field.

Prototype void SioClearScreen(void)

SioExecCommand

Purpose Executes a command line.

Prototype Int16 SioExecCommand (const Char* cmd)

Parameters -> cmd A pointer to a string containing the command
line to execute.

Result Returns a value >= 0 on success or < 0 on failure.

Comments This function first looks for a built-in command with the specified
name. If none is found, it looks for a Stdio application database with
the name "Cmd-cmdname" where cmdname is the first word in the
command string cmd.

If you pass the string “help” or “?” for the cmd parameter,
SioExecCommand causes a help string to be printed for each built-
in command. It actually executes each built-in command, passing
the string “?” as argv[1]. Each command should handle this
argument by printing a help line.

The SioExecCommand function is faster than calling system to
execute a command. However, SioExecCommand can be called
only by the standard IO provider application, not the standard IO
application.

See Also system

Standard IO
Standard IO Provider Functions

Palm OS SDK Reference 711

SioFree

Purpose Closes down the standard IO manager.

Prototype Err SioFree(void)

Result Returns 0 on success.

SioHandleEvent

Purpose Handles an event in the form that contains the standard IO output
field and scroll arrows if the event belongs to the text field or scroll
arrows.

Prototype Boolean SioHandleEvent (SysEventType* event)

Parameters -> event Pointer to an EventType structure.

Result Returns true if the event was handled and should not be processed
by the application’s own form event handler; returns false
otherwise.

Comments This function must be called from the form event handler before it
does its own processing with any of the objects unrelated to
standard IO in the form.

SioInit

Purpose Initializes the standard IO manager.

Prototype Err SioInit (UInt16 formID, UInt16 fieldID,
UInt16 scrollerID)

Parameters -> formID The ID of the form that contains the input/
output field.

-> fieldID The ID of the field to be used for input/output.

Standard IO
Application-Defined Function

712 Palm OS SDK Reference

-> scrollerID The ID of the scroller associated with the
input/output form.

Result Returns 0 on success.

Application-Defined Function
You must supply this function in your stdio application.

SioMain

Purpose The main entry point for the stdio application.

Prototype Int16 SioMain (UInt16 argc, Char* argv[])

Parameters -> argc The number of parameters passed on the
command line.

-> argv An array of character pointers, one for each
parameter passed on the command line.

Result The return value from this routine is passed back to the system call
that invoked it. Return 0 for no error.

Palm OS SDK Reference 713

44
String Manager
This chapter provides reference material for the string manager. The
string manager API is declared in the header file StringMgr.h.

For more information, see the “Text” section in the Palm OS
Programmer’s Companion.

String Manager Functions

StrAToI

Purpose Convert a string to an integer.

Prototype Int32 StrAToI (const Char* str)

Parameters str String to convert.

Result Returns the integer.

Comments Use this function instead of the standard atoi routine.

String Manager
String Manager Functions

714 Palm OS SDK Reference

StrCaselessCompare

Purpose Compare two strings with case and accent insensitivity.

Prototype Int16 StrCaselessCompare (const Char* s1,
const Char* s2)

Parameters s1, s2 Two string pointers.

Result Returns 0 if the strings match.

Returns a positive number if s1 > s2.

Returns a negative number if s1 < s2.

Comments Use this function instead of the standard stricmp routine. Use it to
find strings, or use it with StrCompare to sort strings. (See the
comments in StrCompare for a example code.)

To support systems that use multi-byte character encodings,
consider using TxtCaselessCompare instead of this function.
Both functions can match single-byte characters with their multi-
byte equivalents, but TxtCaselessCompare can also return the
length of the matching text.

See Also StrNCaselessCompare, TxtCaselessCompare,
StrCompare, StrNCompare, TxtCompare

StrCat

Purpose Concatenate one string to another.

Prototype Char* StrCat (Char* dst, const Char* src)

Parameters dst Destination string pointer.

src Source string pointer.

Result Returns a pointer to the destination string.

String Manager
String Manager Functions

Palm OS SDK Reference 715

Comments Use this function instead of the standard strcat routine.

StrChr

Purpose Look for a character within a string.

Prototype Char* StrChr (const Char* str, WChar chr)

Parameters str String to search.

chr Character to search for.

Result Returns a pointer to the first occurrence of character in str. Returns
NULL if the character is not found.

Comments Use this function instead of the standard strchr routine.

This routine does not correctly find a ‘\0’ character on Palm OS®
version 1.0.

This function can handle both single-byte characters and multi-byte
characters.

StrChr displays a non-fatal error message if chr is greater than
0xFF.

See Also StrStr

StrCompare

Purpose Compare two strings.

Prototype Int16 StrCompare (const Char* s1, const Char* s2)

Parameters s1, s2 Two string pointers.

Result Returns 0 if the strings match.

Returns a positive number if s1 sorts after s2 alphabetically.

Returns a negative number if s1 sorts before s2 alphabetically.

String Manager
String Manager Functions

716 Palm OS SDK Reference

Comments Use this function instead of the standard strcmp routine.

This function is case sensitive. Use it to sort strings but not to find
them.

This function performs a character-by-character comparison of s1
and s2 and returns as soon as it finds two unequal characters. For
example, if you are comparing the string “celery” with the string
“Cauliflower,” StrCompare returns that “celery” should appear
before “Cauliflower” because it sorts the letter “c” before “C.”

If you need to perform a true alphabetical sort, use
StrCaselessCompare before using StrCompare, as in the
following code:

Int16 result = StrCaselessCompare(a, b);
if (result == 0)
result = StrCompare(a, b);

return(result);

To support systems that use multi-byte character encodings,
consider using TxtCompare instead of this function. Both functions
can match single-byte characters with their multi-byte equivalents,
but TxtCompare can also return the length of the matching text.

See Also StrNCompare, TxtCompare, StrCaselessCompare,
StrNCaselessCompare, TxtCaselessCompare

StrCopy

Purpose Copy one string to another.

Prototype Char* StrCopy (Char* dst, const Char* src)

Parameters dst, src Two string pointers.

Result Returns a pointer to the destination string.

Comments Use this function instead of the standard strcpy routine.

This function does not work properly with overlapping strings.

String Manager
String Manager Functions

Palm OS SDK Reference 717

StrDelocalizeNumber

Purpose Delocalize a number passed in as a string. Convert the number from
any localized notation to US notation (decimal point and
thousandth comma). The current thousand and decimal separators
have to be passed in.

Prototype Char* StrDelocalizeNumber (Char* s,
Char thousandSeparator, Char decimalSeparator)

Parameters s Pointer to the number as an ASCII string.

thousandSeparator
Current thousand separator.

decimalSeparator
Current decimal separator.

Result Returns a pointer to the changed number and modifies the string in
s.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also StrLocalizeNumber, LocGetNumberSeparators

StrIToA

Purpose Convert an integer to ASCII.

Prototype Char* StrIToA (Char* s, Int32 i)

Parameters s String pointer to store results.

i Integer to convert.

Result Returns a pointer to the result string.

See Also StrAToI, StrIToH

String Manager
String Manager Functions

718 Palm OS SDK Reference

StrIToH

Purpose Convert an integer to hexadecimal ASCII.

Prototype Char* StrIToH (Char* s, UInt32 i)

Parameters s String pointer to store results.

i Integer to convert.

Result Returns the string pointer s.

See Also StrIToA

StrLen

Purpose Compute the length of a string.

Prototype UInt16 StrLen (const Char* src)

Parameters src String pointer

Result Returns the length of the string in bytes.

Comments Use this function instead of the standard strlen routine.

This function returns the length of the string in bytes. On systems
that support multi-byte characters, the number returned does not
always equal the number of characters.

StrLocalizeNumber

Purpose Convert a number (passed in as a string) to localized format, using a
specified thousands separator and decimal separator.

Prototype Char* StrLocalizeNumber (Char* s,
Char thousandSeparator, Char decimalSeparator)

Parameters s Number ASCII string to localize.

String Manager
String Manager Functions

Palm OS SDK Reference 719

thousandSeparator
Localized thousand separator.

decimalSeparator
Localized decimal separator.

Result Returns a pointer to the changed number. Converts the number
string in s by replacing all occurrences of “,” with
thousandSeparator and all occurrences of “.” with
decimalSeparator.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also StrDelocalizeNumber

StrNCaselessCompare

Purpose Compares two strings out to n characters with case and accent
insensitivity.

Prototype Int16 StrNCaselessCompare (const Char* s1,
const Char* s2, Int32 n)

Parameters s1 Pointer to first string.

s2 Pointer to second string.

n Length in bytes of the text to compare.

Result Returns 0 if the strings match.

Returns a positive number if s1 > s2.

Returns a negative number if s1 < s2.

Comments To support systems that use multi-byte character encodings,
consider using TxtCaselessCompare instead of this function.
Both functions can match single-byte characters with their multi-
byte equivalents, but TxtCaselessCompare can also return the
length of the matching text.

String Manager
String Manager Functions

720 Palm OS SDK Reference

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also StrNCompare, StrCaselessCompare, TxtCaselessCompare,
StrCompare, TxtCompare

StrNCat

Purpose Concatenates one string to another clipping the destination string to
a maximum of n bytes (including the null character at the end).

Prototype Char* StrNCat (Char* dst, const Char* src,
Int16 n)

Parameters dst Pointer to destination string.

src Pointer to source string.

n Maximum length in bytes for dst, including
the terminating null character.

Result Returns a pointer to the destination string.

Comment This function differs from the standard C strncat function in these
ways:

• StrNCat treats the parameter n as the maximum length in
bytes for dst. That means it will copy at most n -
StrLen(dst) - 1 bytes from src. The standard C function
always copies n bytes from src into dst. (It copies the entire
src into dst if the length of src is less than n).

• If the length of the destination string reaches n - 1, StrNCat
stops copying bytes from src and appends the terminating
null character to dst. If the length of the destination string is
already greater than or equal to n - 1 before the copying
begins, StrNCat does not copy any data from src.

• In the standard C function, if src is less than n, the entire
src string is copied into dst and then the remaining space is
filled with null characters. StrNCat does not fill the
remaining space with null characters in released ROMs. In
debug ROMs, StrNCat fills the remaining bytes with the
value 0xFE.

String Manager
String Manager Functions

Palm OS SDK Reference 721

Compatibility Implemented only if 2.0 New Feature Set is present.

StrNCompare

Purpose Compare two strings out to n characters. This function is case and
accent sensitive.

Prototype Int16 StrNCompare (const Char* s1, const Char* s2,
UInt32 n)

Parameters s1 Pointer to first string.

s2 Pointer to second string.

n Length in bytes of text to compare.

Result Returns 0 if the strings match.

Returns a positive number if s1 > s2.

Returns a negative number if s1 < s2.

Comments To support systems that use multi-byte character encodings,
consider using TxtCompare instead of this function. Both functions
can match single-byte characters with their multi-byte equivalents,
but TxtCompare can also return the length of the matching text.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also StrCompare, TxtCompare, StrNCaselessCompare,
StrCaselessCompare, TxtCaselessCompare

String Manager
String Manager Functions

722 Palm OS SDK Reference

StrNCopy

Purpose Copies up to n characters from a source string to the destination
string. Terminates dst string at index n-1 if the source string length
was n-1 or less.

Prototype Char* StrNCopy (Char* dst, const Char* src,
Int16 n)

Parameters dst Destination string.

src Source string.

n Maximum number of bytes to copy from src
string.

Result Returns nothing.

Comments On systems with multi-byte character encodings, this function
makes sure that it does not copy part of a multi-byte character. If the
nth byte of src contains the high-order or middle byte of a multi-
byte character, StrNCopy backs up in dst until the byte after the
end of the previous character, and replaces the remaining bytes (up
to n-1) with nulls.

Compatibility Implemented only if 2.0 New Feature Set is present.

StrPrintF

Purpose Implements a subset of the ANSI C sprintf call, which writes
formatted output to a string.

Prototype Int16 StrPrintF (Char* s,
const Char* formatStr, ...)

Parameters s Pointer to a string where the results are written.

formatStr Pointer to the format specification string.

String Manager
String Manager Functions

Palm OS SDK Reference 723

... Zero or more arguments to be formatted as
specified by formatStr.

Result Number of characters written to destination string. Returns a
negative number if there is an error.

Comments This function internally calls StrVPrintF to do the formatting. See
that function for details on which format specifications are
supported.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also StrVPrintF

StrStr

Purpose Look for a substring within a string.

Prototype Char* StrStr (const Char* str, const Char* token)

Parameters str String to search.

token String to search for.

Result Returns a pointer to the first occurrence of token in str or NULL if
not found.

Comments Use this function instead of the standard strstr routine.

On systems with multi-byte character encodings, this function
makes sure that it does not match only part of a multi-byte
character. If the matching strings begins at an inter-character
boundary, then this function returns NULL.

See Also StrChr

String Manager
String Manager Functions

724 Palm OS SDK Reference

StrToLower

Purpose Convert all the characters in a string to lowercase.

Prototype Char* StrToLower (Char* dst, const Char* src)

Parameters dst, src Two string pointers.

Result Returns a pointer to the destination string.

Compatibility Prior to Palm OS version 3.5, this function only converted accented
characters on Japanese devices. On Palm OS version 3.5 and higher,
all characters are appropriately lowercased, including accented
characters on Latin devices.

StrVPrintF

Purpose Implements a subset of the ANSI C vsprintf call, which writes
formatted output to a string.

Prototype Int16 StrVPrintF (Char* s, const Char* formatStr,
_Palm_va_list argParam)

Parameters s Pointer to a string where the results are written.
This string is always terminated by a null
terminator.

formatStr Pointer to the format specification string.

argParam Pointer to a list of zero or more parameters to
be formatted as specified by the formatStr
string.

Result Number of characters written to destination string, not including
the null terminator. Returns a negative number if there is an error.

Comments Like the C vsprintf function, this function is designed to be called
by your own function that takes a variable number of arguments
and passes them to this function. For details on how to use it, see

String Manager
String Manager Functions

Palm OS SDK Reference 725

“Using the StrVPrintF Function” on page 125 in Palm OS
Programmer’s Companion, or refer to vsprintf in a standard C
reference book.

Currently, only the conversion specifications %d, %i, %u, %x, %s, and
%c are implemented by StrVPrintF (and related functions).
Optional modifiers that are supported include: +, -, <space>, *,
<digits>, h and l (long). Following is a brief description of how
these format specifications work (see a C book for more details).

Each conversion specification begins with the % character.
Following the % character, there may be one or more of the
characters list in Table 44.1, in sequence.

Table 44.1 StrVPrintF Format Specification

Character Description

+ Specifies that a sign always be placed before a
number produced by a signed conversion. A +
overrides a space if both are used. Example:
StrPrintF(s,"%+d %+d",4,-5);
Output to s:
+4 -5

- Specifies that the printed value is left justified
within the field width allowed for it. Example:
StrPrintF(s,"%5d%-5d%d",6,9,8);
Output to s:
 69 8

<space> Specifies that a minus sign always be placed
before a negative number and a space before a
positive number. Example:
StrPrintF(s,"% d % d",4,-5);
Output to s:
 4 -5

String Manager
String Manager Functions

726 Palm OS SDK Reference

* Indicates that the next argument (must be an
integer) in the list specifies the field width. In this
case, the argument following that one is used for
the value of this field. Example:
StrPrintF(s,"%*d%d",4,8,5);
Output to s:
8 5

<number> Specifies a minimum field width. If the converted
value has fewer characters than the field width, it
will be padded with spaces on the left (or right, if
the left justified flag is also specified) to fill out the
field width. Example:
StrPrintF(s,"%d%5d",4,3);
Output to s:
4 3

h Specifies that the following d, i, u, or x conversion
corresponds to a short or unsigned short
argument. Example:
StrPrintF(s,"%hd",401);
Output to s:
401

l or L Specifies that the following d, i, u, or x conversion
corresponds to a long or unsigned long
StrPrintF(s,"%ld",999999999);
Output to s:
999999999

<character> A character that indicates the type of conversion
to be performed. The supported conversion
characters include:

d
or
i

A signed integer argument is converted to
decimal notation. Example:
StrPrintF(s,"%d %d",4,-4);
Output to s:
4 -4

Table 44.1 StrVPrintF Format Specification (continued)

Character Description

String Manager
String Manager Functions

Palm OS SDK Reference 727

Example Here’s an example of how to use this call:

#include <stdarg.h>
void MyPrintF(Char* s, Char* formatStr, ...)
{
va_list args;
Char text[0x100];

u An unsigned integer argument is converted
to decimal notation. Example:
StrPrintF(s,"%u %u",4,-4);
Output to s:
4 65532

x An integer argument is converted to
hexadecimal notation. Example:
StrPrintF(s,"%x",125);
Output to s:
0000007D

s A string (char *) argument is copied to the
destination string. Example:
StrPrintF(s,"ABC%s","DEF");
Output to s:
ABCDEF

c A single character (int) argument is copied
to the destination string. Example:
StrPrintF(s,"Telephone%c",'s');
Output to s:
Telephones

% A % character is copied to the destination
string. Example:
StrPrintF(s,"%%");
Output to s:
%

Table 44.1 StrVPrintF Format Specification (continued)

Character Description

String Manager
String Manager Functions

728 Palm OS SDK Reference

va_start(args, formatStr);
StrVPrintF(text, formatStr, args);
va_end(args);
MyPutS(text);

}

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also StrPrintF, Using the StrVPrintF Function

Palm OS SDK Reference 729

45
System Event
Manager
This chapter describes functions available in the system event
manager. The system event manager API is declared in the header
files Event.h and SysEvtMgr.h.

For more information on the system event manager, see the chapter
“Event Loop” in the Palm OS Programmer’s Companion. The reference
for specific events sent by the system are documented in Palm OS
Events.

System Event Manager Data Structures
The following system event manager data structures are
documented elsewhere:

• eventsEnumfs

• EventType

• EventPtr

System Event Manager Functions

EvtAddEventToQueue

Purpose Add an event to the event queue.

Prototype void EvtAddEventToQueue (const EventType *event)

Parameters event Pointer to the structure that contains the event.

Result Returns nothing.

System Event Manager
System Event Manager Functions

730 Palm OS SDK Reference

EvtAddUniqueEventToQueue

Purpose Look for an event in the event queue of the same event type and ID
(if specified). The routine replaces it with the new event, if found.

If no existing event is found, the new event is added.

If an existing event is found, the routine proceeds as follows:

• If inPlace is true, the existing event is replaced with the
new event.

• If inPlace is false, the existing event is removed and the
new event will be added to the end.

Prototype void EvtAddUniqueEventToQueue
(const EventType *eventP, UInt32 id,
Boolean inPlace)

Parameters eventP Pointer to the structure that contains the event

id ID of the event. 0 means match only on the
type.

inPlace If true, existing event are replaced. If false,
existing event is deleted and new event added
to end of queue.

Result Returns nothing.

Compatibility Implemented only if 2.0 New Feature Set is present.

EvtCopyEvent

Purpose Copy an event.

Prototype void EvtCopyEvent (const EventType *source,
EventType *dest)

Parameters source Pointer to the structure containing the event to
copy.

System Event Manager
System Event Manager Functions

Palm OS SDK Reference 731

dest Pointer to the structure to copy the event to.

Result Returns nothing.

EvtDequeuePenPoint

Purpose Get the next pen point out of the pen queue. This function is called
by recognizers.

Prototype Err EvtDequeuePenPoint (PointType* retP)

Parameters retP Return point.

Result Always returns 0.

Comments Called by a recognizer that wishes to extract the points of a stroke.
Returns the point (-1, -1) at the end of a stroke.

Before calling this routine, you must call EvtDequeuePenStrokeInfo.

See Also EvtDequeuePenStrokeInfo

EvtDequeuePenStrokeInfo

Purpose Initiate the extraction of a stroke from the pen queue.

Prototype Err EvtDequeuePenStrokeInfo (PointType* startPtP,
PointType* endPtP)

Parameters startPtP Start point returned here.

endPtP End point returned here.

Result Always returns 0.

Comments Called by the system function EvtGetSysEvent when a penUp
event is being generated. This routine must be called before
EvtDequeuePenPoint is called.

System Event Manager
System Event Manager Functions

732 Palm OS SDK Reference

Subsequent calls to EvtDequeuePenPoint return points at the starting
point in the stroke and including the end point. After the end point
is returned, the next call to EvtDequeuePenPoint returns the point -1, -
1.

See Also EvtDequeuePenPoint

EvtEnableGraffiti

Purpose Set Graffiti® enabled or disabled.

Prototype void EvtEnableGraffiti (Boolean enable)

Parameters enable true to enable Graffiti, false to disable
Graffiti.

Result Returns nothing.

EvtEnqueueKey

Purpose Place keys into the key queue.

Prototype Err EvtEnqueueKey (WChar ascii, UInt16 keycode,
UInt16 modifiers)

Parameters ascii ASCII code of key.

keycode Virtual key code of key.

modifiers Modifiers for key event.

Result Returns 0 if successful, or evtErrParamErr if an error occurs.

Comments Called by the keyboard interrupt routine and the Graffiti and soft
key recognizers. Note that because both interrupt- and
noninterrupt-level code can post keys into the queue, this routine
disables interrupts while the queue header is being modified.

Most keys in the queue take only 1 byte if they have no modifiers
and no virtual key code, and are 8-bit ASCII. If a key event in the

System Event Manager
System Event Manager Functions

Palm OS SDK Reference 733

queue has modifiers or is a non-standard ASCII code, it takes up to
7 bytes of storage and has the following format:

EvtEventAvail

Purpose Return true if an event is available.

Prototype Boolean EvtEventAvail (void)

Parameters None

Result Returns true if an event is available, false otherwise.

Compatibility Implemented only if 2.0 New Feature Set is present.

EvtFlushKeyQueue

Purpose Flush all keys out of the key queue.

Prototype Err EvtFlushKeyQueue (void)

Parameters None.

Result Always returns 0.

Comments Called by the system function EvtSetPenQueuePtr.

evtKeyStringEscape 1 byte

ASCII code 2 bytes

virtual key code 2 bytes

modifiers 2 bytes

System Event Manager
System Event Manager Functions

734 Palm OS SDK Reference

EvtFlushNextPenStroke

Purpose Flush the next stroke out of the pen queue.

Prototype Err EvtFlushNextPenStroke (void)

Parameters None

Result Always returns 0.

Comments Called by recognizers that need only the start and end points of a
stroke. If a stroke has already been partially dequeued (by
EvtDequeuePenStrokeInfo) this routine finishes the stroke
dequeueing. Otherwise, this routine flushes the next stroke in the
queue.

See Also EvtDequeuePenPoint

EvtFlushPenQueue

Purpose Flush all points out of the pen queue.

Prototype Err EvtFlushPenQueue (void)

Parameters None

Result Always returns 0.

Comments Called by the system function EvtSetKeyQueuePtr.

See Also EvtPenQueueSize

System Event Manager
System Event Manager Functions

Palm OS SDK Reference 735

EvtGetEvent

Purpose Return the next available event.

Prototype void EvtGetEvent (EventType *event, Int32 timeout)

Parameters event Pointer to the structure to hold the event
returned.

timeout Maximum number of ticks to wait before an
event is returned (-1 means wait indefinitely).

Comments Pass timeout= -1 in most instances. When running on the device,
this makes the CPU go into doze mode until the user provides
input. For applications that do animation, pass timeout >= 0.

Result Returns nothing.

EvtGetPen

Purpose Return the current status of the pen.

Prototype void EvtGetPen (Int16 *pScreenX, Int16 *pScreenY,
Boolean *pPenDown)

Parameters pScreenX x location relative to display.

pScreenY y location relative to display.

pPenDown true or false.

Result Returns nothing.

Comments Called by various UI routines.

See Also KeyCurrentState

System Event Manager
System Event Manager Functions

736 Palm OS SDK Reference

EvtGetPenBtnList

Purpose Return a pointer to the silk-screen button array.

Prototype const PenBtnInfoType* EvtGetPenBtnList
(UInt16* numButtons)

Parameters numButtons Pointer to the variable to contain the number of
buttons in the array.

Result Returns a pointer to the array.

Comments The array returned contains the bounds of each silk-screened button
and the ASCII code and modifiers byte to generate for each button.

See Also EvtProcessSoftKeyStroke

EvtGetSilkscreenAreaList

Purpose Returns a pointer to the silk screen area array. This array contains
the bounds of each silk screen area.

Prototype *const SilkscreenAreaType*
EvtGetSilkscreenAreaList(UInt16* numAreas)

Parameters numAreas pointer to area count variable

Result returns a pointer to the array and the number of elements in the
array.

System Event Manager
System Event Manager Functions

Palm OS SDK Reference 737

EvtKeydownIsVirtual

Purpose Macro that indicates if eventP is a pointer to a virtual character key
down event.

Prototype #define EvtKeydownIsVirtual(eventP)
(((eventP)->data.keyDown.modifiers &
virtualKeyMask) != 0)

Parameters eventP pointer to the structure that contains the event.

Result Returns true if the character is a letter in an alphabet or a numeric
digit, false otherwise.

Comments The macro assumes that the caller has already determined the event
is a key down. With earlier versions of the OS, use
TxtGlueCharIsVirtual in the PalmOSGlue Library.

Compatibility Implemented in the Palm OS® 3.5 SDK, but will work on older
devices (at least on 3.0, perhaps on 2.0 and 1.0.)

See Also TxtGlueCharIsVirtual

EvtKeyQueueEmpty

Purpose Return true if the key queue is currently empty.

Prototype Boolean EvtKeyQueueEmpty (void)

Parameters None.

Result Returns true if the key queue is currently empty, otherwise returns
false.

Comments Usually called by the key manager to determine if it should enqueue
auto-repeat keys.

System Event Manager
System Event Manager Functions

738 Palm OS SDK Reference

EvtKeyQueueSize

Purpose Return the size of the current key queue in bytes.

Prototype UInt32 EvtKeyQueueSize (void)

Parameters None.

Result Returns size of queue in bytes.

Comments Called by applications that wish to see how large the current key
queue is.

EvtPenQueueSize

Purpose Return the size of the current pen queue in bytes.

Prototype UInt32 EvtPenQueueSize (void)

Parameters None.

Result Returns size of queue in bytes.

Comments Call this function to see how large the current pen queue is.

EvtProcessSoftKeyStroke

Purpose Translate a stroke in the system area of the digitizer and enqueue the
appropriate key events in to the key queue.

Prototype Err EvtProcessSoftKeyStroke(PointType* startPtP,
PointType* endPtP)

Parameters startPtP Start point of stroke.

System Event Manager
System Event Manager Functions

Palm OS SDK Reference 739

endPtP End point of stroke.

Result Returns 0 if recognized, -1 if not recognized.

See Also EvtGetPenBtnList, GrfProcessStroke

EvtResetAutoOffTimer

Purpose Reset the auto-off timer to assure that the device doesn’t
automatically power off during a long operation without user input
(for example, serial port activity).

Prototype Err EvtResetAutoOffTimer (void)

Parameters None.

Result Always returns 0.

Comments Called by the serial link manager; can be called periodically by other
managers. EvtResetAutoOffTimer just resets the timer, while
EvtSetAutoOffTimer allows you to specify a time.

See Also SysSetAutoOffTime EvtSetAutoOffTimer

EvtSetAutoOffTimer

Purpose EvtSetAutoOffTimer can be called periodically by other
managers to reset the auto-off timer.

Prototype Err EvtSetAutoOffTimer(EvtSetAutoOffCmd cmd,
UInt16 timeoutSecs)

Parameters cmd One of the defined commands.

timeout A new timeout in seconds, ignored for the
'reset' command.

Result Returns 0 if no error.

System Event Manager
System Event Manager Functions

740 Palm OS SDK Reference

Comments This assures that the device doesn't automatically power off during
a long operation that doesn't have user input (like a lot of serial port
activity, for example). It is also used to manage the auto-off timer in
general.

These commands are currently defined:

SetAtLeast Turn off in at least xxx seconds

SetExactly: Set the timer to turn off in xxx seconds

SetAtMost: Set the device to turn off in <= xxx seconds

SetDefault: Change default auto-off timeout to xxx seconds

ResetTimer: Reset the auto off timer.

NOTE: This functionality is only available in Palm OS 3.5 and
later.

See Also EvtResetAutoOffTimer SysSetAutoOffTime

EvtSetNullEventTick

Purpose Set the tick when a null event is due, unless one is due sooner.

Prototype Boolean EvtSetNullEventTick(UInt32 tick)

Parameters tick the tick when a null event should occur.

Result Returns true if null tick count setting changed.

System Event Manager
System Event Manager Functions

Palm OS SDK Reference 741

EvtSysEventAvail

Purpose Return true if a low-level system event (such as a pen or key event)
is available.

Prototype Boolean EvtSysEventAvail (Boolean ignorePenUps)

Parameters ignorePenUps If true, this routine ignores pen-up events
when determining if there are any system
events available.

Result Returns true if a system event is available.

Comment Call EvtEventAvail to determine whether high-level software events
are available.

Compatibility Implemented only if 2.0 New Feature Set is present.

EvtWakeup

Purpose Force the event manager to wake up and send a nilEvent to the
current application.

Prototype Err EvtWakeup (void)

Parameters None.

Result Always returns 0.

Comments Called by interrupt routines, like the sound manager and alarm
manager.

Palm OS SDK Reference 743

46
System Manager
This chapter provides reference material for the system manager.
The system manager API is declared in the header files
SystemMgr.h and SysUtils.h.

For more information on the system manager, see the chapters
“Application Startup and Stop” and “Palm System Features” in the
Palm OS Programmer’s Companion.

System Functions

SysAppLaunch

Purpose Open an application from a specified database and card, with the
appropriate launch flags. Generally used to launch an application as
a subroutine of the caller.

Prototype Err SysAppLaunch (UInt16 cardNo, LocalID dbID,
UInt16 launchFlags, UInt16 cmd, MemPtr cmdPBP,
UInt32* resultP)

Parameters cardNo, dbID cardNo and dbID identify the application.

launchFlags Set to 0.

cmd Launch code.

cmdPBP Launch code parameter block.

resultP Pointer to what’s returned by the application’s
PilotMain routine.

Result Returns 0 if no error, or one of sysErrParamErr,
memErrNotEnoughSpace, sysErrOutOfOwnerIDs.

System Manager
System Functions

744 Palm OS SDK Reference

Comments Launching an application with all launch bits cleared makes the
application a subroutine call from the point of view of the caller.

Do not use this function to open the system-supplied Application
Launcher application. If another application has replaced the
default launcher with one of its own, this function will open the
custom launcher instead of the system-supplied one. To open the
system-supplied launcher reliably, enqueue a keyDownEvent that
contains a launchChr, as shown in the section “Application
Launcher” of the user interface chapter in the Palm OS Programmer’s
Companion.

If the launch flag sysAppLaunchFlagNewThread is set, and you
are passing a parameter block (the cmdPBP parameter), you must
set the owner of the parameter block chunk to the operating system.
To do this, and for more information, see MemPtrSetOwner. If the
parameter block structure contains references by pointer or handle
to any other chunks, you also must set the owner of those chunks by
using MemHandleSetOwner or MemPtrSetOwner.

NOTE: For important information regarding the correct use of
this function, see the “Application Startup and Stop” chapter in the
Palm OS Programmer’s Companion.

See Also SysBroadcastActionCode, SysUIAppSwitch,
SysCurAppDatabase

SysBatteryInfo

Purpose Retrieve settings for the batteries. Set set to false to retrieve
battery settings. (Applications should not change any of the
settings).

Use this function only to retrieve settings!

System Manager
System Functions

Palm OS SDK Reference 745

Prototype UInt16 SysBatteryInfo (Boolean set,
UInt16* warnThresholdP,
UInt16* criticalThresholdP, UInt16* maxTicksP,
SysBatteryKind* kindP, Boolean* pluggedIn
UInt8* percentP)

Parameters set If false, parameters with non-NULL pointers
are retrieved. Never set this parameter to true.

warnThresholdP Pointer to battery voltage warning threshold in
volts*100, or NULL.

criticalThresholdP
Pointer to the battery voltage critical threshold
in volts*100, or NULL.

maxTicksP Pointer to the battery timeout, or NULL.

kindP Pointer to the battery kind, or NULL.

pluggedIn Pointer to pluggedIn return value, or NULL.

percentP Percentage of power remaining in the battery.

Result Returns the current battery voltage in volts*100.

Comments Call this function to make sure an upcoming activity won’t be
interrupted by a low battery warning.

warnThresholdP and maxTicksP are the battery-warning
voltage threshold and time out. If the battery voltage falls below the
threshold, or the timeout expires, a lowBatteryChr key event is
put on the queue. Normally, applications call SysHandleEvent
which calls SysBatteryDialog in response to this event.

criticalThresholdP is the battery voltage threshold. If battery
voltage falls below this level, the system turns itself off without
warning and doesn’t turn on until battery voltage is above it again.

Compatibility This function was revised for Palm OS® 3.0. In Palm OS 3.0, the
percentP parameter was added. This enhancement is
implemented only if 3.0 New Feature Set is present.

See Also SysBatteryInfoV20

System Manager
System Functions

746 Palm OS SDK Reference

SysBatteryInfoV20

Purpose Retrieve settings for the batteries. Set to false to retrieve battery
settings. (Applications should not change any of the settings).

Use this function only to retrieve settings!

Prototype UInt16 SysBatteryInfoV20 (Boolean set,
UInt16* warnThresholdP,
UInt16* criticalThresholdP, UInt16* maxTicksP,
SysBatteryKind* kindP, Boolean* pluggedIn)

Parameters set If false, parameters with non-NULL pointers
are retrieved. Never set this parameter to true.

warnThresholdP Pointer to battery voltage warning threshold in
volts*100, or NULL.

criticalThresholdP
Pointer to the battery voltage critical threshold
in volts*100, or NULL.

maxTicksP Pointer to the battery timeout, or NULL.

kindP Pointer to the battery kind, or NULL.

pluggedIn Pointer to pluggedIn return value, or NULL.

Result Returns the current battery voltage in volts*100.

Comments Call this function to make sure an upcoming activity won’t be
interrupted by a low battery warning.

warnThresholdP and maxTicksP are the battery-warning
voltage threshold and time out. If the battery voltage falls below the
threshold, or the timeout expires, a lowBatteryChr key event is
put on the queue. Normally, applications call SysHandleEvent
which calls SysBatteryDialog in response to this event.

criticalThresholdP is the battery voltage threshold. If battery
voltage falls below this level, the system turns itself off without
warning and doesn’t turn on until battery voltage is above it again.

System Manager
System Functions

Palm OS SDK Reference 747

Compatibility This function corresponds to the Palm OS 2.0 version of
SysBatteryInfo. Implemented only if 3.0 New Feature Set is
present.

See Also SysBatteryInfo

SysBinarySearch

Purpose Search elements in a sorted array for the specified data according to
the specified comparison function.

Prototype Boolean SysBinarySearch (void const *baseP,
const UInt16 numOfElements, const Int16 width,
SearchFuncPtr searchF, void const *searchData,
const Int32 other, Int32* position,
const Boolean findFirst)

Parameters baseP Base pointer to an array of elements

numOfElements Number of elements to search, starting at 0 to
numOfElements -1. Must be greater than 0.

width Width of an element comparison function.

searchF Search function.

searchData Data to search for. This data is passed to the
searchF function.

other Data to be passed as the third parameter (the
other parameter) to the comparison function.

position Pointer to the position result.

System Manager
System Functions

748 Palm OS SDK Reference

findFirst If set to true, the first matching element is
returned. Use this parameter if the array
contains duplicate entries to ensure that the
first such entry will be the one returned.

Result Returns true if an exact match was found. In this case, position
points to the element number where the data was found.

Returns false if an exact match was not found. If false is
returned, position points to the element number where the data
should be inserted if it was to be added to the array in sorted order.

Comments The array must be sorted in ascending order prior to the search. Use
SysInsertionSort or SysQSort to sort the array.

The search starts at element 0 and ends at element
(numOfElements - 1).

The search function’s (searchF) prototype is:

Int16 _searchF (void const *searchData,
void const *arrayData, Int32 other);

The first parameter is the data for which to search, the second
parameter is a pointer to an element in the array, and the third
parameter is any other necessary data.

The function returns:

• > 0 if the search data is greater than the element

• < 0 if the search data is less than the element

• 0 if the search data is the same as the element

Compatibility Implemented only if 2.0 New Feature Set is present.

System Manager
System Functions

Palm OS SDK Reference 749

SysBroadcastActionCode

Purpose Send the specified action code (launch code) and parameter block to
the latest version of every UI application.

Prototype Err SysBroadcastActionCode (UInt16 cmd,
MemPtr cmdPBP)

Parameters cmd Action code to send.

cmdPBP Action code parameter block to send.

Result Returns 0 if no error, or one of the following errors:
sysErrParamErr, memErrNotEnoughSpace,
sysErrOutOfOwnerIDs.

See Also SysAppLaunch, Chapter 3, “Application Startup and Stop.” of the
Palm OS Programmer’s Companion

SysCopyStringResource

Purpose Copy a resource string to a passed string.

Prototype void SysCopyStringResource (Char* string,
Int16 theID)

Parameters string String to copy the resource string to.

theID Resource string ID.

Result Stores a copy of the resource string in string.

SysCreateDataBaseList

Purpose Generate a list of databases found on the memory cards matching a
specific type and return the result. If lookupName is true then a
name in a tAIN resource is used instead of the database’s name and

System Manager
System Functions

750 Palm OS SDK Reference

the list is sorted. Only the last version of a database is returned.
Databases with multiple versions are listed only once.

Prototype Boolean SysCreateDataBaseList (UInt32 type,
UInt32 creator, UInt16* dbCount, MemHandle *dbIDs,
Boolean lookupName)

Parameters type Type of database to find (0 for wildcard).

creator Creator of database to find (0 for wildcard).

dbCount Pointer to contain count of matching databases.

dbIDs Pointer to handle allocated to contain the
database list.

lookupName Use tAIN names and sort the list.

Result Returns false if no databases were found, true if databases were
found. dbCount is updated to the number of databases found;
dbIDs is updated to the list of matching databases found.

Compatibility Implemented only if 2.0 New Feature Set is present.

SysCreatePanelList

Purpose Generate a list of panels found on the memory cards and return the
result. Multiple versions of a panel are listed once.

Prototype Boolean SysCreatePanelList (UInt16* panelCount,
MemHandle *panelIDs)

Parameters panelCount Pointer to set to the number of panels.

panelIDs Pointer to handle containing a list of panels.

Result Returns false if no panels were found, true if panels were found.
panelCount is updated to the number of panels found; panelIDs
is updated to the IDs of panels found.

Compatibility Implemented only if 2.0 New Feature Set is present.

System Manager
System Functions

Palm OS SDK Reference 751

SysCurAppDatabase

Purpose Return the card number and database ID of the current application’s
resource database.

Prototype Err SysCurAppDatabase (UInt16* cardNoP,
LocalID* dbIDP)

Parameters cardNoP Pointer to the card number; 0 or 1.

dbIDP Pointer to the database ID.

Result Returns 0 if no error, or SysErrParamErr if an error occurs.

See Also SysAppLaunch, SysUIAppSwitch

SysErrString

Purpose Returns text to describe an error number. This routine looks up the
textual description of a system error number in the appropriate List
resource and creates a string that can be used to display that error.

The actual string will be of the form: "<error message> (XXXX)"
where XXXX is the hexadecimal error number.

This routine looks for a resource of type 'tstl' and resource ID of
(err>>8). It then grabs the string at index (err & 0x00FF) out of that
resource.

The first string in the resource is called index #1 by Constructor,
NOT #0. For example, an error code of 0x0101 will fetch the first
string in the resource.

Prototype Char* SysErrString (Err err, Char* strP,
UInt16 maxLen)

Parameters err Error number

strP Pointer to space to form the string

System Manager
System Functions

752 Palm OS SDK Reference

maxLen Size of strP buffer.

Result Stores the error number string.

Compatibility Implemented only if 2.0 New Feature Set is present.

SysFormPointerArrayToStrings

Purpose Form an array of pointers to strings in a block. Useful for setting the
items of a list.

Prototype MemHandle SysFormPointerArrayToStrings (Char* c,
Int16 stringCount)

Parameters c Pointer to packed block of strings, each
terminated by NULL.

stringCount Count of strings in block.

Result Unlocked handle to allocated array of pointers to the strings in the
passed block. The returned array points to the strings in the passed
packed block.

SysGetOSVersionString

Purpose Return the version number of the Palm operating system.

Prototype Char* SysGetOSVersionString()

Parameters None.

Result Returns a string such as “v. 3.0.”

Comments You must free the returned string using the MemPtrFree function.

Compatibility Implemented only if 3.0 New Feature Set is present.

System Manager
System Functions

Palm OS SDK Reference 753

SysGetROMToken

Purpose Return from ROM a value specified by token.

Prototype Err SysGetROMToken (UInt16 cardNo, UInt32 token,
UInt8 **dataP, UInt16 *sizeP)

Parameters -> cardNo The card on which the ROM to be queried
resides. Currently, no Palm hardware provides
multiple cards, so this value must be 0.

-> token The value to retrieve, as specified by one of the
following tokens:

sysROMTokenSnum
The serial number of the ROM, expressed as a
text string with no null terminator.

<- dataP Pointer to a text buffer that holds the requested
value when the function returns.

<- sizeP The number of bytes in the dataP buffer.

Result Returns the requested value if no error, or an error code if an error
occurs. If this function returns an error, or if the returned pointer to
the buffer is NULL, or if the first byte of the text buffer is 0xFF, then
no serial number is available.

Comments The serial number is shown to the user in the Application Launcher,
along with a checksum digit you can use to validate input when
your users read the ID from their device and type it in or tell it to
someone else.

Compatibility Implemented only if 3.0 New Feature Set is present. Serial numbers
are available only on flash ROM-based units.

See Also “Retrieving the ROM Serial Number” section in the Palm OS
Programmer’s Companion shows how to retrieve the ROM serial
number and calculate its associated checksum.

System Manager
System Functions

754 Palm OS SDK Reference

SysGetStackInfo

Purpose Return the start and end of the current thread’s stack.

Prototype Boolean SysGetStackInfo (MemPtr *startPP,
MemPtr *endPP)

Parameters startPP Upon return, points to the start of the stack.

endPP Upon return, points to the end of the stack.

Result Returns true if the stack has not overflowed, that is, the value of
the stack overflow address has not been changed. Returns false if
the stack overflow value has been overwritten, meaning that a stack
overflow has occurred.

Compatibility Implemented only if 3.0 New Feature Set is present.

SysGetTrapAddress

Purpose Return the address of a function given its system trap.

Prototype void* SysGetTrapAddress (UInt16 trapNum)

Parameters -> trapNum One of the routine selectors defined in
SysTraps.h (sysTrap...) or CoreTraps.h
on Palm OS version 3.5 and higher.

Result Returns the address of the corresponding function. Returns NULL if
an invalid routine selector is passed.

Comments Use this function for performance reasons. You can then use the
address it returns to call the function without having to go through
the trap dispatch table. This function is mostly useful for optimizing
the performance of functions called in a tight loop.

The Palm OS trap dispatch mechanism allows the trap table entries
to be modified at any time, either as the result of a system update or
a hack. For this reason, it’s important to call this function

System Manager
System Functions

Palm OS SDK Reference 755

immediately before entering the tight loop. If the trap address
changes in between when you call SysGetTrapAddress and you
use the address, the wrong function will be called.

SysGraffitiReferenceDialog

Purpose Pop up the Graffiti® Reference Dialog.

Prototype void SysGraffitiReferenceDialog
(ReferenceType referenceType)

Parameters referenceType Which reference to display. See
GraffitiReference.h for more
information.

Result Nothing returned.

Compatibility Implemented only if 2.0 New Feature Set is present.

SysGremlins

Purpose Query the Gremlins facility. You pass a selector for a function and
parameters for that function. Gremlins performs the function call
and returns the result.

Prototype UInt32 SysGremlins (GremlinFunctionType selector,
GremlinParamsType *params)

Parameters selector The selector for a function to pass to Gremlins.

params Pointer to a parameter block used to pass
parameters to the function specified by
selector.

Result Returns the result of the function performed in Gremlins.

System Manager
System Functions

756 Palm OS SDK Reference

Comments Currently, only one selector is defined, GremlinIsOn, which takes
no parameters. GremlinIsOn returns 0 if Gremlins is not running,
non-zero if it is running.

Currently, non-zero values are returned only from the version of
Gremlins in the Palm OS emulator. The Gremlins running in the
Simulator on a Macintosh and over the serial line via the Palm
Debugger return zero for GremlinIsOn.

Use this function if you need to alter the application’s behavior
when Gremlins is running. For example, the debug 3.0 ROM refuses
to bring up the digitizer panel when Gremlins is running under the
emulator.

Compatibility Implemented only if 3.0 New Feature Set is present.

In Palm OS 3.2 and later, SysGremlins is replaced by the functions
defined in the file HostControl.h. Specifically, the one selector
supported by SysGremlins is replaced with the function
HostGremlinIsRunning. For backward compatibility,
SysGremlins is mapped to HostGremlinIsRunning.

SysHandleEvent

Purpose Handle defaults for system events such as hard and soft key presses.

Prototype Boolean SysHandleEvent (EventPtr eventP)

Parameters eventP Pointer to an event.

Result Returns true if the system handled the event.

Comments Applications should call this routine immediately after calling
EvtGetEvent unless they want to override the default system
behavior. However, overriding the default system behavior is
almost never appropriate for an application.

See Also EvtProcessSoftKeyStroke, KeyRates

System Manager
System Functions

Palm OS SDK Reference 757

SysInsertionSort

Purpose Sort elements in an array according to the passed comparison
function.

Prototype void SysInsertionSort (void* baseP,
Int16 numOfElements, Int16 width,
const CmpFuncPtr comparF, const Int32 other)

Parameters baseP Base pointer to an array of elements.

numOfElements Number of elements to sort (must be at least 2).

width Width of an element.

comparF Comparison function (see Comments).

other Other data passed to the comparison function.

Result Returns nothing.

Comments Only elements which are out of order move. Moved elements are
moved to the end of the range of equal elements. If a large amount
of elements are being sorted, try to use the quick sort (see
SysQSort).

This is the insertion sort algorithm: Starting with the second
element, each element is compared to the preceding element. Each
element not greater than the last is inserted into sorted position
within those already sorted. A binary search for the insertion point
is performed. A moved element is inserted after any other equal
elements.

In Palm OS 2.0 and later, DmComparF has 6 parameters.

These parameters allow a Palm OS application to pass more
information to the system than before, most noticeably the record
(and all associated information) which allows sorting by unique ID,
so that the Palm OS device and the desktop always match.

The revised callback is used by new sorting routines (and can be
used the same way by your application):

System Manager
System Functions

758 Palm OS SDK Reference

typedef Int16 DmComparF (void *, void *, Int16
other, SortRecordInfoPtr, SortRecordInfoPtr,
MemHandle appInfoH);

As a rule, this change in the number of arguments doesn’t cause
problems when a 1.0 application is run on a 2.0 or later device,
because the system only pulls the arguments from the stack that are
there.

Note, however, that some optimized applications built with tools
other than Metrowerks CodeWarrior for Palm OS may have
problems as a result of the change in arguments when running on a
2.0 or later device.

The 2.0 comparison function (comparF) has this prototype:

Int comparF (VoidPtr, VoidPtr, Long other);

The 1.0 comparison function (comparF) had this prototype:

Int comparF (BytePtr A, BytePtr B, Long other);

The function returns:

• > 0 if A > B

• < 0 if A< B

• 0 if A = B

See Also SysQSort

SysKeyboardDialog

Purpose Pop up the system keyboard if there is a field object with the focus.
The field object’s text chunk is edited directly.

Prototype void SysKeyboardDialog (KeyboardType kbd)

Parameters kbd The keyboard type. See Keyboard.h.

Result Returns nothing. Changes the field’s text chunk.

System Manager
System Functions

Palm OS SDK Reference 759

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also SysKeyboardDialogV10, FrmSetFocus

SysKeyboardDialogV10

Purpose Pop up the system keyboard if there is a field object with the focus.
The field object’s text chunk is edited directly.

Prototype void SysKeyboardDialogV10 ()

Parameters None.

Result Returns nothing. The field’s text chunk is changed.

Compatibility Corresponds to the 1.0 implementation of SysKeyboardDialog.

See Also SysKeyboardDialog, FrmSetFocus

SysLibFind

Purpose Return a reference number for a library that is already loaded, given
its name.

Prototype Err SysLibFind (const Char* nameP,
UInt16* refNumP)

Parameters nameP Pointer to the name of a loaded library.

refNumP Pointer to a variable for returning the library
reference number (on failure, this variable is
undefined)

Result 0 if no error; otherwise: sysErrLibNotFound (if the library is not
yet loaded), or another error returned from the library's install entry
point.

System Manager
System Functions

760 Palm OS SDK Reference

Comments Most built-in libraries (NetLib, serial, IR) are preloaded
automatically when the system is reset. Third-party libraries must
be loaded before this call can succeed (use SysLibLoad). You can
check if a library is already loaded by calling SysLibFind and
checking for a 0 error return value (it will return a non-zero value if
the library is not loaded).

SysLibLoad

Purpose Load a library given its database creator and type.

Prototype Err SysLibLoad (UInt32 libType, UInt32 libCreator,
UInt16* refNumP)

Parameters libType Type of library database.

libCreator Creator of library database.

refNumP Pointer to variable for returning the library
reference number (on failure,
sysInvalidRefNum is returned in this
variable)

Result 0 if no error; otherwise: sysErrLibNotFound,
sysErrNoFreeRAM, sysErrNoFreeLibSlots, or other error
returned from the library's install entry point.

Comments Presently, the “load” functionality is not supported when you use
the Palm OS Simulator.

When an application no longer needs a library that it successfully
loaded via SysLibLoad, it is responsible for unloading the library
by calling SysLibRemove and passing it the library reference
number returned by SysLibLoad. More information is available in
the white paper on shared libraries, which you can find on the Palm
developer support web site.

Compatibility Implemented only if 2.0 New Feature Set is present.

System Manager
System Functions

Palm OS SDK Reference 761

SysLibRemove

Purpose Unload a library previously loaded with SysLibLoad.

Prototype Err SysLibRemove (UInt16 refNum)

Parameters -> refNum The library reference number.

Result 0 if no error; otherwise sysErrParamErr if the refNum is not a
valid library reference number.

Comments SysLibRemove releases the dynamic memory allocated to the
shared library’s dispatch table, resources, and global variables.

SysQSort

Purpose Sort elements in an array according to the passed comparison
function. Equal records can be in any position relative to each other
because a quick sort tends to scramble the ordering of records. As a
result, calling SysQSort multiple times can result in a different
order if the records are not completely unique. If you don’t want
this behavior, use the insertion sort instead (see
SysInsertionSort).

To pick the pivot point, the quick sort algorithm picks the middle of
three records picked from around the middle of all records. That
way, the algorithm can take advantage of partially sorted data.

These optimizations are built in:

• The routine contains its own stack to limit uncontrolled
recursion. When the stack is full, an insertion sort is used
because it doesn't require more stack space.

• An insertion sort is also used when the number of records is
low. This avoids the overhead of a quick sort which is
noticeable for small numbers of records.

• If the records seem mostly sorted, an insertion sort is
performed to move only those few records that need to be
moved.

System Manager
System Functions

762 Palm OS SDK Reference

Prototype void SysQSort (void* baseP, Int16 numOfElements,
Int16 width, const CmpFuncPtr comparF,
const Int32 other)

Parameters baseP Base pointer to an array of elements.

numOfElements Number of elements to sort (must be at least 2).

width Width of an element.

comparF Comparison function. See Comments for
SysInsertionSort.

other Other data passed to the comparison function.

Result Returns nothing.

See Also SysInsertionSort

SysRandom

Purpose Return a random number anywhere from 0 to sysRandomMax.

Prototype Int16 SysRandom (UInt32 newSeed)

Parameters newSeed New seed value, or 0 to use existing seed.

Result Returns a random number.

SysReset

Purpose Perform a soft reset and reinitialize the globals and the dynamic
memory heap.

Prototype void SysReset (void)

Parameters None.

Result No return value.

System Manager
System Functions

Palm OS SDK Reference 763

Comments This routine resets the system, reinitializes the globals area and all
system managers, and reinitializes the dynamic heap. All database
information is preserved. This routine is called when the user
presses the hidden reset switch on the device.

When running an application using the simulator, this routine looks
for two data files that represent the memory of card 0 and card 1. If
these are found, the Palm OS memory image is created using them.
If they are not found, they are created.

When running an application on the device, this routine simply
looks for the memory cards at fixed locations.

SysSetAutoOffTime

Purpose Set the time out value in seconds for auto-power-off. Zero means
never power off.

Prototype UInt16 SysSetAutoOffTime (UInt16 seconds)

Parameters seconds Time out in seconds, or 0 for no time out.

Result Returns previous value of time out in seconds.

SysSetTrapAddress

Purpose Set the address of the function corresponding to a system trap.

Prototype Err SysSetTrapAddress (UInt16 trapNum,
void* procP)

Parameters -> trapNum One of the routine selectors defined in
SysTraps.h (sysTrap...) or CoreTraps.h
on Palm OS version 3.5 and higher.

-> procP Pointer to a function that the trap identified by
trapNum is to point to.

Result Returns 0 if no error, or SysErrParamErr if trapNum is greater
than the number of traps in the trap table.

System Manager
System Functions

764 Palm OS SDK Reference

Comments This function is useful for patching a system trap, in combination
with SysGetTrapAddress. To patch a system trap in your
application, first call SysGetTrapAddress to get the trap address
and then save this value somewhere. Next use
SysSetTrapAddress to set the trap address to point to your
function. Before your application exits, remove the patch by calling
SysSetTrapAddress and passing in the original trap address you
saved.

WARNING! If your application patches a system trap using this
function, you must remove the patch before your application
exits. Do not use this mechanism to permanently patch system
traps as it may cause unpredictable results for the system and
other applications.

SysStringByIndex

Purpose Copy a string out of a string list resource by index. String list
resources are of type 'tSTL' and contain a list of strings and a prefix
string.

ResEdit always displays the items in the list as starting at 1, not 0.
Consider this when creating your string list.

Prototype Char* SysStringByIndex (UInt16 resID,
UInt16 index, Char* strP, UInt16 maxLen)

Parameters resID Resource ID of the string list.

index String to get out of the list.

strP Pointer to space to form the string.

maxLen Size of strP buffer.

Result Returns a pointer to the copied string. The string returned from this
call will be the prefix string appended with the designated index
string. Indices are 0-based; index 0 is the first string in the resource.

Compatibility Implemented only if 2.0 New Feature Set is present.

System Manager
System Functions

Palm OS SDK Reference 765

SysTaskDelay

Purpose Put the processor into doze mode for the specified number of ticks.

Prototype Err SysTaskDelay (Int32 delay)

Parameters delay Number of ticks to wait (see
SysTicksPerSecond)

Result Returns 0 if no error.

See Also EvtGetEvent

SysTicksPerSecond

Purpose Return the number of ticks per second. This routine allows
applications to be tolerant of changes to the ticks per second rate in
the system.

Prototype UInt16 SysTicksPerSecond (void)

Parameters None

Result Returns the number of ticks per second.

Compatibility Implemented only if 2.0 New Feature Set is present.

SysUIAppSwitch

Purpose Try to make the current UI application quit and then launch the UI
application specified by card number and database ID.

Prototype Err SysUIAppSwitch (UInt16 cardNo, LocalID dbID,
UInt16 cmd, MemPtr cmdPBP)

Parameters cardNo Card number for the new application; currently
only card 0 is valid.

System Manager
System Functions

766 Palm OS SDK Reference

dbID ID of the new application.

cmd Action code (launch code).

cmdPBP Action code (launch code) parameter block.

Result Returns 0 if no error.

Comments Do not use this function to open the system-supplied Application
Launcher application. If another application has replaced the
default launcher with one of its own, this function will open the
custom launcher instead of the system-supplied one. To open the
system-supplied launcher reliably, enqueue a keyDownEvent that
contains a launchChr, as shown in the section “Application
Launcher” of the user interface chapter in the Palm OS Programmer’s
Companion.

If you are passing a parameter block (the cmdPBP parameter), you
must set the owner of the parameter block chunk to the operating
system. To do this, and for more information, see
MemPtrSetOwner. If the parameter block structure contains
references by pointer or handle to any other chunks, you also must
set the owner of those chunks by using MemHandleSetOwner or
MemPtrSetOwner.

See Also SysAppLaunch, Chapter 3, “Application Startup and Stop.” in the
Palm OS Programmer’s Companion.

Palm OS SDK Reference 767

47
Text Manager
This chapter provides information about the text manager by
discussing these topics:

• Text Manager Data Structures

• Text Manager Functions

The header file TextMgr.h declares the API that this chapter
describes. For more information on the text manager, see the chapter
“Localized Applications” in the Palm OS Programmer’s Companion.

Text Manager Data Structures

CharEncodingType
The CharEncodingType enum specifies possible character
encodings. A given device supports a single character encoding.
The currently available devices support either Windows code page
1252 (an extension of ISO Latin 1) or Windows code page 932 (an
extension of Shift JIS).

typedef enum {
charEncodingUnknown = 0,

charEncodingAscii,
charEncodingISO8859_1,
charEncodingPalmLatin,
charEncodingShiftJIS,
charEncodingPalmSJIS,
charEncodingUTF8,
charEncodingCP1252,
charEncodingCP932

} CharEncodingType;

Text Manager
Text Manager Data Structures

768 Palm OS SDK Reference

Value Descriptions

charEncodingUnknown Unknown to this version of Palm
OS®.

charEncodingAscii ISO 646-1991.

charEncodingISO8859_1 ISO 8859 Part 1 (also known as ISO
Latin 1). This encoding is commonly
used for the Roman alphabet.

charEncodingPalmLatin Palm OS version of Microsoft
Windows code page 1252

charEncodingShiftJIS Encoding for 0208-1990 with single-
byte Japanese Katakana. This
encoding is commonly used for
Japanese alphabets.

charEncodingPalmSJIS Palm OS version of Microsoft
Windows code page 932

charEncodingCP1252 Microsoft Windows extensions to
ISO 8859 Part 1.

charEncodingCP932 Microsoft Windows extensions to
Shift JIS.

charEncodingUTF8 Eight-bit safe encoding for Unicode.

Text Manager
Text Manager Functions

Palm OS SDK Reference 769

Text Manager Functions

TxtByteAttr

Purpose Return the possible locations of a given byte within a multi-byte
character.

Prototype UInt8 TxtByteAttr (UInt8 inByte)

Parameters -> inByte A byte representing all or part of a valid
character.

Result Returns a byte with one or more of the following bits set:

Comments If inByte is valid in more than one location of a character, multiple
return bits are set. For example, 0x40 in the Shift JIS character
encoding is valid as a single-byte character and as the low-order
byte of a double-byte character. Thus, the return value for
TxtByteAttr(0x40) on a Shift JIS system has both the
byteAttrSingle and byteAttrLast bits set.

Text manager functions that need to determine the byte positioning
of a character use TxtByteAttr to do so. You rarely need to use
this function yourself.

Compatibility Implemented only if International Feature Set is present.

byteAttrFirst First byte of multi-byte character.

byteAttrLast Last byte of multi-byte character.

byteAttrMiddle Middle byte of multi-byte character.

byteAttrSingle Single-byte character.

Text Manager
Text Manager Functions

770 Palm OS SDK Reference

TxtCaselessCompare

Purpose Perform a case-insensitive comparison of two text buffers.

Prototype Int16 TxtCaselessCompare (const Char* s1,
UInt16 s1Len, UInt16* s1MatchLen, const Char* s2,
UInt16 s2Len, UInt16* s2MatchLen)

Parameters -> s1 Pointer to the first text buffer to compare. Must
not be NULL.

-> s1Len Length in bytes of the text pointed to by s1.

<- s1MatchLen Points to the length in bytes of the text in s1
that matched text in s2. Pass NULL for this
parameter if you don’t need to know this
number.

-> s2 Pointer to the second text buffer to compare.
Must not be NULL.

-> s2Len Length in bytes of the text pointed to by s2.

<- s2MatchLen Points to the length in bytes of the text in s2
that matched text in s1. Pass NULL for this
parameter if you don’t need to know this
number.

Result Returns one of the following values:

Comments In certain character encodings (such as Shift JIS), one character may
be accurately represented as either a single-byte character or a
multi-byte character. TxtCaselessCompare accurately matches a
single-byte character with its multi-byte equivalent. For this reason,
the values returned in s1MatchLen and s2MatchLen are not
always equal.

< 0 If s1 occurs before s2 in alphabetical order.

> 0 If s1 occurs after s2 in alphabetical order.

0 If the two substrings that were compared are equal.

Text Manager
Text Manager Functions

Palm OS SDK Reference 771

You must make sure that the parameters s1 and s2 point to a the
start of a valid character. That is, they must point to the first byte of
a multi-byte character or they must point to a single-byte character.
If they don’t, results are unpredictable.

Compatibility Implemented only if International Feature Set is present.

See Also StrCaselessCompare, TxtCompare, StrCompare

TxtCharAttr

Purpose Return a character’s attributes.

Prototype UInt16 TxtCharAttr (WChar inChar)

Parameters -> inChar Any valid character.

Result Returns a 16-bit unsigned value with any of the following bits set:

Comments The character passed to this function must be a valid character
given the system encoding.

This function is used in the text manager’s character attribute
macros (TxtCharIsAlNum, TxtCharIsCntrl, and so on). The
macros perform operations analogous to the standard C functions

charAttrPrint Printable

charAttrSpace Blank space, tab, or newline

charAttrAlNum Alphanumeric

charAttrAlpha Alphabetic

charAttrCntrl Control character

charAttrGraph Character that appears on the screen; that
is, is not whitespace, a control character, or
a virtual character.

charAttrDelim Word delimiter (whitespace or punctua-
tion).

Text Manager
Text Manager Functions

772 Palm OS SDK Reference

isPunct, isPrintable, and so on. Usually, you’d use one of
these macros instead of calling TxtCharAttr directly.

To obtain attributes specific to a given character encoding, use
TxtCharXAttr.

Compatibility Implemented only if International Feature Set is present.

See Also TxtCharIsValid

TxtCharBounds

Purpose Return the boundaries of a character containing the byte at a
specified offset in a string.

Prototype WChar TxtCharBounds (const Char* inText,
UInt32 inOffset, UInt32* outStart, UInt32* outEnd)

Parameters -> inText Pointer to the text buffer to search. Must not be
NULL.

-> inOffset A valid offset into the buffer inText. This
location may contain a byte in any position
(start, middle, or end) of a multi-byte character.

<- outStart Points to the starting offset of the character
containing the byte at inOffset.

<- outEnd Points to the ending offset of the character
containing the byte at inOffset.

Result Returns the character located between the offsets outStart and
outEnd.

Comments Use this function to determine the boundaries of a character in a
string or text buffer.

If the byte at inOffset is valid in more than one location of a
character, the function must search back toward the beginning of the
text buffer until it finds an unambiguous byte to determine the
appropriate boundaries. For this reason, TxtCharBounds is often
slow and should be used only where needed.

Text Manager
Text Manager Functions

Palm OS SDK Reference 773

You must make sure that the parameter inText points to the
beginning of the string. That is, if the string begins with a multi-byte
character, inText must point to the first byte of that character. If it
doesn’t, results are unpredictable.

Compatibility Implemented only if International Feature Set is present.

TxtCharEncoding

Purpose Return the minimum encoding required to represent a character.

Prototype CharEncodingType TxtCharEncoding (WChar inChar)

Parameters -> inChar A valid character.

Result A CharEncodingType value that indicates the minimum encoding
required to represent inChar. If the character isn’t recognizable,
charEncodingUnknown is returned.

Comments The minimum encoding is the encoding that takes the lowest
number of bytes to represent the character. For example, if the
character is a blank or a tab character, the minimum encoding is
charEncodingAscii because these characters can be represented
in single-byte ASCII. If the character is a ü, the minimum encoding
is charEncodingISO8859_1.

Because Palm OS® only supports a single character encoding at a
time, the result of this function is always logically equal to or less
than the encoding used on the current system. That is, you’ll only
receive a return value of charEncodingISO8859_1 if you’re
running on a US or European system and you pass a non-ASCII
character.

Use this function for informational purposes only. Your code should
not assume that the character encoding returned by this function is
the Palm OS system character encoding. (Instead use FtrGet as
shown in the TxtCharXAttr function description.)

Use TxtMaxEncoding to determine the order of encodings.

Text Manager
Text Manager Functions

774 Palm OS SDK Reference

Compatibility Implemented only if International Feature Set is present.

See Also TxtStrEncoding, TxtMaxEncoding

TxtCharIsAlNum

Purpose Macro that indicates if the character is alphanumeric.

Prototype TxtCharIsAlNum (ch)

Parameters -> ch A valid character.

Result Returns true if the character is a letter in an alphabet or a numeric
digit, false otherwise.

Compatibility Implemented only if International Feature Set is present.

See Also TxtCharIsDigit, TxtCharIsAlpha

TxtCharIsAlpha

Purpose Macro that indicates if a character is a letter in an alphabet.

Prototype TxtCharIsAlpha (ch)

Parameters -> ch A valid character.

Result Returns true if the character is a letter in an alphabet, false
otherwise.

Compatibility Implemented only if International Feature Set is present.

See Also TxtCharIsAlNum, TxtCharIsLower, TxtCharIsUpper

Text Manager
Text Manager Functions

Palm OS SDK Reference 775

TxtCharIsCntrl

Purpose Macro that indicates if a character is a control character.

Prototype TxtCharIsCntrl (ch)

Parameters -> ch A valid character.

Result Returns true if the character is a non-printable character, such as
the bell character or a carriage return; false otherwise.

Compatibility Implemented only if International Feature Set is present.

TxtCharIsDelim

Purpose Macro that indicates if a character is a delimiter.

Prototype TxtCharIsDelim (ch)

Parameters -> ch A valid character.

Result Returns true if the character is a word delimiter (whitespace or
punctuation), false otherwise.

Compatibility Implemented only if International Feature Set is present.

TxtCharIsDigit

Purpose Macro that indicates if the character is a decimal digit.

Prototype TxtCharIsDigit (ch)

Parameters -> ch A valid character.

Result Returns true if the character is 0 through 9, false otherwise.

Text Manager
Text Manager Functions

776 Palm OS SDK Reference

Compatibility Implemented only if International Feature Set is present.

See Also TxtCharIsAlNum, TxtCharIsHex

TxtCharIsGraph

Purpose Macro that indicates if a character is a graphic character.

Prototype TxtCharIsGraph (ch)

Parameters -> ch A valid character.

Result Returns true if the character is a graphic character, false otherwise.

Comments A graphic character is any character visible on the screen, in other
words, letters, digits, and punctuation marks. A blank space is not a
graphic character because it is not visible.

Compatibility Implemented only if International Feature Set is present.

See Also TxtCharIsPrint

TxtCharIsHardKey

Purpose Macro that returns true if the character is one of the hard keys on the
device.

Prototype TxtCharIsHardKey (m, ch)

Parameters -> m The modifier keys from the keyDownEvent.

-> ch The character from the keyDownEvent.

Result true if the character is one of the four built-in hard keys on the
device, false otherwise.

Text Manager
Text Manager Functions

Palm OS SDK Reference 777

Compatibility Implemented only if International Feature Set is present.

See Also ChrIsHardKey

TxtCharIsHex

Purpose Macro that indicates if a character is a hexadecimal digit.

Prototype TxtCharIsHex (ch)

Parameters -> ch A valid character.

Result Returns true if the character is a hexadecimal digit from 0 to F,
false otherwise.

Compatibility Implemented only if International Feature Set is present.

See Also TxtCharIsDigit

TxtCharIsLower

Purpose Macro that indicates if a character is a lowercase letter.

Prototype TxtCharIsLower (ch)

Parameters -> ch A valid character.

Result Returns true if the character is a lowercase letter, false otherwise.

Compatibility Implemented only if International Feature Set is present.

See Also TxtCharIsAlpha, TxtCharIsUpper

Text Manager
Text Manager Functions

778 Palm OS SDK Reference

TxtCharIsPrint

Purpose Macro that indicates if a character is printable.

Prototype TxtCharIsPrint (ch)

Parameters -> ch A valid character.

Result Returns true if the character is not a control or virtual character,
false otherwise.

Comments This function differs from TxtCharIsGraph in that it returns true
if the character is whitespace. TxtCharIsGraph returns false if
the character is whitespace.

Compatibility Implemented only if International Feature Set is present.

See Also TxtCharIsValid

TxtCharIsPunct

Purpose Macro that indicates if a character is a punctuation mark.

Prototype TxtCharIsPunct (ch)

Parameters -> ch A valid character.

Result Returns true if the character is a punctuation mark, false
otherwise.

Compatibility Implemented only if International Feature Set is present.

Text Manager
Text Manager Functions

Palm OS SDK Reference 779

TxtCharIsSpace

Purpose Macro that indicates if a character is a whitespace character.

Prototype TxtCharIsSpace (ch)

Parameters -> ch A valid character.

Result Returns true if the character is whitespace such as a blank space,
tab, or newline; false otherwise.

Compatibility Implemented only if International Feature Set is present.

TxtCharIsUpper

Purpose Macro that indicates if a character is an uppercase letter.

Prototype TxtCharIsUpper (ch)

Parameters -> ch A valid character.

Result Returns true if the character is an uppercase letter, false
otherwise.

Compatibility Implemented only if International Feature Set is present.

See Also TxtCharIsAlpha, TxtCharIsLower

Text Manager
Text Manager Functions

780 Palm OS SDK Reference

TxtCharIsValid

Purpose Determine whether a character is valid character given the Palm OS
character encoding.

Prototype Boolean TxtCharIsValid (WChar inChar)

Parameters -> inChar A character.

Result Returns true if inChar is a valid character; false if inChar is not
a valid character.

Compatibility Implemented only if International Feature Set is present.

See Also TxtCharAttr, TxtCharIsPrint

TxtCharSize

Purpose Return the number of bytes required to store the character in a
string.

Prototype UInt16 TxtCharSize (WChar inChar)

Parameters -> inChar A valid character.

Result The the number of bytes required to store the character in a string.

Comments Outside of strings, characters are always two-byte long WChar
values; however, strings may store characters as a single-byte value.
If the character can be represented by a single byte (its high-order
byte is 0), it is stored in a string as a single-byte character.

Compatibility Implemented only if International Feature Set is present.

See Also TxtCharBounds

Text Manager
Text Manager Functions

Palm OS SDK Reference 781

TxtCharWidth

Purpose Return the width required to display the specified character in the
current font. If the specified character does not exist within the
current font, the missing character symbol is substituted.

Prototype Int16 TxtCharWidth (WChar inChar)

Parameters -> inChar A valid character.

Result Returns the width of the specified character (in pixels).

Comments Use this function instead of FntCharWidth to determine the width
of a single-byte or multi-byte character.

Compatibility Implemented only if International Feature Set is present.

TxtCharXAttr

Purpose Return the extended attribute bits for a character.

Prototype UInt16 TxtCharXAttr (WChar inChar)

Parameters -> inChar A valid character.

Result Returns an unsigned 16-bit value with one or more extended
attribute bits set. For specific return values, look in the header files
that are specific to certain character encodings (CharLatin.h or
CharShiftJIS.h).

Comments To interpret the results, you must know the character encoding
being used. Use FtrGet with sysFtrNumEncoding as the feature
number to determine the character encoding. This returns one of the
CharEncodingType values. For example:

WChar ch;
UInt16 encoding, attr;
...
attr = TxtCharXAttr(ch);

Text Manager
Text Manager Functions

782 Palm OS SDK Reference

if (FtrGet(sysFtrCreator, sysFtrNumEncoding,
&encoding) != 0)
encoding = charEncodingCP1252;;

if (encoding == charEncodingUTF8) {
}

Compatibility Implemented only if International Feature Set is present.

See Also TxtCharAttr

TxtCompare

Purpose Performs a case-sensitive comparison of all or part of two text
buffers.

Prototype Int16 TxtCompare (const Char* s1, UInt16 s1Len,
UInt16* s1MatchLen, const Char* s2, UInt16 s2Len,
UInt16* s2MatchLen)

Parameters -> s1 Pointer to the first text buffer to compare. Must
not be NULL.

-> s1Len The length in bytes of the text pointed to by s1.

<- s1MatchLen Points to the length in bytes of the text in s1
that matched text in s2. Pass NULL for this
parameter if you don’t need to know this
number.

-> s2 Pointer to the second text buffer to compare.
Must not be NULL.

-> s2Len The length in bytes of the text pointed to by s2.

<- s2MatchLen Points to the length in bytes of the text in s2
that matched text in s1. Pass NULL for this
parameter if you don’t need to know this
number.

Result Returns one of the following values:

Text Manager
Text Manager Functions

Palm OS SDK Reference 783

Comments In certain character encodings (such as Shift JIS), one character may
be accurately represented as either a single-byte character or a
multi-byte character. TxtCompare accurately matches a single-byte
character with its multi-byte equivalent. For this reason, the values
returned in s1MatchLen and s2MatchLen are not always equal.

This function performs a case-sensitive comparison. If you want to
perform a case-insensitive comparison, use
TxtCaselessCompare.

You must make sure that the parameters s1 and s2 point to the start
of a a valid character. That is, they must point to the first byte of a
multi-byte character or they must point to a single-byte character. If
they don’t, results are unpredictable.

Compatibility Implemented only if International Feature Set is present.

See Also StrCompare, TxtFindString

TxtEncodingName

Purpose Obtain a character encoding’s name.

Prototype const Char* TxtEncodingName
(CharEncodingType inEncoding)

Parameters -> inEncoding One of the values from CharEncodingType,
indicating a character encoding.

Result A constant string containing the name of the encoding.

< 0 If s1 occurs before s2 in alphabetical order.

> 0 If s1 occurs after s2 in alphabetical order.

0 If the two substrings that were compared are equal.

encodingNameAscii us ascii

encodingNameISO8859_1 ISO-8859-1

Text Manager
Text Manager Functions

784 Palm OS SDK Reference

Comments Use this function to obtain the official name of the character
encoding, suitable to pass to an Internet application or any other
application that requires the character encoding’s name to be passed
along with the data.

Compatibility Implemented only if International Feature Set is present.

See Also CharEncodingType

TxtFindString

Purpose Perform a case-insensitive search for a string in another string.

Prototype Boolean TxtFindString (const Char* inSourceStr,
const Char* inTargetStr, UInt32* outPos,
UInt16* outLength)

Parameters -> inSourceStr Pointer to the string to be searched. Must not be
NULL.

-> inTargetStr Prepared version of the string to be found.

<- outPos Pointer to the offset of the match in
inSourceStr.

encodingNameCP1252 ISO-8859-1-Windows-3.1-Latin-1

encodingNameShiftJIS Shift_JIS

encodingNameCP932 Windows-31J

encodingNameUTF8 UTF-8

"" The encoding is not known

Text Manager
Text Manager Functions

Palm OS SDK Reference 785

<- outLength Pointer to the length in bytes of the matching
text.

Result Returns true if the function finds inTargetStr within
inSourceStr; false otherwise.

If found, the values pointed to by the outPos and outLength
parameters are set to the starting offset and the length of the
matching text. If not found, the values pointed to by outPos and
outLength are set to 0.

Comments Use this function instead of FindStrInStr to support the global
system find facility. This function contains an extra parameter,
outLength, to specify the length of the text that matched. Pass this
value to FindSaveMatch in the appCustom parameter. Then
when your application receives sysAppLaunchCmdGoTo, the
matchCustom field contains the length of the matching text. You
use the length of matching text to highlight the match within the
selected record.

You must make sure that the parameters inSourceStr and
inTargetStr point to the start of a valid character. That is, they
must point to the first byte of a multi-byte character, or they must
point to a single-byte character. If they don’t, results are
unpredictable.

Compatibility Implemented only if International Feature Set is present.

See Also TxtCaselessCompare

TxtGetChar

Purpose Retrieve the character starting at the specified offset within a text
buffer.

Prototype WChar TxtGetChar (const Char* inText,
UInt32 inOffset)

Parameters -> inText Pointer to the text buffer to be searched. Must
not be NULL.

Text Manager
Text Manager Functions

786 Palm OS SDK Reference

-> inOffset A valid offset into the buffer inText. This
offset must point to an inter-character
boundary.

Result Returns the character at inOffset in inText.

Comments You must make sure that the parameter inText points to the start
of a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character. If it
doesn’t, results are unpredictable.

Compatibility Implemented only if International Feature Set is present.

See Also TxtGetNextChar, TxtSetNextChar

TxtGetNextChar

Purpose Retrieve the character starting at the specified offset within a text
buffer.

Prototype UInt16 TxtGetNextChar (const Char* inText,
UInt32 inOffset, WChar* outChar)

Parameters -> inText Pointer to the text buffer to be searched. Must
not be NULL.

-> inOffset A valid offset into the buffer inText. This
offset must point to an inter-character
boundary.

<- outChar The character at inOffset in inText. Pass
NULL for this parameter if you don’t need the
character returned.

Result Returns the size in bytes of the character at inOffset. If outChar
is not NULL upon entry, it points to the character at inOffset upon
return.

Comments You can use this function to iterate through a text buffer character-
by-character in this way:

Text Manager
Text Manager Functions

Palm OS SDK Reference 787

UInt16 i = 0;
while (i < bufferLength) {

i += TxtGetNextChar(buffer, i, &ch);
//do something with ch.

}

You must make sure that the parameter inText points to the start
of a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character. If it
doesn’t, results are unpredictable.

Compatibility Implemented only if International Feature Set is present.

See Also TxtGetChar, TxtGetPreviousChar, TxtSetNextChar

TxtGetPreviousChar

Purpose Retrieve the character before the specified offset within a text buffer.

Prototype UInt16 TxtGetPreviousChar (const Char* inText,
UInt32 inOffset, WChar* outChar)

Parameters -> inText Pointer to the text buffer to be searched. Must
not be NULL.

-> inOffset A valid offset into the buffer inText. This
offset must point to an inter-character
boundary.

<- outChar The character immediately preceding
inOffset in inText. Pass NULL for this
parameter if you don’t need the character
returned.

Result Returns the size in bytes of the character preceding inOffset in
inText. If outChar is not NULL upon entry, then it points to the
character preceding inOffset upon return. Returns 0 if inOffset
is at the start of the buffer (that is, inOffset is 0).

Comments You can use this function to iterate through a text buffer character-
by-character in this way:

Text Manager
Text Manager Functions

788 Palm OS SDK Reference

/* Find the start of the character containing
the last byte. */
TxtCharBounds (buffer, bufferLength - 1,
&start, &end);
i = start;
while (i > 0) {

i -= TxtGetPreviousChar(buffer, i, &ch);
//do something with ch.

}

This function is often slower to use than TxtGetNextChar because
it must determine the appropriate character boundaries if the byte
immediately before the offset is valid in more than one location
(start, middle, or end) of a multi-byte character. To do this, it must
work backwards toward the beginning of the string until it finds an
unambiguous byte.

You must make sure that the parameter inText points to the start
of a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character. If it
doesn’t, results are unpredictable.

Compatibility Implemented only if International Feature Set is present.

TxtGetTruncationOffset

Purpose Return the appropriate byte position for truncating a text buffer
such that it is at most a specified number of bytes long.

Prototype UInt32 TxtGetTruncationOffset (const Char* inText,
UInt32 inOffset)

Parameters -> inText Pointer to a text buffer. Must not be NULL.

-> inOffset A valid offset into the buffer inText.

Result Returns the appropriate byte offset for truncating inText at a valid
inter-character boundary. The return value may be less than or equal
to inOffset.

Text Manager
Text Manager Functions

Palm OS SDK Reference 789

Comments You must make sure that the parameter inText points to the start
of a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character. If it
doesn’t, results are unpredictable.

Compatibility Implemented only if International Feature Set is present.

TxtMaxEncoding

Purpose Return the higher of two encodings.

Prototype CharEncodingType TxtMaxEncoding
(CharEncodingType a, CharEncodingType b)

Parameters -> a A character encoding to compare.

-> b Another character encoding to compare.

Result Returns the higher of a or b. One character encoding is higher than
another if it is more specific. For example code page 1252 is “higher”
than ISO 8859-1 because it represents more characters than ISO
8859-1.

Comments This function is used by TxtStrEncoding to determine the
encoding required for a string.

Compatibility Implemented only if International Feature Set is present.

See Also TxtCharEncoding, CharEncodingType

Text Manager
Text Manager Functions

790 Palm OS SDK Reference

TxtNextCharSize

Purpose Macro that returns the size of the character starting at the specified
offset within a text buffer.

Prototype TxtNextCharSize (inText, inOffset)

Parameters -> inText Pointer to the text buffer to be searched. Must
not be NULL.

-> inOffset A valid offset into the buffer inText. This
offset must point to an inter-character
boundary.

Result Returns (as a UInt16) the size in bytes of the character at
inOffset.

Comments You must make sure that the parameter inText points to the start
of a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character. If it
doesn’t, results are unpredictable.

Compatibility Implemented only if International Feature Set is present.

See Also TxtGetNextChar

TxtParamString

Purpose Replace substrings within a string with the specified values.

Prototype Char* TxtParamString (const Char* inTemplate,
const Char* param0, const Char* param1,
const Char* param2, const Char* param3)

Parameters -> inTemplate The string containing the substrings to replace.

-> param0 String to replace ^0 with or NULL.

-> param1 String to replace ^1 with or NULL.

-> param2 String to replace ^2 with or NULL.

Text Manager
Text Manager Functions

Palm OS SDK Reference 791

-> param3 String to replace ^3 with or NULL.

Result Returns a locked handle to a newly allocated string in the dynamic
heap that contains the appropriate substitutions.

Comments This function searches inTemplate for occurrences of the
sequences ^0, ^1, ^2, and ^3. When it finds these, it replaces them
with the corresponding string passed to this function. Multiple
instances of each sequence will be replaced.

You must make sure that the parameter inTemplate points to the
start of a valid character. That is, it must point to the first byte of a
multi-byte character or it must point to a single-byte character. If it
doesn’t, results are unpredictable.

TxtParamString allocates space for the returned string in the
dynamic heap. Your code is responsible for freeing this memory
when it is no longer needed.

Compatibility Implemented if 3.5 New Feature Set is present.

See Also TxtReplaceStr, FrmCustomAlert

TxtPreviousCharSize

Purpose Macro that returns the size of the character before the specified
offset within a text buffer.

Prototype TxtPreviousCharSize (inText, inOffset)

Parameters -> inText Pointer to the text buffer. Must not be NULL.

-> inOffset A valid offset into the buffer inText. This
offset must point to an inter-character
boundary.

Result Returns (as a UInt16) the size in bytes of the character preceding
inOffset in inText. Returns 0 if inOffset is at the start of the
buffer (that is, inOffset is 0).

Text Manager
Text Manager Functions

792 Palm OS SDK Reference

Comments You must make sure that the parameter inText points to the start
of a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character. If it
doesn’t, results are unpredictable.

Compatibility Implemented only if International Feature Set is present.

See Also TxtGetPreviousChar

TxtReplaceStr

Purpose Replace a substring of a given format with another string.

Prototype UInt16 TxtReplaceStr (Char* ioStr,
UInt16 inMaxLen, const Char* inParamStr,
UInt16 inParamNum)

Parameters <-> ioStr The string in which to perform the replacing.
Must not be NULL.

-> inMaxLen The maximum length in bytes that ioStr can
become.

-> inParamStr The string that ^inParamNum should be
replaced with. If NULL, no changes are made.

-> inParamNum A single-digit number (0 to 9).

Result Returns the number of occurrences found and replaced.

Returns a fatal error message if inParamNum is greater than 9.

Comments This function searches ioStr for occurrences of the string
^inParamNum, where inParamNum is any digit from 0 to 9. When it
finds the string, it replaces it with inParamStr. Multiple instances
will be replaced as long as the resulting string doesn’t contain more
than inMaxLen bytes, not counting the terminating null.

You can set the inParamStr parameter to NULL to determine the
required length of ioStr before actually doing the replacing.
TxtReplaceStr returns the number of occurrences it finds of
^inParamNum. Multiply this value by the length of the

Text Manager
Text Manager Functions

Palm OS SDK Reference 793

inParamStr you intend to use to determine the appropriate length
of ioStr.

You must make sure that the parameter ioStr points to the start of
a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character. If it
doesn’t, results are unpredictable.

Compatibility Implemented only if International Feature Set is present.

TxtSetNextChar

Purpose Set a character within a text buffer.

Prototype UInt16 TxtSetNextChar (Char* ioText,
UInt32 inOffset, WChar inChar)

Parameters <-> ioText Pointer to a text buffer. Must not be NULL.

-> inOffset A valid offset into the buffer inText. This
offset must point to an inter-character
boundary.

-> inChar The character to replace the character at
inOffset with. Must not be a virtual
character.

Result Returns the size of inChar.

Comments This function replaces the character in ioText at the location
inOffset with the character inChar. Note that there must be
enough space at inOffset to write the character.

You can use TxtCharSize to determine the size of inChar.

You must make sure that the parameter ioText points to the start
of a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character. If it
doesn’t, results are unpredictable.

Text Manager
Text Manager Functions

794 Palm OS SDK Reference

Compatibility Implemented only if International Feature Set is present.

See Also TxtGetNextChar

TxtStrEncoding

Purpose Return the encoding required to represent a string.

Prototype CharEncodingType TxtStrEncoding
(const Char* inStr)

Parameters -> inStr A string. Must not be NULL.

Result A CharEncodingType value that indicates the encoding required
to represent inChar. If any character in the string isn’t recognizable,
then charEncodingUnknown is returned.

Comments The encoding for the string is the maximum encoding of any
character in that string. For example, if a two-character string
contains a blank space and a ü, the appropriate encoding is
charEncodingISO8859_1. The blank space’s minimum encoding
is ASCII. The minimum encoding for the ü is ISO 8859-1. The
maximum of these two encodings is ISO 8859-1.

Because Palm OS only supports a single character encoding at a
time, the results of this function is always logically equal to or less
than the encoding used on the current system. That is, you’ll only
receive a return value of charEncodingISO8859_1 if you’re
running on a USA or European system.

Use this function for informational purposes only. Your code should
not assume that the character encoding returned by this function is
the Palm OS system’s character encoding. (Instead use FtrGet as
shown in the TxtCharXAttr function description.)

Compatibility Implemented only if International Feature Set is present.

See Also TxtCharEncoding, TxtMaxEncoding

Text Manager
Text Manager Functions

Palm OS SDK Reference 795

TxtTransliterate

Purpose Converts the specified number of bytes in a text buffer using the
specified operation.

Prototype Err TxtTransliterate (const Char* inSrcText,
UInt16 inSrcLength, Char* outDstText,
UInt16* ioDstLength, TranslitOpType inOp)

Parameters -> inSrcText Pointer to a text buffer. Must not be NULL.

-> inSrcLength The length in bytes of inSrcText.

<- outDstText The output buffer containing the converted
characters.

<->ioDstLength Upon entry, the maximum length of
outDstText. Upon return, the actual length of
outDstText.

-> inOp A 16-bit unsigned value that specifies which
transliteration operation is to be performed.
The values possible for this field are specific to
the character encoding used on a particular
device. These operations are universally
available:

translitOpUpperCase
Converts the character to uppercase letters.

translitOpLowerCase
Converts the characters to lowercase letters.

translitOpPreprocess
Don’t actually perform the operation. Instead,
return in ioDstLength the amount of space
required for the output text.

Result Returns one of the following values:

0 Success

txtErrUnknownTranslitOp inOp’s value is not recognized

Text Manager
Text Manager Functions

796 Palm OS SDK Reference

Comments inSrcText and outDstText may point to the same location if
you want to perform the operation in place. However, you should
be careful that the space required for outDstText is not larger than
inSrcText so that you don’t generate a
txtErrTranslitOverrun error.

For example, suppose on a Shift JIS encoded system, you want to
convert a series of single-byte Japanese Katakana symbols to
double-byte Katakana symbols. You cannot perform this operation
in place because it replaces a single-byte character with a multi-byte
character. When the first converted character is written to the buffer,
it overwrites the second input character. Thus, a text overrun has
occurred.

You can ensure that you have enough space for the output by ORing
your chosen operation with translitOpPreprocess. For
example, to convert a string to uppercase letters, do the following:

outSize = buf2Len;
error = TxtTransliterate(buf1, buf1len, &buf2,
&outSize,
translitOpUpperCase|translitOpPreprocess);
if (outSize > buf2len)

/* allocate more memory for buf2 */
error = TxtTransliterate(buf1, buf1Len, &buf2,
&outSize, translitOpUpperCase);

You must make sure that the parameter inSrcText points to the
start of a valid character. That is, it must point to the first byte of a
multi-byte character or it must point to a single-byte character. If it
doesn’t, results are unpredictable.

txtErrTranslitOverrun If inSrcText and outDstText
point to the same memory
location and the operation has
caused the function to overwrite
unprocessed data in the input
buffer.

txtErrTranslitOverflow If outDstText is not large
enough to contain the converted
string.

Text Manager
Text Manager Functions

Palm OS SDK Reference 797

Compatibility Implemented only if International Feature Set is present.

TxtWordBounds

Purpose Find the boundaries of a word of text that contains the character
starting at the specified offset.

Prototype Boolean TxtWordBounds (const Char* inText,
UInt32 inLength, UInt32 inOffset,
UInt32* outStart, UInt32* outEnd)

Parameters -> inText Pointer to a text buffer. Must not be NULL.

-> inLength The length in bytes of the text pointed to by
inText.

-> inOffset A valid offset into the text buffer inText. This
offset must point to the beginning of a
character.

<- outStart The starting offset of the text word.

<- outEnd The ending offset of the text word.

Result Returns true if a word is found. Returns false if the word doesn’t
exist or is punctuation or whitespace.

Comments Assuming the ASCII encoding, if the text buffer contains the string
“Hi! How are you?” and you pass 5 as the offset, TxtWordBounds
returns the start and end of the word containing the character at
offset 5, which is the character “o”. Thus, outStart and outEnd
would point to the start and end of the word “How”.

You must make sure that the parameter inText points to the start
of a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character. If it
doesn’t, results are unpredictable.

Compatibility Implemented only if International Feature Set is present.

See Also TxtCharBounds, TxtCharIsDelim

Palm OS SDK Reference 799

48
Windows
This chapter provides information about windows by discussing
these topics:

• Window Data Structures

• Window Functions

No resources are associated with window objects.

The header file Window.h declares the API that this chapter
describes. For more information on windows, see the section
“Forms, Windows, and Dialogs” in the Palm OS Programmer’s
Companion.

Window Data Structures

CustomPatternType
The CustomPatternType type holds an 8-by-8 bit pattern that is
one bit deep. Each byte specifies a row of the pattern. When
drawing, a pattern is tiled to fill a specified region. This pattern is
used by WinFillLine and WinFillRectangle.

The PatternType specifies the name of the current pattern.

typedef UInt8 CustomPatternType [8];

Compatibility

In pre-3.5 systems, the CustomPatternType is an array of 4 16-bit
words. Note the size of this data type has not changed.

DrawStateType
The DrawStateType structure defines the current drawing state,
which is the Palm OS® implementation of a pen. This drawing state

Windows
Window Data Structures

800 Palm OS SDK Reference

is saved with WinPushDrawState and restored with
WinPopDrawState.

WARNING! Palm Computing® does not support or provide
backward compatibility for the DrawStateType structure. Access
it only through the functions described below. Never access its
structure members directly, or your code may break in future
versions. Use the information below for debugging purposes only.

typedef struct DrawStateType {
WinDrawOperation transferMode;
PatternType pattern;
UnderlineModeType underlineMode;
FontID fontId;
FontPtr font;
CustomPatternType patternData;
IndexedColorType foreColor;
IndexedColorType backColor;
IndexedColorType textColor;

} DrawStateType;

Field Description

transferMode The current transfer mode for color drawing. See
WinDrawOperation. Use WinSetDrawMode to
set this value.

pattern The name of the current pattern. See
PatternType. If set to customPattern, the
patternData field contains the actual pattern.
Use WinGetPatternType and
WinSetPatternType to retrieve and set this
value.

underlineMode The current underline mode. See
UnderlineModeType. Use
WinSetUnderlineMode to set this value.

fontId The ID of the current font. Use FntSetFont to
set this value.

Windows
Window Data Structures

Palm OS SDK Reference 801

Compatibility

This type is implemented only if 3.5 New Feature Set is present.

FrameBitsType
The FrameBitsType structure specifies attributes of a window’s
frame.

WARNING! Palm Computing does not support or provide
backward compatibility for the FrameBitsType bit field. Never
access its bit field members directly, or your code may break in
future versions. Use the information below for debugging
purposes only.

typedef union FrameBitsType {
struct {
UInt16 cornerDiam : 8;
UInt16 reserved_3 : 3;
UInt16 threeD : 1;
UInt16 shadowWidth: 2;

font A pointer to the current font. Use FntSetFont to
set this value.

patternData The current pattern being used by the WinFill
functions if pattern is customPattern. See
CustomPatternType. Use WinGetPattern
and WinSetPattern to retrieve and set this
value.

foreColor Index of the current color used for the
foreground. Use WinSetForeColor to set this
value.

backColor Index of the current color used for the
background. Use WinSetBackColor to set this
value.

textColor Index of the current color used for text. Use
WinSetTextColor to set this value.

Windows
Window Data Structures

802 Palm OS SDK Reference

UInt16 width : 2;
} bits;
UInt16 word;

} FrameBitsType;

Field Descriptions

FrameType
The FrameType type specifies a window frame style.

typedef UInt16 FrameType;

The FrameType can be set to one of the defined frame types shown
in the table below, or a custom frame type as defined by a
FrameBitsType structure.

cornerDiam Corner radius of frame; maximum is 38.

reserved_3 Reserved.

threeD Set this bit to draw a 3D button. This feature
is not currently supported.

shadowWidth Width of shadow.

width Frame width.

word Provides access to all bits as a unit. This
field is often used to convert a FrameType
to a FrameBitsType as shown:

FrameType frame;
FrameBitsType frameType;

frameType.word = frame;
if (frameType.bits.threeD)
...

Constant Value Description

noFrame 0 No frame

simpleFrame 1 Plain rectangular frame

rectangleFrame 1 Plain rectangular frame

Windows
Window Data Structures

Palm OS SDK Reference 803

IndexedColorType
The IndexedColorType type is used to specify a color by its index
value; that is, by its location in a color table. Color tables are defined
by the ColorTableType structure, which is declared in
Bitmap.h. The IndexedColorType can hold a 1, 2, 4, or 8-bit
index.

typedef UInt8 IndexedColorType;

Compatibility

This type is implemented only if 3.5 New Feature Set is present.

PatternType
The PatternType enumerated type specifies a pattern for
drawing. This type is returned by WinGetPatternType and is
used as a parameter to the WinSetPatternType function.

typedef enum { blackPattern, whitePattern,
grayPattern, customPattern } PatternType;

Value Descriptions

simple3DFrame 0x0012 3D frame with width of 2. This frame type is
not supported.

roundFrame 0x0401 Round frame with width of 1.

boldRoundFrame 0x0702 Round frame with width of 2.

popupFrame 0x0205 Popup frame style with slight corner
roundness, width of 1 and shadow of 1.

dialogFrame 0x0302 Dialog frame style with slight corner
roundness and width of 2.

menuFrame popupFrame Same as popupFrame.

Constant Value Description

blackPattern Pattern with all bits on.

whitePattern Pattern with all bits off.

Windows
Window Data Structures

804 Palm OS SDK Reference

These patterns all operate with current foreground and background
color instead of black and white. In effect, blackPattern is only
black if the current foreground color is black.

UnderlineModeType
The UnderlineModeType enumerated type specifies possible
values for the underline mode stored in DrawStateType.

typedef enum { noUnderline, grayUnderline,
solidUnderline, colorUnderline }
UnderlineModeType;

Value Descriptions

Compatibility

The solidUnderline and colorUnderline options are only
available in Palm OS 3.1 and higher.

WindowFlagsType
The WindowFlagsType specifies different window attributes.

grayPattern Pattern with alternating on and off bits.

customPattern Custom pattern specified by
CustomPatternType.

noUnderline No underline.

grayUnderline Underline is drawn using a
dotted line in the current
foreground color.

solidUnderline Underline is drawn using a solid
line in the foreground color.

colorUnderline Underline is drawn using a solid
line in the foreground color.

Windows
Window Data Structures

Palm OS SDK Reference 805

WARNING! Palm Computing does not support or provide
backward compatibility for the WindowFlagsType bit field.
Access it only through the functions described below. Never
access its bit field members directly, or your code may break in
future versions. Use the information below for debugging
purposes only.

typedef struct WindowFlagsType {
UInt16 format:1;
UInt16 offscreen:1;
UInt16 modal:1;
UInt16 focusable:1;
UInt16 enabled:1;
UInt16 visible:1;
UInt16 dialog:1;
UInt16 freeBitmap:1;
UInt16 reserved :8;

} WindowFlagsType;

Field Descriptions

format If set, use the genericFormat. If 0, use
screenFormat.
Screen format is the native format of the video
system; windows in this format can be copied to the
display faster. The generic format is device-
independent. A window cannot be enabled (that is,
accept pen input) unless it uses screen format.

offscreen If set, the window is offscreen. If 0, the window is
onscreen.

modal If set, the window is modal. If 0, the window is not
modal. You set this value when you create the
window. This value is returned by WinModal.

focusable If set, the window can accept the focus. If 0, the
window does not accept the focus. You set this value
when you create the window.

Windows
Window Data Structures

806 Palm OS SDK Reference

Compatibility

In OS versions previous to 3.5, the freeBitmap flag was not
present. Instead, a compressed flag was present, where 0 specified
uncompressed and 1 specified compressed. This compressed flag is
now part of the BitmapType.

WindowType
The WindowType structure represents a window.

WARNING! Palm Computing does not support or provide
backward compatibility for the WindowType structure. Access it
only through the functions described below. Never access its
structure members directly, or your code may break in future
versions. Use the information below for debugging purposes only.

typedef struct WindowType {
 Coord displayWidthV20;
 Coord displayHeightV20;
 void * displayAddrV20;
 WindowFlagsType windowFlags;
 RectangleType windowBounds;
 AbsRectType clippingBounds;
 BitmapPtr bitmapP;
 FrameBitsType frameType;
 DrawStateType * drawStateP;

enabled If set, the window is enabled. If 0, the window is
disabled.

visible If set, the window is visible if it is onscreen. If 0, the
window is not visible.

dialog If set, the window is a form. If 0, the window is not a
form. The FrmInitForm function sets this value.

freeBitmap If set, free the bitmap when the window is freed. If 0,
retain the bitmap after the window is freed.

reserved Reserved for future use. Must be 0.

Windows
Window Data Structures

Palm OS SDK Reference 807

 struct WindowType * nextWindow;
} WindowType;

Field Descriptions

displayWidthV20 Width of the window in pre OS 3.5 devices. In
OS 3.5, use WinGetDisplayExtent to
return the window width.

displayHeightV20 Height of the window in pre OS 3.5 devices.
In OS 3.5, use WinGetDisplayExtent to
return the window height.

displayAddrV20 Pointer to the window display memory buffer
in pre OS 3.5 devices. In OS 3.5 or later, call
WinGetBitmap and then BmpGetBits to
obtain the display’s memory buffer.

windowFlags Window attributes (see WindowFlagsType).

windowBounds Display-relative bounds of the window. Use
WinGetWindowBounds and
WinSetWindowBounds to retrieve and set
this value.

clippingBounds Bounds for clipping any drawing within the
window. Use WinGetClip and WinSetClip
to retrieve and set this value.

bitmapP Pointer to the window bitmap, which holds
the window’s contents. Use WinGetBitmap
to retrieve this value.

frameType Frame attributes; see FrameBitsType.

drawStateP Pointer to a state of the current transfer mode,
pattern mode, font, underline mode, and
colors. See DrawStateType.
Only one drawing state exists in the system.
Each window points to the same structure.

nextWindow Pointer to the next window in a linked list of
windows. This linked list of windows is called
the active window list.

Windows
Window Data Structures

808 Palm OS SDK Reference

Compatibility

In OS versions previous to 3.5, this structure is slightly different.
Specifically, the bitmapP field is instead a viewOrigin field of
type PointType and specified the window origin point on the
display. The drawStateP was named gstate and was of type
GraphicStatePtr. The complete definition is shown below:

typedef struct WinTypeStruct {
Word displayWidth;
Word displayHeight;
VoidPtr displayAddr;
WindowFlagsType windowFlags;
RectangleType windowBounds;
AbsRectType clippingBounds;
PointType viewOrigin;
FrameBitsType frameType;
GraphicStatePtr gstate;
struct WinTypeStruct* nextWindow;

} WindowType;

WinDrawOperation
The WinDrawOperation enumerated type specifies the transfer
mode for color drawing. This type is used as a parameter to the
WinCopyRectangle and WinSetDrawMode functions.

typedef enum {winPaint, winErase, winMask,
winInvert, winOverlay, winPaintInverse,
winSwap} WinDrawOperation;

Value Descriptions

winPaint Destination replaced with source pixels
(copy mode).

winErase Destination cleared where source pixels are
off (AND mode).

winMask Destination cleared where source pixels are
on (AND NOT mode).

winInvert Destination inverted where source pixels
are on (XOR mode).

Windows
Window Data Structures

Palm OS SDK Reference 809

Compatibility

This type is implemented only if 3.5 New Feature Set is present. In
earlier releases, this type is named ScrOperation and its values
begin with the prefix scr rather than win. WinDrawOperation is
fully compatible with ScrOperation.

WinHandle
The WinHandle type is a pointer to a WindowType structure. Note
that this may change.

typedef WindowType * WinHandle;

WinLineType
The WinLineType structure defines a line.

typedef struct WinLineType {
Coord x1;
Coord y1;
Coord x2;
Coord y2;

} WinLineType;

Field Descriptions

winOverlay Destination set only where source pixels are
on (OR mode).

winPaintInverse Destination replaced with inverted source
(copy NOT mode).

winSwap Destination foreground and background
colors are swapped, leaving any other
colors unchanged (color invert operation).

x1 X coordinate of the first endpoint of the line.

y1 Y coordinate of the first endpoint of the line.

x2 X coordinate of the second endpoint of the line.

y2 Y coordinate of the second endpoint of the line.

Windows
Window Functions

810 Palm OS SDK Reference

Compatibility

This type is implemented only if 3.5 New Feature Set is present.

WinPtr
The WinPtr type is a pointer to a WindowType structure.

typedef WindowType * WinPtr;

Window Functions

WinClipRectangle

Purpose Clip a rectangle to the clipping rectangle of the draw window.

Prototype void WinClipRectangle (RectangleType *rP)

Parameters <-> rP Pointer to a structure holding the rectangle to
clip. The rectangle returned is the intersection
of the rectangle passed and the clipping bounds
of the draw window.

Result Returns nothing.

Comments The draw window is the window to which all drawing functions
send their output. It is returned by WinGetDrawWindow.

See Also WinCopyRectangle, WinDrawRectangle,
WinEraseRectangle, WinGetClip

Windows
Window Functions

Palm OS SDK Reference 811

WinCopyRectangle

Purpose Copy a rectangular region from one place to another (either between
windows or within a single window).

Prototype void WinCopyRectangle (WinHandle srcWin,
WinHandle dstWin, RectangleType *srcRect,
Coord destX, Coord destY, WinDrawOperation mode)

Parameters -> srcWin Window from which the rectangle is copied. If
NULL, use the draw window.

-> dstWin Window to which the rectangle is copied. If
NULL, use the draw window.

-> srcRect Bounds of the region to copy.

-> destX Top bound of the rectangle in destination
window.

-> destY Left bound of the rectangle in destination
window.

-> mode The method of transfer from the source to the
destination window (see
WinDrawOperation).

Result Returns nothing.

Comments Copies the bits of the window inside the rectangle region.

If the destination bitmap is compressed, the mode parameter must
be winPaint, and the destination coordinates must be (0,0). If the
width of the destination rectangle is less than 16 pixels or if the
destination coordinates are not (0,0), then this function turns off
compression for the destination bitmap. Normally, you do not copy
to a compressed bitmap. Instead, you copy to an uncompressed
bitmap and compress it afterwards.

Compatibility In OS versions before 3.5, the mode parameter was defined as type
ScrOperation. It is defined as type WinDrawOperation only if
3.5 New Feature Set is present. ScrOperation and
WinDrawOperation are fully compatible with each other.

Windows
Window Functions

812 Palm OS SDK Reference

In OS versions before 3.5, it was common practice to render a
bitmap in an offscreen window and then use WinCopyRectangle
to draw it on the screen. In version 3.5 and higher, the preferred
method of doing this is to use WinDrawBitmap or
WinPaintBitmap.

See Also WinDrawBitmap

WinCreateBitmapWindow

Purpose Create a new offscreen window.

Prototype WinHandle WinCreateBitmapWindow
(BitmapType *bitmapP, UInt16 *error)

Parameters -> bitmapP Pointer to a bitmap to associate with the
window. (See BitmapType.)

<- error Pointer to any error this function encounters.

Result Returns the handle of the new window upon success, or NULL if an
error occurs. The error parameter contains one of the following:

errNone No error.

sysErrParamErr The bitmapP parameter is invalid. The bitmap
must be uncompressed and it must have a valid
pixel size (1, 2, 4, or 8). It must not be the screen
bitmap.

sysErrNoFreeResource
There is not enough memory to allocate a new
window structure.

Comments Use WinCreateBitmapWindow if you want to draw into a
previously created bitmap, such as a bitmap created using
BmpCreate.

This function generates a window wrapper for the specified bitmap.
The newly created window is offscreen, uses the generic format (for
device independence), and is added to the active window list. Use

Windows
Window Functions

Palm OS SDK Reference 813

WinSetDrawWindow to make it the draw window, and then use the
window drawing functions to modify the bitmap.

When you use this function to create a window and then delete the
window with WinDeleteWindow, the bitmap is not freed when the
window is freed.

WinCreateOffscreenWindow uses this function to create its
offscreen window. If you call WinCreateOffscreenWindow
instead of using this function, the bitmap is freed when
WinDeleteWindow is called.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinCreateWindow, WinCreateOffscreenWindow

WinCreateOffscreenWindow

Purpose Create a new offscreen window and add it to the window list.

Prototype WinHandle WinCreateOffscreenWindow (Coord width,
Coord height, WindowFormatType format,
UInt16 *error)

Parameters -> width Width of the window in pixels.

-> height Height of the window in pixels.

-> format Either screenFormat or genericFormat. In
general, you should use genericFormat for
offscreen windows.

<- error Pointer to any error this function encounters.

Result Returns the handle of the new window upon success, or NULL if an
error occurs. The error parameter contains one of the following:

errNone No error.

sysErrParamErr The width or height parameter is NULL or
the current color table is invalid.

Windows
Window Functions

814 Palm OS SDK Reference

sysErrNoFreeResource
There is not enough memory to complete the
function.

The debug ROM gives a warning if you try to draw to a bad
window address.

Comments Windows created with this routine draw to a memory buffer instead
of the display. Use this function for temporary drawing operations
such as double-buffering or save-behind operations.

The memory buffer has two formats: screen format and generic
format. Screen format is the native format of the video system;
windows in this format can be copied to the display faster. The
generic format is device-independent. A window cannot be enabled
(that is, accept pen input) unless it uses screen format.

This function differs from WinCreateBitmapWindow in the
following ways:

• WinCreateOffscreenWindow creates a new bitmap in the
same depth as the current screen.
WinCreateBitmapWindow uses the bitmap you pass in,
which may or may not be in the same depth as the current
screen.

• WinCreateOffscreenWindow uses the screen format you
specify. WinCreateBitmapWindow always uses generic
format.

• When you delete the window created with
WinCreateOffscreenWindow, its bitmap is freed along
with the window. The bitmap used in the
WinCreateBitmapWindow is not freed when the window is
freed.

See Also WinCreateWindow

Windows
Window Functions

Palm OS SDK Reference 815

WinCreateWindow

Purpose Create a new window and add it to the window list.

Prototype WinHandle WinCreateWindow (RectangleType *bounds,
FrameType frame, Boolean modal, Boolean focusable,
UInt16 *error)

Parameters -> bounds Display-relative bounds of the window.

-> frame Type of frame around the window (see
FrameType).

-> modal true if the window is modal.

-> focusable true if the window can be the active window.

<- error Pointer to any error encountered by this
function.

Result Returns the handle of the new window upon success, or NULL if an
error occurs. The error parameter contains one of the following:

errNone No error.

sysErrNoFreeResource
There is not enough memory to complete the
operation.

Comments Windows created by this routine draw to the display. See
WinCreateOffscreenWindow for information on drawing off
screen.

You typically don’t call this function directly. Instead, you use
FrmInitForm to create form windows from a resource. Forms are
much more flexible and have better system support. All forms are
windows, but not all windows are forms.

The window is created with the bounds and frame type that you
specify and uses the bitmap and drawing state of the current draw
window. Its clipping region is reset according to the bounds you
specify.

Windows
Window Functions

816 Palm OS SDK Reference

All window flags are set to 0 except for the modal and focusable
flags, which you pass as a parameter to this function. Specifically,
newly created windows are disabled and invisible. You must
specifically enable the window before the window can accept input.
You can do so with WinSetActiveWindow.

See Also WinDeleteWindow

WinDeleteWindow

Purpose Remove a window from the window list and free the memory used
by the window.

Prototype void WinDeleteWindow (WinHandle winHandle,
Boolean eraseIt)

Parameters -> winHandle Handle of window to delete.

-> eraseIt If true, the window is erased before it is
deleted. If false, the window is not erased.

Result Returns nothing.

Comments This function frees all memory associated with the window.
Windows created using WinCreateOffscreenWindow have their
bitmaps freed; windows created using WinCreateWindow or
WinCreateBitmapWindow do not.

The eraseIt parameter affects onscreen windows only; offscreen
windows are never erased. As a performance optimization, you
might set eraseIt to false for an onscreen window if you know
that you are going to immediately redraw the area anyway. For
example, when the form manager closes a form dialog, it restores
the area with the save-behind bits it had stored for that form. For
this reason, when the form manager deletes the dialog window, it
passes false for eraseIt because the entire area will be redrawn.

Windows
Window Functions

Palm OS SDK Reference 817

WinDisplayToWindowPt

Purpose Convert a display-relative coordinate to a window-relative
coordinate. The coordinate returned is relative to the display
window.

Prototype void WinDisplayToWindowPt (Coord *extentX,
Coord *extentY)

Parameters <-> extentX Pointer to x coordinate to convert.

<-> extentY Pointer to y coordinate to convert.

Result Returns nothing.

See Also WinWindowToDisplayPt

WinDrawBitmap

Purpose Draw a bitmap at the given coordinates in winPaint mode (see
WinDrawOperation for mode details).

Prototype void WinDrawBitmap (BitmapPtr bitmapP, Coord x,
Coord y)

Parameters -> bitmapP Pointer to a bitmap.

-> x The x coordinate of the top-left corner.

-> y The y coordinate of the top-left corner.

Result Returns nothing.

Comments If the bitmap has multiple depths (is a bitmap family), the closest
match less than or equal to the current draw window depth is used.
If such a bitmap does not exist, the bitmap with the closest match
greater than the draw window depth is used.

If the bitmap has its own color table, color conversion to the draw
window color table will be applied (on OS 3.5 or later). This color
conversion is slow and not recommended. Instead of including a

Windows
Window Functions

818 Palm OS SDK Reference

color table in the bitmap, consider using WinPalette to change the
system color table, draw the bitmap, and then change the system
color table back when the bitmap is no longer visible.

This function differs from WinPaintBitmap in that this function
always uses winPaint mode (copy mode) as the transfer mode.
WinPaintBitmap uses the current drawing state transfer mode.

See Also WinEraseRectangle

WinDrawChar

Purpose Draw the specified character in the draw window.

Prototype void WinDrawChar (WChar theChar, Coord x, Coord y)

Parameters -> theChar The character to draw. This may be either a
single-byte character or a multi-byte character.

-> x x coordinate of the location where the character
is to be drawn (left bound).

-> y y coordinate of the location where the character
is to be drawn (top bound).

Result Returns nothing.

Comments Before calling this function, call WinSetUnderlineMode and
FntSetFont to set the desired underline and font to draw the
characters.

This function differs from WinPaintChar in that this function
always uses winPaint mode (see WinDrawOperation). This
means the on bits are drawn in the text color, the off bits are in the
background color, and underlines are in the foreground color.
WinPaintChar uses the current drawing state transfer mode
instead of winPaint.

Windows
Window Functions

Palm OS SDK Reference 819

Compatibility Implemented only if 3.1 New Feature Set is present.

See Also WinDrawChars, WinDrawInvertedChars,
WinDrawTruncChars, WinEraseChars, WinInvertChars,
WinPaintChars

WinDrawChars

Purpose Draw the specified characters in the draw window.

Prototype void WinDrawChars (const Char *chars, Int16 len,
Coord x, Coord y)

Parameters -> chars Pointer to the characters to draw.

-> len Length in bytes of the characters to draw.

-> x x coordinate of the first character to draw (left
bound).

-> y y coordinate of the first character to draw (top
bound).

Result Returns nothing.

Comments This function is useful for printing non-editable status or warning
messages on the screen.

Before calling this function, call WinSetUnderlineMode and
FntSetFont to set the desired underline and font to draw the
characters.

This function differs from WinPaintChars in that this function
always uses winPaint mode (see WinDrawOperation). This
means the on bits are drawn in the text color, the off bits are in the
background color, and underlines are in the foreground color.
WinPaintChar uses the current drawing state transfer mode
instead of winPaint.

See Also WinDrawChar, WinDrawInvertedChars, WinDrawTruncChars,
WinEraseChars, WinInvertChars, WinPaintChar

Windows
Window Functions

820 Palm OS SDK Reference

WinDrawGrayLine

Purpose Draw a dashed line in the draw window.

Prototype void WinDrawGrayLine (Coord x1, Coord y1,
Coord x2, Coord y2)

Parameters -> x1 x coordinate of line start point.

-> y1 y coordinate of line start point.

-> x2 x coordinate of line endpoint.

-> y2 y coordinate of line endpoint.

Result Returns nothing.

Comments This routine does not draw in the gray color; it draws with
alternating foreground and background pixels. That is, it uses the
grayPattern pattern type.

See Also WinDrawLine, WinEraseLine, WinFillLine, WinInvertLine,
WinPaintLine, WinPaintLines

WinDrawGrayRectangleFrame

Purpose Draw a gray rectangular frame in the draw window.

Prototype void WinDrawGrayRectangleFrame (FrameType frame,
RectangleType *rP)

Parameters -> frame Type of frame to draw (see FrameType).

-> rP Pointer to the rectangle to frame.

Result Returns nothing.

Comments This routine does not draw in the gray color; it draws with
alternating foreground and background pixels. The standard gray

Windows
Window Functions

Palm OS SDK Reference 821

pattern is not used by this routine; rather, the frame is drawn so that
the top-left pixel of the frame is always on.

See Also WinDrawRectangleFrame, WinEraseRectangleFrame,
WinGetFramesRectangle, WinInvertRectangleFrame,
WinPaintRectangleFrame

WinDrawInvertedChars

Purpose Draw the specified characters inverted (background color) in the
draw window.

Prototype void WinDrawInvertedChars (const Char *chars,
Int16 len, Coord x, Coord y)

Parameters -> chars Pointer to the characters to draw.

-> len Length in bytes of the characters to draw.

-> x x coordinate of the first character to draw (left
bound).

-> y y coordinate of the first character to draw (top
bound).

Result Returns nothing.

Comments This routine draws the on bits and any underline in the background
color and the off bits in the text color. (Black and white uses copy
NOT mode.) This is the standard function for drawing inverted text.

Before calling this function, consider calling
WinSetUnderlineMode and FntSetFont.

See Also WinDrawChar, WinDrawChars, WinDrawTruncChars,
WinEraseChars, WinInvertChars, WinPaintChar,
WinPaintChars

Windows
Window Functions

822 Palm OS SDK Reference

WinDrawLine

Purpose Draw a line in the draw window using the current foreground color.

Prototype void WinDrawLine (Coord x1, Coord y1, Coord x2,
Coord y2)

Parameters -> x1 x coordinate of line start point.

-> y1 y coordinate of line start point.

-> x2 x coordinate of line endpoint.

-> y2 y coordinate of line endpoint.

Result Returns nothing.

Comments This function differs from WinPaintLine in that it always uses
winPaint mode (see WinDrawOperation). WinPaintLine uses
the current drawing state transfer mode instead of winPaint.

See Also WinDrawGrayLine, WinEraseLine, WinFillLine,
WinInvertLine, WinPaintLine, WinPaintLines

WinDrawPixel

Purpose Draw a pixel in the draw window using the current foreground
color.

Prototype void WinDrawPixel (Coord x, Coord y)

Parameters -> x Pointer to the x coordinate of a pixel.

-> y Pointer to the y coordinate of a pixel.

Result Returns nothing. May display a fatal error message if the draw
window’s bitmap is compressed.

Windows
Window Functions

Palm OS SDK Reference 823

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinErasePixel, WinInvertPixel, WinPaintPixel,
WinPaintPixels

WinDrawRectangle

Purpose Draw a rectangle in the draw window using the current foreground
color.

Prototype void WinDrawRectangle (RectangleType *rP,
UInt16 cornerDiam)

Parameters -> rP Pointer to the rectangle to draw.

-> cornerDiam Radius of rounded corners. Specify zero for
square corners.

Result Returns nothing.

Comments The cornerDiam parameter specifies the radius of four imaginary
circles used to form the rounded corners. An imaginary circle is
placed within each corner tangent to the rectangle on two sides.

This function differs from WinPaintRectangle in that it always
uses winPaint mode (see WinDrawOperation).
WinPaintRectangle uses the current drawing state transfer
mode instead of winPaint.

See Also WinEraseRectangle, WinFillRectangle,
WinInvertRectangle

Windows
Window Functions

824 Palm OS SDK Reference

WinDrawRectangleFrame

Purpose Draw a rectangular frame in the draw window using the current
foreground color.

Prototype void WinDrawRectangleFrame (FrameType frame,
RectangleType *rP)

Parameters -> frame Type of frame to draw (see FrameType).

-> rP Pointer to the rectangle to frame.

Result Returns nothing.

Comments The frame is drawn outside the specified rectangle.

This function differs from WinPaintRectangleFrame in that it
always uses winPaint mode (see WinDrawOperation).
WinPaintRectangleFrame uses the current drawing state
transfer mode instead of winPaint.

See Also WinDrawGrayRectangleFrame, WinEraseRectangleFrame,
WinGetFramesRectangle, WinInvertRectangleFrame

WinDrawTruncChars

Purpose Draw the specified characters in the draw window, truncating the
characters to the specified width.

Prototype void WinDrawTruncChars (const Char *chars,
Int16 len, Coord x, Coord y, Coord maxWidth)

Parameters -> chars Pointer to the characters to draw.

-> len Length in bytes of the characters to draw.

-> x x coordinate of the first character to draw (left
bound).

-> y y coordinate of the first character to draw (top
bound).

Windows
Window Functions

Palm OS SDK Reference 825

-> maxWidth Maximum width in pixels of the characters that
are to be drawn.

Result Returns nothing.

Comments Before calling this function, consider calling
WinSetUnderlineMode and FntSetFont.

If drawing all of the specified characters requires more space than
maxWidth allows, WinDrawTruncChars draws one less than the
number of characters that can fit in maxWidth and then draws an
ellipsis (...) in the remaining space. (If the boundary characters are
narrower than the ellipsis, more than one character may be dropped
to make room.) If maxWidth is narrower than the width of an
ellipsis, nothing is drawn.

Use this function to truncate text that may contain multi-byte
characters.

Compatibility Implemented only if 3.1 New Feature Set is present.

See Also WinDrawChar, WinDrawChars, WinDrawInvertedChars,
WinEraseChars, WinInvertChars, WinPaintChar,
WinPaintChars

WinEraseChars

Purpose Erase the specified characters in the draw window.

Prototype void WinEraseChars (const Char *chars, Int16 len,
Coord x, Coord y)

Parameters -> chars Pointer to the characters to erase.

-> len Length in bytes of the characters to erase.

-> x x coordinate of the first character to erase (left
bound).

Windows
Window Functions

826 Palm OS SDK Reference

-> y y coordinate of the first character to erase (top
bound).

Result Returns nothing.

Comments The winMask transfer mode is used to erase the characters. See
WinDrawOperation for more information. This has the effect of
erasing only the on bits for the characters rather than the entire text
rectangle. This function only works if the foreground color is black
and the background color is white.

See Also WinDrawChar, WinDrawChars, WinDrawInvertedChars,
WinDrawTruncChars, WinInvertChars, WinPaintChar,
WinPaintChars

WinEraseLine

Purpose Draw a line in the draw window using the current background
color.

Prototype void WinEraseLine (Coord x1, Coord y1, Coord x2,
Coord y2)

Parameters -> x1 x coordinate of line start point.

-> y1 y coordinate of line start point.

-> x2 x coordinate of line endpoint.

-> y2 y coordinate of line endpoint.

Result Returns nothing.

See Also WinDrawGrayLine, WinDrawLine, WinFillLine,
WinInvertLine, WinPaintLine, WinPaintLines

Windows
Window Functions

Palm OS SDK Reference 827

WinErasePixel

Purpose Draw a pixel in the draw window using the current background
color.

Prototype void WinErasePixel (Coord x, Coord y)

Parameters -> x Pointer to the x coordinate of a pixel.

-> y Pointer to the y coordinate of a pixel.

Result Returns nothing.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinDrawPixel, WinInvertPixel, WinPaintPixel,
WinPaintPixels

WinEraseRectangle

Purpose Draw a rectangle in the draw window using the current background
color.

Prototype void WinEraseRectangle (RectangleType *rP,
UInt16 cornerDiam)

Parameters -> rP Pointer to the rectangle to erase.

-> cornerDiam Radius of rounded corners. Specify zero for
square corners.

Result Returns nothing.

Comments The cornerDiam parameter specifies the radius of four imaginary
circles used to form the rounded corners. An imaginary circle is
placed within each corner tangent to the rectangle on two sides.

See Also WinDrawRectangle, WinFillRectangle,
WinInvertRectangle, WinPaintRectangle

Windows
Window Functions

828 Palm OS SDK Reference

WinEraseRectangleFrame

Purpose Draw a rectangular frame in the draw window using the current
background color.

Prototype void WinEraseRectangleFrame (FrameType frame,
RectangleType *rP)

Parameters -> frame Type of frame to draw (see FrameType).

-> rP Pointer to the rectangle to frame.

Result Returns nothing.

See Also WinDrawGrayRectangleFrame, WinDrawRectangleFrame,
WinGetFramesRectangle, WinInvertRectangleFrame,
WinPaintRectangleFrame

WinEraseWindow

Purpose Erase the contents of the draw window.

Prototype void WinEraseWindow (void)

Parameters None.

Result Returns nothing.

Comments WinEraseRectangle is used to erase the window. This routine
doesn’t erase the frame around the draw window. See
WinEraseRectangleFrame and WinGetWindowFrameRect.

Windows
Window Functions

Palm OS SDK Reference 829

WinFillLine

Purpose Fill a line in the draw window with the current pattern.

Prototype void WinFillLine (Coord x1, Coord y1, Coord x2,
Coord y2)

Parameters -> x1 x coordinate of line start point.

-> y1 y coordinate of line start point.

-> x2 x coordinate of line endpoint.

-> y2 y coordinate of line endpoint.

Result Returns nothing.

Comments You can set the current pattern with WinSetPattern.

See Also WinDrawGrayLine, WinDrawLine, WinEraseLine,
WinInvertLine, WinPaintLine, WinPaintLines

WinFillRectangle

Purpose Draw a rectangle in the draw window with current pattern.

Prototype void WinFillRectangle (RectangleType *rP,
UInt16 cornerDiam)

Parameters -> rP Pointer to the rectangle to draw.

-> cornerDiam Radius of rounded corners. Specify zero for
square corners.

Result Returns nothing.

Comments You can set the current pattern with WinSetPattern.

Windows
Window Functions

830 Palm OS SDK Reference

The cornerDiam parameter specifies the radius of four imaginary
circles used to form the rounded corners. An imaginary circle is
placed within each corner tangent to the rectangle on two sides.

See Also WinDrawRectangle, WinEraseRectangle,
WinInvertRectangle, WinPaintRectangle

WinGetActiveWindow

Purpose Return the window handle of the active window.

Prototype WinHandle WinGetActiveWindow (void)

Parameters None.

Result Returns the handle of the active window. All user input is directed
to the active window.

See Also WinSetActiveWindow, WinGetDisplayWindow,
WinGetFirstWindow, WinGetDrawWindow

WinGetBitmap

Purpose Return a pointer to a window’s bitmap, which holds the window
contents.

Prototype BitmapType *WinGetBitmap (WinHandle winHandle)

Parameters -> winHandle Handle of window from which to get the
bitmap.

Result Returns a pointer to the bitmap or NULL if winHandle is invalid.

Comments For onscreen windows, the bitmap returned always represents the
whole screen. Thus, the top-left corner of the returned bitmap may
not be the top-left corner of the window.

Compatibility Implemented only if 3.5 New Feature Set is present.

Windows
Window Functions

Palm OS SDK Reference 831

WinGetClip

Purpose Return the clipping rectangle of the draw window.

Prototype void WinGetClip (RectangleType *rP)

Parameters <- rP Pointer to a structure to hold the clipping
bounds.

Result Returns nothing.

See Also WinSetClip

WinGetDisplayExtent

Purpose Return the width and height of the display (the screen).

Prototype void WinGetDisplayExtent (Coord *extentX,
Coord *extentY)

Parameters <- extentX Pointer to the width of the display in pixels.

<- extentY Pointer to the height of the display in pixels.

Result Returns nothing.

WinGetDisplayWindow

Purpose Return the window handle of the display (screen) window.

Prototype WinHandle WinGetDisplayWindow (void)

Parameters None.

Result Returns the handle of display window.

Windows
Window Functions

832 Palm OS SDK Reference

Comments The display window is created by the system at start-up; it has the
same size as the Palm OS drawable area of the physical display
(screen).

See Also WinGetDisplayExtent, WinGetActiveWindow,
WinGetDrawWindow

WinGetDrawWindow

Purpose Return the window handle of the current draw window.

Prototype WinHandle WinGetDrawWindow (void)

Parameters None.

Result Returns handle of draw window.

See Also WinGetDisplayWindow, WinGetActiveWindow,
WinSetDrawWindow

WinGetFirstWindow

Purpose Return a pointer to the first window in the linked list of windows.

Prototype WinHandle WinGetFirstWindow (void)

Parameters None.

Result Returns handle of first window.

Comments This function is usually used by the system only.

See Also WinGetActiveWindow

Windows
Window Functions

Palm OS SDK Reference 833

WinGetFramesRectangle

Purpose Return the rectangle that includes a rectangle together with the
specified frame around it.

Prototype void WinGetFramesRectangle (FrameType frame,
RectangleType *rP, RectangleType *obscuredRectP)

Parameters -> frame Type of rectangle frame (see FrameType).

-> rP Pointer to the rectangle to frame.

<- obscuredRectP
Pointer to the rectangle that includes both the
specified rectangle and its frame.

Result Returns nothing.

Comments Frames are always drawn around (outside) a rectangle.

See Also WinGetWindowFrameRect, WinGetWindowBounds

WinGetPattern

Purpose Return the current fill pattern.

Prototype void WinGetPattern (CustomPatternType *patternP)

Parameters <- patternP Buffer where the current pattern is returned
(see CustomPatternType).

Result Returns nothing.

Comments The fill pattern is used by WinFillLine and WinFillRectangle.

This function returns the value of patternData in the current
drawing state. (See DrawStateType.) The patternData field is
only set if the pattern field is customPattern. Therefore, it’s a

Windows
Window Functions

834 Palm OS SDK Reference

good idea to use WinGetPatternType instead of this function on
systems that support WinGetPatternType.

See Also WinSetPattern

WinGetPatternType

Purpose Return the current pattern type.

Prototype PatternType WinGetPatternType (void)

Parameters None.

Result Returns the current draw window pattern type (see PatternType).
If the return value is customPattern, you can retrieve the pattern
with WinGetPattern.

Comments The fill pattern is used by WinFillLine and WinFillRectangle.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinSetPatternType

WinGetPixel

Purpose Return the color value of a pixel in the current draw window.

Prototype IndexedColorType WinGetPixel (Coord x, Coord y)

Parameters -> x Pointer to the x coordinate of a pixel.

-> y Pointer to the y coordinate of a pixel.

Result Returns the indexed color value of the pixel. See
IndexedColorType. A return value of 0 means either that the
coordinates do not lie in the current draw window or that they do
and the color of that pixel is index 0 (typically white).

Windows
Window Functions

Palm OS SDK Reference 835

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinIndexToRGB

WinGetWindowBounds

Purpose Return the bounds of the current draw window in display-relative
coordinates.

Prototype void WinGetWindowBounds (RectangleType *rP)

Parameters <- rP Pointer to a rectangle.

Result Returns nothing.

See Also WinGetWindowExtent, WinSetWindowBounds

WinGetWindowExtent

Purpose Return the width and height of the current draw window.

Prototype void WinGetWindowExtent (Coord *extentX,
Coord *extentY)

Parameters <- extentX Pointer to the width in pixels of the draw
window.

<- extentY Pointer to the height in pixels of the draw
window.

Result Returns nothing.

See Also WinGetWindowBounds, WinGetWindowFrameRect,

Windows
Window Functions

836 Palm OS SDK Reference

WinGetWindowFrameRect

Purpose Return a rectangle, in display-relative coordinates, that defines the
size and location of a window and its frame.

Prototype void WinGetWindowFrameRect (WinHandle winHandle,
RectangleType *r)

Parameters -> winHandle Handle of window whose coordinates are
desired.

<- r Pointer to the coordinates of the window.

Result Returns nothing.

See Also WinGetWindowBounds

WinIndexToRGB

Purpose Convert an index in the currently active color table to an RGB value.

Prototype void WinIndexToRGB (IndexedColorType i,
RGBColorType *rgbP)

Parameters -> i A color index value. See IndexedColorType.

<- rgbP Pointer to an RGB color value corresponding to
the index value i. See RGBColorType.

Result Returns nothing.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinRGBToIndex

Windows
Window Functions

Palm OS SDK Reference 837

WinInvertChars

Purpose Invert the specified characters in the draw window.

Prototype void WinInvertChars (const Char *chars, Int16 len,
Coord x, Coord y)

Parameters -> chars Pointer to the characters to invert.

-> len Length in bytes of the characters to invert.

-> x x coordinate of the first character to invert (left
bound).

-> y y coordinate of the first character to invert (top
bound).

Result Returns nothing.

Comments This function applies the winInvert operation of
WinDrawOperation to the characters in the draw window.

To perform color inverting, use WinSetDrawMode to set the current
draw mode to winSwap, and then use WinPaintChars to draw the
characters.

See Also WinDrawChar, WinDrawChars, WinDrawInvertedChars,
WinDrawTruncChars, WinEraseChars, WinPaintChar,
WinPaintChars

WinInvertLine

Purpose Invert a line in the draw window (using the WinDrawOperation
winInvert).

Prototype void WinInvertLine (Coord x1, Coord y1, Coord x2,
Coord y2)

Parameters -> x1 x coordinate of line start point.

-> y1 y coordinate of line start point.

Windows
Window Functions

838 Palm OS SDK Reference

-> x2 x coordinate of line endpoint.

-> y2 y coordinate of line endpoint.

Result Returns nothing.

See Also WinDrawGrayLine, WinDrawLine, WinEraseLine,
WinFillLine, WinPaintLine, WinPaintLines

WinInvertPixel

Purpose Invert a pixel in the draw window (using the WinDrawOperation
winInvert).

Prototype void WinInvertPixel (Coord x, Coord y)

Parameters -> x Pointer to the x coordinate of a pixel.

-> y Pointer to the y coordinate of a pixel.

Result Returns nothing.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinDrawPixel, WinErasePixel, WinPaintPixel,
WinPaintPixels

WinInvertRectangle

Purpose Invert a rectangle in the draw window (using the
WinDrawOperation winInvert).

Prototype void WinInvertRectangle (RectangleType *rP,
UInt16 cornerDiam)

Parameters -> rP Pointer to the rectangle to invert.

Windows
Window Functions

Palm OS SDK Reference 839

-> cornerDiam Radius of rounded corners. Specify zero for
square corners.

Result Returns nothing.

Comments The cornerDiam parameter specifies the radius of four imaginary
circles used to form the rounded corners. An imaginary circle is
placed within each corner tangent to the rectangle on two sides.

The operating system itself does not use the inverting routines.
Instead, it uses the winSwap transfer mode, or it changes the color
selection and uses the WinPaint... routines.

See Also WinDrawRectangle, WinEraseRectangle,
WinFillRectangle, WinPaintRectangle

WinInvertRectangleFrame

Purpose Invert a rectangular frame in the draw window (using the
WinDrawOperation winInvert).

Prototype void WinInvertRectangleFrame (FrameType frame,
RectangleType *rP)

Parameters -> frame Type of frame to draw (see FrameType).

-> rP Pointer to the rectangle to frame.

Result Returns nothing.

See Also WinDrawGrayRectangleFrame, WinDrawRectangleFrame,
WinEraseRectangleFrame, WinGetFramesRectangle,
WinPaintRectangleFrame

Windows
Window Functions

840 Palm OS SDK Reference

WinModal

Purpose Return true if the specified window is modal.

Prototype Boolean WinModal (WinHandle winHandle)

Parameters -> winHandle Handle of a window.

Result Returns true if the window is modal, otherwise false.

Comments A window is modal if it cannot lose the focus.

See Also FrmAlert, FrmCustomAlert, FrmDoDialog

WinPaintBitmap

Purpose Draw a bitmap in the current draw window at the specified
coordinates with the current draw mode.

Prototype void WinPaintBitmap (BitmapType *bitmapP, Coord x,
Coord y)

Parameters -> bitmapP Pointer to a bitmap.

-> x The x coordinate of the top-left corner.

-> y The y coordinate of the top-left corner.

Result Returns nothing.

Comments If the bitmap has multiple depths (is a bitmap family), the closest
match less than or equal to the current draw window depth is used.
If such a bitmap does not exist, the bitmap with the closest match
greater than the draw window depth is used.

Using WinPaintBitmap is now recommended instead of the
previous practice of rendering bitmaps into an offscreen window
and then using WinCopyRectangle to draw them on screen.

The current draw mode is set by WinSetDrawMode.

Windows
Window Functions

Palm OS SDK Reference 841

If the bitmap has its own color table, color conversion to the draw
window color table will be applied (on OS 3.5 or later). This color
conversion is slow and not recommended. Instead of including a
color table in the bitmap, consider using WinPalette to change the
system color table, draw the bitmap, and then change the system
color table back when the bitmap is no longer visible.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinDrawBitmap, WinEraseRectangle

WinPaintChar

Purpose Draw a character in the draw window using the current drawing
state.

Prototype void WinPaintChar (WChar theChar, Coord x,
Coord y)

Parameters -> theChar The character to draw. This may be either a
single-byte character or a multi-byte character.

-> x x coordinate of the location where the character
is to be drawn (left bound).

-> y y coordinate of the location where the character
is to be drawn (top bound).

Result Returns nothing.

See Also WinPaintChar draws the on bits in the text color and the off bits
in the background color, with underlines (if any) drawn in the
foreground color using the current drawing mode.

This function uses the current drawing state, which is stored in a
DrawStateType structure. See the description of that structure to
learn the functions you can call to set the drawing state to the values
you want.

Windows
Window Functions

842 Palm OS SDK Reference

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinDrawChar, WinDrawChars, WinDrawInvertedChars,
WinDrawTruncChars, WinEraseChars, WinInvertChars,
WinPaintChars

WinPaintChars

Purpose Draw the specified characters in the draw window with the current
draw state.

Prototype void WinPaintChars (const Char *chars, Int16 len,
Coord x, Coord y)

Parameters -> chars Pointer to the characters to draw.

-> len Length in bytes of the characters to draw.

-> x x coordinate of the first character to draw (left
bound).

-> y y coordinate of the first character to draw (top
bound).

Result Returns nothing.

Comments WinPaintChars draws the on bits in the text color and the off bits
in the background color, with underlines (if any) drawn in the
foreground color using the current drawing mode.

This function uses the current drawing state, which is stored in a
DrawStateType structure. See the description of that structure to
learn the functions you can call to set the drawing state to the state
you want.

Before calling this function, consider calling
WinSetUnderlineMode and FntSetFont.

Windows
Window Functions

Palm OS SDK Reference 843

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinDrawChar, WinDrawChars, WinDrawInvertedChars,
WinDrawTruncChars, WinEraseChars, WinInvertChars,
WinPaintChar

WinPaintLine

Purpose Draw a line in the draw window using the current drawing state.

Prototype void WinPaintLine (Coord x1, Coord y1, Coord x2,
Coord y2)

Parameters -> x1 x coordinate of line beginning point.

-> y1 y coordinate of line beginning point.

-> x2 x coordinate of line endpoint.

-> y2 y coordinate of line endpoint.

Result Returns nothing.

Comments This function uses the current drawing state, which is stored in a
DrawStateType structure. See the description of that structure to
learn the functions you can call to set the drawing state to the state
you want.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinDrawLine, WinDrawGrayLine, WinEraseLine,
WinFillLine, WinInvertLine, WinPaintLines

Windows
Window Functions

844 Palm OS SDK Reference

WinPaintLines

Purpose Draw several lines in the draw window using the current drawing
state.

Prototype void WinPaintLines (UInt16 numLines,
WinLineType lines[])

Parameters -> numLines Number of lines to paint.

-> lines Array of lines. See WinLineType.

Result Returns nothing.

Comments This function uses the current drawing state, which is stored in a
DrawStateType structure. See the description of that structure to
learn the functions you can call to set the drawing state to the state
you want.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinDrawLine, WinDrawGrayLine, WinEraseLine,
WinFillLine, WinInvertLine, WinPaintLine

WinPaintPixel

Purpose Render a pixel in the draw window using the current drawing state.

Purpose void WinPaintPixel (Coord x, Coord y)

Parameters -> x Pointer to the x coordinate of a pixel.

-> y Pointer to the y coordinate of a pixel.

Result Returns nothing.

Comments This function uses the current drawing state, which is stored in a
DrawStateType structure. See the description of that structure to

Windows
Window Functions

Palm OS SDK Reference 845

learn the functions you can call to set the drawing state to the state
you want.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinDrawPixel, WinErasePixel, WinInvertPixel,
WinPaintPixels

WinPaintPixels

Purpose Render several pixels in the draw window using the current
drawing state.

Prototype void WinPaintPixels (UInt16 numPoints,
PointType pts[])

Parameters -> numPoints Number of pixels to paint.

-> pts Array of pixels.

Result Returns nothing.

Comments This function uses the current drawing state, which is stored in a
DrawStateType structure. See the description of that structure to
learn the functions you can call to set the drawing state to the state
you want.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinDrawPixel, WinErasePixel, WinInvertPixel,
WinPaintPixel

Windows
Window Functions

846 Palm OS SDK Reference

WinPaintRectangle

Purpose Draw a rectangle in the draw window using the current drawing
state.

Prototype void WinPaintRectangle (RectangleType *rP,
UInt16 cornerDiam)

Parameters -> rP Pointer to the rectangle to draw.

-> cornerDiam Radius of rounded corners. Specify zero for
square corners.

Result Returns nothing.

Comments The cornerDiam parameter specifies the radius of four imaginary
circles used to form the rounded corners. An imaginary circle is
placed within each corner tangent to the rectangle on two sides.

This function uses the current drawing state, which is stored in a
DrawStateType structure. See the description of that structure to
learn the functions you can call to set the drawing state to the state
you want.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinDrawRectangle, WinEraseRectangle,
WinFillRectangle, WinInvertRectangle

WinPaintRectangleFrame

Purpose Draw a rectangular frame in the draw window using the current
drawing state.

Prototype void WinPaintRectangleFrame (FrameType frame,
RectangleType *rP)

Parameters -> frame Type of frame to draw (see FrameType).

Windows
Window Functions

Palm OS SDK Reference 847

-> rP Pointer to the rectangle to frame.

Result Returns nothing.

Comments The frame is drawn outside the specified rectangle.

This function uses the current drawing state, which is stored in a
DrawStateType structure. See the description of that structure to
learn the functions you can call to set the drawing state to the state
you want.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinDrawGrayRectangleFrame, WinDrawRectangleFrame,
WinEraseRectangleFrame, WinGetFramesRectangle,
WinInvertRectangleFrame

WinPalette

Purpose Set or retrieve the palette for the draw window.

Prototype Err WinPalette (UInt8 operation, Int16 startIndex,
UInt16 paletteEntries, RGBColorType *tableP)

Parameters -> operation Specify one of the following values:

winPaletteGet
Retrieve the palette. Entries are read from the
palette beginning at startIndex and placed
into tableP beginning at index 0.

winPaletteSet
Set the palette. Entries from tableP (beginning
at index 0) are set into the palette beginning at
startIndex in the palette.

winPaletteSetToDefault
Set the palette to the default system palette.

Windows
Window Functions

848 Palm OS SDK Reference

-> startIndex Identifies where in the palette to start reading
or writing. Specify WinUseTableIndexes to
indicate that the entries are not to be set or read
sequentially; instead, the index value in each
RGBColorType entry in tableP determines
which slot in the palette is to be set or read. You
can use this technique to get or set several
discontiguous palette entries with a single
function call.

-> paletteEntries
Number of palette entries to get or set.

<-> tableP A pointer to a buffer of RGBColorType entries
that is either read from or written to, depending
on the operation parameter; the table entries
from 0 to paletteEntries – 1 are affected by
this routine.

Result Returns one of the following values:

errNone Success.

winErrPalette The current draw window does not have a
color table, a set operation has overflowed the
color table, or one of the entries in tableP has
an invalid index value

sysErrParamErr The startIndex value is invalid.

Comments Here are some examples of how this routine works:

• If startIndex is 0 and paletteEntries is 10, the first 10
elements of the palette will be set from tableP or will be
copied into tableP.

• If startIndex is 10 and paletteEntries is 5, then entries
10, 11, 12, 13, and 14 in the palette will be set from or copied
to elements 0, 1, 2, 3, and 4 in tableP.

• If startIndex is WinUseTableIndexes and
paletteEntries is 1, then the index value in the
RGBColorType of element 0 of tableP will be read from or
copied to tableP; in this case, the index field of the
RGBColorType will not change.

Windows
Window Functions

Palm OS SDK Reference 849

During a set operation, this function broadcasts the
sysNotifyDisplayChangeEvent to notify any interested
observer that the color palette has changed. For information on this
and other notifications, see Chapter 36, “Notification Manager.”

One use for this function is if you need to display a bitmap that uses
a color table other than the one in use by the system. You can attach
a custom color table to a bitmap, and if you do, the bitmap is drawn
using that color table. However, this is a performance drain. As an
optimization, you can use WinPalette to change the system color
table to match that used by the bitmap, display the bitmap, and use
WinPalette to reset the color table when the bitmap is no longer
visible.

Compatibility Implemented only if 3.5 New Feature Set is present.

WinPopDrawState

Purpose Restore the draw state values to the last saved set on the stack.

Prototype void WinPopDrawState (void)

Parameters None.

Result Returns nothing.

Comments Use this routine to restore the draw state saved by the previous call
to WinPushDrawState.

After you call this function, the current draw window’s
drawStateP field points to the restored drawing state.

Compatibility Implemented only if 3.5 New Feature Set is present.

Windows
Window Functions

850 Palm OS SDK Reference

WinPushDrawState

Purpose Save the current draw state values onto the draw state stack.

Prototype void WinPushDrawState (void)

Parameters None.

Result Returns nothing.

Comments Use this routine to save the current draw state before making
changes to it using the functions listed in the DrawStateType
structure’s description. Call WinPopDrawState to restore the
saved settings.

Compatibility Implemented only if 3.5 New Feature Set is present.

WinResetClip

Purpose Reset the clipping rectangle of the draw window to the portion of
the draw window that is within the bounds of the display.

Prototype void WinResetClip (void)

Parameters None.

Result Returns nothing.

See Also WinSetClip

Windows
Window Functions

Palm OS SDK Reference 851

WinRestoreBits

Purpose Copy the contents of the specified window to the draw window and
delete the passed window.

Prototype void WinRestoreBits (WinHandle winHandle,
Coord destX, Coord destY)

Parameters -> winHandle Handle of window to copy and delete.

-> destX x coordinate in the draw window to copy to.

-> destY y coordinate in the draw window to copy to.

Result Returns nothing.

Comments This routine is generally used to restore a region of the display that
was saved with WinSaveBits.

See Also WinSaveBits

WinRGBToIndex

Purpose Convert an RGB value to the index of the closest color in the
currently active color lookup table (CLUT).

Prototype IndexedColorType WinRGBToIndex
(const RGBColorType *rgbP)

Parameters -> rgbP Pointer to an RGB color value.

Result Returns the index of the closest matching color in the CLUT.

Comments Palm OS 3.5 supports a maximum of 256 colors. The number of
possible RGB colors greatly exceeds this amount. For this reason, an
exact match may not be available for rgbP. If there is no exact RGB
match, then a luminance best-fit is used if the color lookup table is
entirely gray scale (red, green, and blue values for each entry are
identical), or a shortest-distance fit in RGB space is used if the

Windows
Window Functions

852 Palm OS SDK Reference

palette contains colors. RGB shortest distance may not always
produce the actual closest perceptible color, but it’s relatively fast
and works for the system palette.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinIndexToRGB

WinSaveBits

Purpose Create an offscreen window and copy the specified region from the
draw window to the offscreen window.

Prototype WinHandle WinSaveBits (RectangleType *sourceP,
UInt16 *error)

Parameters -> sourceP Pointer to the bounds of the region to save,
relative to the display.

<- error Pointer to any error encountered by this
function.

Result Returns the handle of the window containing the saved image, or
zero if an error occurred.

Comments The offscreen window is the same size as the region to copy.

This function tries to copy the window’s bitmap using compressed
format if possible. It may display a fatal error message if an error
occurs when it tries to shrink the pointer for the compressed bits.

See Also WinRestoreBits

Windows
Window Functions

Palm OS SDK Reference 853

WinScreenLock

Purpose “Lock” the current screen by switching the UI concept of the screen
base address to an area that is not reflected on the display.

Prototype UInt8* WinScreenLock (WinLockInitType initMode)

Parameters -> initMode Indicates how to initialize the new screen area.
Specify one of the following values:

winLockCopy
Copy old screen to new.

winLockErase
Erase new screen to white.

winLockDontCare
Don't do anything

Result Returns a pointer to the new screen base address, or NULL if this
routine fails.

Comments This routine can be used to “freeze” the display while doing lengthy
drawing operations to avoid a flickering effect. Call
WinScreenUnlock to unlock the display and cause it to be
updated with any changes. The screen must be unlocked as many
times as it is locked to actually update the display.

Because this function copies the screen, using it is a relatively
expensive operation.

Compatibility Implemented only if 3.5 New Feature Set is present.

Windows
Window Functions

854 Palm OS SDK Reference

WinScreenMode

Purpose Sets or returns display parameters, including display geometry, bit
depth, and color support.

Prototype Err WinScreenMode
(WinScreenModeOperation operation, UInt32 *widthP,
UInt32 *heightP, UInt32 *depthP,
Boolean *enableColorP)

Parameters The widthP, heightP, depthP, and enableColorP parameters
are used in different ways for different operations. See Comments at
the end of this description for details.

-> operation The work this function is to perform, as
specified by one of the following selectors:

winScreenModeGet
Return the current settings for the display.

winScreenModeGetDefaults
Return the default settings for the display.

winScreenModeGetSupportedDepths
Return in depthP a hexadecimal value
indicating the supported screen depths. The
binary representation of this value defines a
bitfield in which the value 1 indicates support
for a particular display depth. The position
representing a particular bit depth corresponds
to the value 2(bitDepth-1). See the Example at the
end of this function description for more
information.

winScreenModeGetSupportsColor
Return true as the value of the enableColorP
parameter when color mode can be enabled.

winScreenModeSet
Change display settings to the values specified
by the other arguments to the WinScreenMode
function.

Windows
Window Functions

Palm OS SDK Reference 855

winScreenModeSetToDefaults
Change display settings to default values.

<-> widthP Pointer to new/old screen width.

<-> heightP Pointer to new/old screen height.

<-> depthP Pointer to new/old/available screen depth.

<-> enableColorP
Pass true to enable color drawing mode.

Result If no error, returns values as specified by the operation argument.
Various invalid arguments may cause this function to return a
sysErrParamErr result code. In rare cases, a failed allocation can
cause this function to return a memErrNotEnoughSpace error.

Comments The widthP, heightP, depthP, and enableColorP parameters
are used in different ways for different operations. All “get”
operations overwrite these values with a result when the function
returns. The winScreenModeSet operation changes current
display parameters when passed valid argument values that are not
NULL pointers. The winScreenModeSetToDefaults operation
ignores values passed for all of these parameters.

Table 48.1 summarizes parameter usage for each operation this
function performs.

This function ignores NULL pointer arguments to the widthP,
heightP, depthP, and enableColorP parameters; thus, you can

Table 48.1 Use of parameters to WinScreenMode function

Operation winScreenMode… widthP heightP depthP enableColorP

…Get returned returned returned returned

…GetDefaults returned returned returned returned

…GetSupportedDepths pass in pass in returned pass in

…GetSupportsColor pass in pass in pass in returned

…Set pass in pass in pass in pass in

…SetToDefaults ignored ignored ignored ignored

Windows
Window Functions

856 Palm OS SDK Reference

pass a NULL pointer for any of these values to leave the current
value unchanged. Similarly, when getting values, this function does
not return a value for any NULL pointer argument.

If you change the display depth, it is recommended that you restore
it to its previous state when your application closes, even though
the system sets display parameters back to their default values
when launching an application.

Note that none of the other operations interprets the depth
parameter the same way that
winScreenModeGetSupportedDepths does. For example, to set
the display depth to 8-bit mode, you use 8 (decimal) for the display
depth, not 0x08 (128 decimal).

Compatibility Implemented only if 3.5 New Feature Set is present. In OS versions
prior to 3.5, this function is called ScrDisplayMode. The prototype
for ScrDisplayMode is similar to WinScreenMode:

Err ScrDisplayMode (
ScrDisplayModeOperation operation,
DWordPtr widthP, DWordPtr heightP,
DWordPtr depthP, BooleanPtr enableColorP)

The only other difference between ScrDisplayMode and
WinScreenMode is that the ScrDisplayModeOperation
constants begin with the prefix scrDisplayMode rather than
winScreenMode.

Example Here are some additional examples of return values provided by the
winScreenModeGetSupportedDepths mode of the
WinScreenMode function.

This function indicates support for 4-bit drawing by returning a
value of 0x08, or 23, which corresponds to a binary value of 1000.
Support for bit depths of 2 and 1 is indicated by a return value of
0x03. Support for bit depths of 4, 2, and 1 is indicated by 0x0B,
which is a binary value of 1011. Support for bit depths of 24, 8, 4
and 2 is indicated by 0x80008A. The figure immediately following
depicts this final example graphically.

Windows
Window Functions

Palm OS SDK Reference 857

WinScreenUnlock

Purpose Unlock the screen and update the display.

Prototype void WinScreenUnlock (void)

Parameters None.

Result Returns nothing.

Comments The screen must be unlocked as many times as it is locked to
actually update the display.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinScreenLock

WinScrollRectangle

Purpose Scroll a rectangle in the draw window.

Prototype void WinScrollRectangle (RectangleType *rP,
WinDirectionType direction, Coord distance,
RectangleType *vacatedP)

Parameters -> rP Pointer to the rectangle to scroll.

Windows
Window Functions

858 Palm OS SDK Reference

-> direction Direction to scroll (winUp, winDown, winLeft,
or winRight).

-> distance Distance to scroll in pixels.

<- vacatedP Pointer to the rectangle that needs to be
redrawn because it has been vacated as a result
of the scroll.

Result Returns nothing.

Comments The rectangle scrolls within its own bounds. Any portion of the
rectangle that is scrolled outside its bounds is clipped.

WinSetActiveWindow

Purpose Make a window the active window.

Prototype void WinSetActiveWindow (WinHandle winHandle)

Parameters -> winHandle Handle of a window.

Result Returns nothing.

Comments The active window is not actually set in this routine; flags are set to
indicate that a window is being exited and another window is being
entered. The routine EvtGetEvent sends a winExitEvent and a
winEnterEvent when it detects these flags. The active window is
set by EvtGetEvent when it sends the winEnterEvent. The
draw window is also set to the new active window when the active
window is changed.

The window is enabled before it is made active.

All user input is directed to the active window.

See Also WinGetActiveWindow, EvtGetEvent

Windows
Window Functions

Palm OS SDK Reference 859

WinSetBackColor

Purpose Set the background color to use in subsequent draw operations.

Prototype IndexedColorType WinSetBackColor
(IndexedColorType backColor)

Parameters -> backColor Color to set; specify a value of type
IndexedColorType.

Result Returns the previous background color index.

Comments This function changes the current drawing state. If necessary, use
WinPushDrawState to preserve the current drawing state before
you set this function and use WinPopDrawState to restore it later.

To set the foreground color to a predefined UI color default, use
UIColorGetTableEntryIndex as an input to this function. For
example:

curColor = WinSetBackColor
(UIColorGetTableEntryIndex(UIFieldBackground));

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinSetForeColor, WinSetTextColor

WinSetClip

Purpose Set the clipping rectangle of the draw window.

Prototype void WinSetClip (RectangleType *rP)

Parameters -> rP Pointer to a structure holding the clipping
bounds.

Result Returns nothing.

See Also WinClipRectangle, WinSetClip, WinGetClip

Windows
Window Functions

860 Palm OS SDK Reference

WinSetDrawMode

Purpose Set the transfer mode to use in subsequent draw operations.

Prototype WinDrawOperation WinSetDrawMode
(WinDrawOperation newMode)

Parameters -> newMode Transfer mode to set; specify one of the
WinDrawOperation values.

Result Returns the previous transfer mode.

Comments This function changes the current drawing state. If necessary, use
WinPushDrawState to preserve the current drawing state before
you set this function and use WinPopDrawState to restore it later.

Compatibility Implemented only if 3.5 New Feature Set is present.

WinSetDrawWindow

Purpose Set the draw window. (All drawing operations are relative to the
draw window.)

Prototype WinHandle WinSetDrawWindow (WinHandle winHandle)

Parameters -> winHandle Handle of a window.

Result Returns the previous draw window.

Compatibility OS versions before 3.5 allowed you to use NULL as a parameter to
this function to set the draw window to the display window (or
screen window). In version 3.5 and higher, this practice is
discouraged. If winHandle is NULL, the debug ROM sets the draw
window to badDrawWindowValue, and you are warned if you try
to draw to it.

See Also WinGetDrawWindow, WinSetActiveWindow

Windows
Window Functions

Palm OS SDK Reference 861

WinSetForeColor

Purpose Set the foreground color to use in subsequent draw operations.

Prototype IndexedColorType WinSetForeColor
(IndexedColorType foreColor)

Parameters -> foreColor Color to set; specify a value of type
IndexedColorType.

Result Returns the previous foreground color index.

Comments This function changes the current drawing state. If necessary, use
WinPushDrawState to preserve the current drawing state before
you set this function and use WinPopDrawState to restore it later.

To set the foreground color to a predefined UI color default, use
UIColorGetTableEntryIndex as an input to this function. For
example:

curColor = WinSetForeColor
(UIColorGetTableEntryIndex
(UIObjectForeground));

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinSetBackColor, WinSetTextColor

WinSetPattern

Purpose Set the current fill pattern.

Prototype void WinSetPattern (const CustomPatternType
*patternP)

Parameters -> patternP Pattern to set (see CustomPatternType).

Result Returns nothing.

Windows
Window Functions

862 Palm OS SDK Reference

Comments The fill pattern is used by WinFillLine and WinFillRectangle.

This function changes the current drawing state. If necessary, use
WinPushDrawState to preserve the current drawing state before
you set this function and use WinPopDrawState to restore it later.

See Also WinGetPattern

WinSetPatternType

Purpose Set the current pattern type.

Prototype void WinSetPatternType (PatternType newPattern)

Parameters -> newPattern Pattern type to set for the draw window (see
PatternType).

Result Returns nothing.

Comments This function sets the pattern field of the drawing state to
newPattern and sets the patternData field to NULL. To set
patternData to a custom pattern use WinSetPattern.

The fill pattern is used by WinFillLine and WinFillRectangle.

This function changes the current drawing state. If necessary, use
WinPushDrawState to preserve the current drawing state before
you set this function and use WinPopDrawState to restore it later.

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinGetPatternType

Windows
Window Functions

Palm OS SDK Reference 863

WinSetTextColor

Purpose Set the color to use for drawing characters in subsequent draw
operations.

Prototype IndexedColorType WinSetTextColor
(IndexedColorType textColor)

Parameters -> textColor Color to set; specify a value of type
IndexedColorType.

Result Returns the previous text color index.

Comments This function changes the current drawing state. If necessary, use
WinPushDrawState to preserve the current drawing state before
you set this function and use WinPopDrawState to restore it later.

To set the foreground color to a predefined UI color default, use
UIColorGetTableEntryIndex as an input to this function. For
example:

curColor = WinSetTextColor
(UIColorGetTableEntryIndex(UIFieldText));

Compatibility Implemented only if 3.5 New Feature Set is present.

See Also WinSetBackColor, WinSetForeColor

Windows
Window Functions

864 Palm OS SDK Reference

WinSetUnderlineMode

Purpose Set the graphic state to enable or disable the underlining of
characters.

Prototype UnderlineModeType WinSetUnderlineMode
(UnderlineModeType mode)

Parameters <-> mode New underline mode type; see
UnderlineModeType.

Result Returns the previous underline mode type.

Comments This function changes the current drawing state. If necessary, use
WinPushDrawState to preserve the current drawing state before
you set this function and use WinPopDrawState to restore it later.

See Also WinDrawChars

WinSetWindowBounds

Purpose Set the bounds of the window to display-relative coordinates.

Prototype void WinSetWindowBounds (WinHandle winHandle,
RectangleType *rP)

Parameters -> winHandle Handle for the window for which to set the
bounds.

-> rP Pointer to a rectangle to use for bounds.

Result Returns nothing.

Comments A visible window cannot have its bounds modified.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also WinGetWindowBounds

Windows
Window Functions

Palm OS SDK Reference 865

WinValidateHandle

Purpose Return true if the specified handle references a valid window
object.

Prototype Boolean WinValidateHandle (WinHandle winHandle)

Parameters -> winHandle The handle to be tested.

Result Returns true if the specified handle references a non-NULL pointer
to a window in the active window list, false if the handle
references a window whose values are out of sync with the current
system state.

Comments For debugging purposes only. Do not include this function in
commercial applications.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also FrmValidatePtr, FrmRemoveObject

WinWindowToDisplayPt

Purpose Convert a window-relative coordinate to a display-relative
coordinate.

Prototype void WinWindowToDisplayPt (Coord *extentX,
Coord *extentY)

Parameters <-> extentX Pointer to x coordinate to convert.

<-> extentY Pointer to y coordinate to convert.

Result Returns nothing.

Windows
Window Functions

866 Palm OS SDK Reference

Comments The coordinate passed is assumed to be relative to the draw
window.

See Also WinDisplayToWindowPt

Palm OS SDK Reference 867

49
Miscellaneous
System Functions
This chapter describes miscellaneous system functions. The
functions in this chapter are declared in the header files Crc.h,
IntlMgr.h, and Localize.h.

Crc16CalcBlock

Purpose Calculate the 16-bit CRC of a data block using the table lookup
method.

Prototype UInt16 Crc16CalcBlock (const void *bufP,
UInt16 count, UInt16 crc)

Parameters bufP Pointer to the data buffer.

count Number of bytes in the buffer.

crc Seed crc value.

Result A 16-bit CRC for the data buffer.

Miscellaneous System Functions

868 Palm OS SDK Reference

IntlGetRoutineAddress

Purpose Return the address of an international manager or text manager
function.

Prototype void *IntlGetRoutineAddress
(IntlSelector inSelector)

Parameters -> inSelector One of the routine selectors defined in
IntlMgr.h.

Result Returns the address of the corresponding function. Returns NULL if
an invalid routine selector is passed.

Comments Use this function for performance reasons. It returns the address of
an international manager or text manager function. You can then
use this address to call the function without having to go through
the international manager’s trap dispatch table. This function is
mostly useful for optimizing the performance of text manager
routines that are called in a tight loop.

Compatibility Implemented only if International Feature Set is present.

LocGetNumberSeparators

Purpose Get localized number separators.

Prototype void LocGetNumberSeparators
(NumberFormatType numberFormat,
Char *thousandSeparator, Char *decimalSeparator)

Parameters numberFormat The format to use

thousandSeparator
Return a localized thousand separator here
(allocate 1 char).

Miscellaneous System Functions

Palm OS SDK Reference 869

decimalSeparator
Return a localized decimal separator here
(allocate 1 char).

Result Returns nothing.

Compatibility Implemented only if 2.0 New Feature Set is present.

See Also StrLocalizeNumber, StrDelocalizeNumber, “Localized
Applications” in the Palm OS Programmer’s Companion

Part III: Communications

Palm OS SDK Reference 873

50
Connection Manager
The connection manager allows other applications to access, add,
and delete connection profiles contained in the Connection Panel.

This chapter provides reference material for the connection manager
API:

• Connection Manager Functions

The header file ConnectionMgr.h declares the connection manager
API. For more information on the connection manager, see the
chapter Serial Communication in the Palm OS Programmer’s
Companion.

Connection Manager Functions

CncAddProfile

Purpose Adds a profile to the connection manager.

Prototype Err CncAddProfile(Char *name, UInt32 port,
UInt32 baud, UInt16 volume, UInt16 handShake,
Char *initString, Char *resetString,
Boolean isModem, Boolean isPulse)

Parameters <-> name Pointer to the profile name to be added. If the
name is already taken in the Connection Panel
then a duplication number is appended to it.
The name added is returned here.

-> port The port identification used by the profile.

-> baud The baud rate used by the profile.

-> volume The volume setting for the device (for Modem
only).

Connection Manager
Connection Manager Functions

874 Palm OS SDK Reference

-> handShake Flow control setting (hardware handshaking). 0
specifies automatic (on at speeds > 2400 baud),
1 specifies always on, and 2 specifies always
off.

-> initString Pointer to the initialization string used by a
modem (for Modem only).

-> resetString Pointer to the reset string used by a modem (for
Modem only).

-> isModem true if Modem, false if Direct.

-> isPulse true if Pulse dial, false if TouchTone.

Result

Comments All profiles within the connection manager must have a unique
name. The connection manager tries to append a duplication
number to the end of the name if you specify a name that is already
taken.

There is a maximum limit to the number of profiles that can be
maintained by the connection manager. If the limit is passed, an
error is returned and that profile will not be added. Profiles that do
not need certain fields may pass 0 in the place of a value.

Compatibility Implemented only if New Serial Manager Feature Set is present.

Example AddMyProfile()
{
Char *myConNameP;
Err err;

myConNameP = MemPtrNew(cncProfileNameSize);

0 No error.

cncErrAddProfileFailed The add operation failed.

cncErrProfileListFull The add operation failed because
the profile list is full.

cncErrConDBNotFound The connection database is missing.

Connection Manager
Connection Manager Functions

Palm OS SDK Reference 875

StrCopy(myConNameP, “Foobar”);

err = CncAddProfile(myConNameP, ‘u328’,
57600, 0, 0, “AT&FX4”, 0, true, false);

MemPtrFree(myConNameP);
}

CncDeleteProfile

Purpose Removes a profile from the connection manager.

Prototype Err CncDeleteProfile(Char *name)

Parameters -> name Pointer to the name of the profile to be deleted.

Result

Comments The profiles that come preinstalled on the unit are read only and
cannot be deleted.

Compatibility Implemented only if New Serial Manager Feature Set is present.

Example void DeleteProfile(Char *name)
{
Err err;
//Call Connection Manager to delete the
//named profile
err = CncDeleteProfile(name);

}

0 No error.

cncErrProfileReadOnly The profile could not be deleted
because it is read only.

cncErrProfileNotFound The profile could not be found

cncErrConDBNotFound The connection database is missing.

Connection Manager
Connection Manager Functions

876 Palm OS SDK Reference

CncGetProfileInfo

Purpose Returns the settings for a profile.

Prototype Err CncGetProfileInfo(Char *name, UInt32 *port,
UInt32 *baud, UInt16 *volume, UInt16 *handShake,
Char *initString, Char *resetString,
Boolean * isModem, Boolean * isPulse)

Parameters -> name Pointer to the name of the profile to be
returned. Passing in NULL causes this function
to return the settings for the profile currently
selected in the Connection Panel.

<- port Pointer to the port identifier that the profile
uses.

<- baud Pointer to the baud rate that has been set for
this profile.

<- volume Pointer to the volume of the device (applies
only to modems).

<- handShake Pointer to the flow control setting (hardware
handshaking). 0 indicates automatic (on at
speeds > 2400 baud), 1 indicates always on, and
2 indicates always off.

<- initString Pointer to the initialization string for the device
(applies only to modems).

<- resetString Pointer to the reset string for the device (applies
only to modems).

<- isModem Pointer to a Boolean value: true for Modem,
false for Direct.

<- isPulse Pointer to a Boolean value: true for Pulse dial,
false for TouchTone.

Connection Manager
Connection Manager Functions

Palm OS SDK Reference 877

Result

Comments One or more of the parameters may be set to NULL if that
information is not desired.

Compatibility Implemented only if New Serial Manager Feature Set is present.

Example {
UInt32 portID, baud;
UInt16 openPort;
// get port id
err = CncGetProfileInfo("Direct Serial",

&portID, &baud, 0, 0, 0, 0, 0, 0);
if(!err)
{ // open the port
SrmOpen(portID, baud, &openPort);

}
}

CncGetProfileList

Purpose Returns a list of available profiles that are available through the
connection manager.

Prototype Err CncGetProfileList(Char *** nameListP,
UInt16 * count)

Parameters <- nameListP Pointer to a pointer to a list of profile names.

<- count Pointer to the number of profile names.

0 No error.

cncErrGetProfileFailed The get profile operation failed.
The profile may or may not be
there.

cncErrProfileNotFound The profile could not be found

cncErrConDBNotFound The connection database is missing.

Connection Manager
Connection Manager Functions

878 Palm OS SDK Reference

Result

Comments Allocation of the list is handled by the connection manager;
deallocation is the responsibility of the calling application.
Appended to the end of the list will be “-Current-”, which
represents the profile currently selected in the Connection Panel.

Compatibility Implemented only if New Serial Manager Feature Set is present.

Example //Declared globally
Char ** globalProfileList;
ListType *listP;
UInt16 globalProfileCount;

void SetConnectionList()
{
//Get the list from the Connection Manager
err = CncGetProfileList(&globalProfileList,

&globalProfileCount);
//Set the UI list
LstSetListChoices(listP, globalProfileList,

globalProfileCount);
}

void StopApplication()
{
UInt16 i;

//Deallocate the connection list
For(i = 0; i < globalProfileCount; i++)
MemPtrFree(globalProfileList[i]);

MemPtrFree(globalProfileList);
}

0 No error.

cncErrGetProfileListFailed The profile list could not be
found.

cncErrConDBNotFound The connection database is
missing.

Palm OS SDK Reference 879

51
Exchange Manager
This chapter provides reference material for the exchange manager
API:

• Exchange Manager Data Structures

• Exchange Manager Functions

• Application-Defined Functions

The header file ExgMgr.h declares the exchange manager API. For
more information on the exchange manager, see the chapter
“Beaming (Infrared Communication)” in the Palm OS Programmer’s
Companion.

Exchange Manager Data Structures

ExgAskResultType
The ExgAskResultType enum defines possible values for the
result field of the sysAppLaunchCmdExgAskUser launch code
parameter block.

typedef enum {
exgAskDialog,
exgAskOk,
exgAskCancel }

ExgAskResultType;

Value Descriptions

exgAskDialog The exchange manager should display the
exchange dialog to prompt the user to confirm the
receipt of data. See ExgDoDialog.

exgAskOk Accept the data.

exgAskCancel Reject the data.

Exchange Manager
Exchange Manager Data Structures

880 Palm OS SDK Reference

ExgGoToType
The ExgGoToType structure defines information that is passed to
the sysAppLaunchCmdGoto launch command, after an item is
received. The ExgGoToPtr type points to a ExgGoToType
structure.

typedef struct {
UInt16 dbCardNo;
LocalID dbID;
UInt16 recordNum;
UInt32 uniqueID;
UInt32 matchCustom;

} ExgGoToType;

typedef ExgGoToType * ExgGoToPtr;

Field Descriptions

ExgSocketType
The ExgSocketType structure defines an exchange manager
socket. The ExgSocketPtr type points to a ExgSocketType
structure.

typedef struct ExgSocketType {
UInt16 libraryRef;
UInt32 socketRef;
UInt32 target;
UInt32 count;
UInt32 length;
UInt32 time;
UInt32 appData;
UInt32 goToCreator;

dbCardNo Card number of the database.

dbID LocalID of the database.

recordNum Index of the record that contains a match.

uniqueID Position in the record of the match.

matchCustom Application-specific information.

Exchange Manager
Exchange Manager Data Structures

Palm OS SDK Reference 881

ExgGoToType goToParams;
UInt16 localMode:1;
UInt16 packetMode:1;
UInt16 noGoTo:1;
UInt16 noStatus:1;
UInt16 reserved:12;
Char *description;
Char *type;
Char *name;

} ExgSocketType;

typedef ExgSocketType* ExgSocketPtr;

Note that when data is received, some of the fields in this structure
may not be filled in. The existing IR library does not send values for
the count, time, appData, or type fields; however, it may do so
in the future. When you are sending data, it is recommended that
you provide values for all of these fields, but you should not rely on
receiving values for them.

Field Descriptions

libraryRef Identifies the exchange library in use.

socketRef Identifies the connection (used by exchange
library).

target Creator ID of the application the data is being sent
to.

count Number of objects in this connection, usually 1
(optional).

length Total byte count for all objects being sent
(optional).

time Last modified time of object (optional).

appData Application-specific information (optional).

goToCreator Creator ID of the application to launch via the
sysAppLaunchCmdGoto launch code after the
item is received if noGoTo is 0.

Exchange Manager
Exchange Manager Data Structures

882 Palm OS SDK Reference

Compatibility

The noGoTo and noStatus flags are only defined if 3.5 New
Feature Set is present.

goToParams If goToCreator is specified, then this contains
information about where to go. See ExgGoToType.

localMode Set to 1 to exchange with local machine only. Set to
0 to enable an exchange with a remote machine.
Default is 0.

packetMode Set to 1 to use connectionless packet mode (Ultra).
Default is 0.

noGoTo Set to 1 to disable launching the application with
sysAppLaunchCmdGoto. This flag is only valid if
localMode is 1. Default is 0.

noStatus This field is not currently used.

reserved Reserved system flags.

description Pointer to text description of object (for user).

type Pointer to Mime type of object (optional).

name Pointer to name of object, generally a file name
including extension. If you don’t provide a name,
the exchange manager sets this field to Palm.exg.

Because the current IR library does not send the
type field, the file extension is used to identify the
data type. The built-in applications recognize the
following extensions:

txt Memo

vcf AddressBook

vcs Datebook and ToDo

prc, pdb, pqa Launcher

Exchange Manager
Exchange Manager Functions

Palm OS SDK Reference 883

Exchange Manager Functions

ExgAccept

Purpose Accepts a connection from a remote device.

Prototype Err ExgAccept (ExgSocketPtr socketP)

Parameters -> socketP Pointer to the socket structure.

Result Returns the following result codes:

Comments An application calls this function when it has been called with the
special application launch code
sysAppLaunchCmdExgReceiveData. The application is passed
socketP as a parameter. It should pass this parameter to
ExgAccept to accept the connection and then call ExgReceive
one or more times to receive the data.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also ExgReceive

errNone No error

exgErrBadLibrary Couldn't find default exchange library

exgErrStackInit Couldn't initialize the IR stack (not
enough battery power or unsupported
hardware)

Exchange Manager
Exchange Manager Functions

884 Palm OS SDK Reference

ExgDBRead

Purpose Reads a Palm OS® database in its internal format and writes it to
storage RAM. For example, this function might read in a database
transmitted by a beaming operation using the exchange manager.

Prototype Err ExgDBRead (ExgDBReadProcPtr readProcP,
ExgDBDeleteProcPtr deleteProcP, void* userDataP,
LocalID* dbIDP, UInt16 cardNo,
Boolean* needResetP, Boolean keepDates)

Parameters -> readProcP A pointer to a function that you supply that
reads in the database and passes it to
ExgDBRead. See ReadProc for details.

-> deleteProcP A pointer to a function that is called if a
database with an identical name already exists
on the device, so you can erase it before
ExgDBRead stores the received database. See
DeleteProc for details.

-> userDataP A pointer to any data you want to pass to either
the readProcP or deleteProcP functions.

<- dbIDP The ID of the database that ExgDBRead created
on the local device.

<- cardNo The number of the card on which the database
was stored by ExgDBRead.

<- needResetP Set to true by ExgDBRead if the
dmHdrAttrResetAfterInstall attribute
bit is set in the received database.

-> keepDates Specify true to retain the creation,
modification, and last backup dates as set in the
received database header. Specify false to
reset these dates to the current date.

Result Returns errNone if successful; otherwise, returns one of the data
manager error codes (dmErr...) or a callback-specific error code (if
the readProcP function returns an error, it is also returned by
ExgDBRead).

Exchange Manager
Exchange Manager Functions

Palm OS SDK Reference 885

Comments The read callback function passed in readProcP is called multiple
times by ExgDBRead. Each time, ExgDBRead passes in sizeP the
number of bytes it expects to receive in the next chunk that the read
callback function is to return in dataP. It’s important for the read
callback function to set the number of bytes (in sizeP) that it
actually placed in dataP, if it’s not the same as what ExgDBRead
expected. ExgDBRead stops calling the read callback function after
it receives the entire database (it knows when it’s got it all based on
the header information).

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also ExgDBWrite

ExgDBWrite

Purpose Reads a given Palm OS database in its internal format from the local
device and writes it out using a function you supply. For example,
this function might read a local database and transmit it by a
beaming operation using the exchange manager.

Prototype Err ExgDBWrite (ExgDBWriteProcPtr writeProcP,
void* userDataP, const char* nameP, LocalID dbID,
UInt16 cardNo)

Parameters -> writeProcP A pointer to a function that you supply that
writes out the database identified by dbID. See
WriteProc for details.

-> userDataP A pointer to any data you want to pass to the
writeProcP function.

-> nameP A pointer to the name of the database that you
want ExgDBWrite to read and pass to
writeProcP.

-> dbID The id of the database that you want
ExgDBWrite to read and pass to writeProcP.
If you don’t supply an ID, then nameP is used
to search for the database by name.

Exchange Manager
Exchange Manager Functions

886 Palm OS SDK Reference

-> cardNo The number of the card on which to look for the
database identified by nameP.

Result Returns errNone if successful; otherwise, returns one of the data
manager error codes (dmErr...) or a callback-specific error code (if
the writeProcP function returns an error, it is also returned by
ExgDBWrite).

Comments The writeProcP parameter points to a function that you supply
and that is called by ExgDBWrite to write out a database. For
example, you might use this function to call exchange manager
functions to beam the database to another unit.

The write callback function is called multiple times by
ExgDBWrite. In the sizeP parameter, ExgDBWrite passes the
number of bytes in dataP. Due to transport errors, timeouts, or
other problems, you may not be able to successfully send all this
data. If the write callback function didn’t handle it all, it’s important
that it set in sizeP the number of bytes that it did handle
successfully. ExgDBWrite stops calling the write callback function
after you write out the entire database (it knows when you’ve done
it all based on the header information and number of bytes you
return in sizeP each time).

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also ExgDBRead

ExgDisconnect

Purpose Terminates an exchange manager transfer and disconnects.

Prototype Err ExgDisconnect(ExgSocketPtr socketP, Err error)

Parameters -> socketP Pointer to the socket structure identifying the
connection to terminate.

-> error Any application error that occurred.

Result Returns the following result codes:

Exchange Manager
Exchange Manager Functions

Palm OS SDK Reference 887

Comments In the error parameter, pass any error that occurs during the
application loop, including errors returned from other exchange
manager functions. This ensures that the connection is shut down
knowing that it failed rather than succeeded.

It’s especially important to check the result code from this function,
since this will tell you if the transfer was successful. An errNone
return value means that the item was delivered to the destination
successfully. It does not mean that the user on the other end actually
kept the data.

ExgDisconnect is used for sending and receiving. When
receiving, the application can insert its creator ID into the
goToCreator field in the socket structure and add other goto
information. After the application returns from the
sysAppLaunchCmdExgReceiveData call, the system will launch
the application with a standard sysAppLaunchCmdGoto launch
code built from the information in the socket header gotoParams
field.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also ExgPut, ExgReceive, ExgSend

errNone No error

exgErrBadLibrary Couldn't find default exchange library

exgMemError Couldn't read data to send

exgErrUserCancel User cancelled transfer

Exchange Manager
Exchange Manager Functions

888 Palm OS SDK Reference

ExgDoDialog

Purpose Display a dialog that allows users to accept or reject the receipt of
data.

Prototype Boolean ExgDoDialog (ExgSocketPtr socketP,
ExgDialogInfoType *infoP, Err *errP)

Parameters -> socketP Pointer to the socket structure identifying the
connection. You can obtain this pointer from
the sysAppLaunchCmdExgAskUser launch
code parameter block.

<-> infoP A pointer to an ExgDialogInfoType
structure (see the “Comment” section below).

<- errP errNone if no error, or the error code if an
error occurred. Currently, no errors are
returned.

Result Returns true if the user clicks the OK button on the dialog, or
false otherwise.

Comments This function displays the exchange dialog, which prompts the user
to accept or reject incoming data.

By default, the exchange manager calls this function for you if you
don’t handle the sysAppLaunchCmdExgAskUser launch code or if
you return exgAskDialog from the launch code handler. When the
exchange manager calls ExgDoDialog, the dialog only displays a
message similar to “Do you want to accept ‘John Doe’ into
AddressBook?” and allows the user to accept or reject the data. If
the user clicks OK, the data should be received as an unfiled record.

To allow users to select a category when accepting incoming data,
handle sysAppLaunchCmdExgAskUser to call ExgDoDialog
explicitly, and pass it a pointer to an ExgDialogInfoType
structure. The ExgDialogInfoType structure is defined as
follows:

typedef struct {
UInt16 version;

Exchange Manager
Exchange Manager Functions

Palm OS SDK Reference 889

DmOpenRef db;
UInt16 categoryIndex;

} ExgDialogInfoType;

-> version Set this field to 0 to specify version 0 of this
structure.

-> db Pointer to an open database that defines the
categories the dialog should display.

<- categoryIndex
Index of the category in which the user wants
to file the incoming data.

If db is valid, the function extracts the category information from
the specified database and displays it in a pop-up list. Upon return,
the categoryIndex field contains the index of the category the
user selected, or dmUnfiledCategory if the user did not select a
category.

If the call to ExgDoDialog is successful, your application is
responsible for retaining the value returned in categoryIndex
and using it to file the incoming data as a record in that category.
One way to do this is to store the categoryIndex in the socket’s
appData field (see ExgSocketType) and then extract it from the
socket in your response to the launch code
sysAppLaunchCmdExgReceiveData. For example:

if (cmd == sysAppLaunchCmdExgReceiveData) {
UInt16 categoryID =
(ExgSocketPtr)cmdPBP->appData;

/* other declarations */

/* Receive the data, and create a new record
using the received data. indexNew is the
index of this record. */

if (categoryID){
UInt16 attr;
Err err;
err = DmRecordInfo(dbP, indexNew, &attr,

NULL, NULL);

// Set the category to the one the user

Exchange Manager
Exchange Manager Functions

890 Palm OS SDK Reference

// specified, and mark the record dirty.
if ((attr & dmRecAttrCategoryMask) !=
categoryID) {
attr &= ~dmRecAttrCategoryMask;
attr |= categoryID | dmRecAttrDirty;
err = DmSetRecordInfo(dbP, indexNew,
&attr, NULL);

}
}

}

Some of the Palm OS built-in applications (AddressBook, Memo,
and ToDo) use this method of setting the category on data received
through beaming. Refer to the example code for these applications
provided in the SDK for a more complete example of how to use
ExgDoDialog.

When you explicitly call ExgDoDialog, you must set the result
field of the sysAppLaunchCmdExgAskUser launch code’s
parameter block to either exgAskOk (upon success) or
exgAskCancel (upon failure) to prevent the system from
displaying the dialog a second time.

Compatibility Implemented only if 3.5 New Feature Set is present.

ExgPut

Purpose Initiates the transfer of data to the destination device.

Prototype Err ExgPut (ExgSocketPtr socketP)

Parameters -> socketP Pointer to the socket structure containing
connection information and information
identifying the object to send.

Result Returns the following result codes:

errNone No error

exgErrBadLibrary Couldn’t find default exchange library

Exchange Manager
Exchange Manager Functions

Palm OS SDK Reference 891

Comments If the connection does not already exist, this function establishes
one. You must create and pass a pointer to an ExgSocketType
structure containing information about the data to send and the
destination application. All unused fields in the structure must be
zeroed.

If no error is returned, this call must be followed by ExgSend, to
begin sending data, or ExgDisconnect, to disconnect. You may
need to call ExgSend multiple times to send all the data.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also ExgDisconnect, ExgSend

ExgReceive

Purpose Receives data from a remote device.

Prototype UInt32 ExgReceive (ExgSocketPtr socketP,
void *bufP, const UInt32 bufLen, Err * err)

Parameters -> socketP Pointer to the socket structure.

-> bufP Pointer to the buffer to receive the data.

-> bufLen Number of bytes to receive.

<- err Pointer to an error code result.

Result Returns the number of bytes actually received. A zero result
indicates the end of the transmission. An error code is returned in
the address indicated by err. The error code exgErrUserCancel
is returned if the user cancels the operation.

exgErrStackInit Couldn’t initialize the IR stack (not enough
battery power or unsupported hardware)

exgMemError Not enough memory to initialize transfer

Exchange Manager
Exchange Manager Functions

892 Palm OS SDK Reference

Comments Call this function one or more times to receive all the data, following
a successful call to ExgAccept. After receiving the data, call
ExgDisconnect to terminate the connection.

This function blocks the application until the end of the
transmission or until the requested number of bytes has been
received. However, it does provide its own user interface that will
be updated as necessary and will allow the user to cancel the
operation in progress.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also ExgAccept, ExgDisconnect

ExgRegisterData

Purpose Registers an application to receive a specific type of data.

Prototype Err ExgRegisterData (const UInt32 creatorID,
const UInt16 id, const Char * const dataTypesP)

Parameters -> creatorID Creator ID of the registering application.

-> id Registry ID identifying the type of the items
being registered. Specify
exgRegExtensionID or exgRegTypeID.

-> dataTypesP Pointer to a tab-delimited, null-terminated
string listing the items to register. (Use /t for
the tab character.) These include file extensions
or MIME types. To unregister, pass a NULL
value.

Result Returns errNone if successful, otherwise, one of the data manager
error codes (dmErr...).

Comments Applications that wish to receive data from anything other than
another Palm OS device running the same application must use this
function to register for the kinds of data they can receive. Call this
function when your application is loaded on the device.

Exchange Manager
Exchange Manager Functions

Palm OS SDK Reference 893

Specify exgRegExtensionID to register to receive data that has a
filename with a particular extension. For example, if your
application wants to receive files with a .TXT extension, it could
register like this:

ExgRegisterData(myCreator, exgRegExtensionID,
"TXT");

If the application wants to receive files with a .TXT extension or
with a .DOC extension, it could register like this:

ExgRegisterData(myCreator, exgRegExtensionID,
"TXT/tDOC");

Specify exgRegTypeID to register to receive data with a specific
MIME type. For example, if your application wants to receive
“setext” text files, it could register like this:

ExgRegisterData(myCreator, exgRegTypeID,
"text/x-setext");

Note that in the current implementation of the IR library, registering
for a MIME type has no effect because the IR library does not send
data type information. Therefore, the type is always received as
NULL and will not match “setext.” However, applications may
choose to register for a type anyway because this limitation may be
removed in the future.

Registrations are active until a hard reset or until the application is
removed. The registration information is backed up and restored
across a soft reset. When an application is removed, its registry
information is also automatically removed from the registry, so there
is not normally a need to unregister. If you want to unregister, you
can register with a NULL value.

Compatibility Implemented only if 3.0 New Feature Set is present.

Exchange Manager
Exchange Manager Functions

894 Palm OS SDK Reference

ExgSend

Purpose Sends data to the destination device.

Prototype UInt32 ExgSend (ExgSocketPtr socketP,
const void * const bufP, const UInt32 bufLen,
Err * err)

Parameters -> socketP Pointer to the socket structure.

-> bufP Pointer to the data to send.

-> bufLen Number of bytes to send.

<- err Pointer to an error code result.

Result Returns the number of bytes sent, normally the same number as
specified in bufLen. An error code is returned in the address
indicated by err. The error code exgErrUserCancel is returned if
the user cancels the operation.

Comments Call this function one or more times to send all the data, following a
successful call to ExgPut. After sending the data, call
ExgDisconnect to terminate the connection.

The lower level protocol may break large amounts of data into
multiple packets or assemble small send commands together into
larger packets, but the application will not be aware of these
transport level details.

This function blocks the application until all the data is sent.
However, it does provide its own user interface that will be updated
as necessary and will allow the user to cancel the operation in
progress.

Compatibility Implemented only if 3.0 New Feature Set is present.

See Also ExgDisconnect, ExgPut

Exchange Manager
Application-Defined Functions

Palm OS SDK Reference 895

Application-Defined Functions
The functions in this section are supplied by you and can be named
anything. You supply pointers to the functions in exchange manager
functions that you call (ExgDBRead and ExgDBWrite).

DeleteProc

Purpose Handle the case where a database with an identical name already
exists on the device.

Prototype Boolean DeleteProc (const char* nameP,
UInt16 version, UInt16 cardNo, LocalID dbID,
void* userDataP)

Parameters -> nameP A pointer to the name of the identical database
that already exists.

-> version The version of the identical database that
already exists.

-> cardNo The card number of the identical database that
already exists.

-> dbID The database ID of the identical database that
already exists.

-> userDataP The userDataP parameter passed to
ExgDBRead is simply passed on to the delete
function. You can use it for application-specific
data.

Result Returns a Boolean value. true means that this function handled the
situation successfully; that is, it deleted, renamed, or moved the
database so there would no longer be a conflict with the one that
ExgDBRead is writing. false means that this function did not
handle the situation successfully; in this case, ExgDBRead exits with
no error (same as if the user cancelled the operation).

Exchange Manager
Application-Defined Functions

896 Palm OS SDK Reference

Comments This delete callback function gives you a chance to delete the
existing database, or take some other action (such as changing the
database name, if appropriate).

ReadProc

Purpose Read in the database and pass it to ExgDBRead.

Prototype Err ReadProc (void* dataP, UInt32* sizeP,
void* userDataP)

Parameters -> dataP A pointer to a buffer where this function should
place the database data.

<-> sizeP The size of dataP. This value is set by
ExgDBRead to the number of bytes it expects to
receive in dataP. You must set this value to the
number of bytes you return in dataP (if it’s not
the same).

-> userDataP The userDataP parameter passed to
ExgDBRead is simply passed on to the read
function. You can use it for application-specific
data.

Result Returns an error number, or errNone if there is no error. If this
function returns an error, ExgDBRead deletes the database it was
creating, cleans up any memory it allocated, then exits, returning
the error passed back from this function.

WriteProc

Purpose Writes out the database.

Prototype Err WriteProc (const void* dataP, UInt32* sizeP,
void* userDataP)

Parameters -> dataP A pointer to a buffer containing the database
data, placed there by ExgDBWrite.

Exchange Manager
Application-Defined Functions

Palm OS SDK Reference 897

<-> sizeP The number of bytes placed in dataP by
ExgDBWrite. If you were unable to write out
or send all of the data in this chunk, on exit, you
should set sizeP to the number of bytes you
did write.

-> userDataP The userDataP parameter passed to
ExgDBWrite is simply passed on to the write
function. You can use it for application-specific
data.

Result Returns an error number, or errNone if there is no error. If this
function returns an error, ExgDBWrite closes the database it was
reading, cleans up any memory it allocated, then exits, returning the
error passed back from this function.

Palm OS SDK Reference 899

52
IR Library
The IR (InfraRed) library is a shared library that provides a direct
interface to the IR communications capabilities of the Palm OS®.
This chapter provides reference material for the IR library API:

• IR Library Data Structures

• IR Stack Callback Events

• IR Library Functions

• IAS Functions

• Application-Defined Functions

The header file irlib.h declares the IR library API. For more
information on the IR library, see the chapter “Beaming (Infrared
Communication)” in the Palm OS Programmer’s Companion.

IR Library Data Structures
This section lists some of the more important data types used by IR
library functions.

IrConnect
This data structure is used to manage an IrLMP or Tiny TP
connection.

Listing 52.1 IrConnect Data Structure

/* Forward declaration of the IrConnect structure
*/
typedef struct _hconnect IrConnect;

/*--
------------- */
typedef struct _hconnect {

IR Library
IR Library Data Structures

900 Palm OS SDK Reference

UInt8 lLsap; /* Local LSAP this connection will
listen on */
UInt8 rLsap; /* Remote Lsap */

/*============== For Internal Use Only
=======================
 *
 * The following is used internally by the stack
and should not be
 * modified by the user.
 *

*===
============*/

UInt8 flags; /* Flags containing state, type, etc.
*/
UInt8 reserved; /* Explicitly account for 16-bit
alignment padding */
IrCallBack callBack; /* Pointer to callback
function */

/* Tiny TP fields */
IrPacket packet; /* Packet for internal use */
ListEntry packets; /* List of packets to send */
UInt16 sendCredit; /* Amount of credit from peer
*/
UInt8 availCredit; /* Amount of credit to give to
peer */
UInt8 dataOff; /* Amount of data less than IrLAP
size */
} _hconnect;

Field Descriptions

lLsap Local LSAP this connection will listen on

rLsap Remote Lsap

flags Flags containing state, type, etc. Do NOT modify,
internal use only.

IR Library
IR Library Data Structures

Palm OS SDK Reference 901

IrPacket
This data structure is used for sending IrDA packets.

Listing 52.2 IrPacket Data Structure

typedef struct _IrPacket {
/* The node field must be the first field in the
structure. It is
 * used internally by the stack. */
ListEntry node;

/* The buff field is used to point to a buffer of
data to send and
 * len field indicates the number of bytes in
buff. */
UInt8 *buff;
UInt16 len;

/*================== For Internal Use Only
======================
 *
 * The following is used internally by the stack
and should not be
 * modified by the upper layer.
 *

reserved Reserved for future use

callBack Pointer to callback function. Do NOT modify,
internal use only.

packet Packet for internal use

packets List of packets to send

sendCredit Amount of credit from peer

availCredit Amount of credit to give to peer

dataOff Amount of data less than IrLAP size

IR Library
IR Library Data Structures

902 Palm OS SDK Reference

*===
=============*/
IrConnect* origin; /* Pointer to connection which
owns packet */
UInt8 headerLen; /* Number of bytes in the header
*/
UInt8 header[14]; /* Storage for the header */
UInt8 reserved; /*Explicitly account for 16-bit
alignment padding*/
} IrPacket;

Field Descriptions

IrIASObject
This data structure is used as storage for an IAS object managed by
the local IAS server. An object of this type is passed as the obj
parameter to the IrIAS_Add function.

Listing 52.3 IrIASObject Data Structure

typedef struct _IrIasObject {
UInt8 *name; /* Pointer to name of object */
UInt8 len; /* Length of object name */

node Reserved for internal use

buff Points to a buffer of data to send

len Number of bytes in buff

origin Pointer to connection which owns packet. Do
NOT modify, internal use only.

headerLen Number of bytes in the header. Do NOT modify,
internal use only.

header Storage for the header. Do NOT modify, internal
use only.

reserved Reserved for future use

IR Library
IR Library Data Structures

Palm OS SDK Reference 903

UInt8 nAttribs; /* Number of attributes */
IrIasAttribute* attribs; /* A pointer to an array
of attributes */
} IrIasObject;

Field Descriptions

IrIasQuery
This data structure is used for performing IAS queries. An object of
this type is passed as the token parameter to the IrIAS_Query
function (and several other functions as well).

Listing 52.4 IrIasQuery Data Structure

* Forward declaration of a structure used for
performing IAS
* Queries so that a callback type can be defined
for use in
* the structure. */
typedef struct _IrIasQuery IrIasQuery;
typedef void (*IrIasQueryCallBack)(IrStatus);

* Actual definition of the IrIasQuery structure.
*/
typedef struct _IrIasQuery
{
/* Query fields. The query buffer contains the
class name and
 * class attribute whose value is being queried--
it is as follows:
 *
 * 1 byte - Length of class name

name Pointer to name of object

len Length of object name

nAttribs Number of attributes

attribs Pointer to an array of attributes

IR Library
IR Library Data Structures

904 Palm OS SDK Reference

 * "Length" bytes - class name
 * 1 byte - length of attribute name
 * "Length" bytes - attribute name
 *
 * queryLen - contains the total number of byte in
the query */
UInt8 queryLen; /* Total length of the query */
UInt8 reserved; /* Explicitly account for 16-bit
alignment padding */
UInt8 *queryBuf; /* Points to buffer containing
the query */

/* Fields for the query result */
UInt16 resultBufSize; /* Size of the result buffer
*/
UInt16 resultLen; /* Actual number of bytes in the
result buffer */
UInt16 listLen; /* Number of items in the result
list. */
UInt16 offset; /* Offset into results buffer */
UInt8 retCode; /* Return code of operation */
UInt8 overFlow; /* Set TRUE if result exceeded
result buffer size*/
UInt8 *result; /* Pointer to buffer containing
result; */

/* Pointer to callback function */
IrIasQueryCallBack callBack;
} _IrIasQuery;

Field Descriptions

queryLen Total length of the query

reserved Reserved for future use

queryBuf Pointer to buffer containing the query

resultBufSize Size of the result buffer

resultLen Actual number of bytes in the result buffer

IR Library
IR Library Data Structures

Palm OS SDK Reference 905

IrCallbackParms
This data structure is used to pass information from the stack to the
upper layer of the stack (application). Not all fields are valid at any
given time. The type of event determines which fields are valid. An
object of this type is passed as the second parameter to the
IrCallback function.

Listing 52.5 IrCallbackParms Data Structure

typedef struct {
IrEvent event; /* Event causing callback */
UInt8 reserved1; /* Explicitly account for 16-bit
alignment padding */
UInt8 *rxBuff; /* Receive buffer already advanced
to app data */
UInt16 rxLen; /* Length of data in receive buffer
*/
IrPacket* packet; /* Pointer to packet being
returned */
IrDeviceList* deviceList; /* Pointer to discovery
device list */
IrStatus status; /* Status of stack */
UInt8 reserved2; /* Explicitly account for 16-bit
alignment padding */
} IrCallBackParms;

listLen Number of items in the result list

offset Offset into results buffer

retCode Return code of operation

overFlow Set TRUE if result exceeded result buffer size

result Pointer to buffer containing result

callBack Pointer to query callback function

IR Library
IR Stack Callback Events

906 Palm OS SDK Reference

Field Descriptions

IR Stack Callback Events
The IR stack calls the application via a callback function stored in
each IrConnect structure. The callback function is called with a
pointer to the IrConnect structure and a pointer to a parameter
structure. The parameter structure contains an event field, which
indicates the reason the callback is called, and other parameters,
which have meaning based on the event.

The meaning of the events is described in the following sections.

LEVENT_DATA_IND
Data has been received. The received data is accessed using fields
rxBuff and rxLen.

LEVENT_DISCOVERY_CNF
Indicates the completion of a discovery operation. The field
deviceList points to the discovery list.

LEVENT_LAP_CON_CNF
The requested IrLAP connection has been made successfully. The
callback function of all bound IrConnect structures is called.

event Event causing callback

reserved1 Reserved for future use

rxBuff Receive buffer already advanced to app data

rxLen Length of data in receive buffer

packet Pointer to packet being returned

deviceList Pointer to discovery device list

status Status of stack

reserved2 Reserved for future use

IR Library
IR Stack Callback Events

Palm OS SDK Reference 907

LEVENT_LAP_CON_IND
Indicates that the IrLAP connection has come up. The callback of all
bound IrConnect structures is called.

LEVENT_LAP_DISCON_IND
Indicates that the IrLAP connection has gone down. This means that
all IrLMP connections are also down. A callback with event
LEVENT_LM_CON_IND will not be given. The callback function of
all bound IrConnect structures is called.

LEVENT_LM_CON_CNF
The requested IrLMP/Tiny TP connection has been made
successfully. Connection data from the other side is found using
fields rxBuff and rxLen.

LEVENT_LM_CON_IND
Other device has initiated a connection. IrConnectRsp should be
called to accept the connection. Any data associated with the
connection request can be found using fields rxBuff and rxLen,
for the data pointer and length, respectively.

LEVENT_LM_DISCON_IND
The IrLMP/Tiny TP connection has been disconnected. Any data
associated with the disconnect indication can be found using fields
rxBuff and rxLen, for the data pointer and length, respectively.

LEVENT_PACKET_HANDLED
A packet is being returned. A pointer to the packet exists in field
packet.

LEVENT_STATUS_IND
Indicates that a status event from the stack has occurred. The
status field indicates the status generating the event. Possible
statuses are as follows.

IR Library
IR Stack Callback Events

908 Palm OS SDK Reference

• IR_STATUS_NO_PROGRESS means that IrLAP has no
progress for 3 seconds threshold time (e.g. the beam is
blocked).

• IR_STATUS_LINK_OK indicates that the no progress
condition has cleared.

• IR_STATUS_MEDIA_NOT_BUSY indicates that the IR media
has transitioned from busy to not busy.

LEVENT_TEST_CNF
Indicates that a TEST command has completed. The status field
indicates if the test was successful. IR_STATUS_SUCCESS indicates
that operation was successful and the data in the test response can
be found by using the rxBuff and rxLen fields.
IR_STATUS_FAILED indicates that no TEST response was received.
The packet passed to perform the test command is passed back in
the packet field and is now available (no separate packet handled
event will occur).

LEVENT_TEST_IND
Indicates that a TEST command frame has been received. A pointer
to the received data is in rxBuff and rxLen. A pointer to the
packet that will be sent in response to the test command is in the
packet field. The packet is currently set up to respond with the
same data sent in the command TEST frame. If different data is
desired as a response, then modify the packet structure. This event
is sent to the callback function in all bound IrConnect structures.
The IAS connections ignore this event.

IR Library
IR Library Functions

Palm OS SDK Reference 909

IR Library Functions

IrAdvanceCredit

Purpose Advances credit to the other side of the connection.

Prototype void IrAdvanceCredit (IrConnect* con,
UInt8 credit)

Parameters --> con Pointer to IrConnect structure representing
connection to which credit is advanced.

--> credit Amount of credit to advance.

Result Returns nothing.

Comments The total amount of credit should not exceed 127. The credit passed
by this function is added to the existing available credit, which is
must not exceed 127. This function only makes sense for a Tiny TP
connection.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrBind

Purpose Obtains a local LSAP selector and registers the connection with the
protocol stack.

Prototype IrStatus IrBind (UInt16 refNum, IrConnect* con,
IrCallBack callBack)

Parameters --> refnum IR library refNum.

<--> con Pointer to IrConnect structure.

IR Library
IR Library Functions

910 Palm OS SDK Reference

--> callBack Pointer to a callBack function that handles the
indications and confirmation from the protocol
stack.

Result IR_STATUS_SUCCESS means the operation completed successfully.
The assigned LSAP can be found in con->lLsap.

IR_STATUS_FAILED means the operation failed for one of the
following reasons:

• con is already bound to the stack

• no room in the connection table

Comments This IrConnect structure will be initialized. Any values stored in
the structure will be lost. The assigned LSAP will be in the lLsap
field of con. The type of the connection will be set to IrLMP. The
IrConnect must be bound to the stack before it can be used.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrClose

Purpose Closes the IR library. This releases the global memory for the IR
stack and any system resources it uses. This must be called when an
application is done with the IR library.

Prototype Err IrClose (UInt16 refnum)

Parameters --> refnum IR library refNum.

Result Returns 0 if successful.

Compatibility Implemented only if 3.0 New Feature Set is present.

IR Library
IR Library Functions

Palm OS SDK Reference 911

IrConnectIrLap

Purpose Starts an IrLAP connection.

Prototype IrStatus IrConnectIrLap (UInt16 refNum,
IrDeviceAddr deviceAddr)

Parameters --> refnum IR library refNum.

--> deviceAddr 32-bit address of device to which connection
should be made.

Result IR_STATUS_PENDING means the operation is started successfully;
the result is returned via callback.

IR_STATUS_MEDIA_BUSY means the operation failed because the
media is busy. Media busy is caused by one of the following reasons:

• Other devices are using the IR medium.

• An IrLAP connection already exists.

• A discovery process is in progress.

Comments The result is signaled to all bound IrConnect structures via the
callback function. The callback event is LEVENT_LAP_CON_CNF if
successful or LEVENT_LAP_DISCON_IND if unsuccessful.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrConnectReq

Purpose Requests an IrLMP or Tiny TP connection.

Prototype IrStatus IrConnectReq (UInt16 refNum,
IrConnect* con, IrPacket* packet, UInt8 credit)

Parameters --> refnum IR library refNum.

IR Library
IR Library Functions

912 Palm OS SDK Reference

--> con Pointer to IrConnect structure for handling
the connection. The rLsap field must contain
the LSAP selector for the peer on the other
device. Also the type of the connection must be
set. Use IR_SetConTypeLMP to set the type to
an IrLMP connection or IR_SetConTypeTTP
to set the type to a Tiny TP connection.

--> packet Pointer to a packet that contains connection
data. Even if no connection data is needed, the
packet must point to a valid IrPacket
structure. The packet will be returned via the
callback with the LEVENT_PACKET_HANDLED
event if no errors occur. The maximum size of
the packet is IR_MAX_CON_PACKET for an
IrLMP connection or
IR_MAX_TTP_CON_PACKET for a Tiny TP
connection.

--> credit Initial amount of credit advanced to the other
side. Must be less than 127. It is ANDed with
0x7f, so if it is greater than 127 unexpected
results will occur. This parameter is ignored if
the connection is an IrLMP connection.

Result IR_STATUS_PENDING means the operation has been started
successfully and the result will be returned via the callback function
with the event LEVENT_LM_CON_CNF if the connection is made or
LEVENT_LM_DISCON_IND if connection fails. The packet is
returned via the callback with the event
LEVENT_PACKET_HANDLED.

IR_STATUS_FAILED means the operation failed because of one of
the following reasons. Note that the packet is available immediately.

• Connection is busy (already involved in a connection)

• IrConnect structure is not bound to the stack

• Packet size exceeds maximum allowed

IR_STATUS_NO_IRLAP means the operation failed because there is
no IrLAP connection (the packet is available immediately).

IR Library
IR Library Functions

Palm OS SDK Reference 913

Comments The result is signaled via the callback specified in the IrConnect
structure. The callback event is LEVENT_LM_CON_CNF indicates
that the connection is up and LEVENT_LM_DISCON_IND indicates
that the connection failed. Before calling this function the fields in
the con structure must be properly set.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrConnectRsp

Purpose Accepts an incoming connection that has been signaled via the
callback with the event LEVENT_LM_CON_IND.

Prototype IrStatus IrConnectRsp (UInt16 refNum,
IrConnect* con, IrPacket* packet, UInt8 credit)

Parameters --> refnum IR library refNum.

--> con Pointer to IrConnect structure to managed
connection.

--> packet Pointer to a packet that contains connection
data. Even if no connection data is needed, the
packet must point to a valid IrPacket
structure. The packet will be returned via the
callback with the LEVENT_PACKET_HANDLED
event if no errors occur. The maximum size of
the packet is IR_MAX_CON_PACKET for an
IrLMP connection or
IR_MAX_TTP_CON_PACKET for a Tiny TP
connection.

IR Library
IR Library Functions

914 Palm OS SDK Reference

--> credit Initial amount of credit advanced to the other
side. Must be less than 127. It is ANDed with
0x7f, so if it is greater than 127 unexpected
results will occur. This parameter is ignored if
the connection is an IrLMP connection.

Result IR_STATUS_PENDING means the operation has been started
successfully and the packet will be returned via the callback
function with the event LEVENT_PACKET_HANDLED.

IR_STATUS_FAILED means the operation failed because of one of
the following reasons. Note that the packet is available immediately.

• Connection is not in the proper state to require a response

• IrConnect structure is not bound to the stack

• Packet size exceeds maximum allowed

IR_STATUS_NO_IRLAP means the operation failed because there is
no IrLAP connection (the packet is available immediately).

Comments IrConnectRsp can be called during the callback or later to accept
the connection. The type of the connection must already have been
set to IrLMP or Tiny TP before the LEVENT_LM_CON_IND event.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrDataReq

Purpose Sends a data packet.

Prototype IrStatus IrDataReq (UInt16 refNum, IrConnect* con,
IrPacket* packet)

Parameters --> refnum IR library refNum.

--> con Pointer to IrConnect structure that specifies
the connection over which the packet should be
sent.

IR Library
IR Library Functions

Palm OS SDK Reference 915

--> packet Pointer to a valid IrPacket structure that
contains data to send. The packet should not
exceed the max size found with IrMaxTxSize.

Result IR_STATUS_PENDING means the packet has been queued by the
stack. The packet will be returned via the callback with event
LEVENT_PACKET_HANDLED.

IR_STATUS_FAILED means the operation failed because of one of
the following reasons. Note that the packet is available immediately.

• IrConnect structure is not bound to the stack

• Packet size exceeds maximum allowed

• IrConnect structure does not represent an active
connection

Comments The packet is owned by the stack until it is returned via the callback
with event LEVENT_PACKET_HANDLED. The largest packet that can
be sent is found by calling IrMaxTxSize.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrDisconnectIrLap

Purpose Disconnects an IrLAP connection.

Prototype IrStatus IrDisconnectIrLap (UInt16 refNum)

Parameters --> refnum IR library refNum.

Result IR_STATUS_PENDING means the operation started successfully
and all bound IrConnect structures will be called back when
complete.

IR_STATUS_NO_IRLAP means the operation failed because no
IrLAP connection exists.

Comments When the IrLAP connection goes down, the callback of all bound
IrConnect structures is called with event
LEVENT_LAP_DISCON_IND.

IR Library
IR Library Functions

916 Palm OS SDK Reference

Compatibility Implemented only if 3.0 New Feature Set is present.

IrDiscoverReq

Purpose Starts an IrLMP discovery process.

Prototype IrStatus IrDiscoverReq (UInt16 refNum,
IrConnect* con)

Parameters --> refnum IR library refNum.

--> con Pointer to a bound IrConnect structure.

Result IR_STATUS_PENDING means the operation is started successfully;
the result is returned via callback.

IR_STATUS_MEDIA_BUSY means the operation failed because the
media is busy. Media busy is caused by one of the following reasons:

• Other devices are using the IR medium.

• A discovery process is already in progress.

• An IrLAP connection exists.

IR_STATUS_FAILED means the operation failed because the
IrConnect structure is not bound to the stack.

Comments The result will be signaled via the callback function specified in the
IrConnect structure with the event LEVENT_DISCOVERY_CNF.
Only one discovery can be invoked at a time.

Compatibility Implemented only if 3.0 New Feature Set is present.

IR Library
IR Library Functions

Palm OS SDK Reference 917

IrIsIrLapConnected

Purpose Determines if an IrLAP connection exists.

Prototype BOOL IrIsIrLapConnected (UInt16 refNum)

Parameters --> refnum IR library refNum.

Result True if IrLAP is connected, false otherwise.

Comments Only available if IR_IS_LAP_FUNCS is defined.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrIsMediaBusy

Purpose Determines if the IR media is busy.

Prototype BOOL IrIsMediaBusy (UInt16 refNum)

Parameters --> refnum IR library refNum.

Result True if IR media is busy, false otherwise.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrIsNoProgress

Purpose Determines if IrLAP is not making progress.

Prototype BOOL IrIsNoProgress (UInt16 refNum)

Parameters --> refnum IR library refNum.

Result True if IrLAP is not making progress, false otherwise.

Compatibility Implemented only if 3.0 New Feature Set is present.

IR Library
IR Library Functions

918 Palm OS SDK Reference

IrIsRemoteBusy

Purpose Determines if the other device's IrLAP is busy.

Prototype BOOL IrIsRemoteBusy (UInt16 refNum)

Parameters --> refnum IR library refNum.

Result True if the other device's IrLAP is busy, false otherwise.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrLocalBusy

Purpose Sets the IrLAP local busy flag.

Prototype void IrLocalBusy (UInt16 refNum, BOOL flag)

Parameters --> refnum IR library refNum.

--> flag Value (true or false) to set for IrLAP's local busy
flag.

Result Returns nothing.

Comments If local busy is set to true, then the local IrLAP layer will send RNR
(Receive Not Ready) frames to the other side indicating it cannot
receive any more data. If the local busy is set to false, IrLAP is ready
to receive frames.

The setting takes effect the next time IrLAP sends an RR (Receive
Ready) frame. If IrLAP has data to send, the data will be sent first,
so it should be used carefully.

This function should not be used when using Tiny TP or when
multiple connections exist.

Compatibility Implemented only if 3.0 New Feature Set is present.

IR Library
IR Library Functions

Palm OS SDK Reference 919

IrMaxRxSize

Purpose Returns the maximum size buffer that can be sent by the other
device.

Prototype UInt16 IrMaxRxSize (UInt16 refNum, IrConnect* con)

Parameters --> refnum IR library refNum.

--> con Pointer to IrConnect structure that represents
an active connection.

Result Returns the maximum size buffer that can be sent by the other
device (maximum bytes that can be received). The value returned is
only valid for active connections. The maximum size will vary for
each connection and is based on the negotiated IrLAP parameters
and the type of the connection.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrMaxTxSize

Purpose Returns the maximum size allowed for a transmit packet.

Prototype UInt16 IrMaxTxSize (UInt16 refNum, IrConnect* con)

Parameters --> refnum IR library refNum.

--> con Pointer to IrConnect structure that represents
an active connection.

Result Returns the maximum size allowed for a transmit packet. The value
returned is only valid for active connections. The maximum size
will vary for each connection and is based on the negotiated IrLAP
parameters and the type of the connection.

Compatibility Implemented only if 3.0 New Feature Set is present.

IR Library
IR Library Functions

920 Palm OS SDK Reference

IrOpen

Purpose Opens the IR library. This allocates the global memory for the IR
stack and reserves the system resources it requires. This must be
done before any other IR library calls are made.

Prototype Err IrOpen (UInt16 refnum, UInt32 options)

Parameters --> refnum IR library refNum. This value is returned from
the function SysLibFind, which you must call
first to load the IR library.

--> options Open options flags. See the Comments section
for details.

Result Returns 0 if successful.

Comments The following flags can be specified for the options parameter to
set the speed of the connection:

Compatibility Implemented only if 3.0 New Feature Set is present.

IrSetConTypeLMP

Purpose Sets the type of the connection to IrLMP. This function must be
called after the IrConnect structure is bound to the stack.

Prototype void IrSetConTypeLMP (IrConnect* con)

Parameters --> con Pointer to IrConnect structure.

Result Returns nothing.

irOpenOptSpeed115200 Set maximum negotiated baud rate

irOpenOptSpeed57600 Set 57600 bps (default if no flags
given)

irOpenOptSpeed9600 Set 9600 bps

IR Library
IR Library Functions

Palm OS SDK Reference 921

Compatibility Implemented only if 3.0 New Feature Set is present.

IrSetConTypeTTP

Purpose Sets the type of the connection to Tiny TP. This function must be
called after the IrConnect structure is bound to the stack.

Prototype void IrSetConTypeTTP (IrConnect* con)

Parameters --> con Pointer to IrConnect structure.

Result Returns nothing.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrSetDeviceInfo

Purpose Sets the XID info string used during discovery to the given string
and length.

Prototype IrStatus IrSetDeviceInfo (UInt16 refNum,
UInt8 *info, UInt8 len)

Parameters --> refnum IR library refNum.

--> info Pointer to array of bytes.

--> len Number of bytes pointed to by info.

Result IR_STATUS_SUCCESS means the operation is successful.

IR_STATUS_FAILED means the operation failed because info is
too big.

Comments The XID info string contains hints and the nickname of the device.
The size cannot exceed IR_MAX_DEVICE_INFO bytes.

Compatibility Implemented only if 3.0 New Feature Set is present.

IR Library
IR Library Functions

922 Palm OS SDK Reference

IrTestReq

Purpose Requests a TEST command frame be sent in the NDM (Normal
disconnect Mode) state.

Prototype IrStatus IrTestReq (UInt16 refNum,
IrDeviceAddr devAddr, IrConnect* con,
IrPacket* packet)

Parameters --> refnum IR library refNum.

--> devAddr Device address of device where TEST will be
sent. This address is not checked so it can be the
broadcast address or 0.

--> con Pointer to IrConnect structure specifying the
callback function to call to report the result.

--> packet Pointer to an IrPacket structure that contains
the data to send in the TEST command packet.
The maximum size data that can be sent is
IR_MAX_TEST_PACKET. Even if no data is to
be sent, a valid packet must be passed.

Result IR_STATUS_PENDING means the operation has been started
successfully and the result will be returned via the callback function
with the event LEVENT_TEST_CNF. This is also the indication
returning the packet.

IR_STATUS_FAILED means the operation failed because of one of
the following reasons. Note that the packet is available immediately.

• IrConnect structure is not bound to the stack

• Packet size exceeds maximum allowed

IR_STATUS_MEDIA_BUSY means the operation failed because the
media is busy or the stack is not in the NDM state (the packet is
available immediately).

Comments The result is signaled via the callback specified in the IrConnect
structure. The callback event is LEVENT_TEST_CNF and the status
field indicates the result of the operation. IR_STATUS_SUCCESS

IR Library
IAS Functions

Palm OS SDK Reference 923

indicates success and IR_STATUS_FAILED indicates no response
was received. A packet must be passed containing the data to send
in the TEST frame. The packet is returned when the
LEVENT_TEST_CNF event is given.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrUnbind

Purpose Unbinds the IrConnect structure from the protocol stack, freeing
it's LSAP selector.

Prototype IrStatus IrUnbind (UInt16 refNum, IrConnect* con)

Parameters --> refnum IR library refNum.

--> con Pointer to IrConnect structure to unbind.

Result IR_STATUS_SUCCESS means the operation completed successfully.

IR_STATUS_FAILED means the operation failed for one of the
following reasons:

• the IrConnect structure was not bound

• the lLsap field contained an invalid number

Compatibility Implemented only if 3.0 New Feature Set is present.

IAS Functions
This section describes functions and macros related to IAS
databases:

• IrIAS_Add

• IrIAS_GetInteger

• IrIAS_GetIntLsap

• IrIAS_GetObjectID

• IrIAS_GetOctetString

• IrIAS_GetOctetStringLen

IR Library
IAS Functions

924 Palm OS SDK Reference

• IrIAS_GetType

• IrIAS_GetUserString

• IrIAS_GetUserStringCharSet

• IrIAS_GetUserStringLen

• IrIAS_Next

• IrIAS_Query

• IrIAS_SetDeviceName

• IrIAS_StartResult

IrIAS_Add

Purpose Adds an IAS object to the IAS Database.

Prototype IrStatus IrIAS_Add (UInt16 refNum,
IrIasObject* obj)

Parameters --> refnum IR library refNum.

--> obj Pointer to an IrIASObject structure.

Result IR_STATUS_SUCCESS means the operation is successful.

IR_STATUS_FAILED means the operation failed for one of the
following reasons:

• No space in the database.

• An entry with the same class name already exists.

• The attributes of the object violate the IrDA Lite rules
(attribute name exceeds IR_MAX_IAS_NAME, or attribute
value exceeds IR_MAX_IAS_ATTR_SIZE).

• The class name exceeds IR_MAX_IAS_NAME.

Comments The object is not copied, so the memory for the object must exist for
as long as the object is in the database. The IAS database is designed
to allow only objects with unique class names, and it checks for this.
Class names and attributes names must not exceed

IR Library
IAS Functions

Palm OS SDK Reference 925

IR_MAX_IAS_NAME. Also, attribute values must not exceed
IR_MAX_IAS_ATTR_SIZE.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrIAS_GetInteger

Purpose Macro that returns an integer value, assuming that the current result
item is of type IAS_ATTRIB_INTEGER. (Call IrIAS_GetType to
determine the type of the current result item.)

Prototype IrIAS_GetInteger (t)

Parameters --> t Pointer to an IrIasQuery structure.

Result Integer value returned as a UInt32.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrIAS_GetIntLsap

Purpose Macro that returns an integer value that represents an LSAP,
assuming that the current result item is of type
IAS_ATTRIB_INTEGER. (Call IrIAS_GetType to determine the
type of the current result item.) Usually integer values returned in a
query are LSAP selectors.

Prototype IrIAS_GetIntLsap (t)

Parameters --> t Pointer to an IrIasQuery structure.

Result Integer value returned as a UInt8.

Compatibility Implemented only if 3.0 New Feature Set is present.

IR Library
IAS Functions

926 Palm OS SDK Reference

IrIAS_GetObjectID

Purpose Macro that returns the unique object ID of the current result item.

Prototype IrIAS_GetObjectID (t)

Parameters --> t Pointer to an IrIasQuery structure.

Result Returns the object ID as a UInt16 type.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrIAS_GetOctetString

Purpose Macro that returns a pointer to an octet string, assuming that the
current result item is of type IAS_ATTRIB_OCTET_STRING. (Call
IrIAS_GetType to determine the type of the current result item.)

Prototype IrIAS_GetOctetString (t)

Parameters --> t Pointer to an IrIasQuery structure.

Result Pointer to octet string of type UInt8.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrIAS_GetOctetStringLen

Purpose Macro that returns the length of an octet string, assuming that the
current result item is of type IAS_ATTRIB_OCTET_STRING. (Call
IrIAS_GetType to determine the type of the current result item.)

Prototype IrIAS_GetOctetStringLen (t)

Parameters --> t Pointer to an IrIasQuery structure.

Result Length of octet string returned as a UInt16.

IR Library
IAS Functions

Palm OS SDK Reference 927

Compatibility Implemented only if 3.0 New Feature Set is present.

IrIAS_GetType

Purpose Macro that returns the type of the current result item.

Prototype IrIAS_GetType (t)

Parameters --> t Pointer to an IrIasQuery structure.

Result Type of result item, such as IAS_ATTRIB_INTEGER,
IAS_ATTRIB_OCTET_STRING or IAS_ATTRIB_USER_STRING.
The return value is of type UInt8.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrIAS_GetUserString

Purpose Macro that returns a pointer to a user string, assuming that the
current result item is of type IAS_ATTRIB_USER_STRING. (Call
IrIAS_GetType to determine the type of the current result item.)

Prototype IrIAS_GetUserString(t)

Parameters --> t Pointer to an IrIasQuery structure.

Result Pointer to result string of type UInt8.

Compatibility Implemented only if 3.0 New Feature Set is present.

IR Library
IAS Functions

928 Palm OS SDK Reference

IrIAS_GetUserStringCharSet

Purpose Macro that returns the character set of the user string, assuming that
the current result item is of type IAS_ATTRIB_USER_STRING. (Call
IrIAS_GetType to determine the type of the current result item.)

Prototype IrIAS_GetUserStringCharSet(t)

Parameters --> t Pointer to an IrIasQuery structure.

Result Character set returned as an IrCharSet value.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrIAS_GetUserStringLen

Purpose Macro that returns the length of a user string, assuming that the
current result item is of type IAS_ATTRIB_USER_STRING. (Call
IrIAS_GetType to determine the type of the current result item.)

Prototype IrIAS_GetUserStringLen (t)

Parameters --> t Pointer to an IrIasQuery structure.

Result Length of user string returned as a UInt8 value.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrIAS_Next

Purpose Moves the internal pointer to the next result item.

Prototype UInt8* IrIAS_Next (UInt16 refNum,
IrIasQuery* token)

Parameters --> refnum IR library refNum.

IR Library
IAS Functions

Palm OS SDK Reference 929

--> token Pointer to an IrIasQuery structure.

Result Pointer to the next result item, or 0 if there are no more items.

Comments This function returns a pointer to the start of the next result item. If
the pointer is 0, then there are no more result items.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrIAS_Query

Purpose Makes an IAS query of another device’s IAS database.

Prototype IrStatus IrIAS_Query (UInt16 refNum,
IrIasQuery* token)

Parameters --> refnum IR library refNum.

--> token Pointer to an IrIasQuery structure initialized
as described in the Comments section.

Result IR_STATUS_SUCCESS means the operation is started successfully
and the result will be signaled via the callback function.

IR_STATUS_FAILED means the operation failed for one of the
following reasons:

• The query exceeds IR_MAX_QUERY_LEN.

• The result field of token is 0.

• The resultBufSize field of token is 0.

• The callback field of token is 0.

• A query is already in progress.

IR_STATUS_NO_IRLAP means the operation failed because there is
no IrLAP connection.

Comments An IrLAP connection must exist to the other device. The IAS query
token must be initialized as described below. The result is signaled
by calling the callback function whose pointer exists in the
IrIasQuery structure. Only one query can be made at a time.

IR Library
IAS Functions

930 Palm OS SDK Reference

The IrIasQuery structure passed in the token parameter must be
initialized as follows:

• pointer to a callback function in which the result will
signaled.

• result points to a buffer large enough to hold the result of
the query.

• resultBufSize is set to the size of the result buffer.

• queryBuf must point to a valid query.

• queryLen is set to the number of bytes in queryBuf. The
length must not exceed IR_MAX_QUERY_LEN.

Compatibility Implemented only if 3.0 New Feature Set is present.

IrIAS_SetDeviceName

Purpose Sets the value field of the device name attribute of the “Device”
object in the IAS database.

Prototype IrStatus IrIAS_SetDeviceName (UInt16 refNum,
UInt8 *name, UInt8 len)

Parameters --> refnum IR library refNum.

--> name Pointer to an IAS value field for the device
name attribute of the device object. It includes
the attribute type, character set and device
name. This value field should be a constant
and the pointer must remain valid until
IrIAS_SetDeviceName is called with
another pointer.

--> len Total length of the value field. Maximum size
allowed is IR_MAX_IAS_ATTR_SIZE.

Result IR_STATUS_SUCCESS means the operation is successful.

IR_STATUS_FAILED means len is too big, or the value field is
not a valid user string.

IR Library
Application-Defined Functions

Palm OS SDK Reference 931

Compatibility Implemented only if 3.0 New Feature Set is present.

IrIAS_StartResult

Purpose Macro that puts the internal pointer to the start of the result buffer.

Prototype IrIAS_StartResult(t)

Parameters --> t Pointer to an IrIasQuery structure.

Result Returns nothing.

Compatibility Implemented only if 3.0 New Feature Set is present.

Application-Defined Functions
The functions in this section are supplied by you and can be named
anything.

IrIasQueryCallBack

Purpose The result of IAS queries is signaled by calling this callback function
that is pointed to by the callBack field of the IrIasQuery
structure.

Prototype void IrIasQueryCallBack (IrStatus status)

Parameters --> status The status of the query operation. The
following values can be passed:

IR_STATUS_SUCCESS means the query
operation finished successfully and the results
can be parsed.

IR_STATUS_DISCONNECT means the link or
IrLMP connection was disconnected during the
query, so the results are not valid.

Result Returns nothing

.

Palm OS SDK Reference 933

53
Modem Manager
This chapter provides reference material for the modem manager
API. The header file ModemMgr.h declares the modem manager
API.

Modem Manager Functions

MdmDial

Purpose Initialize the modem, dial the phone number and wait for result.

Prototype Err MdmDial (MdmInfoPtr modemP, Char *okDialP,
Char *userInitP, Char *phoneNumP)

Parameters modemP Pointer to modem info structure (filled in by
caller)

okDialP (NOT IMPLEMENTED) Pointer to string of
chars allowed in dial string

userInitP Pointer to modem setup string without the AT
prefix.

phoneNumP Pointer to phone number string

Result 0 if successful; otherwise mdmErrNoTone, mdmErrNoDCD,
mdmErrBusy, mdmErrUserCan, mdmErrCmdError

Comments When executing this function, the system performs these steps:

• Switch to the requested initial baud rate.

• If HW hand-shake is requested, enable CTS/RTS hand-
shaking; otherwise, disable it.

• Reset the modem.

Modem Manager
Modem Manager Functions

934 Palm OS SDK Reference

• Execute the setup string (if any).

• Configure the modem with required settings.

• Dial the phone number.

• Wait for CONNECT XXXXX or other response.

• If auto-baud is requested, switch to the connected baud rate.

MdmHangUp

Purpose Hang up the modem.

Prototype Err MdmHangUp (MdmInfoPtr modemP)

Parameters modemP Pointer to modem info structure (filled in by caller)

Result 0 if successful.

WARNING! This function alters configuration of the serial port
(without restoring it).

Palm OS SDK Reference 935

54
Net Library
This chapter describes the API available in the net library and its
Berkeley sockets equivalents. The header file NetMgr.h declares
the net library API. The chapter covers:

• Net Library Data Structures

• Net Library Constants

• Net Library Functions

For more information on the net library, see the chapter “Network
Communication” in the Palm OS Programmer’s Companion.

IMPORTANT: Applications cannot directly use the net library to
make wireless connections. Use the INetLib for wireless
connections.

Net Library Data Structures

NetHostInfoBufType
The NetHostInfoBufType struct contains information about a
host. The NetHostInfoType struct, which maps to the hostent
struct, points to fields in this struct for its information.

typedef struct {
NetHostInfoType hostInfo;
Char name[netDNSMaxDomainName+1];
Char * aliasList[netDNSMaxAliases+1];
Char aliases[netDNSMaxAliases]

[netDNSMaxAliases+1];
NetIPAddr* addressList[netDNSMaxAddresses];
NetIPAddr address[netDNSMaxAddresses];

} NetHostInfoBufType, *NetHostInfoBufPtr;

Net Library
Net Library Data Structures

936 Palm OS SDK Reference

Field Descriptions

NetHostInfoType
The NetHostInfoType structure maps to the Berkeley UNIX
sockets hostent structure. It is defined as follows:

typedef struct {
Char * nameP;
Char ** nameAliasesP;
UInt16 addrType;
UInt16 addrLen;
UInt8 ** addrListP;

} NetHostInfoType, *NetHostInfoPtr;

Field Descriptions

hostInfo A NetHostInfoType struct, which maps to the
Berkeley UNIX sockets hostent structure.

name Official host name.

aliasList
aliases

An array of aliases for the host name.

addressList
address

An array of pointers to 32-bit IP addresses in
host byte order.

nameP Official host name.

nameAliasesP An array of aliases for the host name.

addrType The type of the return addresses. See
NetSocketAddrEnum.

addrLen The length in bytes of the return addresses.

addrListP An array of pointers to addresses in host byte
order.

Net Library
Net Library Data Structures

Palm OS SDK Reference 937

NetServInfoBufType
The NetServInfoBufType struct contains information about a
service. The NetServInfoType struct, which maps to the
servent struct, points to fields in this struct for much of its
information.

struct {
NetServInfoType servInfo;
Char name[netServMaxName+1];
Char * aliasList[netServMaxAliases+1];
Char aliases[netServMaxAliases]

[netServMaxName];
Char protoName[netProtoMaxName+1];
UInt8 reserved;

} NetServInfoBufType, *NetServInfoBufPtr;

Field Descriptions

NetServInfoType
The NetServInfoType structure maps to the servent structure
in Berkeley UNIX sockets API. It contains information about a
service.

struct {
Char * nameP;
Char ** nameAliasesP;
UInt16 port;
Char * protoP;

} NetServInfoType, *NetServInfoPtr;

servInfo A NetServInfoType struct,
which maps to the Berkeley UNIX
sockets servent structure.

name Official name of the service

aliasList
aliases

Array of aliases for the service
name.

protoName Name of the protocol to use.

reserved Reserved for future use.

Net Library
Net Library Data Structures

938 Palm OS SDK Reference

Field Descriptions

NetSocketAddrEnum
The NetSocketAddrEnum enum specifies the address types
supported by the net library.

typedef enum {
netSocketAddrRaw = 0,
netSocketAddrINET = 2

} NetSocketAddrEnum

Value Descriptions

NetSocketAddrINType
The NetSocketAddrINType struct holds an internet socket
address, that is, a socket that uses one of the internet protocols. This
structure directly maps to the BSD UNIX sockaddr_in structure.

typedef struct NetSocketAddrINType {
Int16 family;
UInt16 port;
NetIPAddr addr;

} NetSocketAddrINType;

nameP Official name of the service

nameAliasesP Array of aliases for the service
name.

port Port number for the service.

protoP Name of the protocol to use.

netSocketAddrRaw Raw address. Supported in Palm
OS® version 3.0 and higher.

netSocketAddrINET IP address.

Net Library
Net Library Data Structures

Palm OS SDK Reference 939

Field Descriptions

NetSocketAddrRawType
The NetSocketAddrRawType structure holds a raw socket
address.

typedef struct NetSocketAddrRawType {
Int16 family;
UInt16 ifInstance;
UInt32 ifCreator;

} NetSocketAddrRawType;

Field Descriptions

Compatibility

Raw sockets are supported in Palm OS® version 3.0 and higher.

NetSocketAddrType
The NetSocketAddrType structure holds a generic socket
address. This struct can hold any type of address including Internet
addresses. It directly maps to the BSD UNIX sockaddr structure.

family Address family in host byte order. This is either
netSocketAddrINET or netSocketAddrRaw.

port The port in network byte order.

addr The IP address in network byte order.

family Address family in host byte
order. This is either
netSocketAddrINET or
netSocketAddrRaw.

ifInstance The instance number of the
interface that the socket uses to
send and receive data.

ifCreator The creator of the interface that
the socket uses.

Net Library
Net Library Data Structures

940 Palm OS SDK Reference

Note that this structure is the same size as NetSocketAddrINType
and NetSocketAddrRawType. This means that one of those two
structures can be used for parameters declared to be
NetSocketAddrType.

typedef struct NetSocketAddrType {
Int16 family;
UInt8 data[14];

} NetSocketAddrType;

NetSocketRef
The NetSocketRef defines a socket descriptor. The socket
descriptor is created and returned by NetLibSocketOpen. It is
used in any function that requires access to a socket.

typedef Int16 NetSocketRef

NetSocketTypeEnum
The NetSocketTypeEnum enum specifies the available socket
types.

typedef enum {
netSocketTypeStream=1,
netSocketTypeDatagram=2,
netSocketTypeRaw=3,
netSocketTypeReliableMsg=4

} NetSocketTypeEnum

Value Descriptions

netSocketTypeStream Streams protocol over wireline.

netSocketTypeDatagram UDP protocol.

netSocketTypeRaw Raw mode.

Net Library
Net Library Constants

Palm OS SDK Reference 941

Net Library Constants

I/O Flags
The I/O flags specify special handling instructions to functions that
send and receive data. You can OR these values together to specify
more than one.

Tracing Bits
The tracing bits are used to set the level of event tracing. An
application can get a list of events in the trace buffer using the
NetLibMaster call.

You can set the tracing for each network interface using
NetLibIFSettingSet and for the net library in general with
NetLibSettingSet.

netIOFlagOutOfBand Process out-of-band data. Available for
send calls only.

netIOFlagPeek Peek at incoming message without
dequeuing it.

netIOFlagDontRoute Send without using routing. This
constant is currently ignored.

netTracingErrors Record run-time errors. This is the
default.

netTracingMsgs Record application trace messages.

netTracingPkts Record packets I/O.

netTracingFuncs Record function flow.

netTracingAppMsgs Record application messages sent
using NetLibTracePrintF and
NetLibTracePutS.

Net Library
Net Library Functions

942 Palm OS SDK Reference

Net Library Functions

NetHToNL

Purpose Macro that converts a 32-bit value from host to network byte order.

Prototype NetHToNL (x)

Parameters -> x 32-bit value to convert.

Result Returns x in network byte order.

Sockets
Equivalent

htonl()

See Also NetNToHS, NetNToHL, NetHToNS

NetHToNS

Purpose Macro that converts a 16-bit value from host to network byte order.

Prototype NetHToNS (x)

Parameters -> x 16-bit value to convert.

Result Returns x in network byte order.

Sockets
Equivalent

htons()

See Also NetNToHS, NetNToHL, NetHToNL

Net Library
Net Library Functions

Palm OS SDK Reference 943

NetLibAddrAToIN

Purpose Converts an ASCII string representing a dotted decimal IP address
into a 32-bit IP address in network byte order.

Prototype NetIPAddr NetLibAddrAToIN (UInt16 libRefnum,
Char *a)

Parameters -> libRefNum Reference number of the net library.

-> a Pointer to ASCII dotted decimal string.

Result Returns a 32-bit network byte order IP address or -1 if a doesn’t
represent a dotted decimal IP address

Sockets
Equivalent

UInt32 inet_addr(char* cp)

See Also NetLibAddrINToA

NetLibAddrINToA

Purpose Converts an IP address from 32-bit network byte order into a dotted
decimal ASCII string.

Prototype Char * NetLibAddrINToA (UInt16 libRefnum,
NetIPAddr inet, Char *spaceP)

Parameters -> libRefNum Reference number of the net library.

-> inet 32-bit IP address in network byte order.

<- spaceP Buffer used to hold the return value.

Result Returns in spaceP the dotted decimal ASCII string representation
of the IP address.

Net Library
Net Library Functions

944 Palm OS SDK Reference

Sockets
Equivalent

char* inet_ntoa(struct in_addr in)

See Also NetLibAddrAToIN

NetLibClose

Purpose Closes the net library.

Prototype Err NetLibClose (UInt16 libRefnum,
UInt16 immediate)

Parameters -> libRefnum Reference number of the net library.

-> immediate If true, library will shut down immediately. If
false, library will shut down only if close
timer expires before another NetLibOpen is
issued.

Result Returns one of the following values:

0 Success.

netErrNotOpen Library was not open.

netErrStillOpen
Not really an error; returned if library is still in
use by another application.

Sockets
Equivalent

None.

Comments Applications must call this function when they no longer need the
net library. If the net library open count is greater than 1 before this
call is made, the count is decremented and netErrStillOpen is
returned. If the open count was 1, the library takes the following
action:

• If immediate is true, the library shuts down immediately.
All network interfaces are brought down, the net protocol
stack task is terminated, and all memory used by the net
library is freed.

Net Library
Net Library Functions

Palm OS SDK Reference 945

• If immediate is false, a close timer is created and this call
returns immediately without actually bringing the net library
down. Instead it leaves it up and running but marks it as in
the “close-wait” state. It remains in this state until either the
timer expires or another NetLibOpen is issued. If the timer
expires, the library is shut down. If another NetLibOpen call
is issued before the timer expires (possibly by another
application), the timer is cancelled and the library is marked
as fully open.

In most cases, you should pass false for immediate. This allows
the user to quit one Internet application and launch another within a
short period of time without having to wait through the process of
closing down and then re-establishing dial-up network connections.

See Also NetLibOpen, NetLibOpenCount

NetLibConnectionRefresh

Purpose This routine is a convenience call for applications. It checks the
status of all connections and optionally tries to open any that were
closed.

Prototype Err NetLibConnectionRefresh (UInt16 refNum,
Boolean refresh, UInt8 *allInterfacesUpP,
UInt16 * netIFErrP)

Parameters -> refnum Reference number of the net library.

-> refresh If true, any connections that aren’t currently
open are opened.

<- allInterfacesUpP
Set to true if all connections are open.

<- netIFErrP First error encountered when reopening
connections that were closed. (See
NetLibIFUp for a list of possible values.)

Result Returns one of the following values:

0 Success.

Net Library
Net Library Functions

946 Palm OS SDK Reference

netErrBufTooSmall

netErrOutOfCmdBlocks

netErrNoInterfaces

Sockets
Equivalent

None.

Comments This function determines whether a connection is up based on the
internal status of the TCP/IP stack. To test the presence of a
“physical connection” (phone line, modem, serial cable), a
command should be sent once it’s been determined that the logical
connection is up. If the physical connection is broken, nothing
returns and a timeout error eventually occurs.

NetLibDmReceive

Purpose Receive data from a socket directly into a database record.

Prototype Int16 NetLibDmReceive (UInt16 libRefNum,
NetSocketRef socket, void* recordP,
UInt32 recordOffset, UInt16 rcvLen, UInt16 flags,
void* fromAddrP, UInt16 *fromLenP, Int32 timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

<- recordP Pointer to beginning of record to receive data
into. Must be locked for use.

-> recordOffset Offset from beginning of record to read data
into.

-> rcvLen Maximum number of bytes to read.

-> flags One or more netIOFlagxxx flags. See “I/O
Flags.”

<- fromAddrP Pointer to buffer to hold address of sender (a
NetSocketAddrType struct). Pass NULL if
you don’t need sender information.

Net Library
Net Library Functions

Palm OS SDK Reference 947

<-> fromLenP On entry, size of fromAddrP buffer. On exit,
actual size of returned address in fromAddrP.
Pass NULL if you don’t need sender
information.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns the number of bytes successfully received. If the return
value is 0, the socket has been shut down by the remote host. If the
return value is -1, an error has occurred and errP contains one of
the following values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

netErrWouldBlock

netErrUserCancel

netErrOutOfMemory

Comments This call behaves similarly to NetLibReceive but reads the data
directly into a database record, which is normally write-protected.
The caller must pass a pointer to the start of the record and an offset
into the record of where to start the read.

Net Library
Net Library Functions

948 Palm OS SDK Reference

NetLibFinishCloseWait

Purpose Forces the net library to do a complete close if it’s currently in the
close-wait state.

Prototype Err NetLibFinishCloseWait (UInt16 libRefnum)

Parameters -> libRefnum Reference number of the net library.

Result Returns one of the following values:

0 Success.

netErrTimeout

Sockets
Equivalent

None.

Comments This call checks the current open state of the net library. If it’s in the
close-wait state (see NetLibClose), it forces the library to perform
an immediate, complete close operation.

NetLibGetHostByAddr

Purpose Looks up a host name given its IP address.

Prototype NetHostInfoPtr NetLibGetHostByAddr
(UInt16 libRefnum, UInt8 *addrP, UInt16 len,
UInt16 type, NetHostInfoBufPtr bufP,
Int32 timeout, Err *errP)

Parameters -> libRefNum Reference number of the net library.

-> addrP IP address of host to lookup.

-> len Length, in bytes, of *addrP.

-> type Type of addrP. See NetSocketAddrEnum.

<- bufP Pointer to a NetHostInfoBufType struct in
which to store the results of the lookup.

Net Library
Net Library Functions

Palm OS SDK Reference 949

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is 0.

Result Returns a pointer to the NetHostInfoType portion of bufP that
contains results of the lookup. If the return value is 0, an error has
occurred, and errP contains one of the following values:

0 No error

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrDNSNameTooLong

netErrDNSBadName

netErrDNSLabelTooLong

netErrDNSAllocationFailure

netErrDNSTimeout

netErrDNSUnreachable

netErrDNSFormat

netErrDNSServerFailure

netErrDNSNonexistantName

netErrDNSNIY

netErrDNSRefused

netErrDNSImpossible

netErrDNSNoRRS

netErrDNSAborted

netErrDNSBadProtocol

netErrDNSTruncated

netErrDNSNoRecursion

netErrDNSIrrelevant

netErrDNSNotInLocalCache

Net Library
Net Library Functions

950 Palm OS SDK Reference

netErrDNSNoPort

Sockets
Equivalent

struct hostent* gethostbyaddr (char* addr, int
len, int type);

Comments This call queries the domain name server(s) to look up a host name
given its IP address.

See Also NetLibGetHostByName

NetLibGetHostByName

Purpose Looks up a host IP address given a host name.

Prototype NetHostInfoPtr NetLibGetHostByName
(UInt16 libRefnum, Char *nameP,
NetHostInfoBufPtr bufP, Int32 timeout, Err *errP)

Parameters -> libRefNum Reference number of the net library.

-> nameP Name of host to look up.

<- bufP Pointer to a NetHostInfoBufType struct in
which to store the results of the lookup.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is 0.

Result Returns a pointer to the NetHostInfoType portion of bufP, which
contains results of the lookup. If the return value is 0, an error has
occurred and errP contains one of the following values:

0 No error

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrDNSNameTooLong

netErrDNSBadName

Net Library
Net Library Functions

Palm OS SDK Reference 951

netErrDNSLabelTooLong

netErrDNSAllocationFailure

netErrDNSTimeout

netErrDNSUnreachable

netErrDNSFormat

netErrDNSServerFailure

netErrDNSNonexistantName

netErrDNSNIY

netErrDNSRefused

netErrDNSImpossible

netErrDNSNoRRS

netErrDNSAborted

netErrDNSBadProtocol

netErrDNSTruncated

netErrDNSNoRecursion

netErrDNSIrrelevant

netErrDNSNotInLocalCache

netErrDNSNoPort

Sockets
Equivalent

struct hostent *gethostbyname(char* name);

Comments This call first checks the local name -> IP address host table in the
net library preferences. If the entry is not found, it then queries the
domain name server(s).

See Also NetLibGetHostByAddr, NetLibGetMailExchangeByName

Net Library
Net Library Functions

952 Palm OS SDK Reference

NetLibGetMailExchangeByName

Purpose Looks up the name of a host to use for a given mail exchange.

Prototype Int16 NetLibGetMailExchangeByName
(UInt16 libRefNum, Char *mailNameP,
UInt16 maxEntries,
Char hostNames[][netDNSMaxDomainName+1],
UInt16 priorities[], Int32 timeout, Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> mailNameP Name of the mail exchange to look up.

-> maxEntries Maximum number of host names to return.

<- hostNames Array of character strings of length
netDNSMaxDomainName+1. The host name
results are stored in this array. This array must
be able to hold at least maxEntries host
names.

<- priorities Array of Words. The priorities of each host
name found are stored in this array. This array
must be at least maxEntries in length.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is less
than 0.

Result Returns the number of entries successfully found. If the return value
is a negative number, an error has occurred, and errP contains one
of the following values:

0 No error

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrDNSNameTooLong

netErrDNSBadName

Net Library
Net Library Functions

Palm OS SDK Reference 953

netErrDNSLabelTooLong

netErrDNSAllocationFailure

netErrDNSTimeout

netErrDNSUnreachable

netErrDNSFormat

netErrDNSServerFailure

netErrDNSNonexistantName

netErrDNSNIY

netErrDNSRefused

netErrDNSImpossible

netErrDNSNoRRS

netErrDNSAborted

netErrDNSBadProtocol

netErrDNSTruncated

netErrDNSNoRecursion

netErrDNSIrrelevant

netErrDNSNotInLocalCache

netErrDNSNoPort

Sockets
Equivalent

None

Comments This call looks up the name(s) of host(s) to use for sending an e-mail.
The caller passes the name of the mail exchange in mailNameP and
gets back a list of host names to which the mail message can be sent.

See Also NetLibGetHostByAddr, NetLibGetHostByName

Net Library
Net Library Functions

954 Palm OS SDK Reference

NetLibGetServByName

Purpose Looks up the port number for a standard TCP/IP service, given the
desired protocol.

Prototype NetServInfoPtr NetLibGetServByName
(UInt16 libRefnum, const Char *servNameP,
const Char *protoNameP, NetServInfoBufPtr bufP,
Int32 timeout, Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> servNameP Name of the service to look up. Possible
services are “echo”, “discard”, “daytime”,
“qotd”, “chargen”, “ftp-data”, “ftp”, “telnet”,
“smtp”, “time”, “name”, “finger”, “pop2”,
“pop3”, “nntp”, “imap2”.

-> protoNameP Desired protocol to use, either “udp” or “tcp”.

<- bufP Pointer to a NetServInfoBufType struct in
which to store the results of the lookup.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is 0.

Result Returns a pointer to the NetServInfoType portion of bufP that
contains results of the lookup. If the return value is 0, and error has
occurred and errP contains one of the following values:

0 No error

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrUnknownProtocol

netErrUnknownService

Sockets
Equivalent

struct servent* getservbyname(char* addr,
char* proto);

Net Library
Net Library Functions

Palm OS SDK Reference 955

Comments This call is a convenience call for looking up a standard port number
given the name of a service and the protocol to use.

See Also NetLibGetHostByName

NetLibIFAttach

Purpose Attach a new network interface.

Prototype Err NetLibIFAttach (UInt16 libRefnum,
UInt32 ifCreator, UInt16 ifInstance,
Int32 timeout)

Parameters -> libRefNum Reference number of the net library.

-> ifCreator Creator of interface to attach.

-> ifInstance Instance number of interface to attach. The
instance number is one of the values returned
by NetLibIFGet.

-> timeout Timeout in ticks; -1 means infinite timeout.

Result Returns one of the following values:

0 Success.

netErrInterfaceNotFound

netErrTooManyInterfaces

Sockets
Equivalent

None

Comments This call can be used to attach a new network interface to the net
library. Network interfaces are self-contained databases of type
'neti'. The ifCreator parameter to this function is used to
locate the network interface database of the given creator.

If the net library is already open when this call is made, the network
interface’s database will be located and then called to initialize itself
and attach itself to the protocol stack in real time. If the net library is
not open when this call is made, the creator and instance number of

Net Library
Net Library Functions

956 Palm OS SDK Reference

the interface are stored in the net library’s preferences database and
the interface is initialized and attached to the stack the next time the
net library is opened.

See Also NetLibIFGet, NetLibIFDetach

NetLibIFDetach

Purpose Detach a network interface from the protocol stack.

Prototype Err NetLibIFDetach (UInt16 libRefnum,
UInt32 ifCreator, UInt16 ifInstance,
Int32 timeout)

Parameters -> libRefNum Reference number of the net library.

-> ifCreator Creator of interface to detach.

-> ifInstance Instance number of interface to detach.

-> timeout Timeout in ticks; -1 means infinite timeout.

Result Returns one of the following values:

0 Success.

netErrInterfaceNotFound

Sockets
Equivalent

None

Comments If the net library is already open when this call is made, the interface
is brought down and detached from the protocol stack in real time.
If the net library is not open when this call is made, the creator and
instance number of the interface are removed in the net library’s
preferences database and the interface is not attached the next time
the library is opened.

See Also NetLibIFGet, NetLibIFAttach

Net Library
Net Library Functions

Palm OS SDK Reference 957

NetLibIFDown

Purpose Bring an interface down and hang up a connection.

Prototype Err NetLibIFDown (UInt16 libRefnum,
UInt32 ifCreator, UInt16 ifInstance,
Int32 timeout)

Parameters -> libRefNum Reference number of the net library.

-> ifCreator Creator of interface to attach.

-> ifInstance Instance number of interface to attach.

-> timeout Timeout in ticks; -1 means wait forever.

Result Returns one of the following values:

0 Success.

netErrNotOpen The referenced net library has not been opened
yet.

netErrInterfaceNotFound

Sockets
Equivalent

None

Comments The net library must be open before this call can be made. For dial-
up interfaces, this call terminates a connection and hangs up the
modem if necessary.

NetLibClose automatically brings down any attached interfaces,
so this routine doesn’t normally have to be called.

If the interface is already down, this routine returns immediately
with no error.

See Also NetLibIFGet, NetLibIFAttach, NetLibIFDetach,
NetLibIFUp

Net Library
Net Library Functions

958 Palm OS SDK Reference

NetLibIFGet

Purpose Get the creator and instance number of an installed interface by
index.

Prototype Err NetLibIFGet (UInt16 libRefnum, UInt16 index,
UInt16 * ifCreatorP, UInt16 * ifInstanceP)

Parameters -> libRefNum Reference number of the net library.

-> index Index of the interface to get. Indices start at 0.

<- ifCreatorP The interface’s creator.

<- ifInstanceP The interface’s instance number.

Result Returns one of the following values:

0 Success.

netErrInvalidInterface
Index too high

netErrPrefNotFound
No current value for setting.

Sockets
Equivalent

None

Comments To get a list of all installed interfaces, call this function with
successively increasing indices starting from 0 until the error
netErrInvalidInterface is returned.

The ifCreator and ifInstance values returned from this call
can then be used with the NetLibSettingGet call to get more
information about that particular interface.

See Also NetLibIFAttach, NetLibIFDetach, “Settings for Interface
Selection” in the Palm OS Programmer’s Companion

Net Library
Net Library Functions

Palm OS SDK Reference 959

NetLibIFSettingGet

Purpose Retrieves a network interface specific setting.

Prototype Err NetLibIFSettingGet (UInt16 libRefnum,
UInt32 ifCreator, UInt16 ifInstance,
UInt16 setting, void *valueP, UInt16 *valueLenP)

Parameters -> libRefNum Reference number of the net library.

-> ifCreator Creator of the network interface.

-> ifInstance Instance number of the network interface.

-> setting Setting to retrieve; one of the
NetIFSettingEnum constants.

<- valueP Space for return value of setting.

<-> valueLenP On entry, size of valueP. On exit, actual size of
setting.

Result Returns one of the following values:

0 Success.

netErrUnknownSetting
Invalid setting constant.

netErrPrefNotFound
No current value for setting.

netErrBufTooSmall
valueP was too small to hold entire setting.
Setting value was truncated to fit in valueP.

netErrUnimplemented

netErrInterfaceNotFound

netErrBufWrongSize

Sockets
Equivalent

None

Net Library
Net Library Functions

960 Palm OS SDK Reference

Comments This call can be used to retrieve the current value of any network
interface setting. The caller must pass a pointer to a buffer to hold
the return value (valueP), the size of the buffer (*valueLenP), and
the setting ID (setting). The setting ID is one of the constants in
the NetIFSettingEnum type.

Some settings, such as the login script, are variable size. For these
types of settings, you can obtain the actual size required for the
buffer by passing 0 for *valueLenP. The required size is returned
in valueLenP.

Table 54.1 lists the network interface settings and the size of each
setting. Some are only applicable to certain types of interfaces.
Settings not applicable to a specific interface can be safely ignored
and not set to any particular value.

Net Library
Net Library Functions

Palm OS SDK Reference 961

Table 54.1 Network Interface Settings

netIFSetting... Type Description

ResetAll void Use with NetLibIFSettingSet only. This
clears all other settings for the interface to their
default values.

Up UInt8 Read-only. true if interface is currently up.

Name Char[32] Read-only. Name of this interface.

ReqIPAddr UInt32 IP address of interface.

SubnetMask UInt32 Subnet mask for interface. Doesn’t need to be
specified for PPP or SLIP type connections.

Broadcast UInt32 Broadcast address for interface. Doesn’t need to
be specified for PPP or SLIP type connections.

Username Char[32] User name. Only required if the login script uses
the user name substitution escape sequence in it.
Call NetLibIFSettingSet with a valueLen of
0 to remove this setting.

Password Char[32] Password. Only required if the login script uses
the password substitution escape sequence in it.
Call NetLibIFSettingSet with a valueLen of
0 to remove this setting. If the login script uses
password substitution and no password setting is
set, the user will be prompted for a password at
connect time.

AuthUsername Char[32] Authentication user name. Only required if the
authentication protocol uses a different user name
than the what’s in the netIFSettingUsername
setting. If this setting is empty (valueLen of 0),
the Username setting will be used instead. Call
NetLibIFSettingSet with a valueLen of 0 to
remove this setting.

Net Library
Net Library Functions

962 Palm OS SDK Reference

AuthPassword Char[32] Authentication password. If “$” then the user will
be prompted for the authentication password at
connect time. Else, if 0 length, then the
netIFSettingPassword setting or the result of
its prompt will be used instead. Call
NetLibIFSettingSet with a valueLen of 0 to
remove this setting.

ServiceName Char[] Service name. Used for display purposes while
showing the connection progress dialog box. Call
NetLibIFSettingSet with a valueLen of 0 to
remove this setting.

LoginScript Char[] Login script. Only required if the particular
service requires a login sequence. Call
NetLibIFSettingSet with a valueLen of 0 to
remove this setting. See below for a description of
the login script format.

ConnectLog Char[] Connect log. Generally, this setting is just
retrieved, not set. It contains a log of events from
the most recent login. To clear this setting, call
NetLibIFSettingSet with a valueLen of 0.

InactivityTimeout UInt16 Maximum number of seconds of inactivity
allowed. Set to 0 to ignore.

EstablishmentTimeout UInt16 Maximum delay, in seconds, allowed between
each stage of connection establishment or login
script line. Must be non-zero.

DynamicIP UInt8 If non-zero, negotiate for an IP address. If false,
the IP address specified in the
netIFSettingReqIPAddr setting will be used.
Default is false.

VJCompEnable UInt8 If non-zero, enable VJ header compression.
Default is true for PPP, false for SLIP, and
true for CSLIP.

Table 54.1 Network Interface Settings (continued)

netIFSetting... Type Description

Net Library
Net Library Functions

Palm OS SDK Reference 963

VJCompSlots UInt8 Number of slots to use for VJ compression.
Default is 4 for PPP and 16 for SLIP and CSLIP.
More slots require more memory so it is best to
keep this number to a minimum.

MTU UInt16 Maximum transmission unit in octets. Currently
not implemented in SLIP or PPP.

AsyncCtlMap UInt32 Bit mask of characters to escape for PPP. Default
is 0.

PortNum UInt16 Which serial communication port to use. Port 0 is
the only port available on the device.

BaudRate UInt32 Serial port baud rate to use in bits per second.

FlowControl UInt8 If bit 0 is 1, use hardware handshaking on the
serial port. Default is no hardware handshaking.

StopBits UInt8 Number of stop bits. Default is 1.

ParityOn UInt8 true if parity detection enabled. Default is
false.

ParityEven UInt8 true for even parity detection. Default is true.

UseModem UInt8 If true, dial-up through modem. If false, go
direct over serial port

PulseDial UInt8 If true, pulse dial modem. Else, tone dial. Default
is tone dial.

ModemInit Char[] Zero-terminated modem initialization string, not
including the “AT”. If not specified (valueLen of
0), the modem initialization string from system
preferences are used.

ModemPhone Char[] Zero-terminated modem phone number string.
Only required if netIFSettingUseModem is
true.

Table 54.1 Network Interface Settings (continued)

netIFSetting... Type Description

Net Library
Net Library Functions

964 Palm OS SDK Reference

See Also NetLibIFSettingSet, NetLibSettingGet,
NetLibSettingSet, “Interface Specific Settings” in the Palm OS
Programmer’s Companion

RedialCount UInt16 Number of times to redial modem when trying to
establish a connection. Only required if
netIFSettingUseModem is true.

DNSQuery UInt8 true if PPP queries for DNS address. The default
is true.

TraceBits UInt32 A bitfield of various trace bits. See “Tracing Bits.”

An application can get a list of events in the trace
buffer using the NetLibMaster call. Each
interface has its own trace bits setting so that trace
event recording in each interface can be
selectively enabled or disabled.

ActualIPAddr UInt32 Read-only. The actual IP address that the interface
ends up using. The login script execution engine
stores the result of the “g” (get IP address)
command here as does the PPP negotiation logic.

ServerIPAddr UInt32 Read-only. The IP address of the PPP server we’re
connected to.

BringDownOnPower
Down

UInt8 true if the interface is brought down when the
Palm OS® device is turned off.

RawMode UInt32 Specifies if the interface is in raw mode. The net
library places an interface in raw mode when it is
bound to a raw socket in the raw domain. Raw
sockets are available in Palm OS version 3.0 and
higher.

Table 54.1 Network Interface Settings (continued)

netIFSetting... Type Description

Net Library
Net Library Functions

Palm OS SDK Reference 965

NetLibIFSettingSet

Purpose Sets a network interface specific setting.

Prototype Err NetLibIFSettingSet (UInt16 libRefnum,
UInt32 ifCreator, UInt16 ifInstance,
UInt16 setting, void* valueP, UInt16 valueLen)

Parameters -> libRefNum Reference number of the net library.

-> ifCreator Creator of the network interface.

-> ifInstance Instance number of the network interface.

-> setting The setting to set, one of the
NetIFSettingEnum constants. See Table 54.1.

-> valueP Space new value of setting.

-> valueLen Size of new setting.

Result Returns one of the following values:

0 Success.

netErrUnknownSetting
Invalid setting constant.

netErrPrefNotFound
No current value for setting.

netErrBufTooSmall
valueP was too small to hold entire setting.
Setting value was truncated to fit in valueP.

netErrUnimplemented

netErrInterfaceNotFound

netErrBufWrongSize

netErrReadOnlySetting

Sockets
Equivalent

None

Net Library
Net Library Functions

966 Palm OS SDK Reference

Comments This call can be used to set the current value of any network
interface setting. The caller must pass a pointer to a buffer which
holds the new value (valueP), the size of the buffer (valueLen),
and the setting ID (setting).

See NetLibIFSettingGet for an explanation of each of the
settings.

Of particular interest is the netIFSettingResetAll setting,
which, if used, resets all settings for the interface to their default
values. When using this setting, valueP and valueLen are
ignored.

See Also NetLibIFSettingGet, NetLibSettingGet,
NetLibSettingSet, “Interface Specific Settings” in the Palm OS
Programmer’s Companion

NetLibIFUp

Purpose Bring an interface up and establish a connection.

Prototype Err NetLibIFUp (UInt16 libRefnum,
UInt32 ifCreator, UInt16 ifInstance)

Parameters -> libRefNum Reference number of the net library.

-> ifCreator Creator of interface to attach.

-> ifInstance Instance number of interface to attach.

Result Returns one of the following values:

0 Success.

netErrNotOpen The referenced net library has not been opened
yet.

netErrInterfaceNotFound

netErrUserCancel

netErrBadScript

netErrPPPTimeout

Net Library
Net Library Functions

Palm OS SDK Reference 967

netErrAuthFailure

netErrPPPAddressRefused

Sockets
Equivalent

None

Comments The net library must be open before this call can be made. For dial-
up interfaces, this call will dial up the modem if necessary and run
through the connect script to establish the connection.

If the interface is already up, this routine returns immediately with
no error. This call doesn’t take a timeout parameter because it relies
on each interface to have its own established timeout setting.

See Also NetLibIFGet, NetLibIFAttach, NetLibIFDetach,
NetLibIFDown

NetLibMaster

Purpose Retrieves the network statistics, interface statistics, and the contents
of the trace buffer.

Prototype Err NetLibMaster (UInt16 libRefnum, UInt16 cmd,
NetMasterPBPtr pbP, Int32 timeout)

Parameters -> libRefNum Reference number of the net library.

-> cmd Function to perform (NetMasterEnum type).
The following commands are supported:

netMasterInterfaceInfo
netMasterInterfaceStats
netMasterIPStats
netMasterICMPStats
netMasterUDPStats
netMasterTCPStats
netMasterTraceEventGet

<-> pbP Command parameter block.

Net Library
Net Library Functions

968 Palm OS SDK Reference

-> timeout Timeout in ticks; -1 means wait forever.

Result Returns one of the following values:

0 No error

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrUnimplemented

Sockets
Equivalent

None

Comments This call allows applications to get detailed information about the
net library. This information is usually helpful in debugging
network configuration problems.

This function takes a command word (cmd) and parameter block
pointer (pbP) as arguments and returns its results in the parameter
block on exit. Which values you must specify in the parameter block
and which values are returned are specific to the command you
specify.

netMasterInterfaceInfo

The pbP->interfaceInfo struct specifies interface information.

-> index Index of interface to fetch info
about.

<- creator Creator of interface.

<- instance Instance of interface.

<- netIFP Private interface info pointer.

<- drvrName Driver type that interface uses
(“PPP”, “SLIP”, etc.).

<- hwName Hardware driver name (“Serial
Library”, etc.).

Net Library
Net Library Functions

Palm OS SDK Reference 969

netMasterInterfaceStats

The pbP->interfaceStats structure specifies interface statistics.

<- localNetHdrLen Number of bytes in local net
header.

<- localNetTrailerLen Number of bytes in local net trailer.

<- localNetMaxFrame Local net maximum frame size.

<- ifName Interface name with instance
number concatenated.

<- driverUp true if interface driver is up.

<- ifUp true if interface media layer is up.

<- hwAddrLen Length of interface’s hardware
address.

<- hwAddr Interface’s hardware address.

<- mtu Maximum transfer unit of
interface.

<- speed Speed in bits per second.

<- lastStateChange Time in milliseconds of last state
change.

<- ipAddr IP address of interface.

<- subnetMask Subnet mask of local network.

<- broadcast Broadcast address of local network.

-> index Index of interface to fetch info about.

<- inOctets Number of octets received.

<- inUcastPkts Number of packets received.

<- inNUcastPkts Number of broadcast packets received.

<- inDiscards Number of incoming packets that
were discarded.

Net Library
Net Library Functions

970 Palm OS SDK Reference

netMasterIPStats

The pbP->ipStats structure contains statistics about the IP
protocol. See NetMgr.h for a complete list of statistics returned.

netMasterICMPStats

The pbP->icmpStats structure contains statistics about the ICMP
protocol. See NetMgr.h for a complete list of statistics returned.

netMasterUDPStats

The pbP->udpStats structure contains statistics about the UDP
protocol. See NetMgr.h for a complete list of statistics returned.

netMasterTCPStats

The pbP->tcpStats structure contains statistics about the TCP
protocol. See NetMgr.h for a complete list of statistics returned.

netMasterTraceEventGet

The pbP->traceEventGet structure contains a trace event.

See Also NetLibSettingSet

<- inErrors Number of packet errors encountered.

<- inUnknownProtos Number of unknown protocols
encountered.

<- outOctets Number octets sent.

<- outUcastPkts Number of packets sent.

<- outNUcastPkts Number of broadcast packets sent.

<- outDiscards Number of packets discarded.

<- outErrors Number of outbound packet errors.

-> index Index of event to fetch.

<- textP Pointer to text string to return event in. Should be at
least 256 bytes long.

Net Library
Net Library Functions

Palm OS SDK Reference 971

NetLibOpen

Purpose Opens and initializes the net library.

Prototype Err NetLibOpen (UInt16 libRefnum,
UInt16 *netIFErrP)

Parameters -> libRefnum Reference number of the net library.

<- netIFErrP First error encountered when bringing up
network interfaces. (See NetLibIFUp for a list
of possible values.)

Result Returns one of the following values:

0 No error.

netErrAlreadyOpen
Not really an error; returned if library was
already open and the open count was simply
incremented.

netErrOutOfMemory
Not enough memory available to open the
library.

netErrNoInterfaces
Incorrect setup.

netErrPrefNotFound
Incorrect setup.

Comments Applications must call this function before using the net library. If
the net library was already open, NetLibOpen increments its open
count. Otherwise, it opens the library, initializes it, starts up the net
protocol stack component of the library as a separate task, and
brings up all attached network interfaces.

NetLibOpen uses settings saved in the net library’s preferences
database during initialization. These settings include the interfaces
to attach, the IP addresses, etc. It’s assumed that these settings have
been previously set up by a preference panel or equivalent so an

Net Library
Net Library Functions

972 Palm OS SDK Reference

application doesn’t normally have to set them up before calling
NetLibOpen.

If any of the attached interfaces fails to come up, *netIFErrP will
contain the error number of the first interface that encountered a
problem.

See Also SysLibFind, NetLibClose, NetLibOpenCount

NetLibOpenCount

Purpose Retrieves the open count of the net library.

Prototype Err NetLibOpenCount (UInt16 libRefnum,
UInt16 *countP)

Parameters -> libRefnum Reference number of the net library.

<- countP Contains the open count of the net library upon
return.

Result Always returns 0.

Sockets
Equivalent

None.

Comments This call will most likely only be used by the Network preferences
panel. Most applications will simply call NetLibOpen
unconditionally during startup and NetLibClose when they exit.

Net Library
Net Library Functions

Palm OS SDK Reference 973

NetLibReceive

Purpose Receive data from a socket into a single buffer.

Prototype Int16 NetLibReceive (UInt16 libRefNum,
NetSocketRef socket, void* bufP, UInt16 bufLen,
UInt16 flags, void* fromAddrP, UInt16 * fromLenP,
Int32 timeout, Err* errP);

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

<- bufP Pointer to buffer to hold received data.

-> bufLen Length of bufP buffer.

-> flags One or more netIOFlagxxx flags. See “I/O
Flags.”

<- fromAddrP Pointer to buffer to hold address of sender (a
NetSocketAddrType).

<-> fromLenP On entry, size of fromAddrP buffer. On exit,
actual size of returned address in fromAddrP.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns the number of bytes successfully received. If the return
value is 0, the socket has been shut down by the remote host. If the
return value is -1, an error has occurred, and errP contains one of
the following values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

Net Library
Net Library Functions

974 Palm OS SDK Reference

netErrWouldBlock

netErrUserCancel

Sockets
Equivalent

int recvfrom (int socket, const void* bufP,
int bufLen, int flags, const void* fromAddrP,
int* fromLenP);

int recv(int socket, const void* bufP, int bufLen,
int flags);

int read(int socket, const void* bufP,
int bufLen);

Comments For stream-based sockets, this call reads whatever bytes are
available and returns the number of bytes actually read into the
caller’s buffer. If there is no data available, this call will block until
at least one byte arrives, until the socket is shut down by the remote
host, or until a timeout occurs.

For datagram-based sockets, this call reads a complete datagram
and returns the number of bytes in the datagram. If the caller’s
buffer is not large enough to hold the entire datagram, the end of the
datagram is discarded. If a datagram is not available, this call will
block until one arrives, or until the call times out.

The data is read into a single buffer pointed to by bufP.

See Also NetLibReceive, NetLibDmReceive, NetUReadN, NetLibSend,
NetLibSendPB

NetLibReceivePB

Purpose Receive data from a socket into a multi-buffer gather-read array.

Prototype Int16 NetLibReceivePB (UInt16 libRefnum,
NetSocketRef socket, NetIOParamType* pbP,
UInt16 flags, Int32 timeout, Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

Net Library
Net Library Functions

Palm OS SDK Reference 975

-> pbP Pointer to parameter block containing buffer
info.

-> flags One or more netIOFlagxxx flags. See “I/O
Flags.”

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns the number of bytes successfully received. Returns 0 if the
socket has been shut down by the remote host. If the return value is
-1, an error has occurred, and errP contains one of the following
values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

netErrWouldBlock

Sockets
Equivalent

int recvmsg (int socket, const struct msghdr* pbP,
int flags);

Comments The pbP parameter is a pointer to a NetIOParamType structure.
NetIOParamType is defined as follows:

typedef struct {
UInt8 * addrP;
UInt16 addrLen;
NetIOVecPtr iov;
UInt16 iovLen;
UInt8 * accessRights;
UInt16 accessRightsLen;

} NetIOParamType, *NetIOParamPtr;

You provide the following information in this struct:

Net Library
Net Library Functions

976 Palm OS SDK Reference

For stream-based sockets, this call reads whatever bytes are
available and returns the number of bytes actually read into the
caller’s buffer. If no data is available, this call will block until at least
one byte arrives, until the socket is shut down by the remote host, or
until a timeout occurs.

For datagram-based sockets, this call reads a complete datagram
and returns the number of bytes in the datagram. If the caller’s
buffer is not large enough to hold the entire datagram, the end of the
datagram is discarded. If a datagram is not available, this call will
block until one arrives, or until the call times out.

The data is read into the gather-read array specified by the pbP-
>iov array.

See Also NetLibReceive, NetLibDmReceive, NetLibSend,
NetLibSendPB

addrP Address of sender, set by
NetLibReceivePB. Set to 0 if you don’t
require this field.

addrLen Length of *addrP.

iov Array of buffers into which the data should
be received. NetIOVecPtr is a pointer to a
NetIOVecType structure, which has two
fields:

bufP Pointer to a buffer.

bufLen Length of bufP.

iovLen Length of the iov array.

accessRights Access rights. This field currently isn’t used
and should be set to 0.

accessRightsLen Length of the *accessRights. This field
currently isn’t used and should be set to 0.

Net Library
Net Library Functions

Palm OS SDK Reference 977

NetLibSelect

Purpose Blocks until I/O is ready on one or more descriptors, where a
descriptor can represent socket input, socket output, or a user input
event like a pen tap or key press.

Prototype Int16 NetLibSelect (UInt16 libRefnum,
UInt16 width, NetFDSetType* readFDs,
NetFDSetType* writeFDs, NetFDSetType* exceptFDs,
Int32 timeout, Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> width Number of descriptor bits to check in the
readFDs, writeFDs, and exceptFDs
descriptor sets.

<-> readFDs Pointer to 32-bit NetFDSetType containing set
of bits representing descriptors to check for
input.

<-> writeFDs Pointer to 32-bit NetFDSetType containing set
of bits representing descriptors to check for
output.

<-> exceptFDs Pointer to 32-bit NetFDSetType containing set
of bits representing descriptors to check for
exception conditions. This parameter is
ignored. Upon return, its bits are always
cleared.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns the sum total number of ready file descriptors in *readFDs,
*writeFDs, and *exceptFDs. Returns 0 upon timeout. If the
return value is -1, an error has occurred, and errP contains one of
the following values:

0 No error

netErrTimeout Call timed out.

Net Library
Net Library Functions

978 Palm OS SDK Reference

netErrNotOpen The referenced net library has not been opened
yet.

Sockets
Equivalent

int select (int width, fd_set* readfds,
fd_set* writefds, fd_set* exceptfds,
struct timeval* timeout);

Comments This call blocks until one or more descriptors are ready for I/O. In
the Palm OS environment, a descriptor is either a NetSocketRef
or the “stdin” descriptor, sysFileDescStdIn. The
sysFileDescStdIn descriptor will be ready for input whenever a
user event is available like a pen tap or key press.

The caller should set which bits in each descriptor set need to be
checked by using the netFDZero and netFDSet macros. After this
call returns, the macro netFDIsSet can be used to determine
which descriptors in each set are actually ready.

On exit, the total number of ready descriptors is returned and each
descriptor set is updated with the appropriate bits set for each ready
descriptor in that set.

The following example illustrates how to use this call to check for
input on a socket or a user event:

Err err;
NetSocketRef socket;
NetFDSetType readFDs,writeFDs,exceptFDs;
Int16 numFDs;
UInt16 width;

// Create the descriptor sets
netFDZero(&readFDs);
netFDZero(&writeFDs);
netFDZero(&exceptFDs);
netFDSet(sysFileDescStdIn, &readFDs);
netFDSet(socket, &readFDs);

// Calculate the max descriptor number and
// use that +1 as the max width.
// Alternatively, we could simply use the
// constant netFDSetSize as the width which

Net Library
Net Library Functions

Palm OS SDK Reference 979

// is simpler but makes the NetLibSelect call
// slightly slower.
width = sysFileDescStdIn;
if (socket > width) width = socket;

// Wait for any one of the descriptors to be
// ready.
numFDs = NetLibSelect(AppNetRefnum, width+1,
&readFDs, &writeFDs, &exceptFDs,
AppNetTimeout, &err);

Also see the NetSample example application in the Palm OS
Examples folder. The function CmdTelnet in the file
CmdTelnet.c shows how to use the Berkeley sockets select
function and how to interpret the results.

See Also NetLibSocketOptionSet

NetLibSend

Purpose Send data to a socket from a single buffer.

Prototype Int16 NetLibSend (UInt16 libRefNum,
NetSocketRef socket, void* bufP, UInt16 bufLen,
UInt16 flags, void* toAddrP, UInt16 toLen,
Int32 timeout, Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

-> bufP Pointer to data to write.

-> bufLen Length of data to write

-> flags One or more netIOFlagxxx flags. See “I/O
Flags.”

-> toAddrP Address to send to (a pointer to a
NetSocketAddrType), or 0.

-> toLen Size of toAddrP buffer.

Net Library
Net Library Functions

980 Palm OS SDK Reference

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns the number of bytes successfully sent. Returns 0 if the
socket has been shut down by the remote host. If the return value is
-1, an error has occurred, and errP contains one of the following
values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

netErrMessageTooBig

netErrSocketNotConnected

netErrSocketClosedByRemote

netErrIPCantFragment

netErrIPNoRoute

netErrIPNoSrc

netErrIPNoDst

netErrIPktOverflow

netErrOutOfCmdBlocks

netErrOutOfPackets

netErrInterfaceNotFound

netErrInterfaceDown

netErrUnreachableDest

netErrNoMultiPktAddr

netErrWouldBlock

Net Library
Net Library Functions

Palm OS SDK Reference 981

Sockets
Equivalent

int sendto(int socket, const void* bufP,
int bufLen, int flags, const void* toAddrP,
int toLen);

int send(int socket, const void* bufP, int bufLen,
int flags);

int write(int socket, const void* bufP,
int bufLen,);

Comments This call attempts to write data to the specified socket and returns
the number of bytes actually sent, which may be less than or equal
to the requested number of bytes. The data is passed in a single
buffer that bufP points to.

For datagram sockets, you must only send a single packet at a time.
If the data is too large to fit in a single UDP packet (1536 bytes), no
data is sent and -1 is returned.

The toAddrP field applies only to datagram sockets without an
existing connection. An error is returned if the datagram socket was
previously connected and toAddrP is specified. Stream-based
sockets, by definition, must have a connection established with a
remote host before data can be written. Raw sockets (supported in
Palm OS version 3.0 and higher) must construct the entire IP header,
including the destination address, before data can be sent; thus, the
address is taken from the data to be sent.

If there isn’t enough buffer space to send any data, this call will
block until there is enough buffer space, or until a timeout.

NOTE: For stream-based sockets, this call may write only a
portion of the desired data. It always returns the number of bytes
actually written. Consequently, the caller should be prepared to
call this routine repeatedly until the desired number of bytes have
been written, or until it returns 0 or -1.

See Also NetLibSendPB, NetUWriteN, NetLibReceive,
NetLibReceivePB, NetLibDmReceive

Net Library
Net Library Functions

982 Palm OS SDK Reference

NetLibSendPB

Purpose Send data to a socket from a scatter-write array.

Prototype Int16 NetLibSendPB (UInt16 libRefnum,
NetSocketRef socket, NetIOParamType* pbP,
UInt16 flags, Int32 timeout, Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

-> pbP Pointer to parameter block containing buffer
info. See the description in
NetLibReceivePB.

-> flags One or more netIOFlagxxx flags. See “I/O
Flags.”

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns the number of bytes successfully sent. Returns 0 if the
socket has been shut down by the remote host. If the return value is
-1, an error has occurred, and errP contains one of the following
values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

netErrMessageTooBig

netErrSocketNotConnected

netErrSocketClosedByRemote

netErrIPCantFragment

Net Library
Net Library Functions

Palm OS SDK Reference 983

netErrIPNoRoute

netErrIPNoSrc

netErrIPNoDst

netErrIPktOverflow

netErrOutOfCmdBlocks

netErrOutOfPackets

netErrInterfaceNotFound

netErrInterfaceDown

netErrUnreachableDest

netErrNoMultiPktAddr

netErrWouldBlock

Sockets
Equivalent

int sendmsg(int socket, const struct msghdr* pbP,
int flags);

Comments This call attempts to write data to the given socket and returns the
number of bytes actually sent, which may be less than or equal to
the requested number of bytes. The data is passed in the scatter-
write array specified in the pbP parameter block.

For datagram sockets, you must only send a single packet at a time.
If the data is too large to fit in a single UDP packet, no data is sent
and -1 is returned.

The toAddrP field applies only to datagram sockets without an
existing connection. An error is returned if the datagram socket was
previously connected and toAddrP is specified. Stream-based
sockets, by definition, must have a connection established with a
remote host before data can be written. Raw sockets (supported in
Palm OS version 3.0 and higher) must construct the entire IP header,
including the destination address, before data can be sent; thus, the
address is taken from the data to be sent.

If there isn’t enough buffer space to send any data, this call will
block until there is space, or until a timeout.

Net Library
Net Library Functions

984 Palm OS SDK Reference

NOTE: For stream-based sockets, this call may write only a
portion of the desired data. It always returns the number of bytes
actually written. Consequently, the caller should be prepared to
call this routine repeatedly until the desired number of bytes have
been written, or until it returns 0 or -1.

See Also NetLibSend, NetLibReceive, NetLibReceivePB,
NetLibDmReceive

NetLibSettingGet

Purpose Retrieves a general setting.

Prototype Err NetLibSettingGet (UInt16 libRefnum,
UInt16 setting, void* valueP, UInt16* valueLenP)

Parameters -> libRefNum Reference number of the net library.

-> setting Setting to retrieve, one of the
NetSettingEnum constants.

<- valueP Space for return value of setting.

<-> valueLenP On entry, size of valueP. On exit, actual size of
setting.

Result Returns one of the following values:

0 Success.

netErrUnknownSetting
Invalid setting constant

netErrPrefNotFound
No current value for setting

netErrBufTooSmall
valueP was too small to hold entire setting.
Setting value was truncated to fit in valueP.

netErrBufWrongSize

Net Library
Net Library Functions

Palm OS SDK Reference 985

Sockets
Equivalent

None

Comments This call retrieves the current value of any general setting. The caller
must pass a pointer to a buffer to hold the return value (valueP),
the size of the buffer (*valueLenP), and the setting ID (setting).
The setting ID is one of the NetSettingEnum constants in the
netSettingEnum type.

Some settings, such as the host table, are variable size. For these
types of settings, you can obtain the actual size required for the
buffer by passing 0 for *valueLenP. The required size is returned
in valueLenP.

Table 54.2 lists the general settings and the type of each setting.

Net Library
Net Library Functions

986 Palm OS SDK Reference

Table 54.2 Net Library General Settings

netSetting... Type Description

ResetAll void Used for NetLibSettingSet only. This will clear all
other settings to their default values.

PrimaryDNS UInt32 IP address of primary DNS server. This setting must be
set to a non-zero IP address in order to support any of
the name lookup calls.

SecondaryDNS UInt32 IP address of secondary DNS server. Set to 0 to have
stack ignore this setting.

DefaultRouter UInt32 IP address of default router. Default value is 0 which is
appropriate for most implementations with only one
attached interface (besides loopback). Packets with
destination IP addresses that don’t lie in the subnet of
an attached interface will be sent to this router through
the default interface specified by the
netSettingDefaultIFCreator/
netSettingDefaultIFInstance pair.

DefaultIFCreator UInt32 Creator of the default network interface. Default value
is 0, which is appropriate for most implementations.
Packets with destination IP addresses that don’t lie in
the subnet of a directly attached interface are sent
through this interface. If this setting is 0, the stack
automatically makes the first non-loopback interface
the default interface.

DefaultIFInstance UInt16 Instance number of the default network interface.
Packets with destination IP addresses that don’t lie in
the subnet of an attached interface are sent through the
default interface. Default value is 0.

HostName Char[] A zero-terminated character string of 64 bytes or less
containing the host name of this machine. This setting
is not actually used by the stack. It’s present mainly for
informative purposes and to support the
gethostname/sethostname sockets API calls. To
clear the host name, call NetLibIFSettingSet with
a valueLen of 0.

Net Library
Net Library Functions

Palm OS SDK Reference 987

See Also NetLibSettingSet, NetLibIFSettingSet,
NetLibIFSettingGet, NetLibMaster

DomainName Char[] A zero-terminated character string of 256 bytes or less
containing the default domain. This default domain
name is appended to all host names before name
lookups are performed. If the name is not found, the
host name is looked up again without appending the
domain name to it. To have the stack not use the
domain name, call NetLibIFSettingSet with a
valueLen of 0.

HostTbl Char[] A null-terminated character string containing the host
table. This table is consulted first before sending a DNS
query to the DNS server(s). To have the stack not use a
host table, call NetLibIFSettingSet with a
valueLen of 0. The format of a host table is a series of
lines separated by ‘\n’ in the following format:

host.company.com A 111.222.333.444

CloseWaitTime UInt32 The close-wait time in milliseconds. This setting must
be specified. See the discussion of the NetLibClose
call for an explanation of the close-wait time.

TraceBits UInt32 A bitfield of various trace bits. See “Tracing Bits.”
Default value is (netTracingErrors |
netTracingAppMsgs). An application can get a list of
events in the trace buffer using the NetLibMaster
call.

TraceSize UInt32 Maximum trace buffer size in bytes. Setting this setting
always clears the existing trace buffer. Default is 2 KB.

TraceRoll UInt8 Boolean value, default is true (non-zero). If true,
trace buffer will roll over when it fills. If false, tracing
will stop as soon as trace buffer fills.

Table 54.2 Net Library General Settings (continued)

netSetting... Type Description

Net Library
Net Library Functions

988 Palm OS SDK Reference

NetLibSettingSet

Purpose Sets a general setting.

Prototype Err NetLibSettingSet (UInt16 libRefnum,
UInt16 setting, void* valueP, UInt16 valueLen)

Parameters -> libRefNum Reference number of the net library.

-> setting Setting to set; one of the NetSettingEnum
constants. See Table 54.2.

-> valueP New value for the setting.

-> valueLen Size of new setting.

Result Returns one of the following values:

0 Success.

netErrUnknownSetting
Invalid setting constant.

netErrInvalidSettingSize
valueLen was invalid for the given setting.

netErrBufTooSmall
valueP was too small to hold entire setting.
Setting value was truncated to fit in valueP.

netErrBufWrongSize

netErrReadOnlySetting

Sockets
Equivalent

None

Comments This call can be used to set the current value of any general setting.
The caller must pass a pointer to a buffer which holds the new value
(valueP), the size of the buffer (valueLen), and the setting ID
(setting). The setting ID is one of the netSettingXXX constants
in the NetSettingEnum type.

See NetLibSettingGet for an explanation of each of the settings.

Net Library
Net Library Functions

Palm OS SDK Reference 989

Of particular interest is the netSettingResetAll setting, which,
if used, will reset all general settings to their default values. When
using this setting, valueP and valueLen are ignored.

See Also NetLibSettingGet, NetLibSettingSet,
NetLibIFSettingSet, NetLibMaster

NetLibSocketAccept

Purpose Accept a connection from a stream-based socket.

Prototype Int16 NetLibSocketAccept (UInt16 libRefnum,
NetSocketRef socket, NetSocketAddrType* sockAddrP,
Int16* addrLenP, Int32 timeout, Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

<- sockAddrP Address of remote host is returned here.

<->addrLenP On entry, length of sockAddrP buffer in bytes.
On exit, length of returned address stored in
*sockAddrP.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns the NetSocketRef of the new socket. If the return value is
-1, an error has occurred, and errP contains one of the following
values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

Net Library
Net Library Functions

990 Palm OS SDK Reference

netErrSocketNotConnected

netErrSocketClosedByRemote

netErrWrongSocketType

netErrSocketNotListening

netErrUnimplemented

Sockets
Equivalent

int accept (int socket, void* sockAddrP,
int* addrLenP);

Comments Accepts the next connection request from a remote client. This call is
only applicable to stream-based sockets. Before calling
NetLibSocketAccept on a socket, a server application needs to:

• Open the socket (NetLibSocketOpen).

• Bind the socket to a local address (NetLibSocketBind).

• Set the maximum pending connection-request queue length
(NetLibSocketListen).

NetLibSocketAccept will block until a successful connection
request is obtained from a remote client. After a successful
connection is made, this call returns with the address of the remote
host in *sockAddrP and the socket descriptor of a new socket as
the return value. You then use the new socket to send and receive
data.

See Also NetLibSocketBind, NetLibSocketListen

Net Library
Net Library Functions

Palm OS SDK Reference 991

NetLibSocketAddr

Purpose Returns the local and remote addresses currently associated with a
socket.

Prototype Int16 NetLibSocketAddr (UInt16 libRefnum,
NetSocketRef socketRef,
NetSocketAddrType* locAddrP, Int16* locAddrLenP,
NetSocketAddrType* remAddrP, Int16* remAddrLenP,
Int32 timeout, Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socketRef Descriptor for the open socket.

<- locAddrP Local address of socket is returned here.

<->locAddrLenP On entry, length of locAddrP buffer in bytes.
On exit, length of returned address stored in
*locAddrP.

<- remAddrP Address of remote host is returned here.

<->remAddrLenP On entry, length of remAddrP buffer in bytes.
On exit, length of returned address stored in
*remAddrP.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns 0 upon success and -1 if an error occurred. If the return
value is -1, errP contains one of the following values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

netErrSocketClosedByRemote

Net Library
Net Library Functions

992 Palm OS SDK Reference

netErrOutOfCmdBlocks

Sockets
Equivalent

int getpeername (int s, struct sockaddr* name,
int* namelen);

int getsockname (int s, struct sockaddr* name,
int* namelen);

Comments This call is mainly useful for stream-based sockets. It allows the
caller to find out what address was bound to a connected socket and
the address of the remote host that it’s connected to.

In Palm OS version 3.0 and higher, if you pass a raw socket to this
function, it returns the instance number and creator of the interface
to which the socket is bound.

See Also NetLibSocketBind, NetLibSocketConnect,
NetLibSocketAccept

NetLibSocketBind

Purpose Assign a local address to a socket.

Prototype Int16 NetLibSocketBind (UInt16 libRefnum,
NetSocketRef socket, NetSocketAddrType* sockAddrP,
Int16 addrLen, Int32 timeout, Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

-> sockAddrP Pointer to the address to give to the socket. This
can be a NetSocketAddrINType or a
NetSocketAddrRawType.

-> addrLen Length of address in *sockAddrP.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

Net Library
Net Library Functions

Palm OS SDK Reference 993

<- errP Contains an error code if the return value is -1.

Result Returns 0 upon success and -1 if an error occurred. If an error
occurred, errP contains one of the following values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

netErrSocketAlreadyConnected

netErrSocketClosedByRemote

netErrOutOfCmdBlocks

Sockets
Equivalent

int bind (int socket, const void* sockAddrP,
int addrLen);

Comments Applications that want to wait for an incoming connection request
from a remote host must call this function. After calling
NetLibSocketBind, applications can call NetLibSocketListen
and then NetLibSocketAccept to make the socket ready to
accept connection requests.

Compatibility Raw sockets are only supported in Palm OS version 3.0 and higher.
See NetLibSocketOpen for instructions on how to bind raw
sockets.

See Also NetLibSocketConnect, NetLibSocketListen,
NetLibSocketAccept

Net Library
Net Library Functions

994 Palm OS SDK Reference

NetLibSocketClose

Purpose Close a socket.

Prototype Int16 NetLibSocketClose (UInt16 libRefnum,
NetSocketRef socket, Int32 timeout, Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns 0 upon success and -1 if an error occurred. If an error
occurred, errP contains one of the following values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

netErrOutOfCmdBlocks

Sockets
Equivalent

int close(int socket);

Comments Closes down a socket and frees all memory associated with it.

See Also NetLibSocketOpen, NetLibSocketShutdown

Net Library
Net Library Functions

Palm OS SDK Reference 995

NetLibSocketConnect

Purpose Assign a destination address to a socket and initiate three-way
handshake if it’s stream based.

Prototype Int16 NetLibSocketConnect (UInt16 libRefnum,
NetSocketRef socket, NetSocketAddrType* sockAddrP,
Int16 addrLen, Int32 timeout, Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

-> sockAddrP Pointer to address to connect to.

-> addrLen Length of address in *sockAddrP.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns 0 upon success and -1 if an error occurred. If an error
occurred, errP contains one of the following values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

netErrSocketBusy

netErrNoInterfaces
Incorrect setup.

netErrPortInUse

netErrQuietTimeNotElapsed

netErrInternal

netErrSocketAlreadyConnected

Net Library
Net Library Functions

996 Palm OS SDK Reference

netErrSocketClosedByRemote

netErrTooManyTCPConnections

netErrWouldBlock

netErrWrongSocketType

netErrOutOfCmdBlocks

Sockets
Equivalent

int connect (int socket, const void* sockAddrP,
int addrLen);

See Also NetLibSocketBind, NetUTCPOpen

NetLibSocketListen

Purpose Put a stream-based socket into passive listen mode.

Prototype Int16 NetLibSocketListen (UInt16 libRefnum,
NetSocketRef socket, UInt16 queueLen,
Int32 timeout, Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

-> queueLen Maximum number of pending connections
allowed.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns 0 upon success and -1 if an error occurred. If an error
occurred, errP contains one of the following values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

Net Library
Net Library Functions

Palm OS SDK Reference 997

netErrOutOfResources

netErrSocketNotOpen

netErrSocketBusy

netErrNoInterfaces
Incorrect setup.

netErrPortInUse

netErrInternal

netErrSocketAlreadyConnected

netErrSocketClosedByRemote

netErrWrongSocketType

netErrQuietTimeNotElapsed

netErrOutOfCmdBlocks

Sockets
Equivalent

int listen (int socket, int queueLen);

Comments Sets the maximum allowable length of the queue for pending
connections. This call is only applicable to stream-based (TCP/IP)
sockets.

After a socket is created and bound to a local address using
NetLibSocketBind, a server application can call
NetLibSocketListen and then NetLibSocketAccept to
accept connections from remote clients.

The queueLen is currently quietly limited to 1 (higher values are
ignored).

See Also NetLibSocketBind, NetLibSocketAccept

Net Library
Net Library Functions

998 Palm OS SDK Reference

NetLibSocketOpen

Purpose Open a new socket.

Prototype NetSocketRef NetLibSocketOpen (UInt16 libRefnum,
NetSocketAddrEnum domain, NetSocketTypeEnum type,
Int16 protocol, Int32 timeout, Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> domain Address domain. See NetSocketAddrEnum.

-> type Desired type of connection. See
NetSocketTypeEnum.

-> protocol Protocol to use. This parameter is currently
ignored.

For raw sockets in the netSocketAddrINET
domain, specify one of the following:

netSocketProtoIPTCP

netSocketProtoIPUDP

netSocketProtoIPRAW

For all other socket types or for raw sockets in
the raw domain, this parameter is ignored.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns the NetSocketRef of the opened socket or -1 if an error
occurred. If an error occurred, errP contains one of the following
values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

Net Library
Net Library Functions

Palm OS SDK Reference 999

netErrNoMoreSockets

netErrOutOfCmdBlocks

netErrOutOfMemory

Sockets
Equivalent

int socket(int domain, int type, int protocol);

Comments Allocates memory for a new socket and opens it.

Raw sockets are supported in Palm OS version 3.0 and higher. Two
types of raw sockets are supported:

• Raw sockets in the netSocketAddrINET domain

In this case, you must bind the socket to an IP address using
NetLibSocketBind, passing a NetSocketAddrINType
structure for the socket address. The port field is ignored.

For applications that use raw sockets in the INET domain, the
net library checks the destination IP address of all incoming
packets to see if it matches any of those raw sockets. If it
does, the packet is enqueued directly into the matching
socket and is not passed to the protocol stack.

When an application sends data through raw sockets in the
IP domain, the net library packages the data into a packet
and passes it directly to the interface’s send routine. You are
responsible for forming the entire IP header, including any
necessary checksums, source and destination IP address, and
so on.

• Raw sockets in the netSocketAddrRaw domain with no
protocol

In this case, you must bind the socket to an interface using
NetLibSocketBind, passing a NetSocketAddrRawType
structure for the socket address. The instance and creator
specify which interface the caller wants to receive raw
packets from.

When an interface is bound to a raw socket with no protocol,
the net library places that interface into raw mode. In raw

Net Library
Net Library Functions

1000 Palm OS SDK Reference

mode, the interface passes all incoming packets, no matter
what the link layer protocol, to its raw receive function.

When an application sends data through a raw socket with
no protocol, the net library packages the data into a packet
and passes it directly to the interface’s send routine.

The interface remains in raw mode until the raw socket is
closed.

Compatibility Raw sockets supported only in Palm OS version 3.0 and higher.

See Also NetLibSocketClose, NetUTCPOpen

NetLibSocketOptionGet

Purpose Retrieves the current value of a socket option.

Prototype Int16 NetLibSocketOptionGet (UInt16 libRefnum,
NetSocketRef socket, UInt16 level, UInt16 option,
void* optValueP, UInt16 * optValueLenP,
Int32 timeout, Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

-> level Level of the option, one of the
NetSocketOptLevelEnum constants. See
NetLibSocketOptionSet.

-> option One of the NetSocketOptEnum constants. See
NetLibSocketOptionSet.

<- optValueP Pointer to variable holding new value of
option.

<-> optValueLenP
Size of variable pointed to by optValueP on
entry. Actual size of return value on exit.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

Net Library
Net Library Functions

Palm OS SDK Reference 1001

<- errP Contains an error code if the return value is -1.

Result Returns 0 upon success and -1 if an error occurred. If an error
occurred, errP contains one of the following values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

netErrUnimplemented

netErrWrongSocketType

netErrInvalidSettingSize

Sockets
Equivalent

int getsockopt (int socket, int level, int option,
const void* optValueP, int* optValueLenP);

Comments Returns the current value of a socket option. The caller passes a
pointer to a variable to hold the returned value (in optValueP) and
the size of this variable (in *optValueLenP). On exit, *optValueP
is updated with the actual size of the return value.

For all of the fixed size options (every option except
netSocketOptIPOptions), *optValueLenP is unmodified on
exit and this call does its best to return the value in the caller’s
desired type size.

For compatibility with existing Internet applications, this call is
quite flexible on the *optValueLenP parameter. If the desired type
for an option is FLAG, this call supports an *optValueLenP of 1, 2,
or 4. If the desired type for an option is int, it supports an
*optValueLenP of 2 or 4.

See NetLibSocketOptionSet for a list of available options.

See Also NetLibSocketOptionSet

Net Library
Net Library Functions

1002 Palm OS SDK Reference

NetLibSocketOptionSet

Purpose Set a socket option.

Prototype Int16 NetLibSocketOptionSet (UInt16 libRefnum,
NetSocketRef socket, UInt16 level, UInt16 option,
void* optValueP, UInt16 optValueLen,
Int32 timeout, Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

-> level Level of the option, one of the
NetSocketOptLevelEnum constants. See the
comments section.

-> option One of the NetSocketOptEnum constants. See
the comments section.

-> optValueP Pointer to the variable holding the new value of
the option.

-> optValueLen Size of variable pointed to by optValueP.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns 0 upon success and -1 if an error occurred. If an error
occurred, errP contains one of the following values:

0 No error.

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

netErrUnimplemented

netErrWrongSocketType

Net Library
Net Library Functions

Palm OS SDK Reference 1003

netErrInvalidSettingSize

Sockets
Equivalent

int setsockopt (int socketRef, int level,
int option, const void* optValueP,
int optValueLen);

Comments Sets various options associated with a socket. The caller passes a
pointer to the new option value in optValueP and the size of the
option in optValueLen.

Table 54.3 lists the available options.

• The Level column specifies the option level, which is one of
the netSocketOptLevelXXX constants.

• The Option column lists the option, which is one of the
netSocketOptXXX constants.

• The G/S column lists whether this option can be fetched with
the NetLibSocketOptionGet call (G) and/or set (S) with
this call.

• The type column lists the data type of the option.

• The I column specifies whether or not this option is currently
implemented.

Table 54.3 Net Library Socket Options

netSocket
OptLevel... netSocketOpt... G/S Type I Description

IP IPOptions GS UInt8[] N Options in IP Header

TCP TCPNoDelay GS FLAG Y Don’t delay send to
coalesce packets

TCP TCPMaxSeg G int Y Get TCP maximum
segment size

Socket SockDebug GS FLAG N Turn on recording of
debug info

Socket SockAcceptConn G FLAG N Socket has had listen

Socket SockReuseAddr GS FLAG N Allow local address
reuse

Net Library
Net Library Functions

1004 Palm OS SDK Reference

Socket SockKeepAlive GS FLAG Y Keep connections alive

Socket SockDontRoute GS FLAG N Just use interface
addresses

Socket SockBroadcast GS FLAG N Permit sending of
broadcast messages

Socket SockUseLoopback GS FLAG N Bypass hardware when
possible

Socket SockLinger GS NetSocket
LingerType

Y Linger on close if data
present
NetSocketLingerTy
pe is a structure with
two fields: onOff
(true or false) and
time (linger time in
seconds).

Socket SockOOBInLine GS FLAG N Leave received OOB
data in-line

Socket SockSndBufSize GS int N Send buffer size

Socket SockRcvBufSize GS int N Receive buffer size

Socket SockSndLowWater GS int N Send low-water mark

Socket SockRcvLowWater GS int N Receive low-water mark

Socket SockSndTimeout GS int N Send timeout

Socket SockRcvTimeout GS int N Receive timeout

Socket SockErrorStatus G int Y Get error status and
clear

Socket SockSocketType G int Y Get socket type

Socket SockNonBlocking GS FLAG Y Set non-blocking mode
on/off

Table 54.3 Net Library Socket Options (continued)

netSocket
OptLevel... netSocketOpt... G/S Type I Description

Net Library
Net Library Functions

Palm OS SDK Reference 1005

For compatibility with existing Internet applications, this call is
quite flexible on the optValueLen parameter. If the desired type
for an option is FLAG, this call accepts an optValueLen of 1, 2, or 4.
If the desired type for an option is int, it accepts an optValueLen
of 2 or 4.

Except for the netSocketOptSockNonBlocking option, all
options listed above have equivalents in the sockets API. The
netSocketOptSockNonBlocking option was added to this call
in the net library in order to implement the functionality of the
UNIX fcntl() control call, which can be used to turn nonblocking
mode on and off for sockets.

See Also NetLibSocketOptionGet

NetLibSocketShutdown

Purpose Shut down a socket in one or both directions.

Prototype Int16 NetLibSocketShutdown (UInt16 libRefnum,
NetSocketRef socket, Int16 direction,
Int32 timeout, Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socket Descriptor for the open socket.

-> direction Direction to shut down. One of the
NetSocketDirEnum constants. Specifically:

netSocketDirInput
netSocketDirOutput
netSocketDirBoth

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Contains an error code if the return value is -1.

Result Returns 0 upon success and -1 if an error occurred. If an error
occurred, errP contains one of the following values:

0 No error.

Net Library
Net Library Functions

1006 Palm OS SDK Reference

netErrTimeout Call timed out.

netErrNotOpen The referenced net library has not been opened
yet.

netErrParamErr

netErrSocketNotOpen

netErrNoMultiPktAddr

netErrOutOfCmdBlocks

Sockets
Equivalent

int shutdown (int socket, int direction);

Comments Shuts down communication in one or both directions on a socket.

If direction is netSocketDirInput, the socket is marked as down
in the receive direction and further read operations from it return a
netErrSocketInputShutdown error.

NetLibTracePrintF

Purpose Store debugging information in the net library’s trace buffer.

Prototype Err NetLibTracePrintF (UInt16 libRefnum,
Char *formatStr, ...)

Parameters -> libRefNum Reference number of the net library.

-> formatStr A printf style format string.

-> ... Arguments to the format string.

Result Returns 0 upon success or netErrNotOpen if the net library has
not been opened.

Sockets
Equivalent

None

Comments This call is a convenient debugging tool for developing Internet
applications. It stores a message into the net library’s trace buffer,
which can later be dumped using the NetLibMaster call. The net

Net Library
Net Library Functions

Palm OS SDK Reference 1007

library’s trace buffer is used to store run-time errors that the net
library encounters as well as errors and messages from network
interfaces and from applications that use this call.

The formatStr parameter is a printf style format string which
supports the following format specifiers:

%d, %i, %u, %x, %s, %c

but it does not support field widths, leading 0’s etc.

Note that the netTracingAppMsgs bit of the
netSettingTraceBits setting must be set using the call
NetLibSettingSet(...netSettingTraceBits...).
Otherwise, this routine will do nothing.

See Also NetLibTracePutS, NetLibMaster, NetLibSettingSet

NetLibTracePutS

Purpose Store debugging information in the net library’s trace buffer.

Prototype Err NetLibTracePutS (UInt16 libRefnum, Char *strP)

Parameters -> libRefNum Reference number of the net library.

-> strP String to store in the trace buffer.

Result Returns 0 upon success or netErrNotOpen if the net library has
not been opened.

Sockets
Equivalent

None

Comments This call is a convenient debugging tool for developing Internet
applications. It will store a message into the net library’s trace buffer
which can later be dumped using the NetLibMaster call. The net
library’s trace buffer is used to store run-time errors that the net
library encounters as well as errors and messages from network
interfaces and from applications that use this call.

Net Library
Net Library Functions

1008 Palm OS SDK Reference

Note the netTracingAppMsgs bit of the netSettingTraceBits
setting must be set using the
NetLibSettingSet(...netSettingTraceBits...) call or
this routine will do nothing.

See Also NetLibTracePrintF, NetLibMaster, NetLibSettingSet.

NetNToHL

Purpose Macro that converts a 32-bit value from network to host byte order.

Prototype NetNToHL (x)

Parameters -> x 32-bit value to convert.

Result Returns x in host byte order.

Errors none

Sockets
Equivalent

ntohl()

See Also NetNToHS, NetHToNL, NetHToNS

Net Library
Net Library Functions

Palm OS SDK Reference 1009

NetNToHS

Purpose Macro that converts a 16-bit value from network to host byte order.

Prototype NetNToHS (x)

Parameters -> x 16-bit value to convert.

Result Returns x in host byte order.

Errors None

Sockets
Equivalent

ntohs()

See Also NetHToNL, NetNToHL, NetHToNS

Palm OS SDK Reference 1011

55
Network Utilities
This chapter describes network utilities provided in the module
NetSocket.c. These utilities are convenience functions that you
can use in place of net library functions in applications that use the
net library. You can find NetSocket.c in the folder
Libraries\Net\Src. (On Palm OS® 3.5, NetSocket.c is in the
folder CodeWarrior Libraries\Comms\NetSocket\Src.)

The include file for the functions described in this chapter is
<unix/sys_socket.h>. This header file is not included by any
other Palm header file; you must explicitly include it in your code.

For more information on NetSocket.c and sys_socket.h, see
the chapter “Network Communication” in the Palm OS
Programmer’s Companion.

Network Utility Functions

NetUReadN

Purpose Reads a specified number of bytes from a socket.

Prototype Int32 NetUReadN (NetSocketRef fd, UInt8* bufP,
UInt32 numBytes)

Parameters -> fd Descriptor for the open socket.

<- bufP Pointer to buffer to hold received data.

-> numBytes Number of bytes to read.

Result Returns the number of bytes actually read. If the return value is less
than 0, an error occurred.

Network Uti l i t ies
Network Utility Functions

1012 Palm OS SDK Reference

Comments This function repeatedly calls NetLibReceive until numBytes
have been read or until NetLibReceive returns an error.

See Also NetUWriteN

NetUTCPOpen

Purpose Opens a TCP (streams-based) socket and connects it to a server.

Prototype NetSocketRef NetUTCPOpen (Char* hostName,
Char* serviceName, Int16 port)

Parameters -> hostName Remote host, given either by name or by dotted
decimal address.

-> serviceName The name of a network service or NULL if the
port parameter is used. Possible services are
“echo”, “discard”, “daytime”, “qotd”,
“chargen”, “ftp-data”, “ftp”, “telnet”, “smtp”,
“time”, “name”, “finger”, “pop2”, “pop3”,
“nntp”, “imap2”.

-> port The number of the port to connect to on the
remote host. Ignored if serviceName is not
NULL.

Result Returns the socket descriptor of the socket that was connected, or -1
if an error occurred.

Comments If serviceName is given, this function looks up the port number
for that service on the remote host and uses it for the connection.

This function is the equivalent of calling NetLibSocketOpen and
NetLibSocketConnect (or socket and connect).

NOTE: This function does not return specific reasons for failure
if there is a failure. This function is not production-quality code. It
is provided as a quick and dirty way of creating a connection and
as sample code that can be used as a reference.

Network Uti l i t ies
Network Utility Functions

Palm OS SDK Reference 1013

NetUWriteN

Purpose Writes the specified number of bytes to a socket.

Prototype Int32 NetUWriteN (NetSocketRef fd, UInt8* bufP,
UInt32 numBytes)

Parameters -> fd Descriptor for the open socket.

-> bufP Pointer to buffer to write.

-> numBytes Number of bytes to write.

Result Returns the number of bytes actually sent. If the return value is less
than 0, an error occurred.

Comments This function repeatedly calls NetLibSend until numBytes have
been written or until NetLibSend returns an error.

See Also NetUReadN

Palm OS SDK Reference 1015

56
New Serial Manager
This chapter provides reference material for the new serial manager
API:

• New Serial Manager Data Structures

• New Serial Manager Constants

• New Serial Manager Functions

• New Serial Manager Application-Defined Function

The header file SerialMgr.h declares the serial manager API. For
more information on the new serial manager, see the chapter “Serial
Communication” in the Palm OS Programmer’s Companion.

New Serial Manager Data Structures

DeviceInfoType
The DeviceInfoType structure defines information about a serial
device. This structure is returned by the SrmGetDeviceInfo
function.

typedef struct DeviceInfoType {
UInt32 serDevCreator;
UInt32 serDevFtrInfo;
UInt32 serDevMaxBaudRate;
UInt32 serDevHandshakeBaud;
Char *serDevPortInfoStr;
UInt8 reserved[8]; // Reserved
} DeviceInfoType;
typedef DeviceInfoType *DeviceInfoPtr;

New Serial Manager
New Serial Manager Data Structures

1016 Palm OS SDK Reference

Value Descriptions

SrmCtlEnum
The SrmCtlEnum enumerated type specifies a serial control
operation. Specify one of these enumerated types for the op
parameter to the SrmControl call.

typedef enum SrmCtlEnum {
srmCtlFirstReserved = 0, // RESERVE 0
srmCtlSetBaudRate,
srmCtlGetBaudRate,
srmCtlSetFlags,
srmCtlGetFlags,
srmCtlSetCtsTimeout,
srmCtlGetCtsTimeout,
srmCtlStartBreak,
srmCtlStopBreak,
srmCtlStartLocalLoopback,
srmCtlStopLocalLoopback,
srmCtlIrDAEnable,
srmCtlIrDADisable,
srmCtlRxEnable,
srmCtlRxDisable,
srmCtlEmuSetBlockingHook,
srmCtlUserDef,

serDevCreator Four-character creator type for serial
driver ('sdrv').

serDevFtrInfo Flags defining features of this serial
hardware. Specify one of the flags
described in Serial Capabilities
Constants.

serDevMaxBaudRate Maximum baud rate for this device.

serDevHandshakeBaud Hardware handshaking is
recommended for baud rates over this
rate.

serDevPortInfoStr Description of serial hardware device
or virtual device.

New Serial Manager
New Serial Manager Data Structures

Palm OS SDK Reference 1017

srmCtlGetOptimalTransmitSize,
srmCtlLAST
} SrmCtlEnum;

Value Descriptions

srmCtlSetBaudRate Sets the current baud rate for the serial
hardware.

srmCtlGetBaudRate Gets the current baud rate for the serial
hardware.

srmCtlSetFlags Sets the current flag settings for the serial
hardware. Specify flags from the set described
in Serial Settings Constants.

srmCtlGetFlags Gets the current flag settings for the serial
hardware.

srmCtlSetCtsTimeout Sets the current CTS timeout value for
hardware handshaking.

srmCtlGetCtsTimeout Gets the current CTS timeout value for
hardware handshaking.

srmCtlStartBreak Turn RS232 break signal on. Caller is
responsible for turning this signal on and off
and insuring it is on long enough to generate a
viable break.

srmCtlStopBreak Turn RS232 break signal off.

srmCtlStartLocalLoopback Start local loopback test.

srmCtlStopLocalLoopback Stop local loopback test.

srmCtlIrDAEnable Enable IrDA connection on this serial port.

srmCtlIrDADisable Disable IrDA connection on this serial port.

srmCtlRxEnable Enable receiver (for IrDA).

srmCtlRxDisable Disable receiver (for IrDA).

srmCtlEmuSetBlockingHook Set a blocking hook routine for emulation mode
only. Not supported on the Palm device.

New Serial Manager
New Serial Manager Data Structures

1018 Palm OS SDK Reference

SrmCallbackEntryType
The SrmCallbackEntryType structure defines a callback function
for the SrmControl function’s srmCtlEmuSetBlockingHook
opCode.

typedef struct SrmCallbackEntryType {
BlockingHookProcPtr funcP;
UInt32 userRef; // ref value to pass to callback
} SrmCallbackEntryType;

Value Descriptions

srmCtlUserDef This is a user-defined function that 3rd party
hardware developers can use to set or retrieve
hardware-specific information from the serial
driver. This opCode invokes the SdrvControl
(or VdrvControl) function with its user-
defined opCode and the parameters are passed
directly through to the serial driver. A serial
driver that does not handle this function
returns a serErrBadParam error.

srmCtlGetOptimalTransmitSize Ask the port for the most efficient buffer size
for transmitting data packets. This opCode
returns an error (buffering not necessary), 0
(buffering requested, but application can
choose buffer size), or a number > 0
(recommended buffer size).

funcP Function pointer to the callback function. Pass NULL if
you no longer want a callback function to be called.

userRef User-defined reference value passed to the callback
function.

New Serial Manager
New Serial Manager Constants

Palm OS SDK Reference 1019

New Serial Manager Constants

Serial Capabilities Constants
These constants describe serial hardware capabilities.

Serial Settings Constants
These constants identify bit flags that correspond to various serial
hardware settings.

serDevCradlePort Serial hardware controls RS-232
serial from cradle connector of
Palm device.

serDevRS232Serial Serial hardware has RS-232 line
drivers

serDevIRDACapable Serial hardware has IR line
drivers and generates IrDA mode
serial signals

serDevModemPort Serial hardware drives modem
connection

serDevCncMgrVisible Serial device port name string is
to be displayed in the Connection
panel.

srmSettingsFlagStopBitsM mask for stop bits field

srmSettingsFlagStopBits1 1 stop bit

srmSettingsFlagStopBits2 2 stop bits

srmSettingsFlagParityOnM mask for parity on

srmSettingsFlagParityEvenM mask for parity even

srmSettingsFlagXonXoffM mask for Xon/Xoff flow control (not
implemented)

srmSettingsFlagRTSAutoM mask for RTS receive flow control

srmSettingsFlagCTSAutoM mask for CTS transmit flow control

New Serial Manager
New Serial Manager Constants

1020 Palm OS SDK Reference

Status Constants
These constants identify bit flags that correspond to the status of
serial signals. They can be returned by the SrmGetStatus function.

srmSettingsFlagBitsPerCharM mask for bits per character

srmSettingsFlagBitsPerChar5 5 bits per character

srmSettingsFlagBitsPerChar6 6 bits per character

srmSettingsFlagBitsPerChar7 7 bits per character

srmSettingsFlagBitsPerChar8 8 bits per character

srmSettingsFlagFlowControl Protect the receive buffer from software
overruns. When this flag, and
srmSettingsFlagRTSAutoM are set, it
causes the new serial manager to assert RTS to
prevent the transmitting device from
continuing to send data when the receive buffer
is full. Once the application receives data from
the buffer, RTS is deasserted to allow data
reception to resume.
Note that this feature effectively prevents
software overrun line errors but may also cause
CTS timeouts on the transmitting device if the
RTS line is asserted longer than the defined
CTS timeout value.

srmStatusCtsOn CTS line is active.

srmStatusRtsOn RTS line is active.

srmStatusDsrOn DSR line is active.

srmStatusBreakSigOn Break signal is active.

New Serial Manager
New Serial Manager Functions

Palm OS SDK Reference 1021

New Serial Manager Functions

SrmClearErr

Purpose Clears the port of any line errors.

Prototype Err SrmClearErr(UInt16 portId)

Parameters -> portID Port ID.

Result

Compatibility Implemented only if New Serial Manager Feature Set is present.

SrmClose

Purpose Closes a serial port and makes it available to other applications,
regardless of whether the port is a foreground or background port.

Prototype Err SrmClose(UInt16 portID)

Parameters -> portID Port ID for port to be closed.

Result

Comments If a foreground port is being closed and a background port exists,
the background will have access to the port as long as another
foreground port is not opened (via SrmOpen).

Compatibility Implemented only if New Serial Manager Feature Set is present.

See Also SrmOpen, SrmOpenBackground

0 No error.

0 No error.

serErrBadPort This port doesn’t exist.

New Serial Manager
New Serial Manager Functions

1022 Palm OS SDK Reference

SrmControl

Purpose Performs a serial control function.

Prototype Err SrmControl(UInt16 portId, UInt16 op,
void *valueP, UInt16 *valueLenP)

Parameters -> portID Port ID.

-> op Control operation to perform. Specify one of
the SrmCtlEnum enumerated types.

<-> valueP Pointer to a value to use for the operation. See
Comments for details.

<-> valueLenP Pointer to the size of *valueP. See Comments
for details.

Comments Table 56.1 shows what to pass for the valueP and valueLenP
parameters for each of the operation codes. Control codes not listed
do not use these parameters.

Table 56.1 SrmControl Parameters

Operation Code Parameters

srmCtlSetBaudRate -> valueP = Pointer to Int32 (baud rate)
-> valueLenP = Pointer to sizeof(Int32)

srmCtlGetBaud <- valueP = Pointer to Int32 (baud rate)
<- valueLenP = Pointer to Int16

srmCtlSetFlags -> valueP = Pointer to Uint32 (bitfield; see
Serial Settings Constants)
-> valueLenP = Pointer to sizeof(UInt32)

srmCtlGetFlags <- valueP = Pointer to UInt32 (bitfield)
<- valueLenP = Pointer to Int16

srmCtlSetCtsTimeout -> valueP = Pointer to Int32 (timeout value)
-> valueLenP = Pointer to sizeof(Int32)

srmCtlGetCtsTimeout <- valueP = Pointer to Int32 (timeout value)
<- valueLenP = Pointer to Int16

New Serial Manager
New Serial Manager Functions

Palm OS SDK Reference 1023

Compatibility Implemented only if New Serial Manager Feature Set is present.

srmCtlEmuSetBlockingHook <-> valueP = Pointer to
SrmCallbackEntryType struct
<-> valueLenP = Pointer to
sizeof(SrmCallbackEntryType)
Returns the old settings in the first parameter.

srmCtlUserDef <-> valueP = Pointer passed to the serial or
virtual driver
<-> valueLenP = Pointer to sizeof(Int32)
For a serial driver, these pointers are passed to
the SdrvControl function’s
sdrvOpCodeUserDef opCode. For a virtual
driver, these pointers are passed to the
VdrvControl function’s
vdrvOpCodeUserDef opCode.

srmCtlGetOptimalTransmitSize <- valueP = Pointer to Int32
<- valueLenP = Pointer to sizeof(Int32)
If an error is returned by SrmControl, no
buffering should be done. If valueP points to
zero, buffering is requested, but the
transmitting application can determine the
buffer size. If valueP points to a number > 0,
then try to send data in blocks of this number
of bytes, as this is the most efficient block size
for this particular device.

Table 56.1 SrmControl Parameters (continued)

Operation Code Parameters

New Serial Manager
New Serial Manager Functions

1024 Palm OS SDK Reference

SrmGetDeviceCount

Purpose Returns the number of available serial devices.

Prototype Err SrmGetDeviceCount(UInt16* numOfDevicesP)

Parameters <- numOfDevicesPPointer to address where the number of serial
devices is returned.

Result

Compatibility Implemented only if New Serial Manager Feature Set is present.

See Also SrmGetDeviceInfo

SrmGetDeviceInfo

Purpose Returns information about a serial device.

Prototype Err SrmGetDeviceInfo(UInt32 deviceID,
DeviceInfoType* deviceInfoP)

Parameters -> deviceID ID of serial device to get information for. You
can pass a zero-based index (0, 1, 2, ...), a valid
port ID returned from SrmOpen, or a 4-
character port name (such as 'u328', 'u650', or
'ircm').

<- deviceInfoP Pointer to a DeviceInfoType structure where
information about the device is returned.

Result

0 No error.

0 No error.

serErrBadPort This port doesn’t exist.

New Serial Manager
New Serial Manager Functions

Palm OS SDK Reference 1025

Compatibility Implemented only if New Serial Manager Feature Set is present.

See Also SrmGetDeviceCount

SrmGetStatus

Purpose Returns status information about the serial hardware.

Prototype Err SrmGetStatus(UInt16 portId,
UInt32* statusFieldP), UInt16* lineErrsP)

Parameters -> portId Port ID.

<- statusFieldP Pointer to address where hardware status
information for the port is returned. This is a
32-bit field using the flags described in Status
Constants.

<- lineErrsP Pointer to address where the number of line
errors for the port is returned.

Result

Comments Typically, SrmGetStatus is called to retrieve the line errors for the
port if some of the send and receive functions return a
serErrLineErr error code.

Compatibility Implemented only if New Serial Manager Feature Set is present.

0 No error.

serErrBadPort This port doesn’t exist.

New Serial Manager
New Serial Manager Functions

1026 Palm OS SDK Reference

SrmOpen

Purpose Opens a foreground port connection with the specified port name or
logical port number.

Prototype Err SrmOpen(UInt32 port, UInt32 baud,
UInt16* newPortIdP)

Parameters -> port Port name or logical port number to be opened.
For information about how to identify a port,
see “Specifying the portID Parameter” on
page 236 in the Palm OS Programmer’s
Companion.

-> baud Initial baud rate of port.

<- newPortIdP Pointer to address where the port ID to be used
with other new serial manager functions is
returned.

Result

Comments Only one application or task may have access to a particular serial
port at any time.

Compatibility Implemented only if New Serial Manager Feature Set is present.

See Also SrmOpenBackground

0 No error.

serErrAlreadyOpen This port already has an installed
foreground owner.

serErrBadPort This port doesn’t exist.

memErrNotEnoughSpace There was not enough memory
available to open the port.

New Serial Manager
New Serial Manager Functions

Palm OS SDK Reference 1027

SrmOpenBackground

Purpose Allows a task to open, initialize, and use the port, but always
relinquishes control of the port when another task opens the port
with the SrmOpen call.

Prototype Err SrmOpenBackground(UInt32 port, UInt32 baud,
UInt16* newPortIdP)

Parameters -> port Physical or logical port number to be opened.

-> baud Initial baud rate of port.

<- newPortIdP Pointer to address where the port ID to be used
with other new serial manager functions is
returned.

Result

Comments This function is provided to support tasks that want to use a serial
device to receive data only when no other task is using the port.

If a background port is forced to surrender control of the hardware
as a result of another task opening a foreground connection, all
buffers for the background port are flushed. After this active task
closes the port, active control of the port is returned to the
background task. Only one task can have background ownership of
the port.

Note that background ports have limited functionality: they can
only receive data and notify owning clients of what data has been
received.

0 No error.

serErrAlreadyOpen This port already has an installed
background owner.

serErrBadPort This port doesn’t exist.

memErrNotEnoughSpace There was not enough memory
available to open the port.

New Serial Manager
New Serial Manager Functions

1028 Palm OS SDK Reference

Compatibility Implemented only if New Serial Manager Feature Set is present.

See Also SrmOpen

SrmPrimeWakeupHandler

Purpose Sets the number of received bytes that triggers a call to the wakeup
handler function.

Prototype Err SrmPrimeWakeupHandler(UInt16 portId,
UInt16 minBytes)

Parameters -> portId Port ID.

-> minBytes Number of bytes that must be received before
wakeup handler is called. Typically, this is set to
1.

Result

Comments This function primes a wakeup handler installed by
SrmSetWakeupHandler.

Compatibility Implemented only if New Serial Manager Feature Set is present.

See Also SrmSetWakeupHandler, WakeupHandlerProc

SrmReceive

Purpose Receives a specified number of bytes.

Prototype UInt32 SrmReceive(UInt16 portId, void *rcvBufP,
UInt32 count, Int32 timeout, Err* errP)

Parameters -> PortId Port ID.

0 No error.

serErrBadPort This port doesn’t exist.

New Serial Manager
New Serial Manager Functions

Palm OS SDK Reference 1029

<- rcvBufP Pointer to buffer where received data is to be
returned.

-> count Length of data buffer (in bytes). This specifies
the number of bytes to receive.

-> timeout The amount of time (in ticks) that the new serial
manager waits to receive the requested block of
data. At the end of the timeout, data received
up to that time is returned.

<- errP Error code.

Result Number of bytes of data actually received.

Comments The following error codes can be returned in *errP:

Compatibility Implemented only if New Serial Manager Feature Set is present.

See Also SrmReceiveCheck, SrmReceiveFlush, SrmReceiveWait

SrmReceiveCheck

Purpose Checks the receive FIFO and returns the number of bytes in the
serial receive queue.

Prototype Err SrmReceiveCheck(UInt16 portId,
UInt32* numBytesP)

Parameters -> portId Port ID.

0 No error.

serErrBadPort This port doesn’t exist.

serErrTimeoutErr Unable to receive data within the
specified ctsTimeout period.

New Serial Manager
New Serial Manager Functions

1030 Palm OS SDK Reference

<- numBytesP Number of bytes in the receive queue.

Result

Compatibility Implemented only if New Serial Manager Feature Set is present.

See Also SrmReceive, SrmReceiveFlush, SrmReceiveWait

SrmReceiveFlush

Purpose Flushes the receive FIFOs.

Prototype Err SrmReceiveFlush(UInt16 portId, Int32 timeout)

Parameters -> portId Port ID.

-> timeout Timeout value, in ticks.

Result

Comments The timeout value forces this function to wait a period of ticks
after flushing the port to see if more data shows up to be flushed. If
more data arrives within the timeout period, the port is flushed
again and the timeout counter is reset and waits again. The function
only exits after no more bytes are received by the port for the full
timeout period since the last flush of the port. To avoid this waiting
behavior, specify 0 for the timeout period.

Compatibility Implemented only if New Serial Manager Feature Set is present.

See Also SrmReceive, SrmReceiveCheck, SrmReceiveWait

0 No error.

serErrBadPort This port doesn’t exist.

0 No error.

serErrBadPort This port doesn’t exist.

New Serial Manager
New Serial Manager Functions

Palm OS SDK Reference 1031

SrmReceiveWait

Purpose Waits until some number of bytes of data have arrived into the serial
receive queue, then returns.

Prototype Err SrmReceiveWait(UInt16 portId, UInt32 bytes,
Int32 timeout)

Parameters -> portId Port ID.

-> bytes Number of bytes to wait for.

-> timeout Timeout value, in ticks.

Result

Comments If this function returns no error, the application can either check the
number of bytes currently in the receive queue (using
SrmReceiveCheck) or it can just specify a buffer and receive the
data by calling SrmReceive.

Compatibility Implemented only if New Serial Manager Feature Set is present.

See Also SrmReceive, SrmReceiveCheck, SrmReceiveFlush

SrmReceiveWindowClose

Purpose Closes direct access to the new serial manager’s receive queue.

Prototype Err SrmReceiveWindowClose(UInt16 portId,
UInt32 bytesPulled)

Parameters -> portId Port ID.

0 No error.

serErrBadPort This port doesn’t exist.

serErrTimeoutErr Unable to receive data within the
specified timeout period.

New Serial Manager
New Serial Manager Functions

1032 Palm OS SDK Reference

-> bytesPulled Number of bytes the application read from the
receive queue.

Result

Comments Call this function when the application has read as many bytes as it
needs out of the receive queue or it has read all the available bytes.

Compatibility Implemented only if New Serial Manager Feature Set is present.

See Also SrmReceiveWindowOpen

SrmReceiveWindowOpen

Purpose Provides direct access to the new serial manager’s receive queue.

Prototype Err SrmReceiveWindowOpen(UInt16 portId,
UInt8 **bufPP, UInt32* sizeP)

Parameters -> portId Port ID.

<- bufPP Pointer to a pointer to the receive buffer.

<- sizeP Available bytes in buffer.

Result

Comments This function lets applications directly access the new serial
manager’s receive queue to eliminate buffer copying by the serial
manager. This access is a “back door” route to the received data.

0 No error.

serErrBadPort This port doesn’t exist.

0 No error.

serErrBadPort This port doesn’t exist.

serErrLineErr The data in the queue contains line
errors.

New Serial Manager
New Serial Manager Functions

Palm OS SDK Reference 1033

After retrieving data from the buffer, the application must call
SrmReceiveWindowClose.

Applications that want to empty the receive buffer entirely should
call the SrmReceiveWindowOpen and
SrmReceiveWindowClose functions repeatedly until the buffer
size returned is 0.

IMPORTANT: Once an application calls
SrmReceiveWindowOpen, it should not attempt to receive data
via the normal method of calling SrmReceive or
SrmReceiveWait, as these functions interfere with direct access
to the receive queue.

Compatibility Implemented only if New Serial Manager Feature Set is present.

See Also SrmReceiveWindowClose

SrmSend

Purpose Sends a block of data out the specified port.

Prototype UInt32 SrmSend(UInt16 portId, void *bufP,
UInt32 count, Err* errP)

Parameters -> portId Port ID.

-> bufp Pointer to data to send.

-> count Length of data buffer, in bytes.

<- errP Error code. See Comments section for details.

Result Number of bytes of data actually sent.

Comments If *errP is NULL, the result value should be the same as the count
parameter. If *errP is not NULL, then the result equals the number
of bytes sent before the error occurred.

The following error codes can be returned in *errP:

New Serial Manager
New Serial Manager Functions

1034 Palm OS SDK Reference

Compatibility Implemented only if New Serial Manager Feature Set is present.

See Also SrmSendCheck, SrmSendFlush, SrmSendWait

SrmSendCheck

Purpose Checks the transmit FIFO and returns the number of bytes left to be
sent.

Prototype Err SrmSendCheck(UInt16 portId, UInt32* numBytesP)

Parameters -> portID Port ID.

<- numBytesP Number of bytes left in the FIFO queue.

Result

Comments Not all serial devices support this feature.

Compatibility Implemented only if New Serial Manager Feature Set is present.

See Also SrmSend, SrmSendFlush, SrmSendWait

0 No error.

serErrBadPort This port doesn’t exist.

serErrTimeoutErr Unable to send data within the
specified ctsTimeout period.

0 No error.

serErrBadPort This port doesn’t exist.

serErrNotSupported This feature not supported by the
hardware.

New Serial Manager
New Serial Manager Functions

Palm OS SDK Reference 1035

SrmSendFlush

Purpose Flushes the transmit FIFO.

Prototype Err SrmSendFlush(UInt16 portId)

Parameters -> portId Port ID.

Result

Compatibility Implemented only if New Serial Manager Feature Set is present.

See Also SrmSend, SrmSendCheck, SrmSendWait

SrmSendWait

Purpose Waits until all previous data has been sent from the transmit FIFO,
then returns.

Prototype Err SrmSendWait(UInt16 portId)

Parameters -> portId Port ID.

Result

Compatibility Implemented only if New Serial Manager Feature Set is present.

See Also SrmSend, SrmSendCheck, SrmSendFlush

0 No error.

serErrBadPort This port doesn’t exist.

0 No error.

serErrBadPort This port doesn’t exist.

serErrTimeoutErr Unable to send data within the
ctsTimeout period.

New Serial Manager
New Serial Manager Functions

1036 Palm OS SDK Reference

SrmSetReceiveBuffer

Purpose Installs a new buffer into the new serial manager’s receive queue.

Prototype Err SrmSetReceiveBuffer(UInt16 portId, void *bufP,
UInt16 bufSize)

Parameters -> portId Port ID.

-> bufP Pointer to new receive buffer. Ignored if
bufSize is NULL.

-> bufSize Size of new receive buffer in bytes. To remove
this buffer and allocate a new default buffer
(512 bytes), specify NULL.

Result

Comments IMPORTANT: Applications must install the default buffer before
closing the port (or disposing of the new receive queue.)

Compatibility Implemented only if New Serial Manager Feature Set is present.

SrmSetWakeupHandler

Purpose Installs a wakeup handler.

Prototype Err SrmSetWakeupHandler(UInt16 portId,
WakeupHandlerProcPtr procP, UInt32 refCon)

Parameters -> portId Port ID.

0 No error.

serErrBadPort This port doesn’t exist.

memErrNotEnoughSpace Not enough memory to allocate
default buffer.

New Serial Manager
New Serial Manager Application-Defined Function

Palm OS SDK Reference 1037

-> procP Pointer to a WakeupHandlerProc function.
Specify NULL to remove a handler.

-> refCon User-defined data that is passed to the wakeup
handler function. This can be a pointer or not.

Result

Comments The wakeup handler function will not become active until it is
primed with a number of bytes that is greater than 0, by the
SrmPrimeWakeupHandler function. Every time a wakeup handler
is called, it must be reprimed (via SrmPrimeWakeupHandler) in
order to be called again.

Compatibility Implemented only if New Serial Manager Feature Set is present.

See Also SrmPrimeWakeupHandler, WakeupHandlerProc

New Serial Manager Application-Defined
Function

WakeupHandlerProc

Purpose Called after some number of bytes are received by the new serial
manager’s interrupt function.

Prototype void WakeupHandlerProcPtr(UInt32 refCon)

Parameters ->refCon User-defined data passed from the
SrmSetWakeupHandler function.

Result Returns nothing.

0 No error.

serErrBadPort This port doesn’t exist.

New Serial Manager
New Serial Manager Application-Defined Function

1038 Palm OS SDK Reference

Comments This handler function is installed by calling
SrmSetWakeupHandler. The number of bytes after which it is
called is specified by SrmPrimeWakeupHandler.

Because wakeup handlers are called during interrupt time, they
cannot call ANY Palm OS® system functions that may block the
system in any way. Wakeup handlers should also be very short so as
to reduce interrupt latency.

Compatibility Implemented only if New Serial Manager Feature Set is present.

See Also SrmPrimeWakeupHandler, SrmSetWakeupHandler

Palm OS SDK Reference 1039

57
Script Plugin
This chapter describes the login script plugin support. You write a
plugin to add to the list of available login script commands in the
Network preferences panel. This chapter covers:

• Script Plugin Data Types

• Script Plugin Constants

The header file ScriptPlugin.h declares the API described in
this chapter.

For more information on the script plugin, see the section
“Extending the Network Login Script Support” on page 287 in the
“Network Communication” chapter of the Palm OS Programmer’s
Companion.

Script Plugin Data Types

PluginCallbackProcType
The PluginCallbackProcType defines the procP field in
PluginExecCmdType.

typedef struct {
ScriptPluginSelectorProcPtr selectorProcP;

} PluginCallbackProcType,
*PluginCallbackProcPtr;

Field Descriptions

selectorProcP The address of a selector-based callback
function for accessing the functionality of the
network interface. Each network interface
provides it own
ScriptPluginSelectorProc function. See
ScriptPluginSelectorProc.

Script Plugin
Script Plugin Data Types

1040 Palm OS SDK Reference

PluginCmdPtr
The PluginCmdPtr type defines a pointer to a PluginCmdType
structure.

typedef PluginCmdType * PluginCmdPtr;

PluginCmdType
The PluginCmdType structure specifies the name of a command.

typedef struct {
Char commandName[pluginMaxCmdNameLen + 1];
Boolean hasTxtStringArg;
UInt8 reserved;

} PluginCmdType;

Field Descriptions

PluginExecCmdType
The PluginExecCmdType structure defines the parameter block
for the scptLaunchCmdExecuteCmd launch code. This structure

commandName The name of the command. This string
appears in the pull-down list in the
Network preferences panel’s script view.

The pull-down list contains all available
commands from all plugins. Make sure that
your command name is unique and as short
as possible.

hasTxtStringArg true if the command takes an argument. In
this case when the user selects this
command, the Network preferences panel
displays a field next to the command name
where the user should enter the argument.
This argument is passed in the
txtStringArg field in
PluginExecCmdType when the command
is to be executed.

reserved Reserved for future use.

Script Plugin
Script Plugin Data Types

Palm OS SDK Reference 1041

specifies which command is to be executed and provides any
necessary arguments for the command. Your plugin should respond
by executing the command.

typedef struct {
Char commandName[pluginMaxCmdNameLen + 1];
Char txtStringArg

[pluginMaxLenTxtStringArg + 1];
PluginCallbackProcPtr procP;
void * handle;

} PluginExecCmdType, *PluginExecCmdPtr;

Field Descriptions

PluginInfoPtr
The PluginInfoPtr type defines a pointer to a PluginInfoType
structure.

commandName The command’s name. This is the string that
appears in the pull-down list in the script view
of the Network preferences panel.

txtStringArg If the command takes an argument, this field
provides the argument as a string. A NULL value
means either that the user did not provide a
value, or that you didn’t specify that the
command takes an argument.

procP A pointer to a PluginCallbackProcType
structure, which identifies the network interface
function that the plugin can use to execute the
command.

handle Handle to information specific to a particular
connection. You must pass this value when you
call the function pointed to by procP.

Script Plugin
Script Plugin Data Types

1042 Palm OS SDK Reference

typedef PluginInfoType * PluginInfoPtr;

PluginInfoType
The PluginInfoType structure is the parameter block for the
scptLaunchCmdListCmds launch code. When your plugin
receives the launch code, the PluginInfoType structure is empty.
Your plugin should fill in the PluginInfoType and return it. The
system uses the information returned to construct the pull-down list
of available script commands and build a table of which plugin will
execute which script command.

typedef struct {
Char pluginName[pluginMaxModuleNameLen + 1];
UInt16 numOfCommands;
PluginCmdType command[pluginMaxNumOfCmds];

} PluginInfoType;

Field Descriptions

ScriptPluginLaunchCodesEnum
The ScriptPluginLaunchCodesEnum defines the launch codes
for the script plugin. Your script plugin’s PilotMain function
should respond to the launch codes defined in this enum.

typedef enum {
scptLaunchCmdDoNothing =

sysAppLaunchCmdCustomBase,
scptLaunchCmdListCmds,
scptLaunchCmdExecuteCmd

pluginName A name that the system can use to identify
your plugin. This is typically the same name
you give the PRC file.

numOfCommands The number of commands that your plugin
defines. The maximum allowed is
pluginMaxNumOfCmds.

command An array of PluginCmdType structures that
provide information about the commands that
your plugin defines.

Script Plugin
Script Plugin Constants

Palm OS SDK Reference 1043

} ScriptPluginLaunchCodesEnum;

Value Descriptions

Script Plugin Constants

Command Constants
The following constants identify the available commands that the
network interface can perform for you. These commands are
building blocks that you use to create your own script commands.
To perform one of these tasks, pass the constant value as an
argument to the network interface’s callback function
(ScriptPluginSelectorProc).

scptLaunchCmdDoNothing This launch code is a no-op
supplied only to provide a
beginning value for the script
plugin launch codes. It is not
necessary to respond to this
launch code.

scptLaunchCmdListCmds Provide information about the
commands that your plugin
executes. See PluginInfoType.

scptLaunchCmdExecuteCmd Execute the specified command.

This launch code is received
when the system is executing a
user’s login script during a
network connection attempt.
Your plugin should respond by
executing the command provided
in the PluginExecCmdType
parameter block.

Script Plugin
Script Plugin Constants

1044 Palm OS SDK Reference

Constant Value Description

pluginNetLibDoNothing 0 For debugging purposes.

pluginNetLibReadBytes 1 Read the specified number of
bytes from the open connection.

pluginNetLibWriteBytes 2 Write the specified number of
bytes to the open connection.

pluginNetLibGetUserName 3 Get the user name from the
network service profile.

pluginNetLibGetUserPwd 4 Get the user’s password from the
network service profile.

pluginNetLibCheckCancelStatus 5 Check to see if the user canceled
the connection.

pluginNetLibPromptUser 6 Prompt the user for input.

pluginNetLibConnLog 7 Write a string to the network
service’s connection log.

pluginNetLibCallUIProc 8 Have the network interface call a
function in your plugin that
displays UI.

Use this command if you need to
display a more complicated user
interface than the simple user
prompt that the network interface
provides.

pluginNetLibGetSerLibRefNum 9 Obtain the serial library’s
reference number. You need the
reference number to perform any
serial library commands, which
you might need to perform more
complex work with the connection
port.

Script Plugin
Script Plugin Functions

Palm OS SDK Reference 1045

Size Constants
The following table lists constants that control the size of strings in
your plugin and the size of the plugin itself.

Script Plugin Functions

ScriptPluginSelectorProc

Purpose A function provided by the network interface for the purpose of
performing script commands.

Prototype Err (*ScriptPluginSelectorProcPtr) (void *handle,
UInt16 command, void *dataBufferP, UInt16 *sizeP,
UInt16 *dataTimeoutP, void *procAddrP);

Parameters -> handle Handle to information specific to a particular
connection.

Constant Value Description

pluginMaxCmdNameLen 15 The maximum length for the command’s
name, not including the terminating
NULL character. This is the string
displayed to the user in the pull-down
menu.

pluginMaxModuleNameLen 15 The maximum length for the plugin’s
name (not including the terminating
NULL character), which is typically the
name of the PRC file as well.

pluginMaxNumOfCmds 10 The maximum number of commands that
your plugin can define.

pluginMaxLenTxtStringArg 63 The maximum length of the argument
that each command can take, not
including the terminating NULL
character.

Script Plugin
Script Plugin Functions

1046 Palm OS SDK Reference

-> command The command to be executed. See “Command
Constants” for a list of possible values. The rest
of the parameters to this callback function are
interpreted differently based on the value of the
command parameter. See the table in the
“Comments” section for specifics.

<-> dataBufferP A pointer to arguments to pass to the command
or a pointer to data returned by the command.
See the “Comments” section below.

<-> sizeP The size of dataBufferP.

-> dataTimeoutP Number of seconds to wait for the command to
execute. 0 means wait forever. Applies only to
commands that request information from the
network.

-> procAddrP Pointer to a user interface callback function that
the network interface should call to complete
the function. Used only by
pluginNetLibCallUIProc. This function
should take one argument of the same type that
you pass to dataBufferP and should return
void.

Result Returns 0 upon success, or an error condition upon failure. If an
error condition is returned, your plugin should stop processing and
return the error condition from its PilotMain.

Comments When your plugin receives the scptLaunchCmdExecuteCmd
launch code, the parameter block contains the command’s name, its
text string argument (if any), and a pointer to the network
interface’s callback function. You should use this callback function
any time you need to communicate with the network library, the
user, or the host computer during execution of your command.

The callback function takes as arguments the handle to information
about this connection (which is also passed in the launch code’s
parameter block), and the command that the service should execute.
The rest of the parameters are interpreted differently based on what
the value the command argument is. See the table below.

Script Plugin
Script Plugin Functions

Palm OS SDK Reference 1047

pluginNetLib dataBufferP sizeP dataTimeOutP procAddrP

DoNothing N/A N/A N/A N/A

ReadBytes On return,
contains the bytes
that were read.

On input,
contains the
number of
bytes to read.

Number of
seconds to wait
before timing
out the
operation.

N/A

On return,
contains the
number of
bytes actually
read.

WriteBytes On input, contains
the data to send.

On input,
contains the
number of
bytes to send.

Number of
seconds to wait
for a response
before
canceling.

N/A

On return,
contains the
number of
bytes actually
sent.

UserName On return,
contains the user’s
name

On return,
contains the
size of the
string pointed
to by
dataBufferP.

N/A N/A

UserPwd On return,
contains the user’s
password.

On return,
contains the
size of the
string pointed
to by
dataBufferP.

N/A N/A

Script Plugin
Script Plugin Functions

1048 Palm OS SDK Reference

CheckCancel
Status

On return, the
Boolean value
true if the user
canceled the
command, false
otherwise.

Size of
Boolean.

N/A N/A

PromptUser On input, the
prompt to display.

On return, the text
that the user
entered.

On input and
on return, the
size of the
string pointed
to by
dataBufferP.

N/A N/A

ConnLog The string that
should be written
to the log.

N/A N/A N/A

CallUIProc A pointer to a
structure to pass
to your callback
function as a
parameter. This
structure should
contain a handle
to the form to be
displayed, plus
any other
necessary
information.

N/A N/A A pointer
to a
function in
your
plugin that
displays
the form.

GetSerLib
RefNum

On return,
contains the serial
library’s reference
number.

N/A N/A N/A

pluginNetLib dataBufferP sizeP dataTimeOutP procAddrP

Palm OS SDK Reference 1049

58
Serial Manager
This chapter provides reference material for the serial manager API:

• Serial Manager Data Structures

• Serial Manager Functions

The header file SerialMgrOld.h declares the serial manager API.
For more information on the serial manager, see the chapter “Serial
Communication” in the Palm OS Programmer’s Companion.

Serial Manager Data Structures

SerCtlEnum
To perform a control function, applications call SerControl, which
performs one of the control operations specified by SerCtlEnum,
which has the following elements:

Element Description

serCtlFirstReserved = 0 Reserve 0

serCtlStartBreak Turn RS232 break signal on. Applications have to
make sure that the break is set long enough to
generate a value BREAK!
valueP = 0; valueLenP = 0

serCtlStopBreak Turn RS232 break signal off:
valueP = 0; valueLenP = 0

serCtlBreakStatus Get RS232 break signal status (on or off):
valueP = ptr to Word for returning status

(0 = off, !0 = on)

*valueLenP = sizeof(Word)

Serial Manager
Serial Manager Data Structures

1050 Palm OS SDK Reference

SerSettingsType
The SerSettingsType structure defines serial port attributes; it is
used by the calls SerGetSettings and SerSetSettings. The
SerSettingsPtr type points to a SerSettingsType structure.

typedef struct SerSettingsType {
UInt32 baudRate;
UInt32 flags;
Int32 ctsTimeout;
} SerSettingsType;

typedef SerSettingsType* SerSettingsPtr;

serCtlStartLocalLoopback Start local loopback test;
valueP = 0, valueLenP = 0

serCtlStopLocalLoopback Stop local loopback test
valueP = 0, valueLenP = 0

serCtlMaxBaud valueP = ptr to DWord for returned baud
*valueLenP = sizeof(DWord)

serCtlHandshakeThreshold Retrieve HW handshake threshold; this is the
maximum baud rate that does not require hardware
handshaking
valueP = ptr to DWord for returned baud
*valueLenP = sizeof(DWord)

serCtlEmuSetBlockingHook Set a blocking hook routine.

WARNING! WARNING: For use with the
Simulator on Mac OS only: NOT SUPPORTED ON
THE PALM DEVICE.

valueP = ptr to SerCallbackEntryType
*valueLenP=sizeof(SerCallbackEntryType)
Returns the old settings in the first argument.

serCtlLAST Add new address entries before this one.

Element Description

Serial Manager
Serial Manager Functions

Palm OS SDK Reference 1051

Field Descriptions

Serial Manager Functions

SerClearErr

Purpose Reset the serial port’s line error status.

Prototype Err SerClearErr (UInt16 refNum)

Parameters -> refNum The serial library reference number.

Result 0 No error.

Comments Call SerClearErr only after a serial manager function
(SerReceive, SerReceiveCheck, SerSend, etc.) returns with
the error code serErrLineErr.

The reason for this is that SerClearErr resets the serial port. So, if
SerClearErr is called unconditionally while a byte is coming into
the serial port, that byte is guaranteed to become corrupted.

The right strategy is to always check the error code returned by a
serial manager function. If it ‘s serErrLineErr, call
SerClearErr immediately. However, don’t make unsolicited calls
to SerClearErr.

When you get serErrLineErr, consider flushing the receive
queue for a fraction of a second by calling SerReceiveFlush.
SerReceiveFlush calls SerClearErr for you.

baudRate Baud rate

flags Miscellaneous settings

ctsTimeout Maximum number of ticks to wait for CTS to
become asserted before transmitting; used only
when configured with the
serSettingsFlagCTSAutoM flag.

Serial Manager
Serial Manager Functions

1052 Palm OS SDK Reference

SerClose

Purpose Release the serial port previously acquired by SerOpen.

Prototype Err SerClose (UInt16 refNum)

Parameters -> refNum Serial library reference number.

Result 0 No error.

serErrNotOpen Port wasn’t open.

serErrStillOpenPort still held open by another process.

Comments Releases the serial port and shuts down serial port hardware if the
open count has reached 0. Open serial ports consume more energy
from the device’s batteries; it’s therefore essential to keep a port
open only as long as necessary.

Caveat Don’t call SerClose unless the return value from SerOpen was 0
(zero) or serErrAlreadyOpen.

See Also SerOpen

SerControl

Purpose Perform a control function.

Prototype Err SerControl (UInt16 refNum, UInt16 op,
void *valueP, UInt16 *valueLenP)

Parameters -> refNum Reference number of library.

-> op Control operation to perform (SerCtlEnum).

<-> valueP Pointer to value for operation.

<-> valueLenP Pointer to size of value.

Result 0 No error.

serErrBadParam Invalid parameter (unknown).

Serial Manager
Serial Manager Functions

Palm OS SDK Reference 1053

serErrNotOpen Library not open.

Comments This function provides extensible control features for the serial
manager. You can

• Turn on/off the RS232 break signal and check its status.

• Perform a local loopback test.

• Get the maximum supported baud rate.

• Get the hardware handshake threshold baud rate.

There is one emulator-only control,
serCtlEmuSetBlockingHook. See Using the Serial Manager for
more information.

Compatibility Implemented only if 2.0 New Feature Set is present.

SerGetSettings

Purpose Fill in the SerSettingsType structure with current serial port
attributes.

Prototype Err SerGetSettings (UInt16 refNum,
SerSettingsPtr settingsP)

Parameters -> refNum Serial library reference number.

<-> settingsP Pointer to SerSettingsType structure to be
filled in.

Result 0 No error.

serErrNotOpen The port wasn’t open.

Comments The information returned by this call includes the current baud rate,
CTS timeout, handshaking options, and data format options.

See the SerSettingsType structure for more details.

See Also SerSend

Serial Manager
Serial Manager Functions

1054 Palm OS SDK Reference

SerGetStatus

Purpose Return the pending line error status for errors that have been
detected since the last time SerClearErr was called.

Prototype UInt16 SerGetStatus (UInt16 refNum,
Boolean *ctsOnP, Boolean *dsrOnP)

Parameters -> refNum Serial library reference number.

-> ctsOnP Pointer to location for storing a Boolean value.

-> dsrOnP Pointer to location for storing a Boolean value.

Result Returns any combination of the following constants, bitwise ORed
together:

serLineErrorParity
Parity error.

serLineErrorHWOverrun
Hardware overrun.

serLineErrorFraming
Framing error.

serLineErrorBreak
Break signal detected.

serLineErrorHShake
Line handshake error.

serLineErrorSWOverrun
Software overrun.

Comments When another serial manager function returns an error code of
serErrLineErr, SerGetStatus can be used to find out the
specific nature of the line error(s).

The values returned via ctsOnP and dsrOnP are not meaningful in
the present version of the software

See Also SerClearErr

Serial Manager
Serial Manager Functions

Palm OS SDK Reference 1055

SerOpen

Purpose Acquire and open a serial port with given baud rate and default
settings.

Prototype Err SerOpen (UInt16 refNum, UInt16 port,
UInt32 baud)

Parameters -> refNum Serial library reference number.

-> port Port number.

-> baud Baud rate.

Result 0 No error.

serErrAlreadyOpen
Port was open. Enables port sharing by
“friendly” clients (not recommended).

serErrBadParam Invalid parameter.

memErrNotEnoughSpace
Insufficient memory.

Comments Acquires the serial port, powers it up, and prepares it for operation.
To obtain the serial library reference number, call SysLibFind with
“Serial Library” as the library name. This reference number must be
passed as a parameter to all serial manager functions. The device
currently contains only one serial port with port number 0 (zero).

The baud rate is an integral baud value (for example - 300, 1200,
2400, 9600, 19200, 38400, 57600, etc.). The Palm OS® device has been
tested at the standard baud rates in the range of 300 - 57600 baud.
Baud rates through 1 Mbit are theoretically possible. Use CTS
handshaking at baud rates above 19200 (see SerSetSettings).

An error code of 0 (zero) or serErrAlreadyOpen indicates that
the port was successfully opened. If the port is already open when
SerOpen is called, the port’s open count is incremented and an
error code of serErrAlreadyOpen is returned. This ability to open
the serial port multiple times allows cooperating tasks to share the
serial port. Other tasks must refrain from using the port if

Serial Manager
Serial Manager Functions

1056 Palm OS SDK Reference

serErrAlreadyOpen is returned and close it by calling
SerClose.

SerReceive

Purpose Receives size bytes worth of data or returns with error if a line
error or timeout is encountered.

Prototype UInt32 SerReceive (UInt16 refNum, void *bufP,
UInt32 count, Int32 timeout, Err* errP)

Parameters refNum Serial library reference number.

<-> bufP Buffer for receiving data.

-> count Number of bytes to receive.

-> timeout Interbyte timeout in ticks, 0 for none, -1 forever.

<-> errP For returning error code.

Result Number of bytes received:

*errP = 0 No error.

serErrLineErr RS232 line error.

serErrTimeOut Interbyte timeout.

Compatibility Implemented only if 2.0 New Feature Set is present.

NOTE: The old versions of SerSend and SerReceive are still
available as SerSend10 and SerReceive10 (not V10).

See Also SerReceive10

Serial Manager
Serial Manager Functions

Palm OS SDK Reference 1057

SerReceive10

Purpose Receive a stream of bytes.

Prototype Err SerReceive10 (UInt16 refNum, void *bufP,
UInt32 bytes, Int32 timeout)

Parameters -> refNum The serial library reference number.

-> bufP Pointer to the buffer for receiving data.

-> bytes Number of bytes desired.

-> timeout Interbyte time out in system ticks (-1 = forever).

Result 0 No error. Requested number of bytes was
received.

serErrTimeOut Interbyte time out exceeded while waiting for
the next byte to arrive.

serErrLineErr Line error occurred (see SerClearErr and
SerGetStatus).

Comments SerReceive blocks until all the requested data has been received
or an error occurs. Because this call returns immediately without
any data if line errors are pending, it is important to acknowledge
the detection of line errors by calling SerClearErr. If you just
need to retrieve all or some of the bytes which are already in the
receive queue, call SerReceiveCheck first to get the count of bytes
presently in the receive queue.

Compatibility This function corresponds to the 1.0 version of SerReceive.

Serial Manager
Serial Manager Functions

1058 Palm OS SDK Reference

SerReceiveCheck

Purpose Return the count of bytes presently in the receive queue.

Prototype Err SerReceiveCheck (UInt16 refNum,
UInt32 *numBytesP)

Parameters -> refNum Serial library reference number.

<-> numBytesP Pointer to location for returning the byte count.

Result 0 No error.

serErrLineErr Line error pending (see SerClearErr and
SerGetStatus).

Comments Because this call does not return the byte count if line errors are
pending, it is important to acknowledge the detection of line errors
by calling SerClearErr.

See Also SerReceiveWait

SerReceiveFlush

Purpose Discard all data presently in the receive queue and flush bytes
coming into the serial port. Clear the saved error status.

Prototype void SerReceiveFlush (UInt16 refNum,
Int32 timeout)

Parameters -> refNum Serial library reference number.

-> timeout Interbyte time out in system ticks (-1 = forever).

Result Returns nothing.

Comments SerReceiveFlush blocks until a timeout occurs while waiting for
the next byte to arrive.

Serial Manager
Serial Manager Functions

Palm OS SDK Reference 1059

SerReceiveWait

Purpose Wait for at least bytes bytes of data to accumulate in the receive
queue.

Prototype Err SerReceiveWait (UInt16 refNum, UInt32 bytes,
Int32 timeout)

Parameters -> refNum Serial library reference number.

-> bytes Number of bytes desired.

-> timeout Interbyte timeout in system ticks (-1 = forever).

Result 0 No error.

serErrTimeOut Interbyte timeout exceeded while waiting for
next byte to arrive.

serErrLineErr Line error occurred (see SerClearErr and
SerGetStatus).

Comments This is the preferred method of waiting for serial input, since it
blocks the current task and allows switching the processor into a
more energy-efficient state.

SerReceiveWait blocks until the desired number of bytes
accumulate in the receive queue or an error occurs. The desired
number of bytes must be less than the current receive queue size.
The default queue size is 512 bytes. Because this call returns
immediately if line errors are pending, it is important to
acknowledge the detection of line errors by calling SerClearErr.

See Also SerReceiveCheck, SerSetReceiveBuffer

Serial Manager
Serial Manager Functions

1060 Palm OS SDK Reference

SerSend

Purpose Send one or more bytes of data over the serial port.

Prototype UInt32 SerSend (UInt16 refNum, void *bufP,
UInt32 count, Err *errP

Parameters -> refNum Serial library reference number.

-> bufP Pointer to data to send.

-> count Number of bytes to send.

<-> errP For returning error code.

Result Returns the number of bytes transferred.

Stores in errP:

0 No error.

serErrTimeOut Handshake timeout.

The old calls worked, but they did not return enough info when
they failed. The new calls (available in Palm OS v2.0 and greater)
add more parameters to solve this problem and make serial
communications programming simpler.

Don’t call the new functions when running on Palm OS 1.0.

Compatibility Implemented only if 2.0 New Feature Set is present.

NOTE: The old versions of SerSend and SerReceive are still
available as SerSend10 and SerReceive10 (not V10).

See Also SerSend10, SerSendWait

Serial Manager
Serial Manager Functions

Palm OS SDK Reference 1061

SerSend10

Purpose Send a stream of bytes to the serial port.

Prototype Err SerSend10 (UInt16 refNum, void *bufP,
UInt32 size)

Parameters -> refNum Serial library reference number.

-> bufP Pointer to the data to send.

-> size Size (in number of bytes) of the data to send.

Result 0 No error.

serErrTimeOut Handshake timeout (such as waiting for CTS to
become asserted).

Comments In the present implementation, SerSend10 blocks until all data is
transferred to the UART or a timeout error (if CTS handshaking is
enabled) occurs. Future implementations may queue up the request
and return immediately, performing transmission in the
background. If your software needs to detect when all data has been
transmitted, see SerSendWait.

This routine observes the current CTS time out setting if CTS
handshaking is enabled (see SerGetSettings and SerSend).

Compatibility This function corresponds to the 1.0 version of SerSend.

See Also SerSend, SerSendWait

Serial Manager
Serial Manager Functions

1062 Palm OS SDK Reference

SerSendFlush

Purpose Discard all data presently in the transmit queue.

Prototype Err SerSendFlush (UInt16 refNum)

Parameters -> refNum Serial library reference number.

Result 0 No error.

See Also SerSend, SerSendWait

SerSendWait

Purpose Wait until the serial transmit buffer empties.

Prototype Err SerSendWait (UInt16 refNum, Int32 timeout)

Parameters -> refNum Serial library reference number.

-> timeout Reserved for future enhancements. Set to (-1)
for compatibility.

Result 0 No error.

serErrTimeOut Handshake timeout (such as waiting for CTS to
become asserted).

Comments SerSendWait blocks until all data is transferred or a timeout error
(if CTS handshaking is enabled) occurs. This routine observes the
current CTS timeout setting if CTS handshaking is enabled (see
SerGetSettings and SerSend).

See Also SerSend

Serial Manager
Serial Manager Functions

Palm OS SDK Reference 1063

SerSetReceiveBuffer

Purpose Replace the default receive queue. To restore the original buffer, pass
bufSize = 0.

Prototype Err SerSetReceiveBuffer (UInt16 refNum,
void *bufP, UInt16 bufSize)

Parameters -> refNum Serial library reference number.

-> bufP Pointer to buffer to be used as the new receive
queue.

-> bufSize Size of buffer, or 0 to restore the default receive
queue.

Result Returns 0 if successful.

Comments The specified buffer needs to contain 32 extra bytes for serial
manager overhead (its size should be your application’s
requirement plus 32 bytes). The default receive queue must be
restored before the serial port is closed. To restore the default receive
queue, call SerSetReceiveBuffer passing 0 (zero) for the buffer
size. The serial manager does not free the custom receive queue.

SerSetSettings

Purpose Set the serial port settings; that is, change its attributes.

Prototype Err SerSetSettings (UInt16 refNum,
SerSettingsPtr settingsP)

Parameters -> refNum Serial library reference number.

<-> settingsP Pointer to the filled in SerSettingsType
structure.

Result 0 No error.

serErrNotOpen The port wasn’t open.

Serial Manager
Serial Manager Functions

1064 Palm OS SDK Reference

serErrBadParam Invalid parameter.

Comments The attributes set by this call include the current baud rate, CTS
timeout, handshaking options, and data format options. See the
definition of the SerSettingsType structure for more details.

To do 7E1 transmission, OR together:

serSettingsFlagBitsPerChar7 |
serSettingsFlagParityOnM |
serSettingsFlagParityEvenM |
serSettingsFlagStopBits1

If you’re trying to communicate at speeds greater than 19.2 Kbps,
you need to use hardware handshaking:
serSettingsFlagRTSAutoM | serSettingsFlagCTSAutoM.

See Also SerGetSettings

Palm OS SDK Reference 1065

59
Serial and Virtual
Drivers
This chapter provides reference material for the new serial manager
device driver API:

• Driver Data Structures

• Driver Constants

• Serial Driver-Defined Functions

• Virtual Driver-Defined Functions

• Serial Manager Queue Functions

The header file SerialSdrv.h declares the serial driver API and
the file SerialVdrv.h declares the virtual driver API. Both types
of drivers also use the SerialDrvr.h header file. For more
information on writing device drivers for the new serial manager,
see section Writing a Serial or Virtual Device Driver in the chapter
Serial Communication in the Palm OS Programmer’s Companion.

Driver Data Structures

DrvrInfoType
The DrvrInfoType structure defines information about the serial
hardware. It is passed to and filled in by the DrvEntryPoint
function for a serial driver and the DrvEntryPoint for a virtual
driver.

typedef struct {
UInt32 drvrID;
UInt32 drvrVersion;
UInt32 maxBaudRate;
UInt32 handshakeThreshold;
UInt32 portFlags;

Serial and Virtual Drivers
Driver Data Structures

1066 Palm OS SDK Reference

Char * portDesc;
DrvrIRQEnum irqType;
UInt8 reserved;
} DrvrInfoType;

Value Descriptions

drvrID 4-character creator type, such as 'u328'

drvrVersion Version of code that works for this
hardware. For this release, all serial
drivers should return version
kDrvrVersion here.

maxBaudRate Maximum baud rate supported by this
hardware

handshakeThreshold Baud rate at which hardware
handshaking is necessary to be used

portFlags Bit flags denoting features of this
hardware. The flags are described in
Port Feature Constants.

portDesc Pointer to null-terminated string
describing this hardware. This string
appears in the Connection panel to
describe the port to the user (only if the
portCncMgrVisible bit in
portFlags is set). Can be NULL if the
driver contains a resource (of type 'tSTR'
and id kPortDescStrID) that supplies
this string.

irqType IRQ line being used for this hardware.
Specify one of the DrvrIRQEnum values.
For a virtual driver, specify
drvrIRQNone.

reserved Reserved for future use.

Serial and Virtual Drivers
Driver Data Structures

Palm OS SDK Reference 1067

DrvrRcvQType
The DrvrRcvQType structure defines the virtual driver receive
buffer and function pointers to functions that access and save data
to the buffer. A pointer to this structure is passed to the VdrvOpen
function. The DrvrHWRcvQPtr type defines a pointer to a
DrvrRcvQType structure.

typedef struct DrvrRcvQType {
void *rcvQ;
WriteByteProcPtr qWriteByte;
WriteBlockProcPtr qWriteBlock;
GetSizeProcPtr qGetSize;
GetSpaceProcPtr qGetSpace;
} DrvrRcvQType;

typedef DrvrRcvQType *DrvrHWRcvQPtr;

Value Descriptions

rcvQ Pointer to the receive buffer.

qWriteByte Function pointer to a function that the virtual
driver can use to write one byte to the new serial
manager’s receive queue. See the WriteByte
function.

qWriteBlock Function pointer to a function that the virtual
driver can use to write a block of bytes to the new
serial manager’s receive queue. See the
WriteBlock function.

qGetSize Function pointer to a function that the virtual
driver can use to get the total size of the new
serial manager’s receive queue. See the GetSize
function.

qGetSpace Function pointer to a function that the virtual
driver can use to get the available space in the
new serial manager’s receive queue. See the
GetSpace function.

Serial and Virtual Drivers
Driver Data Structures

1068 Palm OS SDK Reference

DrvrStatusEnum
The DdrvStatusEnum enumerated type specifies serial status bit
flags. Return these enumerated types from the SdrvStatus and
VdrvStatus calls.

typedef enum DrvrStatusEnum {
drvrStatusCtsOn = 0x0001,
drvrStatusRtsOn = 0x0002,
drvrStatusDsrOn = 0x0004,
drvrStatusTxFifoFull = 0x0008,
drvrStatusTxFifoEmpty = 0x0010,
drvrStatusBreakAsserted = 0x0020,
drvrStatusDataReady = 0x0040, // For polling mode
debugger only
drvrStatusLineErr = 0x0080 // For polling mode
debugger only
} DrvrStatusEnum;

Value Descriptions

SdrvAPIType
The SdrvAPIType structure defines the function pointers to the
required serial driver functions. When passed a pointer to this

drvrStatusCtsOn Set if CTS line is active.

drvrStatusRtsOn Set if RTS line is active.

drvrStatusDsrOn Set if DSR is on.

drvrStatusTxFifoFull Set if transmit FIFO is full; cleared
if FIFO has space.

drvrStatusTxFifoEmpty Set if transmit FIFO is empty.

drvrStatusBreakAsserted Set if sending break characters is
enabled.

drvrStatusDataReady Used by debugger only.

drvrStatusLineErr Used by debugger only.

Serial and Virtual Drivers
Driver Data Structures

Palm OS SDK Reference 1069

structure in the DrvEntryPoint function, that function must fill in
the pointers to the serial driver functions appropriately.

typedef struct {
SdrvOpenProcPtr drvOpen;
SdrvCloseProcPtr drvClose;
SdrvControlProcPtr drvControl;
SdrvStatusProcPtr drvStatus;
SdrvReadCharProcPtr drvReadChar;
SdrvWriteCharProcPtr drvWriteChar;
} SdrvAPIType;

Value Descriptions

SdrvCtlOpCodeEnum
The SdrvCtlOpCodeEnum enumerated type specifies a serial
control operation. You should handle each of these enumerated
types when passed for the controlCode parameter to the
SdrvControl call.

typedef enum SdrvCtlOpCodeEnum {
sdrvOpCodeNoOp = 0,
sdrvOpCodeSetBaudRate = 0x1000,
sdrvOpCodeSetSettingsFlags,
sdrvOpCodeClearErr,
sdrvOpCodeEnableUART,
sdrvOpCodeDisableUART,
sdrvOpCodeEnableUARTInterrupts,
sdrvOpCodeDisableUARTInterrupts,
sdrvOpCodeSetSleepMode,

drvOpen Pointer to the driver open function.

drvClose Pointer to the driver close function.

drvControl Pointer to the driver control function.

drvStatus Pointer to the driver status function.

drvReadChar Pointer to the driver read character function.

drvWriteChar Pointer to the driver write character function.

Serial and Virtual Drivers
Driver Data Structures

1070 Palm OS SDK Reference

sdrvOpCodeSetWakeupMode,
sdrvOpCodeRxEnable,
sdrvOpCodeRxDisable,
sdrvOpCodeLineEnable,
sdrvOpCodeFIFOCount,
sdrvOpCodeEnableIRDA,
sdrvOpCodeDisableIRDA,
sdrvOpCodeStartBreak,
sdrvOpCodeStopBreak,
sdrvOpCodeStartLoopback,
sdrvOpCodeStopLoopback,
sdrvOpCodeFlushTxFIFO,
sdrvOpCodeFlushRxFIFO,
sdrvOpCodeGetOptTransmitSize,
sdrvOpCodeEnableRTS,
sdrvOpCodeDisableRTS,
sdrvOpCodeUserDef = 0x2000

} SdrvCtlOpCodeEnum;

Value Descriptions

sdvrOpCodeSetBaudRate Sets the baud rate for the UART.

sdvrOpCodeSetSettingsFlags Sets the data transmission options. The bit
flags are described in Serial Settings
Constants.

sdvrOpCodeClearError Clears the hardware error state.

sdvrOpCodeEnableUart Powers-up the UART and the line-drivers.

sdvrOpCodeDisableUART Powers-down the UART and the line
drivers.

sdvrOpCodeEnableUARTInterrupts Enables the appropriate UART receive
interrupts.

sdvrOpCodeDisableUARTInterrupt s Disables all UART interrupts.

sdvrOpCodeSetSleepMode Puts the UART in sleep mode.

sdvrOpCodeSetWakeupMode Wakes up the UART from sleep mode.

Serial and Virtual Drivers
Driver Data Structures

Palm OS SDK Reference 1071

sdvrOpCodeRxEnable Enables the receive FIFO, enables UART
interrupts, and does whatever else is
necessary to allow the UART to receive
data.

sdvrOpCodeRxDisable Disables the receive FIFO and UART
interrupts and does whatever is needed to
prevent the UART from receiving data.

sdvrOpCodeLineEnable Enables the main serial line driver for the
UART.

sdvrOpCodeFIFOCount Returns the number of bytes currently in the
FIFO (or best estimate).

sdvrOpCodeEnableIRDA Enable the IRDA mode and power up the IR
line drivers.

sdvrOpCodeDisableIRDA Disable the IRDA mode and disable the IR
line drivers.

sdvrOpCodeStartBreak Sends a break character or enables the
sending of break characters.

sdvrOpCodeStopBreak Stops sending break characters.

sdvrOpCodeStartLoopback Places the UART in loopback mode.

sdvrOpCodeStopLoopback Stops loopback mode.

SdrvOpCodeFlushTxFIFO Flushes the contents of the transmit FIFO.

sdrvOpCodeFlushRxFIFO Flushes the contents of the receive FIFO.

sdrvOpCodeGetOptTransmitSize Returns the optimum buffer size for
sending data or returns 0 to specify any
buffer size is acceptable.

sdrvOpCodeEnableRTS Asserts the RTS line.

sdrvOpCodeDisableRTS Deasserts the RTS line.

sdvrOpCodeUserDef User defined function invoked via
SrmControl.

Serial and Virtual Drivers
Driver Data Structures

1072 Palm OS SDK Reference

VdrvAPIType
The VdrvAPIType structure defines function pointers to the
required virtual driver functions. When passed a pointer to this
structure in the DrvEntryPoint function, that function must fill in
the pointers to the virtual driver functions appropriately.

typedef struct {
VdrvOpenProcPtr drvOpen;
VdrvCloseProcPtr drvClose;
VdrvControlProcPtr drvControl;
VdrvStatusProcPtr drvStatus;
VdrvReadProcPtr drvRead;
VdrvWriteProcPtr drvWrite;
} VdrvAPIType;

Value Descriptions

VdrvCtlOpCodeEnum
The VdrvCtlOpCodeEnum enumerated type specifies a serial
control operation. You should handle each of these enumerated
types when passed for the controlCode parameter to the
VdrvControl call.

typedef enum VdrvCtlOpCodeEnum {
vdrvOpCodeNoOp = 0,
vdrvOpCodeSetBaudRate = 0x1000,
vdrvOpCodeSetSettingsFlags,
vdrvOpCodeSetCtsTimeout,
vdrvOpCodeClearErr,

drvOpen Pointer to the driver open function.

drvClose Pointer to the driver close function.

drvControl Pointer to the driver control function.

drvStatus Pointer to the driver status function.

drvRead Pointer to the driver read function.

drvWrite Pointer to the driver write function.

Serial and Virtual Drivers
Driver Data Structures

Palm OS SDK Reference 1073

vdrvOpCodeSetSleepMode,
vdrvOpCodeSetWakeupMode,
vdrvOpCodeFIFOCount,
vdrvOpCodeStartBreak,
vdrvOpCodeStopBreak,
vdrvOpCodeStartLoopback,
vdrvOpCodeStopLoopback,
vdrvOpCodeFlushTxFIFO,
vdrvOpCodeFlushRxFIFO,
vdrvOpCodeSendBufferedData,
vdrvOpCodeRcvCheckIdle,
vdrvOpCodeEmuSetBlockingHook,
vdrvOpCodeGetOptTransmitSize,
vdrvOpCodeGetMaxRcvBlockSize,
vdrvOpCodeNotifyBytesReadFromQ,
vdrvOpCodeUserDef = 0x2000

} VdrvCtlOpCodeEnum;

Value Descriptions

vdvrOpCodeSetBaudRate Sets the baud rate.

vdvrOpCodeSetSettingsFlags Sets the data transmission options. The bit
flags are described in Serial Settings
Constants.

vdrvOpCodeSetCtsTimeout Hardware handshake timeout.

vdvrOpCodeClearError Clears the hardware error state.

vdvrOpCodeSetSleepMode Puts the port in sleep mode (not typically
used for virtual drivers).

vdvrOpCodeSetWakeupMode Wakes up the port from sleep mode (not
typically used for virtual drivers).

vdvrOpCodeFIFOCount Returns the number of bytes currently in the
FIFO (or best estimate).

vdvrOpCodeStartBreak Sends a break character or enables the
sending of break characters.

vdvrOpCodeStopBreak Stops sending break characters.

Serial and Virtual Drivers
Driver Data Structures

1074 Palm OS SDK Reference

vdvrOpCodeStartLoopback Starts loopback mode (not typically used for
virtual drivers).

vdvrOpCodeStopLoopback Stops loopback mode (not typically used for
virtual drivers).

vdrvOpCodeFlushTxFIFO Flushes the contents of the transmit FIFO.

vdrvOpCodeFlushRxFIFO Flushes the contents of the receive FIFO.

vdrvOpCodeSendBufferedData Notifies virtual device to send any buffered
data it has not emptied from its internal
buffers.

vdrvOpCodeRcvCheckIdle Called periodically to allow virtual device
time to check if there is data to be received.
Because virtual devices execute in the same
thread as applications, they can be
prevented from handling notifications of
received data.

vdrvOpCodeEmuSetBlockingHook Special opCode for the Simulator.

vdrvOpCodeGetOptTransmitSize Returns the optimum buffer size for
sending data or returns 0 to specify any
buffer size is acceptable.

vdrvOpCodeGetMaxRcvBlockSize Returns the maximum receive block size
that the serial manager should request from
the virtual device. Can be used to
implement flow control.

vdrvOpCodeNotifyBytesReadFromQ Tells the virtual device that some number of
bytes have been read from the receive
queue by the client application. Can be used
to implement flow control.

vdvrOpCodeUserDef User defined function invoked via
SrmControl.

Serial and Virtual Drivers
Driver Constants

Palm OS SDK Reference 1075

Driver Constants

Port Feature Constants
These flag constants describe serial hardware capabilities.

Serial Driver-Defined Functions
The functions in this section must be defined by your serial driver.

DrvEntryPoint

Purpose Entry point for the serial driver.

Prototype Err DrvEntryPoint(DrvrEntryOpCodeEnum opCode,
void * uartData)

Parameters -> opCode Entry function code.

portPhysicalPort Should be set for a physical port, unset
for a virtual port

portRS232Capable Set if this hardware has a RS-232 port

portIRDACapable Set if this hardware has an IR port and
supports IRDA mode

portCradlePort Set if this hardware controls the cradle
port

portExternalPort Set if this hardware port is external or on
a memory card

portModemPort Set if this hardware communicates with
a modem

portCncMgrVisible Set if this serial port’s name is to be
displayed in the Connection panel

portPrivateUse Set if this driver is for special software
and not general applications.

Serial and Virtual Drivers
Serial Driver-Defined Functions

1076 Palm OS SDK Reference

<-> uartData Pointer to data specific to the opCode.

Result

Comments This functions serves a dual purpose based on the value of the
opCode parameter. The two possible codes are
drvrEntryGetUartFeatures and drvrEntryGetDrvrFuncts.

DrvEntryPoint is called with the
drvrEntryGetUartFeatures code when the new serial manager
is installed into the system at boot time and is looking for all UART
hardware currently connected to the device. When this opCode is
set, the uartData pointer points to a DrvrInfoType structure.
This function does not allocate the structure, it just fills in the fields
with information.

This function should check to make sure the hardware exists in the
current system. If the hardware cannot be found, the function
should leave the DrvrInfoType struct untouched and return a -1
error.

The driver needs to supply a string that describes the port it
manages. This string is displayed to the user in the Connection
panel and is returned by the SrmGetDeviceInfo function. To set
this string, copy it into the portDesc field of the DrvrInfoType
structure. Alternatively, you can supply this string in a driver
resource of type 'tSTR' and id kPortDescStrID.

DrvEntryPoint is called with the drvrEntryGetDrvrFuncts
code when a serial port is opened. The uartData pointer points to
a SdrvAPIType structure and DrvEntryPoint must fill in the
fields of this structure with appropriate function pointers.

Compatibility Implemented only if New Serial Manager Feature Set is present.

0 No error.

-1 The opCode is invalid or the
hardware could not be found.

Serial and Virtual Drivers
Serial Driver-Defined Functions

Palm OS SDK Reference 1077

SdrvClose

Purpose Handles all activities needed to power-down the UART.

Prototype Err SdrvClose(SdrvDataPtr drvrDataP)

Parameters -> drvrDataP Pointer to the driver’s private global area.

Result

Comments This function should disable all UART interrupts for the Dragonball
processor as well as for the UART, place the UART in sleep mode,
power down the transceiver, and do whatever other necessary tasks
there may be. Additionally, this function should remove the
interrupt handler installed by SdrvOpen.

Compatibility Implemented only if New Serial Manager Feature Set is present.

SdrvControl

Purpose Extends the SrmControl function to the level of the hardware.

Prototype Err *SdrvControl(SdrvDataPtr drvrDataP,
SdrvCtlOpCodeEnum controlCode,
void * controlDataP, UInt16 * controlDataLenP)

Parameters -> drvrDataP Pointer to the driver’s private global area.

-> controlCode Control function opCode. One of the opCodes
listed in the SdrvCtlOpCodeEnum type.

<-> controlDataPPointer to data for the specified control
function.

0 No error.

Serial and Virtual Drivers
Serial Driver-Defined Functions

1078 Palm OS SDK Reference

<-> controlDataLenP
Pointer to length of control data being passed in
or out.

Result

Comments This function should support the opCodes listed in the
SdrvCtlOpCodeEnum type. If this function does not support an
opCode, it must return the serErrNotSupported error code for
that opCode.

Table 59.1 shows what is passed for the controlDataP and
controlDataLenP parameters for each of the control codes that
use them. Control codes not listed do not use these parameters.

0 No error.

serErrNotSupported controlCode not supported.

serErrBadParam controlDataP or
controlDataLenP is bad.

Table 59.1 SdrvControl Parameters

sdvrOpCodeSetBaudRate -> controlDataP = Pointer to Int32
(baud rate),
-> controlDataLenP = Pointer to
sizeof(Int32).

sdvrOpCodeSetSettingsFlags -> controlDataP = Pointer to UInt32
(bitfield; see Serial Settings Constants)
-> controlDataLenP = Pointer to
sizeof(UInt32)

sdvrOpCodeFIFOCount -> controlDataP = Pointer to Int16,
which contains the number of bytes in the
FIFO.
-> controlDataLenP = Pointer to
sizeof(Int16).

Serial and Virtual Drivers
Serial Driver-Defined Functions

Palm OS SDK Reference 1079

Compatibility Implemented only if New Serial Manager Feature Set is present.

SdrvISP

Purpose An interrupt service routine called when a hardware interrupt is
generated on the IRQ line associated with the serial hardware.

Prototype asm Boolean SdrvISP(UInt32 param: __A0):__D0

Parameters A0 = param Pointer to the driver’s private global area.

Result D0 returns a Boolean value. Return true if this UART has data that
needs to be read; return false if no other interrupt service is
needed.

Comments This function can retrieve its globals from the low-memory global
they were saved in (via the pointer in A0) and then must determine
if the interrupt is for this particular serial hardware. If so, it must
call the saveDataProc function (passed into SdrvOpen) with the
portP pointer as the parameter. The saveDataProc function,
supplied by the new serial manager, handles reading the data from
the UART by calling the SdrvReadChar function.

The SdrvISP function must be installed in the appropriate IRQ
handler by the SdrvOpen routine.

sdrvOpCodeGetOptTransmitSize <- controlDataP = Pointer to Int32,
<- controlDataLenP = Pointer to
sizeof(Int32).
Return the optimum buffer size for
sending data, or 0 to specify any buffer
size is acceptable.

sdvrOpCodeUserDef <-> controlDataP = Pointer from
SrmControl (user-defined data),
<-> controlDataLenP = Pointer to
sizeof(Int32).

Table 59.1 SdrvControl Parameters (continued)

Serial and Virtual Drivers
Serial Driver-Defined Functions

1080 Palm OS SDK Reference

Compatibility Implemented only if New Serial Manager Feature Set is present.

See Also SdrvOpen

SdrvOpen

Purpose Initializes the serial hardware to send and receive data.

Prototype Err SdrvOpen(SdrvDataPtr* drvrDataP,
UInt32 baudRate, void * portP,
SerialMgrISPProcPtr saveDataProc)

Parameters <-> drvrDataP Pointer to a pointer to the driver’s private
global area (allocated by this function).

-> baudRate Initial baud rate setting.

-> portP Pointer to the open port data.

-> saveDataProc Pointer to the function where data received by
interrupt is to be saved. The typedef for this
function is shown in the Comments section.

Result

Comments Here is the typedef for the saveDataProc function:

typedef void (*SerialMgrISPProcPtr)(void *
portP:__A0)

To accomplish serial hardware initialization, SdrvOpen must
perform the following tasks:

• Allocate global data needed by the driver. There is a low
memory global (GIrqNGlobalsP) for every IRQ line in the
system. At open time, a serial driver must save its global data
in this low memory global because when the interrupt is
called there is no way to get the globals through the driver
data parameter that the serial manager normally supplies.

• Save the portP and saveDataProc parameters passed to
SdrvOpen in the global variable structure, because they are

0 No error.

Serial and Virtual Drivers
Serial Driver-Defined Functions

Palm OS SDK Reference 1081

needed when the SdrvISP function is called. When the
interrupt routine subsequently gets called, the driver gets
access to the low memory globals which contain the
saveDataProc function and the portP pointer. This
pointer is passed into the new serial manager, which then
calls the driver SdrvReadChar function in order to read all
the bytes and fill its queue.

• Save the pointer to the globals in the appropriate low
memory global variable for the IRQ line the device is using
(for example, a device which uses IRQ3 would use the
GIrq3GlobalsP). You can find the IRQ global variables
defined in the header file globals.h.

• Save the pointer to the globals in the drvrDataP parameter
passed into the SdrvOpen function. This private global data
pointer is passed to every serial driver function so they all
have access to the global data.

• Patch out the appropriate interrupt handler trap and replace
it with the serial driver’s ISP function (SdrvISP). For
example, the system trap to be patched for IRQ3 is called
sysTrapHwrIRQ3Handler (see SysTraps.h). Be sure to
save the old interrupt handler to be re-installed when
DrvClose is called. Here is an example of how to do this:

oldIntHandler =
SysGetTrapAddress(sysTrapHwrIRQ3Handler);
SysSetTrapAddress(sysTrapHwrIRQ3Handler,
SdrvISP);

If there is another serial device sharing the same IRQ line,
you must tail-patch the IRQ handler rather than replace it. In
other words, you must call the previously installed handler
after your own handler executes.

• Set up and open the hardware to its default state.

Compatibility Implemented only if New Serial Manager Feature Set is present.

See Also SdrvISP

Serial and Virtual Drivers
Serial Driver-Defined Functions

1082 Palm OS SDK Reference

SdrvReadChar

Purpose Reads a byte (if available) from the receive FIFO of the UART.

Prototype asm UInt16 SdrvReadChar(SdrvDataPtr
drvrDataP:__A0):__D0

Parameters A1 = drvrDataP Pointer to the driver’s private global area.

Result D0 returns an Int16 value. The returned 16-bit word contains the
data byte read from the hardware in the low-order byte. If there is
an error, the error code is returned in the low-order byte and the
error flag ($80) is set in the high-order byte.

Comments This function should be written in 68K assembly language for
speed, but can be written in a higher-level language as long as the
register usage for the parameters and return values is obeyed. If this
function is too slow, hardware overruns may occur.

This function is responsible for translating break, framing, parity,
and overrun errors back to the calling function. If an error is
received by the hardware, the high-order byte of the return value
should be set to $80 to mark the low-order byte as an error code
and not a readable byte. The error code returned in the low-order
byte of D0 should be translated into one of the following four serial
manager error codes: serLineErrorBreak,
serLineErrorFraming, serLineErrorParity, or
serLineErrorHWOverrun.

SdrvReadChar executes during interrupt time, and cannot call any
OS functions that are normally not allowed to be called during this
time. All registers needed for this function should be saved onto the
stack (except for D0). The A1 register must not be changed on exit.

Compatibility Implemented only if New Serial Manager Feature Set is present.

Serial and Virtual Drivers
Serial Driver-Defined Functions

Palm OS SDK Reference 1083

SdrvStatus

Purpose Returns UART status.

Prototype UInt16 SdrvStatus(SdrvDataPtr drvrDataP)

Parameters -> drvrDataP Pointer to the driver’s private global area.

Result An unsigned long bitfield denoting the status of the UART. The
individual bit flags are described in the DrvrStatusEnum type.

Comments The drvrStatusCtsOn flag should be set if the UART’s CTS line is
active. The drvrStatusRtsOn flag should be set if the RTS line for
the UART is currently high. The drvrStatusDsrOn flag should be
set if DSR is turned on. Again, this may not be supported on all
UARTs and should be set or cleared based on the type of hardware
used. The drvrStatusTxFifoFull flag is set if the transmit FIFO
for the hardware has no available space to receive more data and the
flag should be cleared if the transmit FIFO does have available
space. And the drvrStatusBreakAsserted flag should be set if
the UART currently has sending break characters enabled.

Compatibility Implemented only if New Serial Manager Feature Set is present.

SdrvWriteChar

Purpose Writes a byte to the appropriate UART register for transmission.

Prototype Err SdrvWriteChar(SdrvDataPtr drvrDataP,
UInt8 aChar)

Parameters -> drvrDataP Pointer to the driver’s private global area.

-> aChar Byte of data to be written to the UART.

Result

0 No error.

Serial and Virtual Drivers
Virtual Driver-Defined Functions

1084 Palm OS SDK Reference

Compatibility Implemented only if New Serial Manager Feature Set is present.

Virtual Driver-Defined Functions
The functions in this section must be defined by your virtual driver.

DrvEntryPoint

Purpose Entry point for the virtual driver.

Prototype Err DrvEntryPoint(DrvrEntryOpCodeEnum opCode,
void * uartData)

Parameters -> opCode Entry function code.

<-> uartData Pointer to data specific to the opCode.

Result

Comments This functions serves a dual purpose based on the value of the
opCode parameter. The two possible codes are
drvrEntryGetUartFeatures and drvrEntryGetDrvrFuncts.

DrvEntryPoint is called with the
drvrEntryGetUartFeatures code when the new serial manager
is installed into the system at boot time and is looking for all
installed drivers. When this opCode is set, the uartData pointer
points to a DrvrInfoType structure. This function does not
allocate the structure, it just fills in the fields with information.

This function should check to make sure the associated serial device
can operate under the current OS and system settings. If the
hardware cannot be found, the function should leave the
DrvrInfoType struct untouched and return a -1 error.

The driver needs to supply a string that describes the port it
manages. This string is displayed to the user in the Connection

0 No error.

-1 The opCode is invalid or the
hardware could not be found.

Serial and Virtual Drivers
Virtual Driver-Defined Functions

Palm OS SDK Reference 1085

panel and is returned by the SrmGetDeviceInfo function. To set
this string, copy it into the portDesc field of the DrvrInfoType
structure. Alternatively, you can supply this string in a driver
resource of type 'tSTR' and id kPortDescStrID.

DrvEntryPoint is called with the drvrEntryGetDrvrFuncts
code when a virtual port is opened. The uartData pointer points to
a VdrvAPIType structure and DrvEntryPoint must fill in the
fields of this structure with appropriate function pointers.

Compatibility Implemented only if New Serial Manager Feature Set is present.

VdrvClose

Purpose Handles all activities needed to close the virtual device.

Prototype Err VdrvClose(VdrvDataPtr drvrDataP)

Parameters -> drvrDataP Pointer to the driver’s private global area.

Result

Compatibility Implemented only if New Serial Manager Feature Set is present.

VdrvControl

Purpose Extends the SrmControl function to the level of the virtual device.

Prototype Err *VdrvControl(VdrvDataPtr drvrDataP,
VdrvCtlOpCodeEnum controlCode,
void * controlDataP, UInt16 * controlDataLenP)

Parameters -> drvrDataP Pointer to the driver’s private global area.

-> controlCode Control function opCode. One of the opCodes
listed in the VdrvCtlOpCodeEnum type.

0 No error.

Serial and Virtual Drivers
Virtual Driver-Defined Functions

1086 Palm OS SDK Reference

<-> controlDataPPointer to data for the specified control
function.

<-> controlDataLenP
Pointer to length of control data being passed in
or out.

Result

Comments This function should support the opCodes listed in the
VdrvCtlOpCodeEnum type. If this function does not support an
opCode, it must return the serErrNotSupported error code for
that opCode.

Table 59.2 shows what is passed for the controlDataP and
controlDataLenP parameters for each of the control codes that
use them. Control codes not listed do not use these parameters.

Table 59.2 VdrvControl Parameters

0 No error.

serErrNotSupported controlCode not supported.

serErrBadParam controlDataP or
ControlDataLenP is bad.

vdvrOpCodeSetBaudRate -> controlDataP = Pointer to Int32 (baud
rate),
-> controlDataLenP = Pointer to
sizeof(Int32).

vdvrOpCodeSetSettingsFlags -> controlDataP = Pointer to UInt32 (bitfield;
see Serial Settings Constants)
-> controlDataLenP = Pointer to
sizeof(UInt32)

vdvrOpCodeFIFOCount -> controlDataP = Pointer to Int16, which
contains the number of bytes in the FIFO.
-> controlDataLenP = Pointer to
sizeof(Int16).

Serial and Virtual Drivers
Virtual Driver-Defined Functions

Palm OS SDK Reference 1087

Compatibility Implemented only if New Serial Manager Feature Set is present.

VdrvOpen

Purpose Initializes the virtual device to begin communication.

Prototype Err VdrvOpen(VdrvDataPtr* drvrDataP,
UInt32 baudRate, DrvrHWRcvQPtr rcvQP)

Parameters <-> drvrDataP Pointer to a pointer to the driver’s private
global area (allocated by this function). A
pointer to this private global area is passed to
the other virtual driver functions.

vdrvOpCodeGetOptTransmitSize <- controlDataP = Pointer to Int32 (buffer
size),
<- controlDataLenP = Pointer to
sizeof(Int32).
Return the optimum buffer size for sending
data, or 0 to specify any buffer size is
acceptable.

vdrvOpCodeGetMaxRcvBlockSize <- controlDataP = Pointer to Int32 (block
size),
<- controlDataLenP = Pointer to
sizeof(Int32).
Return the maximum block size that the serial
manager should request from the virtual
device.

vdrvOpCodeNotifyBytesReadFromQ -> controlDataP = Pointer to Int32 (number
of bytes read),
-> controlDataLenP = Pointer to
sizeof(Int32).

vdvrOpCodeUserDef <-> controlDataP = Pointer from
SrmControl (user-defined data),
<-> controlDataLenP = Pointer to
sizeof(Int32).

Serial and Virtual Drivers
Virtual Driver-Defined Functions

1088 Palm OS SDK Reference

-> baudRate Initial baud rate setting.

-> rcvQP Pointer to the driver's receive queue buffer
structure. For details on the fields, see
DrvrRcvQType.

Result

Comments This function must allocate and initialize any global variables (and
pass back a pointer to a pointer to them in drvrDataP), do any set-
up necessary for communicating with other software, and save the
rcvQP pointer since it will need the functions and pointers to
structures enclosed within to be able to save received data into the
new serial manager’s receive queue.

Compatibility Implemented only if New Serial Manager Feature Set is present.

VdrvStatus

Purpose Returns virtual device status.

Prototype UInt16 VdrvStatus(VdrvDataPtr drvrDataP)

Parameters -> drvrDataP Pointer to the driver’s private global area.

Result An unsigned long bitfield denoting the status of the virtual device,
but only if the virtual device is emulating hardware. The individual
bit flags are described in the DrvrStatusEnum type.

Comments Generally, status is returned only to the client application using the
virtual device. The new serial manager does not use status
information from virtual devices.

Compatibility Implemented only if New Serial Manager Feature Set is present.

0 No error.

Serial and Virtual Drivers
Serial Manager Queue Functions

Palm OS SDK Reference 1089

VdrvWrite

Purpose Writes a block of bytes.

Prototype UInt32 VdrvWrite(VdrvDataPtr drvrDataP,
void * bufP, UInt32 size, Err* errP)

Parameters -> drvrDataP Pointer to the driver’s private global area.

-> bufP Pointer to buffer containing the data to be
written to the virtual device.

-> size Number of bytes in the buffer bufP.

<- errP Pointer to an error code resulting from the
operation. Zero is returned if there is no error.

Result Returns the actual number of bytes written.

Compatibility Implemented only if New Serial Manager Feature Set is present.

Serial Manager Queue Functions
The functions in this section are supplied by the new serial manager
to the virtual driver via the DrvrRcvQType passed to the
VdrvOpen function.

GetSize

Purpose Returns the total size of the new serial manager’s receive queue.

Prototype typedef UInt32 (*GetSizeProcPtr)(void * theQ)

Parameters -> theQ Pointer to the receive queue.

Result Size in bytes of the new serial manager’s receive queue.

Comments This function is useful for implementing flow control.

Serial and Virtual Drivers
Serial Manager Queue Functions

1090 Palm OS SDK Reference

Compatibility Implemented only if New Serial Manager Feature Set is present.

GetSpace

Purpose Returns the available space in the new serial manager’s receive
queue.

Prototype typedef UInt32 (*GetSpaceProcPtr)(void * theQ)

Parameters -> theQ Pointer to the receive queue.

Result Size in bytes of the available space in the new serial manager’s
receive queue.

Comments This function is useful for implementing flow control.

Compatibility Implemented only if New Serial Manager Feature Set is present.

WriteBlock

Purpose Writes a block of bytes to the new serial manager’s receive queue.

Prototype typedef Err (*WriteBlockProcPtr)(void * theQ,
UInt8 * bufP, UInt16 size, UInt16 lineErrs)

Parameters -> theQ Pointer to the receive queue.

-> bufP Pointer to the buffer holding bytes for the
WriteBlock function.

-> size Size of bufP.

Serial and Virtual Drivers
Serial Manager Queue Functions

Palm OS SDK Reference 1091

-> lineErrs Any serial line errors received should be
reported here.

Result

Compatibility Implemented only if New Serial Manager Feature Set is present.

WriteByte

Purpose Writes one byte to the new serial manager’s receive queue.

Prototype typedef Err (*WriteByteProcPtr)(void * theQ,
UInt8 theByte, UInt16 lineErrs)

Parameters -> theQ Pointer to the receive queue.

-> theByte The byte to be written to the queue.

-> lineErrs Any serial line errors received should be
reported here.

Result

Compatibility Implemented only if New Serial Manager Feature Set is present.

0 No error.

serErrLineErr There was a software overrun line
error.

0 No error.

serErrLineErr There was a software overrun line
error.

Palm OS SDK Reference 1093

60
Serial Link Manager
This chapter provides reference material for the serial link manager
API. The header file SerialLinkMgr.h declares the serial link
manager API. For more information on the serial link manager, see
the chapter “Serial Communication” in the Palm OS Programmer’s
Companion.

Serial Link Manager Functions

SlkClose

Purpose Close down the serial link manager.

Prototype Err SlkClose (void)

Parameters None.

Result 0 No error.

slkErrNotOpen The serial link manager was not open.

Comments When the open count reaches zero, this routine frees resources
allocated by serial link manager.

Serial Link Manager
Serial Link Manager Functions

1094 Palm OS SDK Reference

SlkCloseSocket

Purpose Closes a socket previously opened with SlkOpenSocket.

The caller is responsible for closing the communications library
used by this socket, if necessary.

Prototype Err SlkCloseSocket (UInt16 socket)

Parameters socket The socket ID to close.

Result 0 No error.

slkErrSocketNotOpen
The socket was not open.

Comments SlkCloseSocket frees system resources the serial link manager
allocated for the socket. It does not free resources allocated and
passed by the client, such as the buffers passed to
SlkSetSocketListener; this is the client’s responsibility. The
caller is also responsible for closing the communications library
used by this socket.

See Also SlkOpenSocket

SlkFlushSocket

Purpose Flush the receive queue of the communications library associated
with the given socket.

Prototype Err SlkFlushSocket (UInt16 socket, Int32 timeout)

Parameters -> socket Socket ID.

-> timeout Interbyte timeout in system ticks.

Result 0 No error.

slkErrSocketNotOpen
The socket wasn’t open.

Serial Link Manager
Serial Link Manager Functions

Palm OS SDK Reference 1095

SlkOpen

Purpose Initialize the serial link manager.

Prototype Err SlkOpen (void)

Parameters None.

Result 0 No error.

slkErrAlreadyOpen
No error.

Comments Initializes the serial link manager, allocating necessary resources.
Return codes of 0 (zero) and slkErrAlreadyOpen both indicate
success. Any other return code indicates failure. The
slkErrAlreadyOpen function informs the client that someone
else is also using the serial link manager. If the serial link manager
was successfully opened by the client, the client needs to call
SlkClose when it finishes using the serial link manager.

SlkOpenSocket

Purpose Open a serial link socket and associate it with a communications
library. The socket may be a known static socket or a dynamically
assigned socket.

Prototype Err SlkOpenSocket (UInt16 portID, UInt16 *socketP,
Boolean staticSocket)

Parameters portID Comm library reference number for socket.

socketP Pointer to location for returning the socket ID.

staticSocket If TRUE, *socketP contains the desired static
socket number to open. If FALSE, any free
socket number is assigned dynamically and
opened.

Result 0 No error.

Serial Link Manager
Serial Link Manager Functions

1096 Palm OS SDK Reference

slkErrOutOfSockets
No more sockets can be opened.

Comments The communications library must already be initialized and opened
(see SerOpen). When finished using the socket, the caller must call
SlkCloseSocket to free system resources allocated for the socket.
For information about well-known static socket IDs, see The Serial
Link Protocol.

SlkReceivePacket

Purpose Receive and validate a packet for a particular socket or for any
socket. Check for format and checksum errors.

Prototype Err SlkReceivePacket (UInt16 socket,
Boolean andOtherSockets, SlkPktHeaderPtr headerP,
void* bodyP, UInt16 bodySize, Int32 timeout)

Parameters -> socket The socket ID.

-> andOtherSockets
If TRUE, ignore destination in packet header.

<-> headerP Pointer to the packet header buffer (size of
SlkPktHeaderType).

<-> bodyP Pointer to the packet client data buffer.

-> bodySize Size of the client data buffer (maximum client
data size which can be accommodated).

-> timeout Maximum number of system ticks to wait for
beginning of a packet; -1 means wait forever.

Result 0 No error.

slkErrSocketNotOpen
The socket was not open.

slkErrTimeOut Timed out waiting for a packet.

slkErrWrongDestSocket
The packet being received had an unexpected
destination.

Serial Link Manager
Serial Link Manager Functions

Palm OS SDK Reference 1097

slkErrChecksum Invalid header checksum or packet CRC-16.

slkErrBuffer Client data buffer was too small for packet’s
client data.

If andOtherSockets is FALSE, this routine returns with an error
code unless it gets a packet for the specific socket.

If andOtherSockets is TRUE, this routine returns successfully if it
sees any incoming packet from the communications library used by
socket.

Comments You may request to receive a packet for the passed socket ID only, or
for any open socket which does not have a socket listener. The
parameters also specify buffers for the packet header and client
data, and a timeout. The timeout indicates how long the receiver
should wait for a packet to begin arriving before timing out. If a
packet is received for a socket with a registered socket listener, it
will be dispatched via its socket listener procedure. On success, the
packet header buffer and packet client data buffer is filled in with
the actual size of the packet’s client data in the packet header’s
bodySize field.

SlkSendPacket

Purpose Send a serial link packet via the serial output driver.

Prototype Err SlkSendPacket (SlkPktHeaderPtr headerP,
SlkWriteDataPtr writeList)

Parameters <-> headerP Pointer to the packet header structure with
client information filled in (see Comments).

-> writeList List of packet client data blocks (see
Comments).

Result 0 No error.

slkErrSocketNotOpen
The socket was not open.

slkErrTimeOut Handshake timeout.

Serial Link Manager
Serial Link Manager Functions

1098 Palm OS SDK Reference

Comments SlkSendPacket stuffs the signature, client data size, and the
checksum fields of the packet header. The caller must fill in all other
packet header fields. If the transaction ID field is set to 0 (zero), the
serial link manager automatically generates and stuffs a new non-
zero transaction ID. The array of SlkWriteDataType structures
enables the caller to specify the client data part of the packet as a list
of noncontiguous blocks. The end of list is indicated by an array
element with the size field set to 0 (zero). This call blocks until the
entire packet is sent out or until an error occurs.

SlkSetSocketListener

Purpose Register a socket listener for a particular socket.

Prototype Err SlkSetSocketListener (UInt16 socket,
SlkSocketListenPtr socketP)

Parameters -> socket Socket ID.

-> socketP Pointer to a SlkSocketListenType
structure.

Result 0 No error.

slkErrBadParam Invalid parameter.

slkErrSocketNotOpen
The socket was not open.

Comments Called by applications to set up a socket listener.

Since the serial link manager does not make a copy of the
SlkSocketListenType structure, but instead saves the passed
pointer to it, the structure

• must not be an automatic variable (that is, local variable
allocated on the stack)

• may be a global variable in an application

• may be a locked chunk allocated from the dynamic heap

The SlkSocketListenType structure specifies pointers to the
socket listener procedure and the data buffers for dispatching

Serial Link Manager
Serial Link Manager Functions

Palm OS SDK Reference 1099

packets destined for this socket. Pointers to two buffers must be
specified: the packet header buffer (size of SlkPktHeaderType),
and the packet body (client data) buffer. The packet body buffer
must be large enough for the largest expected client data size. Both
buffers may be application global variables or locked chunks
allocated from the dynamic heap.

The socket listener procedure is called when a valid packet is
received for the socket. Pointers to the packet header buffer and the
packet body buffer are passed as parameters to the socket listener
procedure.

NOTE: The application is responsible for freeing the
SlkSocketListenType structure or the allocated buffers when
the socket is closed. The serial link manager doesn’t do it.

SlkSocketPortID

Purpose Get the port ID associated with a particular socket; for use with the
new serial manager.

Prototype ErrSlkSocketPortID (UInt16 socket,
UInt16 * portIDP)

Parameters -> socket The socket ID.

<-> portIDP Pointer to location for returning the port ID.

Result 0 No error.

slkErrSocketNotOpen
The socket was not open.

Compatibility Implemented only if New Serial Manager Feature Set is present.

Serial Link Manager
Serial Link Manager Functions

1100 Palm OS SDK Reference

SlkSocketSetTimeout

Purpose Set the interbyte packet receive-timeout for a particular socket.

Prototype Err SlkSocketSetTimeout (UInt16 socket,
Int32 timeout)

Parameters -> socket Socket ID.

-> timeout Interbyte packet receive-timeout in system
ticks.

Result 0 No error.

slkErrSocketNotOpen
The socket was not open.

Part IV: Libraries

Palm OS SDK Reference 1103

61
Internet Library
This chapter provides reference material for the Internet library API:

• Internet Library Data Structures

• Internet Library Constants

• Internet Library Functions

The header file INetMgr.h declares the Internet library API. For
more information on the Internet library, see the chapter “Network
Communication” in the Palm OS Programmer’s Companion.

NOTE: The information in this chapter applies only to version
3.2 or later of the Palm OS® on Palm VII® devices. These features
are implemented only if the Wireless Internet Feature Set is
present.

WARNING! In future OS versions, Palm Computing® does not
intend to support or provide backward compatibility for the
Internet library API documented in this chapter.

Internet Library
Internet Library Data Structures

1104 Palm OS SDK Reference

Internet Library Data Structures

INetCompressionTypeEnum
The INetCompressionTypeEnum enum indicates the type of
compression used for data exchanged via a socket. One of these
enumerated types is set as the value of the
inetSockSettingCompressionTypeID socket setting (a read-
only setting).

typedef enum {
inetCompressionTypeNone = 0,
inetCompressionTypeBitPacked,
inetCompressionTypeLZ77
} INetCompressionTypeEnum;

Value Descriptions

INetConfigNameType
The INetConfigNameType structure holds the name of an Internet
library network configuration. A configuration is a set of specific
values for the Internet library settings. The Internet library defines a
set of built-in configuration aliases for common network setups.
These aliases point to configurations instead of holding the actual
values themselves. You can use an alias anywhere in the API you
would use a configuration. System-defined configuration aliases are
listed in “Configuration Aliases” on page 1116.

This structure is used in the functions
INetLibConfigIndexFromName, INetLibConfigRename, and
INetLibConfigSaveAs.

inetCompressionTypeNone No compression.

inetCompressionTypeBitPacked Custom 5-bit compression scheme. This is typi-
cally used for data sent from the Palm Web
Clipping Proxy server.

inetCompressionTypeLZ77 Not used; reserved for future use.

Internet Library
Internet Library Data Structures

Palm OS SDK Reference 1105

#define inetConfigNameSize 32;

typedef struct {
Char name[inetConfigNameSize]; // name of
configuration
} INetConfigNameType, *INetConfigNamePtr;

Field Description

INetContentTypeEnum
The INetContentTypeEnum enum specifies the type of content to
be exchanged via a socket. One of these enumerated types is set as
the value of the inetSockSettingContentTypeID socket setting
(a read-only setting).

typedef enum {
inetContentTypeTextPlain = 0,
inetContentTypeTextHTML,
inetContentTypeImageGIF,
inetContentTypeImageJPEG,
inetContentTypeApplicationCML,
inetContentTypeImagePalmOS,
inetContentTypeOther
} INetContentTypeEnum;

Value Descriptions

name A configuration name (up to 32 characters).

inetContentTypeTextPlain Not used

inetContentTypeTextHTML Not used

inetContentTypeImageGIF Not used

inetContentTypeImageJPEG Not used

inetContentTypeApplicationCML Compressed HTML content (format used by
the Palm Web Clipping Proxy server and
PQAs)

Internet Library
Internet Library Data Structures

1106 Palm OS SDK Reference

INetHTTPAttrEnum
The INetHTTPAttrEnum enum specifies HTTP request and
response attributes that are set by INetLibSockHTTPAttrSet
and returned by INetLibSockHTTPAttrGet.

typedef enum {

//--

// Request only attributes
//--

// The following are ignored unless going through
a CTP proxy
inetHTTPAttrWhichPart, // (W) UInt32 (0 -> N)
inetHTTPAttrIncHTTP, // (W) UInt32 (Boolean) only
applicable

// when inetHTTPAttrConvAlgorithm set to
ctpConvNone
inetHTTPAttrCheckMailHi, // (W) UInt32
inetHTTPAttrCheckMailLo, // (W) UInt32
inetHTTPAttrReqContentVersion, // (W) UInt32,
desired content

// version. Represented as 2 low bytes.
Lowest byte is

// minor version, next higher byte is
major version.
//--

// Response only attributes
//--

// Server response info

inetContentTypeImagePalmOS Palm OS® bitmap

inetContentTypeOther Some undefined content type

Internet Library
Internet Library Data Structures

Palm OS SDK Reference 1107

inetHTTPAttrRspSize, // (R) UInt32, entire HTTP
Response size

// including header and data
inetHTTPAttrResult, // (R) UInt32 (ctpErrXXX when
using CTP Proxy)
inetHTTPAttrErrDetail, // (R) UInt32 (server/proxy
err code when

// using CTP Proxy)
inetHTTPAttrReason, // (R) Char[]
// Returned entity attributes
inetHTTPAttrContentLength, // (R) UInt32
inetHTTPAttrContentLengthUncompressed, // (R)
UInt32 (in bytes)
inetHTTPAttrContentLengthUntruncated, //(R) UInt32
inetHTTPAttrContentVersion, // (R) UInt32, actual
content version.

// Represented as 2 low bytes. Lowest byte
is minor

// version, next higher byte is major
version.
inetHTTPAttrContentCacheID, // (R) UInt32, cacheID
for this item
inetHTTPAttrReqSize // (R) UInt32 size of request
sent
} INetHTTPAttrEnum;

Value Descriptions

inetHTTPAttrWhichPart An index to the part of the response data
desired, if the response data is partitioned
into chunks. Write-only.

inetHTTPAttrIncHTTP A Boolean that, if set, causes HTTP header
data to be included as part of the content
when retrieving raw data. Applicable only
when inetSettingConvAlgorithm is set
to ctpConvNone. Write-only.

inetHTTPAttrCheckMailHi High-order byte of ID for checking mail.
Write-only.

Internet Library
Internet Library Data Structures

1108 Palm OS SDK Reference

INetSchemeEnum
The INetSchemeEnum enum specifies a protocol (http, https, etc.)
used by a socket. Specify one of these enumerated types for the
INetSockSettingScheme socket setting and for the scheme
parameter to the INetLibSockOpen call.

inetHTTPAttrCheckMailLo Low-order byte of ID for checking mail.
Write-only.

inetHTTPAttrReqContentVersion Desired content version. Represented as 2
low bytes. Lowest byte is minor version,
next higher byte is major version. Write-
only.

inetHTTPAttrRspSize Size of entire HTTP (header and data).
Read-only.

inetHTTPAttrResult Transport protocol error code. Read-only.

inetHTTPAttrErrDetail Server/proxy error code when using the
Palm Web Clipping Proxy server. Read-
only.

inetHTTPAttrReason Transport protocol error message. Read-
only.

inetHTTPAttrContentLength Size of response data. Read-only.

inetHTTPAttrContentLengthUncompr
essed

Size of uncompressed response data. Read-
only.

inetHTTPAttrContentLengthUntrunc
ated

Total size of response data (it may have
been truncated to less than this). Read-only.

inetHTTPAttrContentVersion Actual content version. Represented as 2
low bytes. Lowest byte is minor version,
next higher byte is major version. Read-
only.

inetHTTPAttrContentCacheID Cache ID for this item. Read-only.

inetHTTPAttrReqSize Size of request sent. Read-only.

Internet Library
Internet Library Data Structures

Palm OS SDK Reference 1109

typedef enum {
inetSchemeUnknown = -1,
inetSchemeDefault = 0,

inetSchemeHTTP, // http:
inetSchemeHTTPS, // https:
inetSchemeFTP, // ftp:
inetSchemeGopher, // gopher:
inetSchemeFile, // file:
inetSchemeNews, // news:
inetSchemeMailTo, // mailto:
inetSchemePalm, // palm:
inetSchemePalmCall, // palmcall:
inetSchemeMail, // not applicable to URLs, but
used

// for the INetLibSockOpen call
when

// creating a socket for mail IO
inetSchemeMac, // mac: - Mac file system HTML

inetSchemeFirst = inetSchemeHTTP, // first one
inetSchemeLast = inetSchemeMail // last one
} INetSchemeEnum;

Internet Library
Internet Library Data Structures

1110 Palm OS SDK Reference

Value Descriptions

INetSettingEnum
The INetSettingEnum enum specifies a setting to be returned or
set by the INetLibSettingGet or INetLibSettingSet calls.

typedef enum {
inetSettingCacheSize, // (RW) UInt32, max size of
cache

inetSchemeHTTP Use the HTTP protocol.

inetSchemeHTTPS Use the HTTPS protocol (for a secure connection).

inetSchemeFTP Use the FTP protocol. Not implemented.

inetSchemeGopher Use the Gopher protocol. Not implemented.

inetSchemeFile Launch local PQA file

inetSchemeNews Use the News protocol. Not implemented.

inetSchemeMailTo Launch the local messaging application, passing a “to”
address.

inetSchemePalm Launches a local application database. The URL is
expected to be in the form cccc.tttt, where cccc is a four
character creator name and tttt is a four character
database type. This pair of strings is used to identify an
application database to receive the launch message via a
call to SysUIAppSwitch.

inetSchemePalmCall Launches a local application database. The URL is
expected to be in the form cccc.tttt, where cccc is a four
character creator name and tttt is a four character
database type. This pair of strings is used to identify an
application database to receive the launch message via a
call to SysAppLaunch.

inetSchemeMail Creates a socket for mail I/O.

inetSchemeMac Handles opening Mac OS file system HTML URLs. For
use by the Simulator only.

Internet Library
Internet Library Data Structures

Palm OS SDK Reference 1111

inetSettingCacheRef, // (R) DmOpenRef, ref of
cache DB
inetSettingNetLibConfig, // (RW) UInt32, NetLib
config to use
inetSettingRadioID, // (R) UInt32[2], the 64-bit
radio ID
inetSettingBaseStationID, // (R) UInt32, the
radio base station Id
inetSettingMaxRspSize, // (W) UInt32 (in bytes)
inetSettingConvAlgorithm, // (W) UInt32
(CTPConvEnum)
inetSettingContentWidth, // (W) UInt32 (in pixels)
inetSettingContentVersion, // (W) UInt32, content
version (encoder

// version)
inetSettingNoPersonalInfo, // (RW) UInt32, send no
deviceID/zipcode
inetSettingUserName,
inetSettingLast
} INetSettingEnum;

Value Descriptions

inetSettingCacheSize Maximum size of cache (in bytes).

inetSettingCacheRef DmOpenRef, reference to cache database. Read-
only.

inetSettingNetLibConfig The index of the net library network configuration
to use. This value is saved as part of the
preferences for each Internet library configuration.
A value of 0 means to use the current
configuration.

inetSettingRadioID 64-bit radio ID. Read-only. Used for wireless
connections only.

inetSettingBaseStationID Radio base station ID. Read-only. Used for wireless
connections only.

inetSettingMaxRspSize Maximum response size, in bytes. The default is
1024 bytes. Write-only.

Internet Library
Internet Library Data Structures

1112 Palm OS SDK Reference

INetSockSettingEnum
The INetSockSettingEnum enum specifies a socket setting to be
returned or set by the INetLibSockSettingGet or
INetLibSockSettingSet calls.

typedef enum {
inetSockSettingScheme, // (R) UInt32,
INetSchemeEnum
inetSockSettingSockContext, // (RW) UInt32,
inetSockSettingCompressionType, // (R) Char[]
inetSockSettingCompressionTypeID, // (R) UInt32

//
(INetCompressionTypeEnum)
inetSockSettingContentType, // (R) Char[]

inetSettingConvAlgorithm Content conversion desired. Write-only. Possible
values include:
ctpConvCML (use 5-bit compression scheme),
ctpConvCML8Bit (use 5-bit compression scheme,
but in 8-bit form for debugging),
ctpConvCMLLZ77 (use LZ77 compression
scheme),
ctpConvNone (no conversion; data is returned in
native format)

inetSettingContentWidth Width of the display for content. The default
setting is 160 (pixels). Write-only.

inetSettingContentVersion Content version (encoder version). Write-only.
This setting is used to let the server know what
encoder version it should use to encode content
sent to the Palm client. Normally you don’t need to
set this value as it is initialized by INetLibOpen.
The default encoder version is 0x8001.

inetSettingNoPersonalInfo Send no device ID or zipcode information to the
proxy server. This value is saved as part of the
preferences for each Internet library configuration.

inetSettingUserName Not applicable.

Internet Library
Internet Library Data Structures

Palm OS SDK Reference 1113

inetSockSettingContentTypeID, // (R) UInt32
(INetContentTypeEnum)
inetSockSettingData, // (R) UInt32, pointer to
data
inetSockSettingDataHandle,// (R) UInt32, handle to
data
inetSockSettingDataOffset,// (R) UInt32, offset to
data from handle
inetSockSettingTitle, // (W) Char[]
inetSockSettingURL, // (R) Char[]
inetSockSettingIndexURL, // (RW) Char[]
inetSockSettingFlags, // (RW) UInt16, one or more
of

// inetOpenURLFlagXXX flags
inetSockSettingReadTimeout, // (RW) UInt32, read
timeout in ticks
inetSockSettingContentVersion,// (R) UInt32,
content version number
inetSockSettingLast
} INetSockSettingEnum;

Value Descriptions

inetSockSettingScheme Requested scheme; one of the
INetSchemeEnum values. Read-only.

inetSockSettingSockContext Not used.

inetSockSettingCompressionType Name of requested compression type.
Read-only.

inetSockSettingCompressionTypeID Requested compression type; one of the
INetCompressionTypeEnum values.
Read-only.

inetSockSettingContentType String containing the MIME type of the
content. Used only on received raw data.
Read-only.

inetSockSettingContentTypeID Content type of socket data; one of the
INetContentTypeEnum values. Read-
only.

Internet Library
Internet Library Data Structures

1114 Palm OS SDK Reference

INetStatusEnum
The INetStatusEnum enum specifies the status of the socket. The
status is returned in the inetSockStatusChangeEvent event
structure and by the call INetLibSockStatus.

typedef enum {
inetStatusNew, // just opened

inetSockSettingData Pointer to socket data. Read-only.

inetSockSettingDataHandle Handle to socket data. Read-only.

inetSockSettingDataOffset Offset to socket data from handle. Read-
only.

inetSockSettingTitle Web page title. This value is written to the
cache (and Clipper uses it later in a history
list of cache entries). Write-only.

inetSockSettingURL URL of requested data. Read-only.

inetSockSettingIndexURL Index (or master) URL of requested data
(for cache indexing). This is the topmost
web page in a group of hierarchical pages;
it serves to group the pages together and
to filter cache list results. Clipper sets this
to the URL of the active PQA, for all pages
linked from the PQA.

inetSockSettingFlags URL request flags; one or more of
inetOpenURLFlag... flags (see URL
Open Constants).

inetSockSettingReadTimeout The default timeout value for reads when
the application uses the event mechanism.
The time since last receiving data from a
socket is monitored and a timeout error
status event is returned from
INetLibGetEvent if the timeout is
exceeded.

inetSockSettingContentVersion Content version number. Read-only.

Internet Library
Internet Library Data Structures

Palm OS SDK Reference 1115

inetStatusResolvingName, // looking up host
address
inetStatusNameResolved, // found host address
inetStatusConnecting, // connecting to host
inetStatusConnected, // connected to host
inetStatusSendingRequest, // sending request
inetStatusWaitingForResponse, // waiting for
response
inetStatusReceivingResponse, // receiving response
inetStatusResponseReceived, // response received
inetStatusClosingConnection, // closing connection
inetStatusClosed, // closed
inetStatusAcquiringNetwork, // network temporarily

// unreachable; socket
on hold
inetStatusPrvInvalid = 30 // internal value, not
returned by

// INetMgr. Should be
last.
} INetStatusEnum;

Value Descriptions

inetStatusNew Just opened

inetStatusResolvingName Looking up host address

inetStatusNameResolved Found host address

inetStatusConnecting Connecting to host

inetStatusConnected Connected to host

inetStatusSendingRequest Sending request

inetStatusWaitingForResponse Waiting for response

inetStatusReceivingResponse Receiving response

inetStatusResponseReceived Response received

inetStatusClosingConnection Closing connection

inetStatusClosed Connection closed

Internet Library
Internet Library Constants

1116 Palm OS SDK Reference

Internet Library Constants

Configuration Aliases
The constants listed here specify Internet library network
configuration alias names. Most of the Internet library API requires
a configuration index rather than a name. Use
INetLibConfigIndexFromName to obtain the alias’s index from
the name. For more information, see INetConfigNameType.

The following aliases are defined for configuration names:

inetStatusAcquiringNetwork Network temporarily unreachable; socket
on hold

inetStatusPrvInvalid Not used

Alias Name string Description

inetCfgNameDefault ".Default" Initially points to a generic
configuration with no proxy. This
uses the configuration set by the
user in the Network preferences
panel.

inetCfgNameDefWireline ".DefWireline" Initially points to a generic
configuration with no proxy. This
uses the configuration set by the
user in the Network preferences
panel.

inetCfgNameDefWireless ".DefWireless" Initially points to a generic
configuration with no proxy. This
uses the configuration set by the
user in the Network preferences
panel.

Internet Library
Internet Library Constants

Palm OS SDK Reference 1117

URL Info Constants
The inetURLInfoFlag... constants convey information about a
URL and are returned by the function INetLibURLGetInfo.

URL Open Constants
The inetOpenURLFlag... constants control how the
INetLibURLOpen call operates with respect to caching and
encryption. These flags are also used for the
inetSockSettingFlags socket setting.

inetCfgNameCTPDefault ".CTPDefault" Initially points to either
".CTPWireless" (on Palm VII®
units) or ".CTPWireline" (on all
other units). On the Palm VII unit,
the Clipper application uses this
configuration.

inetCfgNameCTPWireline ".CTPWireline" Initially points to a wireline
configuration that uses the Palm
Web Clipping Proxy server.

inetCfgNameCTPWireless ".CTPWireless" Initially points to a wireless
configuration that uses the
Palm.Net™ wireless system and the
Palm Web Clipping Proxy server.

Alias Name string Description

Constant Value Description

inetURLInfoFlagIsSecure 0x0001 URL was encrypted.

inetURLInfoFlagIsRemote 0x0002 URL was retrieved from the net.

inetURLInfoFlagIsInCache 0x0004 URL is stored in the cache.

Internet Library
Internet Library Functions

1118 Palm OS SDK Reference

Internet Library Functions

INetLibCacheGetObject

Purpose Returns information about an entry in the cache database, including
a handle to the record. Either the URL or the unique ID can be used
to find the cache entry.

Prototype Err INetLibCacheGetObject (UInt16 libRefnum,
MemHandle clientParamH, UInt8 * urlTextP,
UInt32 uniqueID, INetCacheInfoPtr cacheInfoP)

Parameters -> libRefnum Refnum of the Internet library.

-> clientParamHInet handle allocated by INetLibOpen.

-> urlTextP Pointer to URL text string to find. If this
parameter is NULL, then uniqueID is used to
find the entry.

-> uniqueID Unique ID of the cache entry to find. This value
can be obtained by calling
INetLibCacheList. This parameter is
ignored if urlTextP is specified.

Constant Value Description

inetOpenURLFlagLookInCache 0x0001 Read data from the cache, if
available.

inetOpenURLFlagKeepInCache 0x0002 Store the item in the cache,
overwriting any other entries with
an equivalent URL.

inetOpenURLFlagForceEncOn 0x0008 Use encryption even if scheme does
not desire it.

inetOpenURLFlagForceEncOff 0x0010 Do not use encryption even if
scheme desires it.

Internet Library
Internet Library Functions

Palm OS SDK Reference 1119

<- INetCacheInfoPtr
Pointer to a structure where information about
the cache entry is returned. See the Comments
section for details.

Result

Comments The INetCacheInfoPtr type returned from this function is
defined as a pointer to an INetCacheInfoType structure, which
has the following definition:

typedef struct {
MemHandle recordH; // handle to the cache
record
INetContentTypeEnum contentType;
INetCompressionTypeEnum encodingType;
UInt32 uncompressedDataSize;
UInt8 flags; // unused
UInt8 reserved;
UInt16 dataOffset; // offset to content
UInt16 dataLength; // size of content
UInt16 urlOffset; // offset to URL
UInt32 viewTime; // time last viewed
UInt32 createTime; // time entry was created
UInt16 murlOffset; // offset to master URL
} INetCacheInfoType, *INetCacheInfoPtr;

Compatibility Implemented only if Wireless Internet Feature Set is present.

0 No error

inetErrParamsInvalid One or more of the parameters
are invalid.

Internet Library
Internet Library Functions

1120 Palm OS SDK Reference

INetLibCacheList

Purpose Returns an item from the cache list, based on its URL and index in
the list.

Prototype Err INetLibCacheList (UInt16 libRefnum,
MemHandle inetH, UInt8 * cacheIndexURLP,
UInt16 * indexP, UInt32 * uidP,
INetCacheEntryP cacheP)

Parameters -> libRefnum Refnum of the Internet library.

-> inetH Inet handle allocated by INetLibOpen.

-> cacheIndexURLPPointer to a master URL string. Cache entries
indexed with this master URL are returned.
Clipper sets the master URL of a cache page to
the URL of the active PQA, so all pages linked
from the PQA have the same master URL.

<-> indexP Pointer to the index of the entry. Specify an
index to find entries at this index or higher in
the list. Specify NULL to search from the
beginning, the first time you call this function.
The index of the entry following the one found
is returned on exit.

<- uidP Pointer to a long value where the unique ID of
the found cache entry is returned.

<- cacheP Pointer to a structure where information about
the found cache entry is returned. See the
Comments section for details.

Result

0 No error

inetErrTypeNotCached Cache entry under requested
index not found

Internet Library
Internet Library Functions

Palm OS SDK Reference 1121

Comments This function first sorts the list of cache entries by URL. Then it
returns in uidP the unique ID of the first cache entry with an index
equal to or greater than indexP. The indexP value is updated to
point to the next entry upon return.

To generate a complete list of cache entries having the same master
URL (as for a history list), call this function repeatedly, always
specifying the updated index, until it returns the error
inetErrTypeNotCached.

Note that a URL can exist multiple times in the Clipper cache
database, thus the need for the uidP value.

The INetCacheEntryP type returned from this function is defined
as a pointer to an INetCacheEntryType structure, which has the
following definition:

typedef struct {
UInt8 * urlP; // ptr to URL string
UInt16 urlLen; // length of URL string
UInt8 * titleP; // ptr to title string
UInt16 titleLen; // length of title string
UInt32 lastViewed; // time last viewed

// seconds since 1/1/1904
UInt32 firstViewed; // time first viewed

// seconds since 1/1/1904
} INetCacheEntryType, *INetCacheEntryP;

Compatibility Implemented only if Wireless Internet Feature Set is present.

inetErrParamsInvalid The cacheIndexURLP
parameter is NULL

inetErrCacheInvalid The cache database doesn’t exist

Internet Library
Internet Library Functions

1122 Palm OS SDK Reference

INetLibCheckAntennaState

Purpose Checks the antenna state and displays a dialog asking the user to
raise it if it is down.

Prototype Err INetLibCheckAntennaState(UInt16 Refnum)

Parameters -> libRefnum Refnum of the Internet library.

Result

This call can also return data manager errors if it fails internally.

Comments Applications don’t need to check the antenna state by using this call.
If an application opens the Internet library, the Internet library
checks the antenna state when needed and displays the dialog to
prompt the user to raise the antenna.

Compatibility Implemented only if Wireless Internet Feature Set is present.

INetLibClose

Purpose Closes up and frees an inet handle. Closes or decrements the open
count of the net library.

Prototype Err INetLibClose (UInt16 libRefnum,
MemHandle inetH)

Parameters -> libRefnum Refnum of the Internet library.

-> inetH Inet handle allocated by INetLibOpen.

Result

0 The user raised the antenna.

netErrUserCancel The user closed the dialog by
tapping Cancel.

0 No error

Internet Library
Internet Library Functions

Palm OS SDK Reference 1123

Comments This call must be made by an application when it's done with the
Internet library. It closes any Internet sockets open by the
application, disposes the memory referenced by the given inet
handle, and calls NetLibClose, if necessary, to close the net
Library or decrement its open count.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibOpen

INetLibConfigAliasGet

Purpose Determines to which configuration a built-in alias points.

Prototype Err INetLibConfigAliasGet (UInt16 refNum,
UInt16 aliasIndex, UInt16 * indexP,
Boolean * isAnotherAliasP)

Parameters -> libRefnum Refnum of the Internet library.

-> aliasIndex Index of alias configuration to query. This is the
index of the configuration in the internal array
of configurations stored by the system. This is
the same as the index of the item in the array
returned by INetLibConfigList, or the
index returned by
INetLibConfigIndexFromName.

<- indexP Pointer where the index of the configuration
pointed to by aliasIndex is returned. 0 is
returned if aliasIndex does not point to
another configuration.

Internet Library
Internet Library Functions

1124 Palm OS SDK Reference

<- isAnotherAliasP
If *indexP is the index of another alias
configuration, this Boolean is set to true.

Result

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibConfigAliasSet

INetLibConfigAliasSet

Purpose Points any of the built-in aliases (".DefWireline", ".DefWireless", etc.)
to a given defined configuration.

Prototype Err INetLibConfigAliasSet (UInt16 refNum,
UInt16 configIndex, UInt16 aliasToIndex)

Parameters -> libRefnum Refnum of the Internet library.

-> configIndex Index of configuration to set. This is the index
of the configuration in the internal array of
configurations stored by the system. This is the
same as the index of the item in the array
returned by INetLibConfigList, or the
index returned by
INetLibConfigIndexFromName.

0 No error

inetErrParamsInvalid aliasIndex is not valid

inetErrConfigNotAlias aliasIndex is not an
alias configuration

Internet Library
Internet Library Functions

Palm OS SDK Reference 1125

-> aliasToIndex
Index of configuration that the alias identified
by configIndex is to point to. Specify 0 to
remove an existing alias assignment.

Result

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibConfigAliasGet

INetLibConfigDelete

Purpose Deletes a configuration.

Prototype Err INetLibConfigDelete (UInt16 refNum,
UInt16 index)

Parameters -> refnum Refnum of the Internet library.

0 No error

inetErrConfigNotAlias configIndex is not an
alias configuration

inetErrParamsInvalid configIndex or
aliasToIndex is not
valid

inetErrConfigCantPointToAlias Alias doesn't point to a real
entry

Internet Library
Internet Library Functions

1126 Palm OS SDK Reference

-> index Index of configuration to delete. This is the
index of the configuration in the internal array
of configurations stored by the system. This is
the same as the index of the item in the array
returned by INetLibConfigList, or the
index returned by
INetLibConfigIndexFromName.

Result

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibConfigIndexFromName, INetLibConfigList

INetLibConfigIndexFromName

Purpose Returns the index of a configuration given it's name.

Prototype Err INetLibConfigIndexFromName (UInt16 refNum,
INetConfigNamePtr nameP, UInt16 * indexP)

Parameters -> refnum Refnum of the Internet library.

-> nameP Pointer to an INetConfigNameType structure
that names the configuration whose index you
want to get.

0 No error

inetErrParamsInvalid Index not valid

inetErrConfigCantDelete Attempted to delete an alias
configuration

Internet Library
Internet Library Functions

Palm OS SDK Reference 1127

<- indexP Pointer where the index of the configuration
identified in nameP is returned.

Result

Comments If you name an alias, this routine returns the index of the alias entry,
not the configuration the alias points to. This way the alias can be
pointed to a different configuration.

Applications should store the index of the configuration they're
using, rather than the name, so that they won't be confused if the
user edits the name of the configuration from the Preferences panel.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibConfigList

INetLibConfigList

Purpose Returns an array containing a list of the available Internet library
network configurations.

Prototype Err INetLibConfigList (UInt16 refNum,
INetConfigNameType nameArray[],
UInt16 * arrayEntriesP)

Parameters -> refnum Refnum of the Internet library.

-> nameArray Pointer to an array of INetConfigNameType
structs that is to be filled in by this routine.

0 No error

inetErrConfigNotFound Could not find requested
configuration name

Internet Library
Internet Library Functions

1128 Palm OS SDK Reference

<-> arrayEntriesP
On entry, a pointer to the number of entries
available in nameArray; on exit, a pointer to
the total number of entries in the system (which
could exceed the size of the array you pass in).

Result

Comments This routine can be used to obtain a list of available configurations
for selection by the user.

Note that the built-in alias configurations, which start with a period,
should not be displayed to the user as selectable choices. They are
designed for internal use by applications that need a predetermined
type of service (like ".CTPWireless" for PQA applications.) Also, any
configurations that start with an underscore, like "_CTPRAM",
should not be displayed. These typically are configurations created
by the Internet library for internal use and cannot be edited using
the Network preferences panel.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibConfigMakeActive

INetLibConfigMakeActive

Purpose Makes the given configuration active without having to close and
reopen the Internet library by using INetLibOpen.

Prototype Err INetLibConfigMakeActive (UInt16 refNum,
MemHandle inetH, UInt16 configIndex)

Parameters -> libRefnum Refnum of the Internet library.

-> inetH Inet handle allocated by INetLibOpen.

0 No error

Internet Library
Internet Library Functions

Palm OS SDK Reference 1129

-> configIndex Index of configuration to activate. This is the
index of the configuration in the internal array
of configurations stored by the system. This is
the same as the index of the item in the array
returned by INetLibConfigList, or the
index returned by
INetLibConfigIndexFromName.

Result

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibConfigSaveAs, INetLibConfigList,
INetLibConfigIndexFromName

INetLibConfigRename

Purpose Renames a configuration.

Prototype Err INetLibConfigRename (UInt16 refNum,
UInt16 index, INetConfigNamePtr newNameP)

Parameters -> libRefnum Refnum of the Internet library.

-> index Index of configuration to rename. This is the
index of the configuration in the internal array
of configurations stored by the system. This is
the same as the index of the item in the array
returned by INetLibConfigList, or the
index returned by
INetLibConfigIndexFromName.

0 No error

Internet Library
Internet Library Functions

1130 Palm OS SDK Reference

-> newNameP Pointer to an INetConfigNameType structure
holding the new name of the configuration. The
name cannot start with a period or an
underscore.

Result

Comments After renaming, the configuration index stays the same so that
applications that are set up to use that configuration will still work
correctly. Note that built-in configuration aliases (ones that start
with a period) cannot be renamed.

Compatibility Implemented only if Wireless Internet Feature Set is present.

INetLibConfigSaveAs

Purpose Saves the current network configuration settings under the given
name.

Prototype Err INetLibConfigSaveAs (UInt16 refNum,
MemHandle inetH, INetConfigNamePtr nameP)

Parameters -> libRefnum Refnum of the Internet library.

-> inetH Inet handle allocated by INetLibOpen.

0 No error

inetErrConfigBadName Trying to save as an alias
(beginning with ".") or as a built-
in configuration (beginning with
"_").

inetErrParamsInvalid Invalid index

inetErrConfigCantDelete Configuration to be renamed is
either an alias or a built-in
configuration

Internet Library
Internet Library Functions

Palm OS SDK Reference 1131

-> nameP Pointer to an INetConfigNameType structure
holding the name of the configuration. The
name cannot start with a period or an
underscore.

Result

Comments If the configuration name specified already exists, it is replaced with
the new settings.

Compatibility Implemented only if Wireless Internet Feature Set is present.

INetLibGetEvent

Purpose A replacement for EvtGetEvent that informs an application of
status changes to Internet sockets as well as user interface events.

Prototype void INetLibGetEvent (UInt16 libRefnum,
MemHandle inetH, INetEventType* eventP,
Int32 timeout)

Parameters -> libRefnum Refnum of the Internet library.

-> inetH Inet handle allocated by INetLibOpen, or
NULL.

<-> eventP The event structure is returned via this pointer.

0 No error

inetErrConfigBadName Trying to save as an alias (beginning
with ".") or as a built-in configuration
(beginning with "_").

inetErrConfigTooMany The internal configurations table is
full. No more entries can be stored.

Internet Library
Internet Library Functions

1132 Palm OS SDK Reference

-> timeout Timeout in ticks. Specify evtWaitForever to
wait forever.

Result

Comments This call is designed to replace EvtGetEvent in applications which
use the Internet library. For convenience, if inetH is NULL,
INetLibGetEvent is equivalent to EvtGetEvent.

INetLibGetEvent returns two additional events besides those
returned by EvtGetEvent: inetSockReadyEvent and
inetSockStatusChangeEvent.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibSockStatus, INetLibURLOpen, INetLibSockOpen,
INetLibSockRead

INetLibOpen

Purpose Creates a new application inet handle structure. Opens or
increments the open count of the net library.

Prototype Err INetLibOpen (UInt16 libRefnum, UInt16 config,
UInt32 flags, DmOpenRef cacheRef,
UInt32 cacheSize, MemHandle* inetHP)

Parameters -> libRefnum Refnum of the Internet library. Pass the value
"INet.lib" to SysLibFind to return this
refnum.

-> config Indicates the type of network service desired by
the application. Returned by
INetLibConfigIndexFromName.

-> flags Currently unused; set to 0.

0 No error

Internet Library
Internet Library Functions

Palm OS SDK Reference 1133

-> cacheRef Document cache database reference. Obtain
this by using one of the DmOpenDatabase...
calls. Pass NULL if you don’t want to use a
cache.

-> cacheSize Maximum size of the document cache (in
bytes). This is ignored if you pass NULL for
cacheRef.

<- inetHP Pointer to a handle variable.

Result

Comments This call must be made by an application before it can use any other
Internet library calls. This call opens the Internet library and returns
a pointer to an inet handle, which is then passed to subsequent calls
to the Internet library. Every application that opens the Internet
library gets its own unique inet handle.

When an application is done using the Internet library, it must call
INetLibClose, which closes both the Internet library and the net
library, if necessary.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibClose, INetLibConfigIndexFromName

0 No error

inetErrTooManyClients Too many clients opened
already

inetErrIncompatibleInterface The net library is already
open with an incompatible
interface

Internet Library
Internet Library Functions

1134 Palm OS SDK Reference

INetLibSettingGet

Purpose Retrieves current settings for an inet handle.

Prototype Err INetLibSettingGet (UInt16 libRefnum,
MemHandle inetH, UInt16 /*INetSettingEnum */
setting, void * bufP, UInt16 * bufLenP)

Parameters -> libRefnum Refnum of the Internet library.

-> inetH Inet handle allocated by INetLibOpen.

-> setting The setting to get. Specify one of the
INetSettingEnum enumerated types.

<- bufP Pointer to buffer where the return value is to be
put.

<-> bufLenP Size of bufP on entry. Size of setting value on
exit.

Result

Comments This call can be used to retrieve the current settings of an inet
handle. Some settings have default values that are stored in the
system preferences database; see INetSettingEnum for details.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibOpen, INetLibSettingSet, INetSettingEnum

0 No error

inetErrParamsInvalid Invalid setting requested

inetErrSettingSizeInvalid *bufLenP is the incorrect
size for the requested
setting

Internet Library
Internet Library Functions

Palm OS SDK Reference 1135

INetLibSettingSet

Purpose Changes a setting for an inet handle.

Prototype Err INetLibSettingSet (UInt16 libRefnum,
MemHandle inetH, UInt16 /*INetSettingEnum*/
setting, void * bufP, UInt16 * bufLen)

Parameters -> libRefnum Refnum of the Internet library.

-> inetH Inet handle allocated by INetLibOpen.

-> setting The setting to set. Specify one of the
INetSettingEnum enumerated types.

-> bufP Pointer to the new setting value.

-> bufLen Size of the value in bufP.

Result

Comments Any changes made to the settings last only as long as the inetH is
around (until INetLibClose is called) and do not affect other
applications that might be using the Internet library.

An important note is that settings made through this call essentially
change the default values for any sockets subsequently created
through INetLibURLOpen or INetLibSockOpen.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibSettingGet, INetSettingEnum

0 No error

inetErrParamsInvalid Invalid setting specified

inetErrSettingSizeInvalid bufLen is the incorrect
size for the specified
setting

Internet Library
Internet Library Functions

1136 Palm OS SDK Reference

INetLibSockClose

Purpose Closes an inet socket handle.

Prototype Err INetLibSockClose (UInt16 libRefnum,
MemHandle socketH)

Parameters -> libRefnum Refnum of the Internet library.

-> socketH Handle of the socket to close.

Result

Comments This call closes down and releases all memory associated with a
socket created by INetLibSockOpen or INetLibURLOpen.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibOpen, INetLibSockOpen, INetLibURLOpen

INetLibSockConnect

Purpose Establishes a connection with a remote host.

Prototype Err INetLibSockConnect (UInt16 libRefnum,
MemHandle sockH, UInt8 * hostnameP, UInt16 port,
Int32 timeout)

Parameters -> libRefnum Refnum of the Internet library.

-> sockH Handle (allocated by INetLibSockOpen
or INetLibURLOpen) of the socket to connect.

-> hostnameP Pointer to host name string; can be dotted
decimal text string.

-> port Port number, or 0 for default port.

0 No error

Internet Library
Internet Library Functions

Palm OS SDK Reference 1137

-> timeout Timeout in ticks; -1 means wait forever.

Result

Comments This call associates a remote host name and port number with a
socket and, depending on the socket protocol, initiates a connection
with that remote host.

This call may return immediately before actually finishing the
connect. The application can simply go ahead and submit additional
calls such as INetLibSockRead, or it may wait for the connect to
complete by either polling INetLibSockStatus until the socket
status is inetStatusConnected (not recommended), or by
waiting for an inetSockStatusChangeEvent event from
INetLibGetEvent and checking the status then (preferred).

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibSockOpen, INetLibSockStatus, INetLibGetEvent

INetLibSockHTTPAttrGet

Purpose Queries HTTP request header formed by the local host, or the
response header information returned by a remote host.

Prototype Err INetLibSockHTTPAttrGet (UInt16 libRefnum,
MemHandle sockH, UInt16 /*inetHTTPAttrEnum*/ attr,
UInt16 attrIndex, void * bufP, UInt32 * bufLenP)

Parameters -> libRefnum Refnum of the Internet library.

-> sockH Handle (allocated by INetLibSockOpen
or INetLibURLOpen) of the socket.

-> attr The attribute to get. Specify one of the
INetHTTPAttrEnum values.

-> attrIndex The attribute index (if any). Currently unused.

0 No error

Internet Library
Internet Library Functions

1138 Palm OS SDK Reference

<- bufP Pointer to the address where the result is
returned.

<-> bufLenP Pointer to the size of bufP on entry; size of
returned value on exit.

Result

Comments This call queries either the request header formed by
INetLibSockHTTPReqCreate and INetLibSockHTTPAttrSet,
or the response header returned by the remote host.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibSockHTTPReqCreate

INetLibSockHTTPAttrSet

Purpose Adds additional HTTP request headers to an HTTP request in a
socket.

Prototype Err INetLibSockHTTPAttrSet (UInt16 libRefnum,
MemHandle sockH, UInt16 /*inetHTTPAttrEnum*/ attr,
UInt16 attrIndex, UInt8 * bufP, UInt16 bufLen,
UInt16 flags)

Parameters -> libRefnum Refnum of the Internet library.

-> sockH Handle (allocated by INetLibSockOpen
or INetLibURLOpen) of the socket.

-> attr The attribute to set. Specify one of the
INetHTTPAttrEnum values.

0 No error

inetErrSettingNotImplemented Invalid setting specified

inetErrSettingSizeInvalid bufLen is the incorrect
size for the specified
setting

Internet Library
Internet Library Functions

Palm OS SDK Reference 1139

-> attrIndex The attribute index (if any). Currently unused.

-> bufP Pointer to additional header text to add.

-> bufLen Length of bufP.

-> flags Flags that control the addition of new headers.
Currently unused.

Result

Comments This call modifies attributes of an HTTP request formed by
INetLibSockHTTPReqCreate. Generally, attributes are set only
before calling INetLibSockHTTPReqSend.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibSockHTTPReqCreate, INetLibSockHTTPReqSend

INetLibSockHTTPReqCreate

Purpose Forms an HTTP request for the socket.

Prototype Err INetLibSockHTTPReqCreate (UInt16 libRefnum,
MemHandle sockH, UInt8 * verbP, UInt8 * resNameP,
UInt8 * refererP)

Parameters -> libRefnum Refnum of the Internet library.

-> sockH Handle (allocated by INetLibSockOpen
or INetLibURLOpen) of the socket.

-> verbP Pointer to a string holding an HTTP verb; most
likely "GET".

0 No error

inetErrSettingNotImplemented Invalid setting specified

inetErrSettingSizeInvalid bufLen is the incorrect
size for the specified
setting

Internet Library
Internet Library Functions

1140 Palm OS SDK Reference

-> resNameP Pointer to a string holding the name of the
resource to get or put.

-> refererP Pointer to a string holding the name of the
referring URL, or NULL if none.

Result

Comments This call forms an HTTP request for the socket. The request is not
actually sent to the remote host until INetLibSockHTTPReqSend
is called. After this call, the application can add additional HTTP
request headers using INetLibSockHTTPAttrSet.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibSockHTTPAttrSet, INetLibSockHTTPReqSend

INetLibSockHTTPReqSend

Purpose Sends an HTTP request to the remote host or looks for data in the
cache.

Prototype Err INetLibSockHTTPReqSend (UInt16 libRefnum,
MemHandle sockH, void * writeP, UInt32 writeLen,
Int32 timeout)

Parameters -> libRefnum Refnum of the Internet library.

-> sockH Handle (allocated by INetLibSockOpen
or INetLibURLOpen) of the socket.

-> writeP Pointer to additional data to send after the
request headers. Usually used for POST and
PUT operations.

-> writeLen Number of bytes in writeP.

0 No error

inetErrParamsInvalid Not an HTTP socket

Internet Library
Internet Library Functions

Palm OS SDK Reference 1141

-> timeout Timeout in ticks.

Result

Comments This call sends an HTTP request created by
INetLibSockHTTPReqCreate and INetLibSockHTTPAttrSet
to the remote host. If this is an POST or PUT operation, the data to
write can be specified in writeP.

INetLibSockHTTPReqSend doesn’t always do network I/O. If
the proper socket flag is set, it checks first to see if the requested
data is already in the cache. If it is, then a pointer to the cached data
is stored in the socket and the socket status is updated to show that
data is ready to be read. This will trigger an
inetSockReadyEvent event.

The socket flag (inetOpenURLFlagLookInCache) that causes the
cache to be checked first can be set via the flags parameter to
INetLibURLOpen or by calling INetLibSockSettingSet with
the appropriate setting (inetSockSettingFlags).

After sending the request, the application can wait for the response
to arrive by either polling INetLibSockStatus until the
inputReady boolean is set (not recommended), or by waiting for
an inetSockReadyEvent event from INetLibGetEvent
(preferred).

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibSockHTTPReqCreate, INetLibSockHTTPAttrSet,
INetLibGetEvent

0 No error

inetErrRequestTooLong Request too big

inetErrEncryptionNotAvail Encryption requested but not
available

Internet Library
Internet Library Functions

1142 Palm OS SDK Reference

INetLibSockOpen

Purpose Creates and returns a new inet socket handle.

Prototype Err INetLibSockOpen (UInt16 libRefnum,
MemHandle inetH, UInt16 /*INetSchemeEnum*/ scheme,
MemHandle* sockHP)

Parameters -> libRefnum Refnum of the Internet library.

-> inetH Inet handle allocated by INetLibOpen.

-> scheme The protocol scheme to use. Specify one of the
INetSchemeEnum types.

<- sockHP Pointer to the address where the socket handle
is returned.

Result

Comments This call creates a new socket for the given scheme. No network I/O
is performed. This is a relatively low level call that can be used in
place of INetLibURLOpen when finer control over the socket
settings is required.

Using INetLibURLOpen, an HTTP request can be handled with the
simple sequence: INetLibURLOpen, INetLibSockRead, and
INetLibSockClose. When using INetLibSockOpen, the same
HTTP request would be handled by replacing the
INetLibURLOpen call with the sequence: INetLibSockOpen,
INetLibSockSettingSet (optional), INetLibSockConnect,
INetLibSockHTTPReqCreate, INetLibSockHTTPAttrSet
(optional), and INetLibSockHTTPReqSend.

The use of INetLibSockOpen allows an application finer control
over the socket settings (by calling INetLibSockSettingSet)

0 No error

inetErrTooManySockets Too many sockets open

inetErrSchemeNotSupported Requested URL scheme not
supported

Internet Library
Internet Library Functions

Palm OS SDK Reference 1143

and the HTTP request headers (by calling
INetLibSockHTTPAttrSet).

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibOpen, INetLibURLOpen, INetLibSockRead,
INetLibSockClose, INetLibSockSettingSet,
INetLibSockHTTPAttrSet

INetLibSockRead

Purpose Reads data from a socket.

Prototype Err INetLibSockRead (UInt16 libRefnum,
MemHandle sockH, void * bufP, UInt32 reqBytes,
UInt32 * actBytesP, Int32 timeout)

Parameters -> libRefnum Refnum of the Internet library.

-> sockH Inet handle allocated by INetLibOpen.

-> bufP Pointer to buffer where the data is placed.

-> reqBytes Requested number of bytes.

<- actBytesP Pointer to the actual number of bytes read.

-> timeout Timeout in ticks; -1 means wait forever.

Result

Comments This call attempts to read reqBytes bytes from the given socket. It
returns the actual number of bytes read in *actBytesP. If the
connection with the remote host has been closed, *actBytesP
contains 0 on exit.

Note that it is normal for the actual bytes read to be less than the
requested number of bytes. The application should be prepared to
call this routine repeatedly until the desired number of bytes have
been read or until *actBytesP contains 0, indicating the
connection has been closed, or until an error is returned.

0 No error

Internet Library
Internet Library Functions

1144 Palm OS SDK Reference

This call returns as much data as possible without blocking,
however, if no data is available to be read, it does block until at least
one byte is available.

Normally, applications will wait for an inetSockReadyEvent
from INetLibGetEvent before calling INetLibSockRead.
Alternatively, the application could call INetLibSockStatus to
determine if the socket has any data ready (not recommended), or
could simply rely on INetLibSockRead to block until at least one
byte is available to read. If no data is available before the timeout
expires, inetErrReadTimeout error is returned.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibURLOpen, INetLibSockOpen, INetLibSockStatus,
INetLibSockClose, INetLibGetEvent

INetLibSockSettingGet

Purpose Retrieves a socket setting.

Prototype Err INetLibSockSettingGet (UInt16 libRefnum,
MemHandle socketH, UInt16 /*INetSockSettingEnum*/
setting, void * bufP, UInt16 * bufLenP)

Parameters -> libRefnum Refnum of the Internet library.

-> socketH Handle (allocated by INetLibSockOpen
or INetLibURLOpen) of the socket to get a
setting from.

-> setting The setting to get. Specify one of the
INetSockSettingEnum values.

<- bufP Pointer to buffer where the setting value is to be
placed.

Internet Library
Internet Library Functions

Palm OS SDK Reference 1145

<-> bufLenP Size of bufP on entry; size of returned value on
exit.

Result

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibSockSettingSet

INetLibSockSettingSet

Purpose Changes a setting of a socket.

Prototype Err INetLibSockSettingSet (UInt16 libRefnum,
MemHandle socketH, UInt16 /*INetSockSettingEnum*/
setting, void * bufP, UInt16 bufLen)

Parameters -> libRefnum Refnum of the Internet library.

-> socketH Handle (allocated by INetLibSockOpen
or INetLibURLOpen) of the socket to set.

-> setting The setting to set. Specify one of the
INetSockSettingEnum values.

-> bufP Pointer to buffer containing the new setting
value.

-> bufLen Size of new setting in bufP.

Result

0 No error

inetErrParamsInvalid Invalid setting requested

inetErrSettingSizeInvalid *bufLenP is the incorrect
size for the requested
setting

0 No error

Internet Library
Internet Library Functions

1146 Palm OS SDK Reference

Comments This call can be use to override a general setting for a particular
socket.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibSockSettingGet

INetLibSockStatus

Purpose Retrieves the current status of a socket.

Prototype Err INetLibSockStatus (UInt16 libRefnum,
MemHandle socketH, UInt16 * statusP,
Err* sockErrP, Boolean* inputReadyP,
Boolean* outputReadyP)

Parameters -> libRefnum Refnum of the Internet library.

-> socketH Handle (allocated by INetLibSockOpen
or INetLibURLOpen) of the socket to get
status on.

<- statusP Pointer to the address where the status is
returned. The status will be one of the
INetStatusEnum values.

<- sockErrP Currently unused.

<- inputReadyP Pointer to a Boolean; true is returned if the
socket has data available to read.

inetErrSettingNotImplemented Invalid setting specified

inetErrSettingSizeInvalid bufLen is the incorrect
size for the setting

Internet Library
Internet Library Functions

Palm OS SDK Reference 1147

<- outputReadyP
Pointer to a Boolean; true is returned if the
socket can accept data for writing.

Result

Comments Most applications that use INetLibGetEvent will rarely need to
use this call since socket status changes are returned in the event
structure.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibURLOpen, INetLibSockOpen, INetLibSockRead,
INetLibGetEvent

INetLibURLCrack

Purpose Cracks a URL text string into its components.

Prototype Err INetLibURLCrack (UInt16 libRefnum,
UInt8 * urlTextP, INetURLType* urlP)

Parameters -> libRefnum Refnum of the Internet library.

-> urlTextP Pointer to URL text string.

<-> urlP Pointer to address where the URL information
block is to be returned.

Result

0 No error

0 No error

inetErrParamsInvalid urlTextP is NULL or empty, or
urlP is NULL

inetErrURLVersionInvalid urlP is wrong version

Internet Library
Internet Library Functions

1148 Palm OS SDK Reference

Comments If a pointer member of urlP is set to NULL on entry, then on exit it
will point to the start of that component within the original
urlTextP string; the associated member length is set to the length
of that URL component. If a pointer member of urlP is not NULL on
entry, then it must point to a buffer of sufficient size to hold the
member data, and on exit the component string will be copied into
this buffer and the associated member length will be updated with
the actual size. Note that the returned strings are not NULL
terminated, so the length values are important.

It’s easiest to initialize the InetURLType block to zeros and let this
function fill in all the information about the URL components.

The InetURLType block returned from this function has the
following structure:

typedef struct {
UInt16 version; // 0, for future compatibility
UInt8 * schemeP; // ptr to scheme portion
UInt16 schemeLen; // size of scheme portion
UInt16 schemeEnum; // INetSchemeEnum; the
scheme
UInt8 * usernameP; // ptr to username portion
UInt16 usernameLen; // size of username
UInt8 * passwordP; // ptr to password portion
UInt16 passwordLen; // size of password
UInt8 * hostnameP; // ptr to host name portion
UInt16 hostnameLen; // size of host name
UInt16 port; // port number
UInt8 * pathP; // ptr to path portion
UInt16 pathLen; // size of path
UInt8 * paramP; // ptr to param (;param)
UInt16 paramLen; // size of param
UInt8 * queryP; // ptr to query (?query)
UInt16 queryLen; // size of query
UInt8 * fragP; // ptr to fragment (#frag)
UInt16 fragLen; // size of fragment
} INetURLType

Compatibility Implemented only if Wireless Internet Feature Set is present.

Internet Library
Internet Library Functions

Palm OS SDK Reference 1149

INetLibURLGetInfo

Purpose Returns information about a URL.

Prototype Err INetLibURLGetInfo (UInt16 libRefnum,
MemHandle inetH, UInt8 * urlTextP,
INetURLInfoType* urlInfoP)

Parameters -> libRefnum Refnum of the Internet library.

-> inetH Inet handle allocated by INetLibOpen.

-> urlTextP Pointer to URL text string.

<-> urlInfoP Pointer to address where the URL information
structure is to be returned.

Result

Comments The InetURLInfo block returned from this function has the
following structure:

typedef struct {
UInt16 version; // 0, for future compatibility
UInt16 flags; // flags word
UInt32 undefined; // reserved for future use
} INetURLInfo

The flags word can consist of some combination of these values:

inetURLInfoFlagIsSecure // URL was encrypted
inetURLInfoFlagIsRemote // URL was retrieved
from the net
inetURLInfoFlagIsInCache // URL is stored in
the cache

Compatibility Implemented only if Wireless Internet Feature Set is present.

0 No error

inetErrParamsInvalid urlInfoP is NULL or incorrect
version

Internet Library
Internet Library Functions

1150 Palm OS SDK Reference

INetLibURLOpen

Purpose Accesses a URL on the Internet or in the cache.

Prototype Err INetLibURLOpen (UInt16 libRefnum,
MemHandle inetH, UInt8 * urlP,
UInt8 * cacheIndexURLP, MemHandle* sockHP,
Int32 timeout, UInt16 flags)

Parameters -> libRefnum Refnum of the Internet library.

-> inetH Inet handle allocated by INetLibOpen.

-> urlP Pointer to string containing the URL to access.

-> cacheIndexURLP
Pointer to URL string under which the
requested URL should be indexed in the cache.
Specify NULL if you don’t need to index the
cache. If you are using the Clipper cache (not
recommended), you must follow the Clipper
convention, which is to pass the URL of the
active PQA.

<- sockHP Pointer to address where the socket handle is
returned.

-> timeout Timeout in ticks; -1 means wait forever.

-> flags Flags indicating caching and encryption
options desired. Specify zero, one, or more of
the URL open flags (see URL Open Constants).

Result

Comments This call sets up a connection to a resource on the Internet addressed
by urlP and returns a socket handle. Note that if you specify that
the cache should be searched first, and if the data is found in the
cache, no network I/O occurs. The application can then read that
socket resource through the INetLibSockRead call.

0 No error

inetErrParamsInvalid urlP is NULL

Internet Library
Internet Library Functions

Palm OS SDK Reference 1151

This call is a convenience routine that internally makes the
following calls for http URLs: INetLibSockOpen,
INetLibSockConnect, INetLibSockHTTPReqCreate, and
INetLibSockHTTPReqSend.

This routine returns immediately before performing any required
network I/O. It is then up to the caller to either block on
INetLibSockRead, or to use INetLibGetEvent to model
asynchronous operation. Using INetLibGetEvent is the preferred
way of performing network I/O since it maximizes battery life and
user-interface responsiveness.

Compatibility Implemented only if Wireless Internet Feature Set is present.

See Also INetLibSockOpen, INetLibSockConnect, INetLibSockRead,
INetLibSockClose

INetLibURLsAdd

Purpose Concatenates two URLs, resulting in one absolute URL.

Prototype Err INetLibURLsAdd (UInt16 libRefnum,
Char * baseURLStr, Char * embeddedURLStr,
Char * resultURLStr, UInt16 * resultLenP)

Parameters -> libRefnum Refnum of the Internet library.

-> baseURLStr Pointer to base URL string.

-> embeddedURLStr
Pointer to URL text string to append.

<-> resultURLStr
Pointer to resulting URL string.

<-> resultLenP Pointer to size of resultURLStr buffer on
entry. On exit, pointer to resulting URL length
(including NULL terminator).

Result

0 No error

Internet Library
Internet Library Functions

1152 Palm OS SDK Reference

Comments Used to append a URL fragment to a base URL, resulting in an
absolute URL string that can be passed to INetLibURLOpen or
other functions. This routine ensures that the resulting string
conforms to the URL format.

Compatibility Implemented only if Wireless Internet Feature Set is present.

INetLibWiCmd

Purpose Invokes a command that operates on the wireless indicator.

Prototype Boolean INetLibWiCmd (UInt16 refNum, UInt16 /
WiCmdEnum/ cmd, int enableOrX, int y)

Parameters -> refNum Refnum of the Internet library.

-> cmd The command to invoke. Specify one of the
WiCmdEnum values (see Comments section).

-> enableOrX If cmd is wiCmdSetEnabled, specify 1 to
enable the wireless indicator or 0 to disable it. If
cmd is wiCmdSetLocation, this specifies the x
coordinate of the location.

-> y The y coordinate of the location. Used only if
cmd is wiCmdSetLocation.

Result If cmd is wiCmdEnabled, this function returns true if the wireless
indicator is enabled or false if it is not. For other command types,
the return value is undefined.

Comments The wireless indicator is a 19x13 pixel image on the screen to
indicate the current wireless signal strength. This shows as 0 - 5
bars. If the application is in a non-modal window with a title bar, the
preferred location for the indicator is at (140,1).

It automatically updates itself as long as you are calling
INetLibGetEvent. It should be shown on screen while a wireless
transaction is in progress. It may also be shown when the user has
nothing useful to do next but initiate a wireless transaction, and
there isn't much other useful information being displayed.

Internet Library
Internet Library Functions

Palm OS SDK Reference 1153

The WiCmdEnum enum specifies a command that operates on the
wireless indicator in the user interface. The definition of this type is
found in WirelessIndicator.h and is as follows:

typedef enum {
wiCmdInit =0,
wiCmdClear,
wiCmdSetEnabled,
wiCmdDraw,
wiCmdEnabled,
wiCmdSetLocation,
wiCmdErase
} WiCmdEnum;

Value Descriptions

Compatibility Implemented only if Wireless Internet Feature Set is present.

wiCmdInit Initializes the wireless indicator. You must invoke this
command first, before using any of the others.

wiCmdClear Applications shouldn’t use this command. To erase the
indicator, disable it by using wiCmdSetEnabled and
passing 0 for enableOrX.

wiCmdSetEnabled Enables or disables the wireless indicator.

wiCmdDraw Redraws the wireless indicator using the latest data.
Applications don’t need to use this command since the
indicator is redrawn automatically by INetLibGetEvent.

wiCmdEnabled Returns a Boolean indicating if the wireless indicator is
enabled.

wiCmdSetLocation Sets the location for the wireless indicator on the screen.

wiCmdErase Erases the wireless indicator. Applications shouldn’t use this
command. To erase the indicator, disable it by using
wiCmdSetEnabled and passing 0 for enableOrX.

Palm OS SDK Reference 1155

62
PalmOSGlue Library
This chapter describes the API provided in the link library
PalmOSGlue (PalmOSGlue.lib or libPalmOSGlue.a).

You use PalmOSGlue if you want to use the international and text
manager features described in the chapter “Localized Applications”
on page 317 in the Palm OS Programmer’s Companion and you want
to maintain backward compatibility with earlier releases. If you link
with PalmOSGlue, include the headers DateGlue.h, FntGlue.h,
TxtGlue.h, TsmGlue.h, and WinGlue.h (in the
International directory), and make calls as they are listed in this
chapter, then your code will run regardless of whether the device’s
version of the operating system implements international support.
The code in PalmOSGlue either uses the text manager or
international manager on the ROM or, if the managers don’t exist,
executes a simple Latin equivalent of the function.

NOTE: PalmOSGlue is a link library, not a shared library.
Linking with this library increases your application’s code size.
The amount by which your code size increases varies depending
on the number of library functions you call. Use PalmOSGlue only
on versions 2.0 and later of Palm OS®.

In addition to covering the text and international manager API,
PalmOSGlue adds some functions that are not included in any
version of the Palm OS. This chapter describes the functions that are
unique to PalmOSGlue and provides a mapping of PalmOSGlue
calls to calls that exist in later versions of Palm OS.

PalmOSGlue Functions
The following table shows the mapping between the functions
declared in the glue headers and the international functions and

PalmOSGlue Library
PalmOSGlue Functions

1156 Palm OS SDK Reference

macros. To learn more about a glue function, click the link in the
right column.

This table lists only those functions that map to a function that exists
in newer versions of the OS. The functions that are exclusive to
PalmOSGlue are not listed. They are described following this table.

Table 62.1 PalmOSGlue function mappings

This PalmOSGlue function... ...is identical to...

DateGlueToAscii DateToAscii

DateGlueToDOWDMFormat DateToDOWDMFormat

TsmGlueGetFepMode TsmGetFepMode

TsmGlueSetFepMode TsmSetFepMode

TxtGlueByteAttr TxtByteAttr

TxtGlueCaselessCompare TxtCaselessCompare

TxtGlueCharAttr TxtCharAttr

TxtGlueCharBounds TxtCharBounds

TxtGlueCharEncoding TxtCharEncoding

TxtGlueCharIsAlNum TxtCharIsAlNum

TxtGlueCharIsAlpha TxtCharIsAlpha

TxtGlueCharIsCntrl TxtCharIsCntrl

TxtGlueCharIsDelim TxtCharIsDelim

TxtGlueCharIsDigit TxtCharIsDigit

TxtGlueCharIsGraph TxtCharIsGraph

TxtGlueCharIsHex TxtCharIsHex

TxtGlueCharIsLower TxtCharIsLower

TxtGlueCharIsPrint TxtCharIsPrint

TxtGlueCharIsPunct TxtCharIsPunct

TxtGlueCharIsSpace TxtCharIsSpace

PalmOSGlue Library
PalmOSGlue Functions

Palm OS SDK Reference 1157

TxtGlueCharIsUpper TxtCharIsUpper

TxtGlueCharIsValid TxtCharIsValid

TxtGlueCharSize TxtCharSize

TxtGlueCharWidth TxtCharWidth

TxtGlueCharXAttr TxtCharXAttr

TxtGlueCompare TxtCompare

TxtGlueEncodingName TxtEncodingName

TxtGlueFindString TxtFindString

TxtGlueGetChar TxtGetChar

TxtGlueGetNextChar TxtGetNextChar

TxtGlueGetPreviousChar TxtGetPreviousChar

TxtGlueGetTruncation
Offset

TxtGetTruncationOffset

TxtGlueMaxEncoding TxtMaxEncoding

TxtGlueNextCharSize TxtNextCharSize

TxtGlueParamString TxtParamString

TxtGluePreviousCharSize TxtPreviousCharSize

TxtGlueReplaceStr TxtReplaceStr

TxtGlueSetNextChar TxtSetNextChar

TxtGlueStrEncoding TxtStrEncoding

TxtGlueTransliterate TxtTransliterate

TxtGlueWordBounds TxtWordBounds

WinGlueDrawChar WinDrawChar

WinGlueDrawTruncChars WinDrawTruncChars

Table 62.1 PalmOSGlue function mappings (continued)

This PalmOSGlue function... ...is identical to...

PalmOSGlue Library
PalmOSGlue Functions

1158 Palm OS SDK Reference

FntGlueGetDefaultFontID

Purpose Return the font ID of a default font.

Prototype FontID FntGlueGetDefaultFontID (
FontDefaultType inFontType)

Parameters -> inFontType A FontDefaultType constant specifying one
of the system default fonts. This value can be
one of the following:

defaultSystemFont
The default font for the system.

defaultLargeFont
The default large font.

defaultSmallFont
The default small font.

defaultBoldFont
The default bold font.

Result Returns the ID of inFontType.

Comments Use this function whenever you need to obtain a font ID for one of
the system default fonts. The default fonts (and thus, the IDs for the
default fonts) vary depending on the system’s locale. For example,
Japanese systems have a different set of default fonts than systems
using the Latin character encoding.

Use this function in place of the constants that specify the IDs of
default fonts, as shown in the following table.

In place of this... ...use FntGlueGetDefaultFontID with this
constant...

stdFont defaultSystemFont (best for displaying
text) or:
defaultSmallFont (if you want a smaller
font)

largeFont defaultLargeFont

PalmOSGlue Library
PalmOSGlue Functions

Palm OS SDK Reference 1159

Note that defaultSystemFont and defaultSmallFont might
return the same font ID or different font IDs, depending on the
system locale.

Compatibility Implemented only in the PalmOSGlue library.

See Also FontSelect, FntGetFont, FntSetFont

TxtGlueCharIsVirtual

Purpose Return whether a character is a virtual character or not.

Prototype Boolean TxtGlueCharIsVirtual(UInt16 inModifiers,
WChar inChar)

Parameters -> inModifiers The value passed in the modifiers field of the
keyDownEvent.

-> inChar A character.

Result Returns true if the character inChar is a virtual character, false
otherwise.

Comments Virtual characters are nondisplayable characters that trigger special
events in the operating system, such as displaying low battery
warnings or displaying the keyboard dialog. Virtual characters
should never occur in any data and should never appear on the
screen.

Starting in Palm OS 3.1, the command modifier bit is always set in
the keyDownEvent for a virtual character because the range for
virtual characters overlaps the range for “real” characters that

largeBoldFont defaultLargeFont

boldFont defaultBoldFont

In place of this... ...use FntGlueGetDefaultFontID with this
constant...

PalmOSGlue Library
PalmOSGlue Functions

1160 Palm OS SDK Reference

should appear on the screen. Earlier releases of the operating system
did not always set the command modifier for virtual characters.

You can use this function to test whether a character is virtual or not.
Pass the chr and modifiers fields exactly as you received them in
the keyDownEvent, and this function performs the appropriate
check based on the operating system version.

Compatibility Implemented only in the PalmOSGlue library.

TxtGlueGetHorizEllipsisChar

Purpose Return the horizontal ellipsis character.

Prototype WChar TxtGlueGetHorizEllipsisChar (void)

Parameters none

Result Returns the character code for horizontal ellipsis.

Comments Version 3.1 of the Palm OS uses different character codes for the
horizontal ellipsis character and the numeric space character than
earlier versions did. Use TxtGlueGetHorizEllipsisChar to
return the appropriate code for horizontal ellipsis regardless of
which version of Palm OS your application is run on.

Compatibility Implemented only in the PalmOSGlue library.

See Also ChrHorizEllipsis, TxtGlueGetNumericSpaceChar

PalmOSGlue Library
PalmOSGlue Functions

Palm OS SDK Reference 1161

TxtGlueGetNumericSpaceChar

Purpose Return the numeric space character.

Prototype WChar TxtGlueGetNumericSpaceChar (void)

Parameters none

Result Returns the character code for numeric space.

Comments Version 3.1 of the Palm OS uses different character codes for the
horizontal ellipsis character and the numeric space character than
earlier versions did. Use TxtGlueGetNumericSpaceChar to
return the appropriate code for numeric space regardless of which
version of Palm OS your application is run on.

Compatibility Implemented only in the PalmOSGlue library.

See Also ChrNumericSpace, TxtGlueGetHorizEllipsisChar

TxtGlueLowerChar

Purpose Convert a character to lowercase.

Prototype WChar TxtGlueLowerChar (WChar inChar)

Parameters -> inChar A character.

Result Returns the character as a lowercase letter.

Comments This function can only handle characters in the ISO Latin 1 character
encoding unless the International Feature Set is present.

Compatibility Implemented only in the PalmOSGlue library.

See Also TxtGlueUpperChar, TxtGlueLowerStr, TxtGlueUpperStr,
TxtGlueTransliterate, TxtTransliterate, StrToLower

PalmOSGlue Library
PalmOSGlue Functions

1162 Palm OS SDK Reference

TxtGlueLowerStr

Purpose Convert a string to all lowercase letters.

Prototype void TxtGlueLowerStr (Char* ioString,
UInt16 inMaxLength)

Parameters <-> ioString The string to be converted.

-> inMaxLength The size of the buffer that contains the string,
excluding the terminating NULL character.

Result Returns in ioString the input string with its letters converted to
lowercase.

Comments On systems that use multi-byte character encodings, converting a
string from uppercase to lowercase letters or vice versa may change
the size of the string. For this reason, you should always check the
size of the ioString after this call returns.

You must make sure that the parameter ioString points to the
start of a a valid character. That is, it must point to the first byte of a
multi-byte character or it must point to a single-byte character. If it
doesn’t, results are unpredictable.

This function can only handle characters in the ISO Latin 1 character
encoding unless the International Feature Set is present.

Compatibility Implemented only in the PalmOSGlue library.

See Also TxtGlueUpperStr, TxtGlueLowerChar, TxtGlueUpperChar,
StrToLower TxtGlueTransliterate, TxtTransliterate

PalmOSGlue Library
PalmOSGlue Functions

Palm OS SDK Reference 1163

TxtGluePrepFindString

Purpose Set up for TxtFindString or FindStrInStr.

Prototype void TxtGluePrepFindString (const Char* inSource,
CharPtr outDest, UInt16 inDstSize)

Parameters -> inSource Pointer to the text to be searched for. Must not
be NULL.

<- outDest The same text as in inSource but converted to
a suitable format for searching. outDest must
not be the same address as inSource.

-> inDstSize The length in bytes of the area pointed to by
outDest.

Result Returns in outDest an appropriately converted string.

Comments Use this function to normalize the string to search for before using
TxtGlueFindString, TxtFindString, or FindStrInStr to
perform a search that is internal to your application. If you use any
of these three search routines in response to the
sysAppLaunchCmdFind launch code, the string that the launch
code passes in is already properly normalized for the search.

This function normalizes the string to be searched for. The method
by which a search string is normalized varies depending on the
version of Palm OS and the character encoding supported by the
device.

Only inDstSize bytes of inSource are written to outDest. If
necessary to prevent overflow of the destination buffer, not all of
inSource is converted.

You must make sure that the parameter inSource points to the
start of a valid character. That is, it must point to the first byte of a
multi-byte character or it must point to a single-byte character. If it
doesn’t, results are unpredictable.

Compatibility Implemented only in the PalmOSGlue library.

PalmOSGlue Library
PalmOSGlue Functions

1164 Palm OS SDK Reference

TxtGlueStripSpaces

Purpose Strip trailing and/or leading spaces from a string.

Prototype Char* TxtGlueStripSpaces (Char* ioStr,
Boolean leading, Boolean trailing)

Parameters <-> ioStr Any string.

-> leading If true, strip the leading spaces from the
string.

-> trailing If true, strip the trailing spaces from the string.

Result Returns ioStr with the specified spaces stripped from it. Note that
this function both changes the ioStr buffer parameter and returns
a pointer to it.

Comments You must make sure that the parameter ioStr points to the start of
a a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character. If it
doesn’t, results are unpredictable.

Compatibility Implemented only in the PalmOSGlue library.

TxtGlueUpperChar

Purpose Convert a character to uppercase.

Prototype WChar TxtGlueUpperChar (WChar inChar)

Parameters -> inChar Any character.

Result Returns the character as an uppercase letter.

Comments This function can only handle characters in the ISO Latin 1 character
encoding unless the International Feature Set is present.

PalmOSGlue Library
PalmOSGlue Functions

Palm OS SDK Reference 1165

Compatibility Implemented only in the PalmOSGlue library.

See Also TxtGlueLowerChar, TxtGlueUpperStr TxtGlueLowerStr,
TxtGlueTransliterate, TxtTransliterate StrToLower

TxtGlueUpperStr

Purpose Convert a string to all uppercase letters.

Prototype void TxtGlueUpperStr (Char* ioString,
UInt16 inMaxLength)

Parameters <-> ioString The string to be converted.

-> inMaxLength The size of the buffer that contains the string,
excluding the terminating NULL character.

Result Returns in ioString the input string with its letters converted to
uppercase.

Comments On systems that use multi-byte character encodings, converting a
string from uppercase to lowercase letters or vice versa may change
the size of the string. For this reason, you should always check the
size of the ioString after this call returns.

You must make sure that the parameter ioString points to the
start of a valid character. That is, it must point to the first byte of a
multi-byte character or it must point to a single-byte character. If it
doesn’t, results are unpredictable.

This function can only handle characters in the ISO Latin 1 character
encoding unless the International Feature Set is present.

Compatibility Implemented only in the PalmOSGlue library.

See Also TxtGlueLowerStr, TxtGlueUpperChar, TxtGlueLowerChar,
TxtGlueTransliterate, TxtTransliterate StrToLower

Palm OS SDK Reference 1167

A
System Use Only
Functions
This appendix lists functions that are purposely undocumented
because they are for system use only.

WARNING! System Use Only.

AbtShowAbout
AlmAlarmCallback
AlmCancelAll
AlmDisplayAlarm
AlmEnableNotification
AlmInit
AlmTimeChange
DmInit
DmResetRecordStates
ExgConnect
ExgGet
ExgInit
ExgNotifyReceive
EvtDequeueKeyEvent
EvtEnqueuePenPoint
EvtGetSysEvent
EvtInitialize
EvtSetKeyQueuePtr
EvtSetPenQueuePtr
EvtSysInit
FileReadLow
Find
FrmActiveState
FrmAddSpaceForObject
FtrInit
GrfFieldChange

System Use Only Functions

1168 Palm OS SDK Reference

GrfFree
GrfInit
INetLibSleep
INetLibSockMailAttrGet
INetLibSockMailAttrSet
INetLibSockMailQueryProgress
INetLibSockMailReqAdd
INetLibSockMailReqCreate
INetLibSockMailReqSend
INetLibWake
InsPtCheckBlink
InsPtInitialize
IntlInit
IrHandleEvent
IrWaitForEvent
MemCardFormat
MemChunkFree
MemChunkNew
MemHandleFlags
MemHandleLockCount
MemHandleOwner
MemHandleResetLock
MemHeapFreeByOwnerID
MemHeapInit
MemInit
MemInitHeapTable
MemKernelInit
MemPtrFlags
MemPtrOwner
MemPtrResetLock
MemSemaphoreRelease
MemSemaphoreReserve
MemStoreSetInfo
NetLibConfigAliasGet
NetLibConfigAliasSet
NetLibConfigDelete
NetLibConfigIndexFromName
NetLibConfigList
NetLibConfigMakeActive
NetLibConfigRename

System Use Only Functions

Palm OS SDK Reference 1169

NetLibConfigSaveAs
NetLibHandlePowerOff
NetLibOpenConfig
NetLibOpenIfCloseWait
NetLibSleep
NetLibWake
PenClose
PenGetRawPen
PenOpen
PenRawToScreen
PenScreenToRaw
PenSleep
PenWake
ScrCompressScanLine
ScrCopyRectangle
ScrDeCompressScanLine
ScrDrawChars
ScrDrawNotify
ScrInit
ScrLineRoutine
ScrRectangleRoutine
ScrScreenInfo
ScrSendUpdateArea
SerDbgAssureOpen
SerialMgrInstall
SerReceiveISP
SerReceiveWindowClose
SerReceiveWindowOpen
SerSetMapPort
SerSetWakeupHandler
SerSleep
SerWake
SlkProcessRPC
SlkSysPktDefaultResponse
SndInit
SndSetDefaultVolume
SrmSleep
SrmWake
SysAppStartup
SysAppExit

System Use Only Functions

1170 Palm OS SDK Reference

SysBatteryDialog
SysCardImageDeleted
SysCardImageInfo
SysColdBoot
SysDisableInts
SysDoze
SysEvGroupCreate
SysEvGroupRead
SysEvGroupSignal
SysEvGroupWait
SysInit
SysKernelInfo
SysLaunchConsole
SysLCDContrast
SysLibClose
SysLibInstall
SysLibOpen
SysLibSleep
SysLibTblEntry
SysLibWake
SysMailboxCreate
SysMailboxDelete
SysMailboxFlush
SysMailboxSend
SysMailboxWait
SysNewOwnerID
SysPowerOn
SysResSemaphoreCreate
SysResSemaphoreDelete
SysResSemaphoreRelease
SysResSemaphoreReserve
SysRestoreStatus
SysSemaphoreCreate
SysSemaphoreDelete
SysSemaphoreSet
SysSemaphoreSignal
SysSemaphoreWait
SysSetA5
SysSetPerformance
SysSleep

System Use Only Functions

Palm OS SDK Reference 1171

SysTaskCreate
SysTaskDelete
SysTaskID
SysTaskResume
SysTaskSuspend
SysTaskSwitching
SysTaskTrigger
SysTaskWait
SysTaskWaitClr
SysTaskWake
SysTimerCreate
SysTimerDelete
SysTimerRead
SysTimerWrite
SysTranslateKernelErr
SysUIBusy
SysUILaunch
SysUnimplemented
SysWantEvent
TimInit
TxtPrepFindString
UIInitialize
UIReset
UIPopTable
UIPushTable
WinAddWindow
WinDrawWindowFrame
WinDisableWindow
WinEnableWindow
WinGetWindowPointer
WinInitializeWindow
WinRemoveWindow

Palm OS SDK Reference 1173

B
Compatibility Guide
This appendix lists groups of functions and other features (such as
events and launch codes) that have been added to the Palm OS®
after version 1.0.

Before you use any new functions or features in an application, you
must check to ensure that they are implemented in the OS version
your application is running on. Checking the OS version number is
not a reliable indicator that a specific feature is present, since some
later OS versions do not include features present in earlier versions.
In order to ensure that your code is supported, you must check for
the presence of individual features.

To make this check easier, this appendix lists new functions and
features in groups such that all functions and features in a group are
always implemented together in the ROM of a Palm device. This
means that you can check for a single feature in that group and be
assured that if that feature is present than all functions and features
in that group are implemented.

Each group includes a recommended test to check if it is
implemented. The following groups are described:

• 2.0 New Feature Set

• 3.0 New Feature Set

• 3.1 New Feature Set

• 3.2 New Feature Set

• International Feature Set

• Japanese Feature Set

• Wireless Internet Feature Set

• New Serial Manager Feature Set

• 3.5 New Feature Set

• Notification Feature Set

Compatibil i ty Guide
2.0 New Feature Set

1174 Palm OS SDK Reference

2.0 New Feature Set
You can check that this feature set is implemented by checking that
the system version is 2.0 or higher. Use this FtrGet call:

err = FtrGet(sysFtrCreator,
sysFtrNumROMVersion, &romversion);

The romversion parameter should be 0x02003000 or greater.

Launch Codes
This feature set adds the following launch codes:

Functions
This feature set adds the following functions:

sysAppLaunchCmdLookup
sysAppLaunchCmdPanelCalledFromApp
sysAppLaunchCmdReturnFromPanel
sysAppLaunchCmdSystemLock

CategoryInitialize CategorySetName

DmDeleteCategory DmDatabaseProtect

EvtAddUniqueEventToQueue
EvtSysEventAvail

EvtEventAvail

FldGetNumberOfBlankLines
FldSetInsertionPoint

FldGetScrollValues

FntGetScrollValues
FntWordWrapReverseNLines

FntWordWrap

FrmPointInTitle
FrmSetObjectBounds

FrmSetMenu

KeySetMask LocGetNumberSeparators

LstScrollList LstGetVisibleItems

MemCmp MenuSetActiveMenuRscID

PhoneNumberLookup

Compatibil i ty Guide
2.0 New Feature Set

Palm OS SDK Reference 1175

Existing Functions that Changed
Several functions that existed in 1.0 were changed in 2.0:

PrefSetPreference PrefGetPreference

SclDrawScrollBar
SclHandleEvent

SclGetScrollBar
SclSetScrollBar

SerControl

StrDelocalizeNumber
StrNCaselessCompare
StrNCompare
StrPrintF

StrLocalizeNumber
StrNCat
StrNCopy
StrVPrintF

SysBinarySearch
SysCreatePanelList
SysGraffitiReferenceDialog
SysStringByIndex

SysCreateDataBaseList
SysErrString
SysLibLoad
SysTicksPerSecond

TblHasScrollBar
TblSetColumnEditIndicator

TblSetBounds
TblSetRowStaticHeight

WinSetWindowBounds

CategoryCreateList (old function renamed
CategoryCreateListV10)

CategoryEdit (old function renamed CategoryEditV10)

CategoryFreeList (old function renamed
CategoryFreeListV10)

CategorySelect (old function renamed CategorySelectV10)

SelectDay (old function renamed SelectDayV10)

DmFindSortPosition (old function renamed
DmFindSortPositionV10)

PrefGetAppPreferences (old function renamed
PrefGetAppPreferencesV10)

Compatibil i ty Guide
3.0 New Feature Set

1176 Palm OS SDK Reference

Other Changes
As a rule, all Palm OS applications developed with the 1.0 SDK
should run error-free on the latest device. There are two possible
pitfalls for 1.0 applications:

• fldChangedEvent Change—The operating system now
correctly sends a fldChangedEvent whenever a field object
is changed. Previously, the event was at times not sent,
especially when a FldSetText operation was performed. If
your application doesn’t catch the events that are now sent, it
may have problems.

• Non-standard tools—If your application was not developed
with Metrowerks Code Warrior for the Palm OS, it may run
into problems. One known problem can occur if the
application:

– was compiled with optimization turned on

– uses system preferences

3.0 New Feature Set
You can check that this feature set is implemented by checking that
the system version is 3.0 or higher. Use this FtrGet call:

err = FtrGet(sysFtrCreator,
sysFtrNumROMVersion, &romversion);

The romversion parameter should be 0x03003000 or greater.

PrefOpenPreferenceDB (old function renamed
PrefOpenPreferenceDBV10)

PrefSetAppPreferences (old function renamed
PrefSetAppPreferencesV10)

SerReceive (old function renamed SerReceive10)

SerSend (old function renamed SerSend10)

SysKeyboardDialog (old function renamed
SysKeyboardDialogV10)

Compatibil i ty Guide
3.0 New Feature Set

Palm OS SDK Reference 1177

Launch Codes
This feature set adds the following launch codes:

In addition, the launch code sysAppLaunchCmdGoto is now also
sent by the exchange manager, in addition to its use by the global
find operation.

Font
This feature set adds the following font:

largeBoldFont

Functions
This feature set adds the following functions:

Dynamic User Interface Functions

For more information on creating and using dynamic user interface
elements, see the section “Dynamic UI” on page 118 of the Palm OS
Programmer’s Companion.

Font Functions

For more information on these functions and the support for custom
fonts, see the section “Fonts in Palm OS 3.0 and Later” on page 126
of the Palm OS Programmer’s Companion.

sysAppLaunchCmdExgAskUser
sysAppLaunchCmdExgReceiveData

CtlNewControl
CtlValidatePointer
FldNewField
FrmNewBitmap
FrmNewForm
FrmNewGadget

FrmNewLabel
FrmRemoveObject
FrmValidatePtr
LstNewList
WinValidateHandle

FontSelect
FntDefineFont

Compatibil i ty Guide
3.0 New Feature Set

1178 Palm OS SDK Reference

Progress Manager Functions

For more information, see the section “Progress Dialogs” on page 84
of the Palm OS Programmer’s Companion.

File Streaming Functions

For more information, see the section “File Streaming Application
Program Interface” on page 175 of the Palm OS Programmer’s
Companion.

Sound Functions

Exchange Manager Functions

For more information, see the chapter Beaming (Infrared
Communication) in the Palm OS Programmer’s Companion.

PrgHandleEvent
PrgStartDialog
PrgStopDialog

PrgUpdateDialog
PrgUserCancel

FileClearerr
FileClose
FileControl
FileDelete
FileDmRead
FileEOF
FileError
FileFlush
FileGetLastError

FileOpen
FileRead
FileReadLow (system use only)
FileRewind
FileSeek
FileTell
FileTruncate
FileWrite

SndCreateMidiList
SndPlaySmf
SndDoCmd (enhanced in 3.0)

ExgAccept
ExgDBRead
ExgDBWrite
ExgDisconnect

ExgPut
ExgReceive
ExgRegisterData
ExgSend

Compatibil i ty Guide
3.0 New Feature Set

Palm OS SDK Reference 1179

IR Library Functions

For more information, see the chapter Beaming (Infrared
Communication) in the Palm OS Programmer’s Companion.

Miscellaneous Functions

Existing Functions that Changed
Two functions that existed in 2.0 were changed in 3.0:

IrAdvanceCredit
IrBind
IrClose
IrConnectIrLap
IrConnectReq
IrConnectRsp
IrDataReq
IrDisconnectIrLap
IrDiscoverReq
IrIAS_Add
IrIAS_GetInteger
IrIAS_GetIntLsap
IrIAS_GetObjectID
IrIAS_GetOctetString
IrIAS_GetOctetStringLen
IrIAS_GetType
IrIAS_GetUserString
IrIAS_GetUserStringCharSet

IrIAS_GetUserStringLen
IrIAS_Next
IrIAS_Query
IrIAS_SetDeviceName
IrIAS_StartResult
IrIsIrLapConnected
IrIsMediaBusy
IrIsNoProgress
IrIsRemoteBusy
IrLocalBusy
IrMaxRxSize
IrMaxTxSize
IrOpen
IrSetConTypeLMP
IrSetConTypeTTP
IrSetDeviceInfo
IrTestReq
IrUnbind

FrmRestoreActiveState
FrmSaveActiveState
ScrDisplayMode
SysGetAppInfo (system use only)
SysGetOSVersionString

SysGetROMToken
SysGetStackInfo
SysGremlins
TblGetItemFont
TblSetItemFont

CategoryEdit (old function renamed CategoryEditV20)

SysBatteryInfo (old function renamed SysBatteryInfoV20)

Compatibil i ty Guide
3.1 New Feature Set

1180 Palm OS SDK Reference

Other Changes
• The dynamic heap has been increased in size to 96 KB.

• Storage RAM is no longer subdivided into multiple storage
heaps of 64 KB each. All storage RAM on a memory card is
configured as a single storage heap.

• Each flash ROM-based Palm device holds a serial number
that identifies it uniquely and can be retrieved via
SysGetROMToken. For more information, see “Retrieving
the ROM Serial Number” on page 216 of the Palm OS
Programmer’s Companion.

• The Application Launcher (accessed via the silkscreen
“Applications” button) is now an application, rather than a
popup. The SysAppLauncherDialog function, which
provides the API to the old popup launcher, is still present in
Palm OS 3.0 for compatibility purposes, but has not been
updated and generally should not be used. For more
information, see “Application Launcher” on page 131 of the
Palm OS Programmer’s Companion.

• The sound manager supports MIDI sound files, adding new
sounds, asynchronous playback, and other features. There
are also new selectors for setting the volume preferences. For
more information, see the section “Sound” on page 199 of the
Palm OS Programmer’s Companion.

The following functions existed in the system previously, but were
not documented:

The following event type existed in the system previously, but was
not previously documented:

frmGotoEvent

3.1 New Feature Set
You can check that this feature set is implemented by checking that
the system version is 3.1 or higher. Use this FtrGet call:

RctCopyRectangle
RctGetIntersection
RctInsetRectangle

RctOffsetRectangle
RctPtInRectangle
RctSetRectangle

Compatibil i ty Guide
3.1 New Feature Set

Palm OS SDK Reference 1181

err = FtrGet(sysFtrCreator,
sysFtrNumROMVersion, &romversion);

The romversion parameter should be 0x03103000 or greater.

Functions
This feature set adds the following functions:

NOTE: The PalmOSGlue.lib provides compatibility functions
and macros for ChrHorizEllipsis, ChrNumericSpace,
WinDrawChar, and WinDrawTruncChars. If you want to use
these functions on systems that don’t have the 3.1 feature set,
you can link your application with PalmOSGlue.lib. See the
chapter “PalmOSGlue Library” on page 1155 for more
information.

Changes to the Character Encoding
Starting in Palm OS 3.1, the character encoding used on most
systems is Microsoft Windows code page 1252. Versions prior to 3.1
used an encoding that was very similar to code page 1252 but did
not follow it exactly. The following changes to the character set are
introduced in Palm OS 3.1:

• Some of the special Palm OS glyphs in the high ASCII range
(such as the shortcut stroke and the command stroke) have
been moved down into the control code range, and other
characters (such as the numeric space and horizontal ellipsis)

ChrHorizEllipsis
ChrNumericSpace
ContrastAdjust
FntWidthToOffset
FtrPtrNew
FtrPtrFree
FtrPtrResize
SelectOneTime
WinDrawChar
WinDrawTruncChars

Compatibil i ty Guide
3.1 New Feature Set

1182 Palm OS SDK Reference

have been copied into the control range so that they’re
guaranteed to exist in every encoding. For the numeric space
and horizontal ellipsis, you can use the macros
ChrNumericSpace and ChrHorizEllipsis to return the
appropriate character regardless of the character map. In
PalmOSGlue.lib, these two macros are named
TxtGlueGetNumericSpaceChar and
TxtGlueGetHorizEllipsisChar, respectively.

• The four playing-card characters have been moved from the
high ASCII range in the standard four fonts to the 9-point
Symbol font.

Other Changes in 3.1
• Palm OS 3.1 supports a new processor: the EZ Dragonball

processor. This processor is compatible with the existing
Dragonball processor, so your application should run
without changes as long as it doesn’t access registers or
system globals directly.

If your application needs to know if it is running on an EZ
Dragonball, it can check using the following code:

DWord id, chip;
Word revision;
Err err;
err = FtrGet(sysFtrCreator,

sysFtrNumProcessorID, &id);
if (!err) {
chip = id & sysFtrNumProcessorMask;
revision = id & 0x0ffff;
if (chip==sysFtrNumProcessor328)
// traditional Dragonball

else if (chip==sysFtrNumProcessorEZ)
// Dragonball EZ

}

• The constant preferenceDataVersion was removed and
replaced with preferenceDataVerLatest.

• Character variables are now two bytes long. The type WChar
defines a character variable.

Compatibil i ty Guide
3.2 New Feature Set

Palm OS SDK Reference 1183

• The keyDownEvent structure’s chr field (which contains
the input character) has been changed from a Word to a
WChar.

• The string manager functions StrChr and StrStr now treat
buffers as characters, not arbitrary byte arrays. If you
previously used these functions to search data buffers, your
code may no longer work.

• The string manager function StrToLower can now handle
any type of characters, including accented characters.

• The underline attribute of FieldAttrType now has support
for the value 2. Previously, the only underline modes
available were no underline (0) and gray underline (1). In
Palm OS 3.1 and higher, the value 2 is interpreted as solid
underline. The UnderlineModeType enum defined in
Window.h defines the possible values for the underline
attribute.

• The use of the DmGetNextDatabaseByTypeCreator
onlyLatestVers parameter changed in 3.1. If
onlyLatestVers is true, you only receive one matching
database for each type/creator pair. In version 3.0 and
earlier, you could receive multiple matching databases if
onlyLatestVers was true. See that function’s description
for a more detailed description.

3.2 New Feature Set
You can check that this feature set is implemented by checking that
the system version is 3.2 or higher. Use this FtrGet call:

err = FtrGet(sysFtrCreator,
sysFtrNumROMVersion, &romversion);

The romversion parameter should be 0x03203000 or greater.

Functions
This feature set adds the following functions:

Compatibil i ty Guide
International Feature Set

1184 Palm OS SDK Reference

Existing Functions that Changed
Two functions that existed in 3.0 were changed in 3.2:

Other Changes in 3.2
• The prototype for the system use only function
AlmDisplayAlarm changed from no return value to a
Boolean return value. This change may affect system patches
and extensions that intercept AlmDisplayAlarm calls.

International Feature Set
You can check that this feature set is implemented by checking for
the existence of the international manager. You can check by calling
FtrGet as follows:

err = FtrGet(sysFtrCreator, sysFtrNumIntlMgr,
&value);

If the international manager is installed, the value parameter will
be non-zero and the returned error should also be zero (for no
error).

You can learn more about the international manager by reading the
chapter “Localized Applications” on page 317 in the Palm OS
Programmer’s Companion.

AlmGetProcAlarm
AlmSetProcAlarm
ClipboardAppendItem
DmGetDatabaseLockState
ErrAlert
SndPlaySmfResource

SysGremlins was removed and replaced with a SysGremlins
macro that maps it to the function HostGremlinIsRunning. The
prototype is slightly different, but you can still call SysGremlins in
the same way you did before.

PrgStartDialog (old function renamed PrgStartDialogV31)

Compatibil i ty Guide
International Feature Set

Palm OS SDK Reference 1185

NOTE: If you want to use international functions on systems that
don’t have the international feature, you can link your application
with PalmOSGlue.lib. The functions in this library are the same
as those listed below except that they use the prefix “TxtGlue”
instead of “Txt.” For more information, see the chapter
“PalmOSGlue Library” on page 1155.

Functions
This feature set adds the following functions:

Text Manager Functions

Other Functions

IntlGetRoutineAddress

TxtByteAttr
TxtCaselessCompare
TxtCharAttr
TxtCharBounds
TxtCharEncoding
TxtCharIsAlNum
TxtCharIsAlpha
TxtCharIsCntrl
TxtCharIsDigit
TxtCharIsGraph
TxtCharIsHardKey
TxtCharIsHex
TxtCharIsLower
TxtCharIsPrint
TxtCharIsPunct
TxtCharIsSpace
TxtCharIsUpper
TxtCharSize
TxtCharWidth

TxtCharXAttr
TxtCompare
TxtEncodingName
TxtFindString
TxtGetChar
TxtGetNextChar
TxtGetPreviousChar
TxtCharIsValid
TxtMaxEncoding
TxtNextCharSize
TxtPreviousCharSize
TxtReplaceStr
TxtSetNextChar
TxtStrEncoding
TxtTransliterate
TxtGetTruncationOffset
TxtWordBounds

Compatibil i ty Guide
Japanese Feature Set

1186 Palm OS SDK Reference

Removed Functions and Macros

If the international feature set exists, then the following functions
and macros are no longer available:

Japanese Feature Set
You can check that the Japanese feature set is implemented by
checking if the unit is Japanese. You can check by calling FtrGet as
follows:

err = FtrGet(sysFtrCreator, sysFtrNumEncoding,
&value);

The unit has the Japanese OS if the value parameter is
charEncodingCP932.

For further information about the Japanese implementation, see the
section “Notes on the Japanese Implementation” in the Palm OS
Programmer’s Companion.

GetCharAttr
GetCharCaselessValue
GetCharSortValue
IsAscii
IsAlNum
IsAlpha
IsCntrl
IsDigit
IsGraph
IsLower
IsPrint
IsPunct
IsSpace
IsUpper
IsHex
IsDelim

Compatibil i ty Guide
Wireless Internet Feature Set

Palm OS SDK Reference 1187

Wireless Internet Feature Set
You can check that this feature set is implemented by checking for
the existence of the Clipper and iMessenger™ applications. Here’s an
example of how to check for Clipper:

DmSearchStateType searchState;
UInt cardNo;
LocalID dbID;
err = DmGetNextDatabaseByTypeCreator(true,
&searchState, sysFileTApplication,
sysFileCClipper, true, &cardNo, &dbID);

If Clipper is not present, the
DmGetNextDatabaseByTypeCreator routine returns an error. To
check for iMessenger, you can use the creator type
sysFileCMessaging.

You can learn more about the Palm.Net™ system for wireless
Internet access and the programmatic interfaces to the Clipper and
iMessenger applications by reading the chapter “Internet and
Messaging Applications” in the Palm OS Programmer’s Companion.

Launch Codes
This feature set adds the following launch codes:

Events
This feature set adds the following events:

This feature set also adds the following keyDownEvent key codes:

sysAppLaunchCmdAddRecord (for iMessenger
application; existed for Mail in 3.0)
sysAppLaunchCmdGoToURL
sysAppLaunchCmdOpenDB
sysAppLaunchCmdURLParams

inetSockReadyEvent
inetSockStatusChangeEvent

Compatibil i ty Guide
New Serial Manager Feature Set

1188 Palm OS SDK Reference

These key codes are described in the section New keyDownEvent
Key Codes.

Functions
This feature set adds the following functions.

Internet Library Functions

For more information, see the chapter “Network Communication”
in the Palm OS Programmer’s Companion.

New Serial Manager Feature Set
You can check that this feature set is implemented by checking for
the existence of the new serial manager. You can check by calling
FtrGet as follows:

vchrHardAntenna
vchrRadioCoverageOK
vchrRadioCoverageFail

INetLibCacheGetObject
INetLibCacheList
INetLibCheckAntennaState
INetLibClose
INetLibConfigAliasGet
INetLibConfigAliasSet
INetLibConfigDelete
INetLibConfigIndexFromName
INetLibConfigList
INetLibConfigMakeActive
INetLibConfigRename
INetLibConfigSaveAs
INetLibGetEvent
INetLibOpen
INetLibSettingGet
INetLibSettingSet

INetLibSockClose
INetLibSockConnect
INetLibSockHTTPAttrGet
INetLibSockHTTPAttrSet
INetLibSockHTTPReqCreate
INetLibSockHTTPReqSend
INetLibSockOpen
INetLibSockRead
INetLibSockSettingGet
INetLibSockSettingSet
INetLibSockStatus
INetLibURLCrack
INetLibURLGetInfo
INetLibURLOpen
INetLibURLsAdd
INetLibWiCmd

Compatibil i ty Guide
New Serial Manager Feature Set

Palm OS SDK Reference 1189

err = FtrGet(sysFileCSerialMgr,
sysFtrNewSerialPresent, &value);

If the new serial manager is installed, the value parameter will be
non-zero and the returned error should also be zero (for no error).

You can learn more about the new serial manager and connection
manager by reading the sections “The New Serial Manager” on
page 232 and “The Connection Manager” on page 245 in the Palm
OS Programmer’s Companion.

Functions
This feature set adds the following functions.

New Serial Manager Functions

Serial Driver Functions

SrmClearErr
SrmClose
SrmControl
SrmGetDeviceCount
SrmGetDeviceInfo
SrmGetStatus
SrmOpen
SrmOpenBackground
SrmPrimeWakeupHandler
SrmReceive
SrmReceiveCheck

SrmReceiveFlush
SrmReceiveWait
SrmReceiveWindowClose
SrmReceiveWindowOpen
SrmSend
SrmSendCheck
SrmSendFlush
SrmSendWait
SrmSetReceiveBuffer
SrmSetWakeupHandler
WakeupHandlerProc

DrvEntryPoint
SdrvClose
SdrvControl
SdrvISP

SdrvOpen
SdrvReadChar
SdrvStatus
SdrvWriteChar

Compatibil i ty Guide
3.5 New Feature Set

1190 Palm OS SDK Reference

Virtual Driver Functions

Connection Manager Functions

Serial Link Manager Function

SlkSocketPortID

3.5 New Feature Set
You can check that this feature set is implemented by checking that
the system version is 3.5 or higher. Use this FtrGet call:

err = FtrGet(sysFtrCreator,
sysFtrNumROMVersion, &romversion);

The romversion parameter should be 0x03503000 or greater.

Launch Codes
This feature set adds the following launch codes:

Events
This feature set adds the following events:

DrvEntryPoint
GetSize
GetSpace
VdrvControl
VdrvOpen

VdrvStatus
VdrvWrite
WriteBlock
WriteByte

CncAddProfile
CncDeleteProfile

CncGetProfileInfo
CncGetProfileList

sysAppLaunchCmdNotify

frmGadgetEnterEvent
frmGadgetMiscEvent
menuCmdBarOpenEvent
menuOpenEvent

Compatibil i ty Guide
3.5 New Feature Set

Palm OS SDK Reference 1191

Functions
This feature set adds the following functions.

Bitmaps

Controls

Forms

Menus

Overlay Manager

Private Records

BmpBitsSize
BmpColortableSize
BmpCompress
BmpCreate
BmpDelete

BmpGetBits
BmpGetColortable
BmpSize
ColorTableEntries

CtlGetSliderValues
CtlNewGraphicControl
CtlNewSliderControl

CtlSetGraphics
CtlSetSliderValues

FrmCustomResponseAlert
FrmNewGsi

FrmSetGadgetHandler

MenuAddItem
MenuCmdBarDisplay
MenuHideItem

MenuCmdBarAddButton
MenuCmdBarGetButtonData
MenuShowItem

OmGetCurrentLocale
OmGetIndexedLocale
OmGetRoutineAddress
OmGetSystemLocale

OmLocaleToOverlayDBName
OmOverlayDBNameToLocale
OmSetSystemLocale

SecSelectViewStatus SecVerifyPW

Compatibil i ty Guide
3.5 New Feature Set

1192 Palm OS SDK Reference

Tables

UI Colors

UI Controls

Windows

Miscellaneous New Functions

Existing Functions that Changed
The following functions that existed prior to 3.5 have changed in
release 3.5:

TblGetItemPtr
TblRowMasked

TblSetColumnMasked
TblSetRowMasked

UIColorGetTableEntryIndex
UIColorGetTableEntryRGB

UIColorSetTableEntry

UIBrightnessAdjust UIPickColor

WinCreateBitmapWindow
WinDrawPixel
WinErasePixel
WinGetBitmap
WinGetPatternType
WinGetPixel
WinIndexToRGB
WinInvertPixel
WinPaintBitmap
WinPaintChar
WinPaintChars
WinPaintLine
WinPaintLines
WinPaintPixel
WinPaintPixels

WinPaintRectangle
WinPaintRectangleFrame
WinPalette
WinPopDrawState
WinPushDrawState
WinRGBToIndex
WinScreenLock
WinScreenMode
WinScreenUnlock
WinSetBackColor
WinSetDrawMode
WinSetForeColor
WinSetPatternType
WinSetTextColor

DmOpenDBNoOverlay
ExgDoDialog
DateToAscii

ResLoadConstant
TxtParamString

Compatibil i ty Guide
3.5 New Feature Set

Palm OS SDK Reference 1193

New Data Types
The data types Byte, Word, DWord and so on are now deprecated. It
is recommend that you use the corresponding new data types. For
example, use Int16 instead of SWord and UInt32 instead of
DWord. In particular, the unfortunate distinction between Handle/
VoidHand has been fixed; use MemHandle instead.

To learn in general how the type names changed, see the header file
PalmOSCompatibility.h. This file provides a mapping from the
old type name to the new type name. If you need to move forward
without modifying your code, you can include this file in your
project to provide declarations for the old type names.

Changes to Events
• The tapCount field has been added to the EventType

structure. The tapCount field specifies the number of times
the user tapped the pen at the current location; in fields, two
taps selects a word, and three taps selects a line.

IMPORTANT: Because the tapCount field has been added to
the EventType structure, it has become more critical that you
clear the event structure before using it to add a new event to the
queue. Otherwise, the tapCount will be incorrect for the new
event.

• The structures for ctlRepeatEvent and ctlSelectEvent
have a value field added to them. This new field is used
only for sliders; it holds the current value of the slider.

• Form objects now handle the frmTitleSelectEvent by
adding a keyDownEvent with the vchrMenu character to
the event queue (which causes the form’s menu to display).

ScrDisplayMode was changed to WinScreenMode.

ContrastAdjust was changed to UIContrastAdjust.

SelectTime (old function renamed SelectTimeV33)

Compatibil i ty Guide
3.5 New Feature Set

1194 Palm OS SDK Reference

• Some of the structure definitions for system-level events
have moved from Event.h to SysEvent.h.

• The winEnterEvent is now not generated until
FrmDrawForm is called. Make sure to draw your form in
response to frmOpenEvent, not winEnterEvent.

Other Changes
• FrmDrawForm

On release 3.5, FrmDrawForm erases the window's rectangle
before it draws, so you must perform custom drawing after
the call to FrmDrawForm, not before. If you have drawn
before the call to FrmDrawForm, your changes are lost. On
debug ROMs, the window handle is invalid until
FrmDrawForm is called so that draws before FrmDrawForm
result in a bus error.

• Resource Manager

The resource manager functions have been updated to work
with overlay databases. See “Using Overlays to Localize
Resources” on page 318 in the Palm OS Programmer’s
Companion.

• DmGetDatabase

The order in which this call returns databases has changed.
Previously all of the databases from ROM were returned
first, then all from RAM. Now they are intermingled.
Developers should not rely on the order in which databases
are returned from this call.

• StrToLower

This function is different in 3.5 Latin ROMs. Previously it
only changed A through Z. Now it also changes high ASCII
characters.

• Time Manager

If you are using a debug ROM, the string buffer is filled with
dateStringLength or longStrLength debugging bytes,
depending on the dateFormat parameter. For the routines
that return the day-of-week name in addition to the date, the

Compatibil i ty Guide
Notification Feature Set

Palm OS SDK Reference 1195

size of the buffers has been expanded, so developers need to
check the max lengths defined in DateTime.h.

• The format of the storage heap header has changed, thus any
existing saved Simulator card images are invalid and should
be tossed.

• Category Data Structures

The data structure AppInfoType has been documented.

CategoryCreateList now has a “hide” function with two
new constants; categoryHideEditCategory, and
categoryDefaultEditCategoryString.

• FtrPtrNew

FtrPtrNew now allows allocating chunks larger than 64KB.

• Dynamic heap

The dynamic heap is now sized based on the amount of
memory available to the system.

Notification Feature Set
You can check that this feature set is implemented by checking for
the existence of the notification manager. You can check by calling
FtrGet as follows:

err = FtrGet(sysFtrCreator,
sysFtrNumNotifyMgrVersion, &value);

If the notification manager is part of the system, the value
parameter will be non-zero and the returned error should also be
zero (for no error).

Device RAM Size Heap Size

x < 2MB 64KB

2MB ð x < 4MB 128KB

x Š 4MB 256KB

Compatibil i ty Guide
Notification Feature Set

1196 Palm OS SDK Reference

Notification Manager

SysNotifyBroadcast
SysNotifyBroadcastDeferred

SysNotifyRegister
SysNotifyUnregister

Palm OS SDK Reference 1197

Index

Symbols
_searchF 748

Numerics
2.0 feature set 1174
3.0 feature set 1176
3.1 feature set 1180
3.2 feature set 1183
3.5 feature set 1190

A
accented characters and StrToLower 724
active form 262
active window 133, 815, 858
adding event to event queue 729
AlarmMgr.h 445
alarms 445–450

and launch codes 60
canceling 446
procedure alarms 447
setting 446
sysAppLaunchCmdTimeChange 72

alert resource 79
alerts 255

confirmation 80
custom alert 257, 258
error 80
information 80
SysFatalAlert 374
warning 80

allocating chunks on dynamic heap 636
AlmAlarmProcPtr 449
almErrFull 447, 448
almErrMemory 447, 448
AlmGetAlarm 445
AlmGetProcAlarm 446
almProcCmdCustom 450
AlmProcCmdEnum 449
almProcCmdReschedule 449
almProcCmdTriggered 449
AlmSetAlarm 446
AlmSetProcAlarm 447
appErrorClass 560

appEvtHookKeyMask 122
AppInfoType 138
application preferences 673
applications

Security 71
appStopEvent 109
archiving

marking record as archived 481
atoi function substitute (StrAToI) 713
auto-off

setting 763
timer 739

autoRepeatKeyMask 122
Auto-Shift (field) 86

B
badDrawWindowValue 860
BarBeamBitmap 338
BarCopyBitmap 338
BarCutBitmap 338
BarDeleteBitmap 338
BarInfoBitmap 338
BarPasteBitmap 338
BarSecureBitmap 338
BarUndoBitmap 338
base 10 form of floating-point number 592
battery timeout 745, 746
battery voltage warning threshold 745, 746
bitmap label for button 83
Bitmap.h 451
BitmapCompressionType 451
BitmapFlagsType 452
BitmapPtr 453
bitmapRsc 459
bitmaps

See Also form bitmap resource
drawing 817

BitmapType 454
BitmapVersionOne 459
BitmapVersionTwo 459
BitmapVersionZero 458
blank lines in field 207
BmpBitsSize 460
BmpColortableSize 460

Index

1198 Palm OS SDK Reference

BmpCompress 461
BmpCreate 462
BmpDelete 464
BmpGetBits 464
BmpGetColortable 465
BmpSize 465
boldFont 606, 1159
boot, and heap compacting 627
bound of next line for global find 237
busy bit 524
button resource 81

bitmap label 83
increment arrow 82
label 82

ButtonFrameType 155
buttons (silk-screened buttons) 121
byteAttrFirst 769
byteAttrLast 769
byteAttrMiddle 769
byteAttrSingle 769

C
calibrating the pen 671
canceling alarms 446
capsLockMask 122
card number 621
catalog resources 77
categories, setting label 288
category

DmSeekRecordInCategory 535
moving records 511

Category Constants 135
Category Data Structures 135
Category Functions 135
CategoryCreateList 137, 143, 1175
CategoryCreateListV10 139
categoryDefaultEditCategoryString 136, 137, 138,

147, 1195
categoryDefaultEditString 138
CategoryEdit 139, 1175, 1179
CategoryEditV10 141
CategoryEditV20 140
CategoryFind 142
CategoryFreeList 142, 1175

CategoryFreeListV10 143
CategoryGetName 144
CategoryGetNext 144
categoryHideEditCategory 136, 137, 146, 1195
categoryHideEditString 138
CategoryInitialize 145
CategorySelect 146, 1175
CategorySelectV10 147
CategorySetName 148
CategorySetTriggerLabel 149
CategoryTruncateName 149
character attribute functions 467–471
character encodings 773, 783, 789, 794
characters

See Also multi-byte characters
attributes 771, 774, 775, 776, 777, 778, 779, 781
converting 795
drawable 780
drawing in window 819
erasing 825
graphic 776
inverting 837
printable 778
size 780
sorting text 471
valid 780

CharAttr.h 467
charAttrAlNum 771
charAttrAlpha 771
charAttrCntrl 771
charAttrDelim 771
charAttrGraph 771
charAttrPrint 771
charAttrSpace 771
charEncoding... constants 768
CharEncodingType 767
check box resource 83

Group ID 84
toggle area 84

checkboxTableItem 380
ChrHorizEllipsis 467, 1182
ChrIsHardKey 468
ChrNumericSpace 468, 1182
chunks

card number 621

Index

Palm OS SDK Reference 1199

disposing of chunk 622
heap ID 622, 636
locking 623
size 625
unlocking 626, 639

clipboard 200, 201, 219
Clipboard.h 151
ClipboardAddItem 152
ClipboardAppendItem 153
ClipboardFormatType 151
ClipboardGetItem 154
Clipper application 1187
clipping rectangle 859
closing net library 944, 948
CncAddProfile 873
CncDeleteProfile 875
CncGetProfileInfo 876
CncGetProfileList 877
code resource 75, 76
ColorTableEntries 466
ColorTableType 456
commandChr 336, 344, 347, 348, 350
commandKeyMask 122
compacting heaps 627
comparing memory blocks 620
compatibility 1173–1190
Confirmation alert 80
connect 1012
connection manager 1190
ConnectionMgr.h 873
constantRscType 440
Constructor

catalog resources 77
ContrastAdjust 436, 1193
control objects

and pen tracking 127
drawing 165
erasing 166
selection in a group 263
structure 155

Control.h 155
ControlAttrType 156
controlKeyMask 122

ControlPtr 157
ControlStyleType 157
ControlType 110, 111, 159
coordinates, display-relative vs. window-

relative 817
CoreTraps.h 754, 763
CountryType 657
Crc.h 867
Crc16CalcBlock 867
creating active window 815
creating modal window 815
creator ID 66
CtlDrawControl 156, 165
CtlEnabled 156, 165
ctlEnterEvent 109, 110, 111, 168, 273
CtlEraseControl 156, 166
ctlExitEvent 110, 111, 168
CtlGetLabel 160, 166
CtlGetSliderValues 167
CtlGetValue 156, 164, 168
CtlHandleEvent 109, 110, 111, 168
CtlHideControl 156, 169
CtlHitControl 170
CtlNewControl 170
CtlNewGraphicControl 170, 172
CtlNewSliderControl 170
ctlRepeatEvent 110, 168, 273, 1193
ctlSelectEvent 110, 111, 274, 1193
CtlSetEnabled 156, 175
CtlSetGraphics 161, 176
CtlSetLabel 160, 177
CtlSetSliderValues 178
CtlSetUsable 156, 179
CtlSetValue 156, 164, 179
CtlShowControl 156, 180
CtlValidatePointer 181
current time 72
custom fill patterns, getting 833
custom UI element 90
CustomPatternType 799
customTableItem 380, 423

Index

1200 Palm OS SDK Reference

D
data manager error codes 477–480, 503
data resource 76
data storage heap 635

handles 621
database ID 496
databases

closing 484
creating 485
cutting and pasting 483
deleting. See Also DmDatabaseProtect
overlays 519
SysCreateDataBaseList 750

DataMgr.h 473
date 185
date system resource 183
DateAdjust 546
DateDaysToDate 547
DateGlue.h 1155
DateGlueToAscii 1156
DateGlueToDOWDMFormat 1156
DatePtr 545
DateSecondsToDate 547
dateStringLength 550, 552
dateTableItem 380
DateTime.h 543
DateTimePtr 545
DateTimeType 545
DateToAscii 550
DateToDays 551
DateToDOWDMFormat 551
DateType 545
day selector object 112
Day.h 183
DayHandleEvent 184
DayOfMonth 552
DayOfWeek 553
daySelectEvent 112
DaysInMonth 553
debugging and MemHeapScramble 630
debugging mode 621, 640
defaultBoldFont 1158
defaultLargeFont 1158
defaultSmallFont 1158

defaultSystemFont 1158
delete bit 491, 494
delete callback function 895
DeleteProc 895
deleting databases See Also DmDatabaseProtect
deleting records 493
DeviceInfoType structure 1015
dialogs

command buttons 89
Edit Categories 139
placement 88

digitizer
and PenResetCalibration function 672
and penUpEvent 127
EvtProcessSoftKeyStroke 738

DirectionType 221
dmAllCategories 475, 517
dmAllHdrAttrs 476
dmAllRecAttrs 475
DmArchiveRecord 481
DmAttachRecord 482
DmAttachResource 483
dmCategoryLength 135, 136, 144, 475
DmCloseDatabase 484
DmComparF 541, 757
DmCreateDatabase 485
DmCreateDatabaseFromImage 486
DmDatabaseInfo 487
DmDatabaseProtect 489
DmDatabaseSize 490
dmDBNameLength 476, 485
DmDeleteCategory 491
DmDeleteDatabase 492
DmDeleteRecord 493
DmDetachRecord 494
DmDetachResource 495
dmErrDatabaseNotProtected 478
dmErrRecordArchived 479
DmFindDatabase 486, 493, 496
DmFindRecordByID 496
DmFindResource 497
DmFindResourceType 498
DmFindSortPosition 499, 1175
DmFindSortPositionV10 500

Index

Palm OS SDK Reference 1201

DmGet1Resource 509, 516
DmGetAppInfoID 501
DmGetDatabase 493, 501
DmGetDatabaseLockState 502
DmGetLastErr 503
DmGetNextDatabaseByTypeCreator 504
DmGetRecord 507
DmGetResource 507, 509
DmGetResourceIndex 508
dmHdrAttrAppInfoDirty 476
dmHdrAttrBackup 476
dmHdrAttrCopyPrevention 476
dmHdrAttrHidden 476
dmHdrAttrLaunchableData 476
dmHdrAttrOKToInstallNewer 476
dmHdrAttrOpen 476
dmHdrAttrReadOnly 476
dmHdrAttrResDB 476
dmHdrAttrResetAfterInstall 477
dmHdrAttrStream 477
DmInsertionSort 510
dmMaxRecordIndex 475, 482, 513
dmModeExclusive 480
dmModeLeaveOpen 480
dmModeReadOnly 480
dmModeReadWrite 480
dmModeShowSecret 480
dmModeWrite 480
DmMoveCategory 511
DmMoveRecord 512
DmNewHandle 513
DmNewRecord 513
DmNewResource 514
DmNextOpenDatabase 515
DmNextOpenResDatabase 515
DmNumDatabases 516
DmNumRecords 517
DmNumRecordsInCategory 517
DmNumResources 518
DmOpenDatabase 480, 519
DmOpenDatabaseByTypeCreator 521
DmOpenDatabaseInfo 522
DmOpenDBNoOverlay 480, 523

DmOpenRef 473
DmPositionInCategory 523
DmQueryNextInCategory 524
DmQueryRecord 526
DmQuickSort 526
dmRecAttrBusy 475
dmRecAttrCategoryMask 475, 511
dmRecAttrDelete 475
dmRecAttrDirty 475
dmRecAttrSecret 475
dmRecNumCategories 135, 475
DmRecordInfo 527
DmReleaseRecord 507, 514, 528
DmReleaseResource 515, 529
DmRemoveRecord 529
DmRemoveResource 530
DmRemoveSecretRecords 531
DmResID 473
DmResizeRecord 531
DmResizeResource 532
DmResourceInfo 532
DmResType 474
DmSearchRecord 533
DmSearchResource 509, 534
DmSearchStatePtr 504
DmSearchStateType 504
dmSeekBackward 535
dmseekForward 535
DmSeekRecordInCategory 535
DmSet 536
DmSetDatabaseInfo 537
DmSetRecordInfo 538
DmSetResourceInfo 539
DmStrCopy 540
dmSysOnlyHdrAttrs 477
dmSysOnlyRecAttrs 475
dmUnfiledCategory 475, 889
DmWrite 540
DmWriteCheck 541
doubleTapKeyMask 122
doze mode

SysTaskDelay 765
Dragonball EZ 1182

Index

1202 Palm OS SDK Reference

drag-selecting and fldChangedEvent 113
draw window 860
drawable characters 780
drawing rectangular frame 820, 824, 846
drawItemsCallback 313, 323
DrawStateType 799
DrvEntryPoint

for serial driver 1075
for virtual driver 1084

DrvrInfoType structure 1065
DrvrRcvQType structure 1067
DrvrStatusEnum 1068
dynamic heap

adding chunk 623
allocating chunk 636
moving memory 633
reinitializing 762
test 628

dynamic heap handles 621
dynamic scrolling 130

E
Edit Categories dialog 139
editingStrID 137
enabling windows 816
erasing characters 825
erasing lines in window 826
erasing rectangle 827
ErrAlert 560
ErrCatch 563
ErrDisplay 561
ErrDisplayFileLineMsg 561
ErrEndCatch 563
ErrFatalDisplayIf 562
errNone 888
ErrNonFatalDisplayIf 562
Error alert 80
error code from data manager call 503
error manager 559–563
ERROR_CHECK_FULL 559
ERROR_CHECK_LEVEL 559, 561, 562, 563
ERROR_CHECK_NONE 559
ERROR_CHECK_PARTIAL 559
ErrorBase.h 559

ErrorMgr.h 559
ErrThrow 563
ErrTry 563
event queue, adding event 729
Event.H 729
Event.h 105, 1194
EventPtr 109
events 105, 134
eventsEnum 106
EventType 105–134, 1193
EvtAddEventToQueue 729
EvtAddUniqueEventToQueue 730
EvtCopyEvent 730
EvtDequeuePenPoint 731
EvtDequeuePenStrokeInfo 731
EvtEnableGraffiti 732
EvtEnqueueKey 732
EvtEventAvail 733
EvtFlushKeyQueue 733
EvtFlushNextPenStroke 734
EvtFlushPenQueue 734
EvtGetEvent 126, 651
EvtGetPen 735
EvtGetPenBtnList 736
EvtKeyQueueEmpty 737
EvtKeyQueueSize 738
EvtPenQueueSize 738
EvtProcessSoftKeyStroke 738
EvtResetAutoOffTimer 739
EvtSysEventAvail 741
evtWaitForever 126
EvtWakeup 741
exchange manager 879, 1178
ExgAccept 883
ExgAskParamType 62
ExgAskResultType 879
ExgDBDeleteProcPtr 884
ExgDBRead 884
ExgDBWrite 885
ExgDBWriteProcPtr 885
ExgDialogInfoType 888, 889
ExgDisconnect 886
ExgDoDialog 61, 888

Index

Palm OS SDK Reference 1203

ExgGoToType 880
ExgMgr.h 879
ExgPut 890
ExgReceive 891
ExgRegisterData 892
ExgSend 894
ExgSocketType 880
extended gadget 244, 292, 299
EZ Dragonball 1182

F
fatal alert 374
FatalAlert.h 373
fcntl 1005
FeatureMgr.h 565
features See functions starting with Ftr
fgetc 701
fgets 702
field objects

and text height 212
dynamic resizing 113
modifying 202
structure 194

field resource 85
Auto-Shift 86
Has Scrollbar 86

Field.h 191
FieldAttrType 191
FieldPtr 193
FieldType 194
file mode constants 571, 572
file streaming 1178
FileClearerr 573
FileClose 573
FileControl 574
FileDelete 578
FileDmRead 578
FileEOF 579
FileError 580
FileFlush 580
FileGetLastError 581
FileOpen 582
FileOpEnum 574
FileOriginEnum 585

FileRead 584
FileRewind 585
FileSeek 585
FileStream.h 571
FileTell 586
FileTruncate 587
FileWrite 587
fill patterns

getting 833
setting 861

Find (global find) 63, 65, 237–239
saving data 70

Find (lookup) 67
Find icon 121
Find.h 237
FindDrawHeader 237
FindGetLineBounds 237
FindSaveMatch 238
FindStrInStr 239
flags, launch flags 73
FldCalcFieldHeight 199
fldChangedEvent 113, 222, 1176
FldCompactText 199
FldCopy 200
FldCut 201
FldDelete 201
FldDirty 202
FldDrawField 203
fldEnterEvent 113, 214, 274
FldEraseField 203
FldFreeMemory 204
FldGetAttributes 205
FldGetBounds 205
FldGetFont 206
FldGetInsPtPosition 206
FldGetMaxChars 207
FldGetNumberOfBlankLines 207
FldGetScrollPosition 208
FldGetScrollValues 208
FldGetSelection 209
FldGetTextAllocatedSize 210
FldGetTextHandle 210
FldGetTextHeight 212
FldGetTextLength 212

Index

1204 Palm OS SDK Reference

FldGetTextPtr 212
FldGetVisibleLines 213
FldGrabFocus 213, 399
FldHandleEvent 113, 214
fldHeightChangedEvent 113, 216, 223, 274
FldInsert 215
FldMakeFullyVisible 216
FldNewField 217
FldPaste 219
FldRecalculateField 219
FldReleaseFocus 220
FldScrollable 221
FldScrollField 221
FldSendChangeNotification 222
FldSendHeightChangeNotification 223
FldSetAttributes 223
FldSetBounds 224
FldSetDirty 225
FldSetFont 225
FldSetInsertionPoint 226
FldSetInsPtPosition 226
FldSetMaxChars 227
FldSetScrollPosition 228
FldSetSelection 228
FldSetText 229
FldSetTextAllocatedSize 231
FldSetTextHandle 231
FldSetTextPtr 233
FldSetUsable 234
FldUndo 234
FldWordWrap 235
FloatMgr.h 591
flushing pen queue 734
FntAverageCharWidth 597
FntBaseLine 597
FntCharHeight 598
FntCharsInWidth 598
FntCharsWidth 599
FntCharWidth 599
FntDefineFont 599
FntDescenderHeight 601
FntGetFont 601
FntGetFontPtr 601

FntGetScrollValues 602
FntGlue.h 1155
FntGlueGetDefaultFontID 1158
FntLineHeight 602
FntLineWidth 602
FntSetFont 603
FntWidthToOffset 603
FntWordWrap 604
FntWordWrapReverseNLines 605
focus

and modal window 840
FrmGetFocus 265
FrmSetFocus 290

Font.h 597
FontDefaultType 1158
fonts

and FldGetFont 206
font ID 601
functions 597–605

FontSelect 605
FontSelect.h 597
form bitmap resource 89
form objects

FormType structure 251
functions 254–297

form resource 86
dialog command 89
modal 87
Save Behind 87
screen command buttons 88
title 88

form, active 262
Form.h 241
FormActiveStateType 285, 286
FormAttrType 241
FormBitmapType 242
FormCheckResponseFuncType 254, 258, 298
FormEventHandlerType 252, 299
FormFrameType 243
FormGadgetAttrType 243
formGadgetDeleteCmd 259, 261, 299
formGadgetDrawCmd 295, 300
formGadgetEraseCmd 277, 300
formGadgetHandleEventCmd 300

Index

Palm OS SDK Reference 1205

FormGadgetHandlerType 115, 259, 261, 277, 295
FormGadgetType 115, 116, 244, 299
FormLabelType 245
FormLineType 246
FormObjAttrType 246
FormObjectKind 247
FormObjectType 248
FormObjListType 249
FormPopupType 250
FormPtr 250
FormRectangleType 251
FormTitleType 251
FormType 251
FplAdd 591
FplAToF 592
FplBase10Info 592
FplDiv 593
FplFloatToLong 593
FplFloatToULong 594
FplFree 594
FplFToA 594
FplInit 595
FplLongToFloat 595
FplMul 596
FplSub 596
fprintf 702
fputc 703
fputs 703
frame type constants 802–803
FrameBitsType 801
frames

drawing in window 820, 824, 846
FrameType 802
FrmAlert 255
FrmCloseAllForms 114, 255
frmCloseEvent 114, 255, 272, 274
FrmCopyLabel 256
FrmCopyTitle 257
FrmCustomAlert 257
FrmCustomResponseAlert 258
FrmDeleteForm 259, 299
FrmDispatchEvent 260, 273
FrmDoDialog 260

FrmDrawForm 261, 274, 300
FrmEraseForm 119, 262
frmGadgetEnterEvent 115, 274, 300
frmGadgetMiscEvent 115, 274, 301
FrmGetActiveForm 262
FrmGetActiveFormID 262
FrmGetControlGroupSelection 263
FrmGetControlValue 263
FrmGetFirstForm 264
FrmGetFocus 265
FrmGetFormBounds 265
FrmGetFormId 266
FrmGetFormPtr 266
FrmGetGadgetData 245, 266
FrmGetLabel 267
FrmGetNumberOfObjects 268
FrmGetObjectBounds 160, 161, 163, 268
FrmGetObjectId 269
FrmGetObjectIndex 269
FrmGetObjectPosition 270
FrmGetObjectPtr 270
FrmGetObjectType 271
FrmGetTitle 271
FrmGetWindowHandle 272
frmGotoEvent 116
FrmGotoForm 114, 117, 272
FrmGraffitiStateType 253
FrmHandleEvent 114, 115, 118, 128, 273, 300
FrmHelp 276
FrmHideObject 166, 169, 244, 277, 300
FrmInitForm 277
frmInvalidObjectId 269
frmLoadEvent 117, 272
FrmNewBitmap 278
FrmNewForm 279
FrmNewGadget 280
FrmNewGsi 281
FrmNewLabel 282
frmNoSelectedControl 254, 263
frmOpenEvent 116, 117, 252, 260, 261, 272, 284
FrmPointInTitle 283
FrmPopupForm 117, 284
frmRedrawUpdateCode 119, 253, 295

Index

1206 Palm OS SDK Reference

FrmRemoveObject 284
frmResponseCreate 254, 298
frmResponseQuit 254, 298
FrmRestoreActiveState 285, 286
FrmReturnToForm 286
FrmSaveActiveState 285, 286
FrmSaveAllForms 118, 287
frmSaveEvent 118, 287
FrmSetActiveForm 133, 287
FrmSetCategoryLabel 288
FrmSetControlGroupSelection 288
FrmSetControlValue 289
FrmSetEventHandler 290
FrmSetFocus 290, 399
FrmSetGadgetData 245, 291
FrmSetGadgetHandler 245, 292
FrmSetMenu 292, 342, 349
FrmSetObjectBounds 160, 161, 163, 293
FrmSetObjectPosition 293
FrmSetTitle 294
FrmShowObject 180, 244, 295, 300
frmTitleEnterEvent 118, 274
frmTitleSelectEvent 118, 274, 1193
frmUpdateEvent 119, 253, 261, 274, 295
FrmUpdateForm 119, 295
FrmUpdateScrollers 296
FrmValidatePtr 297
FrmVisible 297
ftrErrNoSuchFeature 566, 570
ftrErrNoSuchFtr 565, 567, 569
FtrGet 565
FtrGetByIndex 566
FtrPtrFree 566
FtrPtrNew 567
FtrPtrResize 568
FtrSet 569
FtrUnregister 570

G
gadget resource 90, 244, 291

extended 244, 292, 299
getchar 704
GetCharAttr 469

GetCharCaselessValue 470
GetCharSortValue 471
gethostname 986
gets 704
GetSize 1089
GetSpace 1090
global find 63, 65, 237–239, 784, 1163

FindDrawHeader 237
FindGetLineBounds 237
saving data 70

goto (global find) 65
GoToParamsType 65
Graffiti

Command shortcuts 125
enabling and disabling 732

Graffiti manager
functions 607–615

Graffiti recognizer
EvtDequeuPenPoint 731

Graffiti Reference Dialog 374, 755
Graffiti Shift

functions 303–305
Indicator resource 91

Graffiti.h 607
GraffitiReference.h 373
GraffitiShift.h 303
GraffitiUI.h 373
graphic characters 776
GraphicControlType 160, 165
GraphicStatePtr 808
GrfAddMacro 607
GrfAddPoint 608
GrfCleanState 608
GrfDeleteMacro 608
GrfFilterPoints 609
GrfFindBranch 609
GrfFlushPoints 609
GrfGetAndExpandMacro 610
GrfGetGlyphMapping 610
GrfGetMacro 611
GrfGetMacroName 611
GrfGetNumPoints 612
GrfGetPoint 612
GrfGetState 612

Index

Palm OS SDK Reference 1207

GrfInitState 613
GrfMatch 613
GrfMatchGlyph 614
GrfProcessStroke 614
GrfSetState 615
Group ID 84
groups of controls 263
GsiEnable 303
GsiEnabled 303
GsiInitialize 304
GsiSetLocation 304
GsiSetShiftState 305

H
hard reset 71
Has Scrollbar (field) 86
header line for global find 237
heap ID 630, 636

of chunk 622
heap space required 76
heaps

compacting 627
free bytes 629
ROM based 628

height of text in field 212
Help ID 80
HostControl.h 756
hostent 936
HostGremlinIsRunning 756
HotSync and sysAppLaunchCmdSyncNotify 70

I
icons 121
iconType 459
ID

databases 496
heap 630

iMessenger application 1187
increment arrow 82
IndexedColorType 803
INetCacheEntryType 1121
INetCacheInfoType 1119
inetCfgName... constants 1116–1117

inetCompressionType... constants 1104
INetCompressionTypeEnum 1104
INetConfigNameType 1104
inetContentType... constants 1105–1106
INetContentTypeEnum 1105
inetHTTPAttr... constants 1107–1108
INetHTTPAttrEnum 1106
INetLibCacheGetObject 1118
INetLibCacheList 1120
INetLibCheckAntennaState 1122
INetLibClose 1122
INetLibConfigAliasGet 1123
INetLibConfigAliasSet 1124
INetLibConfigDelete 1125
INetLibConfigIndexFromName 1126
INetLibConfigList 1127
INetLibConfigMakeActive 1128
INetLibConfigRename 1129
INetLibConfigSaveAs 1130
INetLibGetEvent 1131
INetLibOpen 1132
INetLibSettingGet 1134
INetLibSettingSet 1135
INetLibSockClose 1136
INetLibSockConnect 1136
INetLibSockHTTPAttrGet 1137
INetLibSockHTTPAttrSet 1138
INetLibSockHTTPReqCreate 1139
INetLibSockHTTPReqSend 1140
INetLibSockOpen 1142
INetLibSockRead 1143
INetLibSockSettingGet 1144
INetLibSockSettingSet 1145
INetLibSockStatus 1146
INetLibURLCrack 1147
INetLibURLGetInfo 1149
INetLibURLOpen 1150
INetLibURLsAdd 1151
INetLibWiCmd 1152
INetMgr.h 105, 1103
inetOpenURLFlag... constants 1118
inetScheme... constants 1110
INetSchemeEnum 1108

Index

1208 Palm OS SDK Reference

inetSetting... constants 1111–1112
INetSettingEnum 1110
inetSockReadyEvent 120
inetSockSetting... constants 1113–1114
INetSockSettingEnum 1112
inetSockStatusChangeEvent 120
inetStatus... constants 1115–1116
INetStatusEnum 1114
InetURLInfo type 1149
inetURLInfoFlag... constants 1117
InetURLType 1148
information alert 80
initialization 66
insertion point functions 307–309
insertion points

and FldGetInsPtPosition 206
and FldGrabFocus 213
and FldReleaseFocus 220
and FldSetInsertionPoint 226
displayed in field 203

insertion sort 757
InsPoint.h 307
InsPtEnable 307
InsPtEnabled 308
InsPtGetHeight 308
InsPtGetLocation 308
InsPtSetHeight 309
InsPtSetLocation 309
international manager 1184
Internet library 1103
IntlGetRoutineAddress 868
IntlMgr.h 867, 868
inverting characters in draw window 837
inverting line in draw window 837
IR Library 1179
IR manager 899
IrAdvanceCredit 909
IrBind 909
IrCallbackParms 905
IrClose 910
IrConnect 899
IrConnectIrLap 911
IrConnectReq 911
IrConnectRsp 913

IrDataReq 914
IrDisconnectIrLap 915
IrDiscoverReq 916
IrIAS_Add 924
IrIAS_GetInteger 925
IrIAS_GetIntLsap 925
IrIAS_GetObjectID 926
IrIAS_GetOctetString 926
IrIAS_GetOctetStringLen 926
IrIAS_GetType 927
IrIAS_GetUserString 927
IrIAS_GetUserStringCharSet 928
IrIAS_GetUserStringLen 928
IrIAS_Next 928
IrIAS_Query 929
IrIAS_SetDeviceName 930
IrIAS_StartResult 931
IrIASObject 902
IrIasQuery 903
IrIasQueryCallback 931
IrIsIrLapConnected 917
IrIsMediaBusy 917
IrIsNoProgress 917
IrIsRemoteBusy 918
irlib.h 899
IrLocalBusy 918
IrMaxRxSize 919
IrMaxTxSize 919
IrOpen 920
IrPacket 901
IrSetConTypeLMP 920
IrSetConTypeTTP 921
IrSetDeviceInfo 921
IrTestReq 922
IrUnbind 923

J
Japanese feature set 1186

K
key events

format 732
key manager functions 617–618

Index

Palm OS SDK Reference 1209

key queue
size 738

keyBitPageDown 617
keyBitPageUp 617
keyBitPower 617
keyboard display 758
KeyCurrentState 617
keyDownEvent 121, 214, 252, 275, 327, 339, 346,

347, 648, 1183
KeyMgr.h 617
KeyRates 618
KeySetMask 618

L
label (button) 82
label resource 91

bitmap label for button 83
wrapping text 92

labelTableItem 380
LanguageType 657
largeBoldFont 606, 1159, 1177
largeFont 1158
launch codes

summary 53
SysBroadcastActionCode 749

launch flags 73
Launcher.h 373
LEVENT_DATA_IND 906
LEVENT_DISCOVERY_CNF 906
LEVENT_LAP_CON_CNF 906
LEVENT_LAP_CON_IND 907
LEVENT_LAP_DISCON_IND 907
LEVENT_LM_CON_CNF 907
LEVENT_LM_CON_IND 907
LEVENT_LM_DISCON_IND 907
LEVENT_PACKET_HANDLED 907
LEVENT_STATUS_IND 907
LEVENT_TEST_CNF 908
LEVENT_TEST_IND 908
libEvtHookKeyMask 122
libPalmOSGlue.a 1155
LineInfoPtr 197
LineInfoType 198

lines
erasing 826
inverting 837

list objects
and pen tracking 127
creating category list 137
drawItemsCallback 313, 323
fields 313
functions 314–322
structure 312

list resource
and popup trigger 93
vs. menu resource 93

List.h 311
ListAttrType 311
ListDrawDataFuncType 323
ListPtr 314
lists

setting items 752
ListType structure 312
local ID 631, 639

from chunk handle 626
Localize.h 867
LocGetNumberSeparators 59, 868
locking chunk 623
locking system 71
longDateStrLength 550, 552
lookup 67

example 67
LstDrawList 314
lstEnterEvent 122, 123, 275, 316
LstEraseList 314
lstExitEvent 123
LstGetNumberOfItems 315
LstGetSelection 315
LstGetSelectionText 315
LstGetVisibleItems 316
LstHandleEvent 122, 123, 316
LstMakeItemVisible 317
LstNewList 318
LstPopupList 319
LstScrollList 319
lstSelectEvent 123
LstSetDrawFunction 320

Index

1210 Palm OS SDK Reference

LstSetHeight 320
LstSetListChoices 321
LstSetPosition 321
LstSetSelection 322
LstSetTopItem 322

M
maxFieldLines 216
maxFieldTextLen 227
MdmDial 933
mdmErrBusy 933
mdmErrCmdError 933
mdmErrNoDCD 933
mdmErrNoTone 933
mdmErrUserCan 933
MdmHangUp 934
MemCardInfo 619
MemCmp 620
MemDebugMode 621
memErrChunkLocked 624
memErrInvalidParam 567, 569, 624, 626, 636
memErrNotEnoughSpace 153, 567, 569, 570, 624,

743, 749, 1055
MemHandleCardNo 621
MemHandleDataStorage 621
MemHandleFree 622
MemHandleHeapID 622
MemHandleLock 623
MemHandleNew 623
MemHandleResize 624
MemHandleSetOwner 625
MemHandleSize 625
MemHandleSsetOwner 625
MemHandleToLocalID 626
MemHandleUnlock 626
MemHeapCheck 627
MemHeapCompact 627
MemHeapDynamic 628
memHeapFlagReadOnly 628
MemHeapFlags 628
MemHeapFreeBytes 629
MemHeapID 629
MemHeapScramble 630

MemHeapSize 631
MemLocalIDKind 631
MemLocalIDToGlobal 631
MemLocalIDToGlobalNear 631
MemLocalIDToLockedPtr 632
MemLocalIDToPtr 632
MemMove 633
MemNumCards 633
MemNumHeaps 630, 634
MemNumRAMHeaps 634
memory

and FldCompactText 199
and FldFreeMemory 204
and FldSetText 230, 233

memory blocks, comparing 620
memory card information 619
memory manager

debugging mode 621, 640
MemoryMgr.h 619
MemPtrCardNo 635
MemPtrDataStorage 635
MemPtrFree 636
MemPtrHeapID 636
MemPtrNew 636
MemPtrRecoverHandle 637
MemPtrResize 637
MemPtrSetOwner 638
MemPtrSize 638
MemPtrSsetOwner 638
MemPtrToLocalID 639
MemPtrUnlock 639
MemSet 639
MemSetDebugMode 640
MemStoreInfo 641
Menu Item Object fields 332
menu objects

 See Also menus 330
fields 330
structure 330

menu pulldown object 333
Menu.h 325
MenuAddItem 332, 335, 339
MenuBarAttrType 325
MenuBarPtr 330

Index

Palm OS SDK Reference 1211

MenuBarType 330, 335
menuButtonCause 126, 347
menuChr 336, 344, 347, 348, 350
menuCloseEvent 124
MenuCmdBarAddButton 124, 326, 336, 337
MenuCmdBarButtonType 326, 327
MenuCmdBarDisplay 339
MenuCmdBarGetButtonData 340
menuCmdBarMaxTextLength 341
menuCmdBarOnLeft 336
menuCmdBarOnRight 336
menuCmdBarOpenEvent 124, 214, 275, 337, 340,

341, 347, 647
menuCmdBarResultMenuItem 339
MenuCmdBarResultType 327
MenuCmdBarType 326, 328, 331
menuCommandCause 126, 347
MenuDispose 341
MenuDrawMenu 326, 342
MenuEraseStatus 328, 341, 343
menuErrNoMenu 335
menuErrNotFound 335
menuErrOutOfMemory 337
menuErrSameId 335
menuErrTooManyItems 337
menuEvent 119, 124, 275, 327, 339, 347
MenuGetActiveMenu 344
MenuHandleEvent 124, 125, 326, 339, 342, 346, 647
MenuHideItem 348
MenuInit 348
MenuItemType 332, 335
menuOpenEvent 125, 336, 347, 348, 350
MenuPullDownPtr 333
MenuPullDownType 332, 333
menus

active area 95
FrmSetMenu 292
functions 335–349
user interaction 95

MenuSeparatorChar 332, 334, 335
MenuSetActiveMenu 348, 349
MenuSetActiveMenuRscID 349
MenuShowItem 350
Missing Character Symbol 599

modal form 87
modal window 319, 815, 840
modem 933
ModemMgr.h 933
modified field objects 202
multi-byte characters 769, 772, 785, 786, 787, 790,

791
attributes 781
comparison 770, 782
converting 795
encodings support 767–797
searching 784, 1163
size 780

multiple preferences 673

N
narrowTextTableItem 382, 388, 389, 404
net library

closing 944, 948
open count 972
opening 971

netErrAlreadyOpen 971
netErrAuthFailure 967
netErrBadScript 966
netErrBufTooSmall 946, 959, 965, 984, 988
netErrBufWrongSize 959, 965, 984, 988
netErrDNSAborted 949, 951, 953
netErrDNSAllocationFailure 949, 951, 953
netErrDNSBadName 949, 950, 952
netErrDNSBadProtocol 949, 951, 953
netErrDNSFormat 949, 951, 953
netErrDNSImpossible 949, 951, 953
netErrDNSIrrelevant 949, 951, 953
netErrDNSLabelTooLong 949, 951, 953
netErrDNSNameTooLong 949, 950, 952
netErrDNSNIY 949, 951, 953
netErrDNSNonexistantName 949, 951, 953
netErrDNSNoPort 950, 951, 953
netErrDNSNoRecursion 949, 951, 953
netErrDNSNoRRS 949, 951, 953
netErrDNSNotInLocalCache 949, 951, 953
netErrDNSRefused 949, 951, 953
netErrDNSServerFailure 949, 951, 953
netErrDNSTimeout 949, 951, 953

Index

1212 Palm OS SDK Reference

netErrDNSTruncated 949, 951, 953
netErrDNSUnreachable 949, 951, 953
netErrInterfaceDown 980, 983
netErrInterfaceNotFound 955, 956, 957, 959, 965,

966, 980, 983
netErrInternal 995, 997
netErrInvalidInterface 958
netErrInvalidSettingSize 988, 1001, 1003
netErrIPCantFragment 980, 982
netErrIPktOverflow 980, 983
netErrIPNoDst 980, 983
netErrIPNoRoute 980, 983
netErrIPNoSrc 980, 983
netErrMessageTooBig 980, 982
netErrNoInterfaces 946, 971, 995, 997
netErrNoMoreSockets 999
netErrNoMultiPacketAddr 1006
netErrNoMultiPktAddr 980, 983
netErrNotOpen 944, 947, 949, 950, 952, 954, 957,

966, 968, 973, 975, 978, 980, 982, 989, 991, 993, 994,
995, 996, 998, 1001, 1002, 1006, 1007

netErrOutOfCmdBlocks 946, 980, 983, 993, 994, 996,
997, 999, 1006

netErrOutOfMemory 947, 971, 999
netErrOutOfPackets 980, 983
netErrOutOfResources 997
netErrParamErr 947, 968, 973, 975, 980, 982, 989,

991, 993, 994, 995, 996, 998, 1001, 1002, 1006
netErrPortInUse 995, 997
netErrPPPAddressRefused 967
netErrPPPTimeout 966
netErrPrefNotFound 958, 959, 965, 971, 984
netErrQuietTimeNotElapsed 995, 997
netErrReadOnlySetting 965, 988
netErrSocketAlreadyConnected 993, 995, 997
netErrSocketBusy 995, 997
netErrSocketClosedByRemote 980, 982, 990, 991,

993, 996, 997
netErrSocketInputShutdown 1006
netErrSocketNotConnected 980, 982, 990
netErrSocketNotListening 990
netErrSocketNotOpen 947, 973, 975, 980, 982, 989,

991, 993, 994, 995, 997, 1001, 1002, 1006
netErrStillOpen 944

netErrTimeout 947, 948, 949, 950, 952, 954, 973, 975,
980, 982, 989, 991, 993, 994, 995, 996, 998, 1001,
1002, 1006

netErrTooManyInterfaces 955
netErrTooManyTCPConnections 996
netErrUnimplemented 959, 965, 968, 990, 1001,

1002
netErrUnknownProtocol 954
netErrUnknownService 954
netErrUnknownSetting 959, 965, 984, 988
netErrUnreachableDest 980, 983
netErrUserCancel 947, 966, 974
netErrWouldBlock 947, 974, 975, 980, 983, 996
netErrWrongSocketType 990, 996, 997, 1001, 1002
netFDIsSet 978
netFDSet 978
netFDSetSize 978
NetFDSetType 977
netFDZero 978
NetHostInfoBufType 935
NetHostInfoType 936
NetHToNL 942
NetHToNS 942
NetIFSettingEnum 959, 960, 965
netIOFlagDontRoute 941
netIOFlagOutOfBand 941
netIOFlagPeek 941
NetIOParamType 975
NetIOVecPtr 976
NetIOVecType 976
NetIPAddr 935, 943
NetLibAddrAToIN 943
NetLibAddrINToA 943
NetLibClose 944
NetLibConnectionRefresh 945
NetLibDmReceive 946
NetLibFinishCloseWait 948
NetLibGetHostByAddr 948
NetLibGetHostByName 950
NetLibGetMailExchangeByName 952
NetLibGetServByName 954
NetLibIFAttach 955
NetLibIFDetach 956
NetLibIFDown 957

Index

Palm OS SDK Reference 1213

NetLibIFGet 958
NetLibIFSettingGet 959
NetLibIFSettingSet 965
NetLibIFUp 966
NetLibMaster 967
NetLibOpen 971
NetLibOpenCount 972
NetLibReceive 973, 1012
NetLibReceivePB 974
NetLibSelect 977
NetLibSend 979, 1013
NetLibSendPB 982
NetLibSettingGet 984
NetLibSettingSet 988
NetLibSocketAccept 989, 990
NetLibSocketAddr 991
NetLibSocketBind 992
NetLibSocketClose 994
NetLibSocketConnect 995, 1012
NetLibSocketListen 996, 997
NetLibSocketOpen 998, 1012
NetLibSocketOptionGet 1000
NetLibSocketOptionSet 1002
NetLibSocketShutdown 1005
NetLibTracePrintF 1006
NetLibTracePutS 1007
NetMasterEnum 967
netMasterICMPStats command 970
netMasterInterfaceInfo command 968
netMasterInterfaceStats command 969
netMasterIPStats command 970
NetMasterPBPtr 967
netMasterTCPStats command 970
netMasterTraceEventGet command 970
netMasterUDPStats command 970
NetMgr.h 935
NetNToHL 1008
NetNToHS 1009
NetServInfoBufType 937
NetServInfoType 937
NetSettingEnum 984, 985, 988
NetSocket.c 1011
NetSocketAddrEnum 938

netSocketAddrINET 999
NetSocketAddrINType 938
netSocketAddrRaw 999
NetSocketAddrRawType 939
NetSocketAddrType 939
netSocketDirBoth 1005
NetSocketDirEnum 1005
netSocketDirInput 1005
netSocketDirOutput 1005
NetSocketLingerType 1004
NetSocketOptEnum 1000, 1002, 1003
NetSocketOptLevelEnum 1000, 1002, 1003
netSocketProtoIPRAW 998
netSocketProtoIPTCP 998
netSocketProtoIPUDP 998
NetSocketRef 998
NetSocketTypeEnum 940
netTracingAppMsgs 941
netTracingErrors 941
netTracingFuncs 941
netTracingMsgs 941
netTracingPkts 941
NetUReadN 1011
NetUTCPOpen 1012
NetUWriteN 1013
new serial manager 1188, 1189
nilEvent 126, 741
noFocus 252, 253, 265, 291
noListSelection 315
noMenuItemSelection 331, 334
noMenuSelection 331, 334
noPreferenceFound 674
noteTextTableItem 389
notification manager 1195
NotifyMgr.h 643
numericTableItem 380
numLockMask 122
numUneditableCategories 137, 140, 146

O
off-screen windows 813
omErrBadOverlayDBName 665
omErrBaseRequiresOverlay 480

Index

1214 Palm OS SDK Reference

omErrDatabaseRequiresOverlay 520
omErrInvalidLocaleIndex 662
omErrUnknownLocale 480, 664, 665
omFtrCreator 661
omFtrShowErrorsFlag 661
OmGetCurrentLocale 661
OmGetIndexedLocale 662
OmGetRoutineAddress 663
OmGetSystemLocale 663
OmLocaleToOverlayDBName 664
OmLocaleType 657
OmOverlayDBNameToLocale 665
omOverlayDBType 519, 660
omOverlayKindAdd 658
omOverlayKindBase 658
omOverlayKindReplace 658
omOverlayRscID 661
OmOverlayRscType 658
omOverlayRscType 661
OmOverlaySpecType 659
omOverlayVersion 660
OmSelector 663
OmSetSystemLocale 666
omSpecAttrForBase 660
omSpecAttrStripped 660
open count of net library 972
opening net library 971
optionKeyMask 122
OverlayMgr.h 657, 663
overlays 519

P
Palm OS 2.0 feature set 1174
Palm OS 3.0 feature set 1176
Palm OS 3.1 feature set 1180
Palm OS 3.2 feature set 1183
Palm OS 3.5 feature set 1190
PalmOSGlue.lib 1155, 1181, 1185
panel list (SysCreatePanelList) 750
password functions 669
Password.h 669
PatternType 803

pen
current status 735

pen manager functions 671–672
pen queue

flushing 734
size 738

PenCalibrate 671
penDownEvent 109, 113, 115, 118, 122, 126, 131,

168, 214, 275, 316, 346, 370
PenMgr.h 671
penMoveEvent 127
PenResetCalibration 672
penUpEvent 127
PhoneLookup.h 439
PhoneNumberLookup 439
PluginCallbackProcType 1039
PluginCmdPtr 1040
PluginCmdType 1040
PluginExecCmdType 1040, 1043
PluginInfoPtr 1041
PluginInfoType 1042, 1043
pluginMaxNumOfCmds 1042
pluginNetLibCallUIProc 1044, 1046, 1048
pluginNetLibCheckCancelStatus 1044, 1048
pluginNetLibConnLog 1044, 1048
pluginNetLibDoNothing 1044, 1047
pluginNetLibGetSerLibRefNum 1044, 1048
pluginNetLibGetUserName 1044, 1047
pluginNetLibGetUserPwd 1044, 1047
pluginNetLibPromptUser 1044, 1048
pluginNetLibReadBytes 1044, 1047
pluginNetLibWriteBytes 1044, 1047
popSelectEvent 128, 274, 275
popup list 319
popup trigger resource 96

and list 93
popupTriggerTableItem 381
port... constants 1075
poweredOnKeyMask 122
pref resource 76
prefAlarmSoundVolume 696
preferenceDataVerLatest 1182
preferenceDataVersion 1182

Index

Palm OS SDK Reference 1215

preferences
changing with launch codes 69
multiple application preferences 673

Preferences.h 673
prefGameSoundVolume 696
PrefGetAppPreferences 673, 1175, 1176
PrefGetAppPreferencesV10 674
PrefGetPreference 675
PrefGetPreferences 675
PrefOpenPreferenceDBV10 676
PrefSetAppPreferences 676
PrefSetAppPreferencesV10 677
PrefSetPreference 678
PrefSetPreferences 678
prefShowPrivateRecords 352, 353
prefSysSoundVolume 696
PrgCallbackData 361
PrgCallbackFunc 361
PrgHandleEvent 355
PrgStartDialog 356
PrgStartDialogV31 357
PrgStopDialog 358
PrgUpdateDialog 359
PrgUserCancel 360
printable characters 778
printf 705
PrivateRecords.h 351
privateRecordViewEnum 351
procedure alarms 447
progress manager 1178
Progress Manager callback function 361
Progress.h 355
push button resource 97

creating row 98
putc 705
putchar 706
puts 706
PwdExists 669
PwdRemove 669
PwdSet 670
PwdVerify 670

Q
query callback function 931

R
radio button See push button
RAM-based heaps 634
RctCopyRectangle 679
RctGetIntersection 679
RctInsetRectangle 680
RctOffsetRectangle 681
RctPtInRectangle 681
RctSetRectangle 682
read callback function 896
ReadProc 896
records

deleting 493
detaching 494
ID 496
retrieving information 527

Rect.h 679
RectanglePtr 680
rectangles

copying 679
erasing 827
intersecting 679
moving 681
resizing 680
scrolling 858

RectangleType 680
reinitializing dynamic memory heap 762
repeat control object

and ctlRepeatEvent 110
repeating button 110
repeating button resource 99
reset 71, 762
ResLoadConstant 440
ResLoadForm 441
ResLoadMenu 441
resource database (SysCurAppDatabase) 751
resource ID 473
resource type 474, 498
resources

alert 79
check box 83

Index

1216 Palm OS SDK Reference

field 85
form 86
form bitmap 89
gadget 90
Graffiti Shift Indicator 91
label 91
popup trigger 96
push button 97
repeating button 99
retrieving 507
retrieving information 532
scrollbar 100
searching for 534
selector trigger 101
string 103
table 103

resumeSleepChr 644, 648
RGBColorType 457
ROM-based heaps 628, 634
ROM-based records 524, 526

S
Save Behind 87
SclDrawScrollBar 368
sclEnterEvent 129, 276, 370
sclExitEvent 129, 370
SclGetScrollBar 369
SclHandleEvent 129, 130, 370
sclRepeatEvent 130, 276, 370

and sclExitEvent 129
SclSetScrollBar 371
scptLaunchCmdDoNothing 1043
scptLaunchCmdExecuteCmd 53, 1040, 1043
scptLaunchCmdListCmds 53, 1042, 1043
ScrDisplayMode 856, 1179, 1193
ScrDisplayModeOperation 856
screen command buttons 88
ScriptPlugin.h 1039
ScriptPluginLaunchCodesEnum 1042
ScriptPluginSelectorProcPtr 1045
scroll arrows

FrmUpdateScrollers 296
scroll position in field 208
scrollbar functions 368–372

scrollbar objects
fields 366
in tables 401
structure 366

scrollbar resource 100
ScrollBar.h 365
ScrollBarAttrType 365
ScrollBarPtr 366
ScrollBarRegionType 366
ScrollBarType 366
scrolling rectangle in window 858
ScrOperation 809
SdrvAPIType structure 1068
SdrvClose 1077
SdrvControl 1077
SdrvCtlOpCodeEnum 1069
SdrvISP 1079
SdrvOpen 1080
SdrvReadChar 1082
SdrvStatus 1083
SdrvWriteChar 1083
searching for string 239
secret records, removing 531
SecSelectViewStatus 352
Security application 71
SecVerifyPW 353
SelDay.h 183
SelectDay 185, 1175
selectDayByDay 185
selectDayByMonth 185
selectDayByWeek 185
SelectDayV10 186
selection in field 209
SelectOneTime 186
selector trigger resource 101
SelectTime 188
SelTime.h 183
separatorItemSelection 334
SerClearErr 1051, 1054
SerClose 1052
SerControl 1052
serCtlBreakStatus (in SerCtlEnum) 1049
serCtlEmuSetBlockingHook (in SerCtlEnum) 1050
SerCtlEnum 1049

Index

Palm OS SDK Reference 1217

serCtlFirstReserved (in SerCtlEnum) 1049
serCtlHandshakeThreshold (in SerCtlEnum) 1050
serCtlLAST (in SerCtlEnum) 1050
serCtlMaxBaud (in SerCtlEnum) 1050
serCtlStartBreak (in SerCtlEnum) 1049
serCtlStartLocalLoopback (in SerCtlEnum) 1050
serCtlStopBreak (in SerCtlEnum) 1049
serCtlStopLocalLoopback (in SerCtlEnum) 1050
serDev... constants 1019
serErrAlreadyOpen 1052, 1055, 1056
serErrBadParam 1052, 1055, 1064
serErrLineErr 1051, 1054, 1056, 1057, 1058, 1059
serErrNotOpen 1052, 1053, 1063
serErrStillOpen 1052
serErrTimeOut 1056, 1057, 1059, 1060, 1061, 1062
SerGetSettings 1053
SerGetStatus 1054
serial capabilities constants 1019
serial driver 1189
serial driver functions 1075
Serial Library 1055
serial port feature constants 1075
serial settings constants 1019
serial status constants 1020
SerialDrvr.h 1065
SerialLinkMgr.h 1093
SerialMgr.h 1015
SerialMgrOld.h 1049
SerialSdrv.h 1065
SerialVdrv.h 1065
serLineError... constants 1054
SerOpen 1055
SerReceive 1056
SerReceive10 1057
SerReceiveCheck 1058
SerReceiveFlush 1058
SerReceiveWait 1059
SerSend 1060
SerSend10 1061
SerSendFlush 1062
SerSendWait 1062
SerSetReceiveBuffer 1063
SerSetSettings 1063

SerSettingsType 1050
servent 937
sethostname 986
shiftKeyMask 122
silk-screen buttons

EvtGetPenBtnList 736
SioAddCommand 706
SioClearScreen 710
SioExecCommand 710
Siofgetc 701, 704
Siofgets 702
Siofprintf 702
Siofputc 703, 705, 706
Siofputs 703
SioFree 711
Siogets 704
SioHandleEvent 711
SioInit 711
SioMain 712
Sioprintf 705
Sioputs 706
Siosystem 707
Siovfprintf 708
SleepEventParamType 643, 648
SliderControlType 162
SlkClose 1093
SlkCloseSocket 1094
slkErrAlreadyOpen 1095
slkErrBadParam 1098
slkErrBuffer 1097
slkErrChecksum 1097
slkErrNotOpen 1093
slkErrOutOfSockets 1096
slkErrSocketNotOpen 1094, 1096, 1097, 1098, 1099,

1100
slkErrTimeOut 1096, 1097
slkErrWrongDestSocket 1096
SlkFlushSocket 1094
SlkOpen 1095
SlkOpenSocket 1095
SlkPktHeaderType 1099
SlkReceivePacket 1096
SlkSendPacket 1097
SlkSetSocketListener 1098

Index

1218 Palm OS SDK Reference

SlkSocketListenType 1098, 1099
SlkSocketPortID 1099
SlkSocketSetTimeout 1100
SlkWriteDataType 1098
SndBlockingFuncType 698
SndCallbackInfoType 684
SndCmdIDType 685
SndCommandType 686
SndComplFuncType 698
SndCreateMidiList 687, 691
SndDoCmd 686, 692
SndGetDefaultVolume 693
sndMaxAmp 690
SndMidiListItemType 687
sndMidiNameLength 688
SndMidiRecHdrType 687
sndMidiRecSignature 688
SndMidiRecType 688
SndPlaySMF 688, 689, 694
SndPlaySmfResource 696
SndPlaySystemSound 697
SndSmfCallbacksType 688
SndSmfChanRangeType 689
sndSmfCmdDuration 690, 694
SndSmfCmdEnum 694
sndSmfCmdPlay 690, 694
SndSmfOptionsType 689
sndSmfPlayAllMilliSec 690
SndSysBeepType 697
sockaddr 939
sockaddr_in 938
socket 1012
socket listener 1097
socket listener procedure 1097, 1098, 1099
soft reset 71, 762
sorting array elements 757
sorting text 471
SortRecordInfoType 474
sound manager 1178
sound manager error codes 695
sound manager functions 691–697
SoundMgr.h 683
sprintf 707

sprintf (StrPrintF) 722
SrmCallbackEntryType 1018
SrmClearErr 1021
SrmClose 1021
SrmControl 1022
SrmCtlEnum 1016
SrmGetDeviceCount 1024
SrmGetDeviceInfo 1024
SrmGetStatus 1025
SrmOpen 1026
SrmOpenBackground 1027
SrmPrimeWakeupHandler 1028
SrmReceive 1028
SrmReceiveCheck 1029
SrmReceiveFlush 1030
SrmReceiveWait 1031
SrmReceiveWindowClose 1031
SrmReceiveWindowOpen 1032
SrmSend 1033
SrmSendCheck 1034
SrmSendFlush 1035
SrmSendWait 1035
SrmSetReceiveBuffer 1036
srmSettings... constants 1019
SrmSetWakeupHandler 1036
srmStatus... constants 1020
stack size 76
standard IO functions 701
StartApplication

and PrefGetPreferences 676
startup code 76
stdFont 605, 1158
StdIOPalm.h 701
StdIOProvider.h 701
StrAToI 713
StrCaselessCompare 714
StrCat 714
strcat function substitute (StrCat) 715
StrChr 715
strchr function substitute (StrChr) 715
strcmp function substitute (StrCompare) 716
StrCompare 715
StrCopy 716

Index

Palm OS SDK Reference 1219

strcpy function substitute (StrCopy) 716
StrDelocalizeNumber 717
StrDelocalizeNumber, and launch code 59
stricmp function substitute

(StrCaselessCompare) 714
string manager 713–728
string resource 103

copying 749
string searching 239
StringMgr.h 713
StrIToA 717
StrIToH 718
StrLen 718
strlen function substitute (StrLen) 718
StrLocalizeNumber 718

launch code 59
StrNCaselessCompare 719
StrNCat 720
strncat function substitute (StrNCat) 720
StrNCompare 721
StrNCopy 722
strokes, translating 738
StrPrintF 707, 722
StrStr 723
strstr function substitute (StrStr) 723
StrToLower 724
structure of field object 194
StrVPrintF 709, 724
summary of launch codes 53
sys_socket.h 1011
SysAlarmTriggeredParamType 59, 450
SysAppLaunch 743
sysAppLaunchCmdAddRecord 55
sysAppLaunchCmdAlarmTriggered 58, 60, 447
sysAppLaunchCmdCountryChange 59
sysAppLaunchCmdDisplayAlarm 59, 447
sysAppLaunchCmdExgAskUser 60, 62, 879, 888,

1177
sysAppLaunchCmdExgReceiveData 61, 62, 889,

1177
sysAppLaunchCmdFind 63, 1163
sysAppLaunchCmdGoto 65, 116, 1177
sysAppLaunchCmdGoToURL 66
sysAppLaunchCmdInitDatabase 66

sysAppLaunchCmdLookup 67, 1174
sysAppLaunchCmdNotify 68, 644, 653
sysAppLaunchCmdOpenDB 68
sysAppLaunchCmdPanelCalledFromApp 69, 1174
sysAppLaunchCmdReturnFromPanel 69, 1174
sysAppLaunchCmdSaveData 70
sysAppLaunchCmdSyncNotify 70
sysAppLaunchCmdSystemLock 71, 1174
sysAppLaunchCmdSystemReset 71
sysAppLaunchCmdTimeChange 72
sysAppLaunchCmdURLParams 72
SysAppLauncherDialog 373
sysAppLaunchFlagNewGlobals launch flag 73
sysAppLaunchFlagNewStack launch flag 73
sysAppLaunchFlagNewThread launch flag 73
sysAppLaunchFlagSubCal launch flag 73
sysAppLaunchFlagUIApp launch flag 73
SysBatteryInfo 744, 1179
SysBatteryInfoV20 746
SysBinarySearch 747
SysBroadcastActionCode 749
SysCopyStringResource 749
SysCreateDataBaseList 750
SysCreatePanelList 750
SysCurAppDatabase 751
SysDisplayAlarmParamType 60
sysErrLibNotFound 759, 760
sysErrNoFreeLibSlots 760
sysErrNoFreeRAM 760
sysErrOutOfOwnerID 743
sysErrOutOfOwnerIDs 749
sysErrParamErr 743, 749, 761
SysErrString 751
SysEvent.h 105, 1194
SysEvtMgr.h 729
SysFatalAlert 374
sysFileDescStdIn 978
SysFormPointerArrayToStrings 752
sysFtrDefaultBoldFont 606
sysFtrDefaultFont 606
sysFtrNewSerialPresent 1189
sysFtrNumEncoding 1186
sysFtrNumIntlMgr 1184

Index

1220 Palm OS SDK Reference

sysFtrNumNotifyMgrVersion 649, 1195
sysFtrNumProcessor328 1182
sysFtrNumProcessorEZ 1182
sysFtrNumProcessorID 1182
sysFtrNumProcessorMask 1182
sysFtrNumROMVersion 1174, 1176, 1181
SysGetOSVersionString 752, 1179
SysGetROMToken 753
SysGetRomToken 1179
SysGetStackInfo 754, 1179
SysGetTrapAddress 754
SysGraffitiReferenceDialog 374, 755
SysGremlins 755, 1179
SysHandleEvent 646, 647, 648, 654, 756
SysInsertionSort 757
SysKeyboardDialog 758, 1176
SysKeyboardDialogV10 759
SysLibFind 759
SysLibLoad 760
SysLibRemove 761
sysNotifyAntennaRaisedEvent 646
SysNotifyBroadcast 649
SysNotifyBroadcastDeferred 328, 651
sysNotifyBroadcasterCode 645, 649
sysNotifyDefaultQueueSize 649, 650
SysNotifyDisplayChangeDetailsType 644, 646
sysNotifyDisplayChangeEvent 644, 646
sysNotifyEarlyWakeupEvent 646
sysNotifyErrBroadcastBusy 649
sysNotifyErrDuplicateEntry 653
sysNotifyErrEntryNotFound 655
sysNotifyErrNoStackSpace 650
sysNotifyErrQueueFull 651
sysNotifyForgotPasswordEvent 647
sysNotifyLateWakeupEvent 647
sysNotifyMenuCmdBarOpenEvent 124, 337, 341,

647
sysNotifyNormalPriority 649, 652
SysNotifyParamType 68, 644, 653
SysNotifyProcPtr 652, 653, 655
SysNotifyRegister 652
sysNotifyResetFinishedEvent 647
sysNotifySleepNotifyEvent 648

sysNotifySleepRequestEvent 643, 648
sysNotifySyncFinishEvent 70, 648
sysNotifySyncStartEvent 71, 648
sysNotifyTimeChangeEvent 72, 556, 648
SysNotifyUnregister 654
sysNotifyVersionNum 649
SysQSort 762
SysRandom 762
sysRandomMax 762
SysReset 762
sysResIDExtPrefs 520
sysResTExtPrefs 520
SysSetAutoOffTime 763
SysSetTrapAddress 763
sysSleepAutoOff 643
sysSleepPowerButton 644
sysSleepResumed 644
sysSleepUnknown 644
SysStringByIndex 764
SysTaskDelay 765
system 707
system events

checking availability 741
system keyboard display 758
SystemMgr.h 53, 743
SysTicksPerSecond 765
sysTrap.... 754, 763
SysTraps.h 754, 763
SysUIAppSwitch 765
SysUtils.h 743

T
table functions 388–422
table objects

fields 384
structure 384

table resource 103
maximum size 103

Table.h 375
TableAttrType 375
TableColumnAttrType 376
TableDrawItemFuncPtr 388, 404
TableDrawItemFuncType 423

Index

Palm OS SDK Reference 1221

TableItemPtr 378
TableItemStyleType 380
TableItemType 378
TableLoadDataFuncType 388, 404, 424
tableMaxTextItemSize 379
TablePtr 382
TableRowAttrType 383
tables

setting load data callback 417
setting save data callback 422

TableSaveDataFuncType 425
TableType 384
tAIB 459
taif 459
task priority 76
TblDrawTable 388
TblEditing 389
tblEnterEvent 131, 132, 276
TblEraseTable 390
tblExitEvent 131, 132
TblFindRowData 390
TblFindRowID 391
TblGetBounds 391
TblGetColumnSpacing 392
TblGetColumnWidth 392
TblGetCurrentField 393, 399
TblGetItemBounds 393
TblGetItemFont 394, 1179
TblGetItemInt 394
TblGetItemPtr 395
TblGetLastUsableRow 396
TblGetNumberOfRows 396
TblGetRowData 397
TblGetRowHeight 397
TblGetRowID 398
TblGetSelection 398
TblGrabFocus 399
TblHandleEvent 131, 132, 400
TblHasScrollBar 401
TblInsertRow 402
TblMarkRowInvalid 402
TblMarkTableInvalid 403
TblRedrawTable 403
TblReleaseFocus 404

TblRemoveRow 405
TblRowInvalid 406
TblRowMasked 406
TblRowSelectable 407
TblRowUsable 407
tblSelectEvent 131, 132, 401
TblSelectItem 408
TblSetBounds 409
TblSetColumnEditIndicator 409
TblSetColumnMasked 410
TblSetColumnSpacing 411
TblSetColumnUsable 411
TblSetColumnWidth 412
TblSetCustomDrawProcedure 412
TblSetItemFont 413, 1179
TblSetItemInt 414
TblSetItemPtr 415
TblSetItemStyle 415
TblSetLoadDataProcedure 417
TblSetRowData 417
TblSetRowHeight 418
TblSetRowID 418
TblSetRowMasked 419
TblSetRowSelectable 420
TblSetRowStaticHeight 421
TblSetRowUsable 421
TblSetSaveDataProcedure 422
TblUnhighlightSelection 422
tblUnusableRow 396
tbmf 459
Tbmp 459
text clipboard 201
text manager 767–797, 1185
text, finding with GetCharCaselessValue 470
TextMgr.h 767
textTableItem 381, 388, 389, 404
textWithNoteTableItem 381, 388, 389, 404
TimAdjust 553
TimDateTimeToSeconds 554
time manager

structures 543
time system resource 183
time, displaying and selecting 188

Index

1222 Palm OS SDK Reference

TimePtr 545
timeTableItem 382
TimeToAscii 557
TimeType 545
TimGetSeconds 554
TimGetTicks 555
TimSecondsToDateTime 555
TimSetSeconds 556, 648
tint 440
title (form) 88
titles

active area 118
copying form title 257

transliteration 795
translitOpLowerCase 795
translitOpPreprocess 795
TranslitOpType 795
translitOpUpperCase 795
TsmGlue.h 1155
TsmGlueGetFepMode 1156
TsmGlueSetFepMode 1156
TxtByteAttr 769
TxtCaselessCompare 770

and StrCaselessCompare 714, 716, 719, 721
TxtCharAttr 771
TxtCharBounds 772
TxtCharEncoding 773
TxtCharIsAlNum 774
TxtCharIsAlpha 774
TxtCharIsCntrl 775
TxtCharIsDelim 775
TxtCharIsDigit 775
TxtCharIsGraph 776
TxtCharIsHardKey 776
TxtCharIsHex 777
TxtCharIsLower 777
TxtCharIsPrint 778
TxtCharIsPunct 778
TxtCharIsSpace 779
TxtCharIsUpper 779
TxtCharIsValid 780
TxtCharSize 780
TxtCharWidth 781

compared to FntCharWidth 599

TxtCharXAttr 781
TxtCompare 782
TxtEncodingName 783
txtErrTranslitOverflow 796
txtErrTranslitOverrun 796
txtErrUnknownTranslitOp 795
TxtFindString 784

and FindStrInStr 239
TxtGetChar 785
TxtGetNextChar 786, 790
TxtGetPreviousChar 787
TxtGetTruncationOffset 788
TxtGlue.h 1155
TxtGlueByteAttr 1156
TxtGlueCaselessCompare 1156
TxtGlueCharAttr 1156
TxtGlueCharBounds 1156
TxtGlueCharEncoding 1156
TxtGlueCharIsAlNum 1156
TxtGlueCharIsAlpha 1156
TxtGlueCharIsCntrl 1156
TxtGlueCharIsDelim 1156
TxtGlueCharIsDigit 1156
TxtGlueCharIsGraph 1156
TxtGlueCharIsHex 1156
TxtGlueCharIsLower 1156
TxtGlueCharIsPrint 1156
TxtGlueCharIsPunct 1156
TxtGlueCharIsSpace 1156
TxtGlueCharIsUpper 1157
TxtGlueCharIsValid 1157
TxtGlueCharIsVirtual 1159
TxtGlueCharSize 1157
TxtGlueCharWidth 1157
TxtGlueCharXAttr 1157
TxtGlueCompare 1157
TxtGlueEncodingName 1157
TxtGlueFindString 1157
TxtGlueGetChar 1157
TxtGlueGetHorizEllipsisChar 1160, 1182
TxtGlueGetNextChar 1157
TxtGlueGetNumericSpaceChar 1161, 1182
TxtGlueGetPreviousChar 1157

Index

Palm OS SDK Reference 1223

TxtGlueGetTruncationOffset 1157
TxtGlueLowerChar 1161
TxtGlueLowerStr 1162
TxtGlueMaxEncoding 1157
TxtGlueNextCharSize 1157
TxtGlueParamString 1157
TxtGluePrepFindString 1163
TxtGluePreviousCharSize 1157
TxtGlueReplaceStr 1157
TxtGlueSetNextChar 1157
TxtGlueStrEncoding 1157
TxtGlueStripSpaces 1164
TxtGlueTransliterate 1157
TxtGlueUpperChar 1164
TxtGlueUpperStr 1165
TxtGlueWordBounds 1157
TxtMaxEncoding 789
TxtNextCharSize 790
TxtParamString 790
TxtPreviousCharSize 791
TxtReplaceStr 792
TxtSetNextChar 793
TxtStrEncoding 794
TxtTransliterate 795
TxtWordBounds 797

U
UI resources 75–104

custom 90
UIBrightnessAdjust 435
UIColor.h 427
UIColorGetTableEntryIndex 431
UIColorGetTableEntryRGB 432
UIColorSetTableEntry 433
UIColorTableEntries 427
UICommon.h 439
UIContrastAdjust 436
UIControls.h 435
UIPickColor 436
UIPickColorStartPalette 437
UIPickColorStartRGB 437
UIPickColorStartType 436
UIResources.h 338

UIResources.r 520
UnderlineModeType 193, 804

V
valid characters 780
vchrCommand 336, 344, 347, 348, 350
vchrHardAntenna 1188
vchrMenu 274, 336, 344, 347, 348, 350, 1193
vchrRadioCoverageFail 1188
vchrRadioCoverageOK 1188
VdrvAPIType structure 1072
VdrvClose 1085
VdrvControl 1085
VdrvCtlOpCodeEnum 1072
VdrvOpen 1087
VdrvStatus 1088
VdrvWrite 1089
vfprintf 708
virtual character 1159
virtual driver 1190
virtual driver functions 1084
virtual driver queue functions 1089
voltage warning threshold 745, 746
vsprintf 709
vsprintf (StrVPrintF) 724

W
WakeupHandlerProc 1037
Warning alert 80
wiCmd... constants 1153
WiCmdEnum 1153
WinClipRectangle 810
WinCopyRectangle 811
WinCreateBitmapWindow 812
WinCreateOffscreenWindow 813
WinCreateWindow 815
WinDeleteWindow 816
WinDirectionType 857
WinDisplayToWindowPt 817
window list 264
Window.h 799
WindowFlagsType 804
WindowFormatType 813

Index

1224 Palm OS SDK Reference

windows 799–866
active window 133
structure 806

WindowType structure 806
WinDrawBitmap 817
WinDrawChar 818
WinDrawChars 819
WinDrawGrayLine 820
WinDrawGrayRectangleFrame 820
WinDrawInvertedChars 821
WinDrawLine 822
WinDrawOperation 808
WinDrawPixel 822
WinDrawRectangle 823
WinDrawRectangleFrame 824
WinDrawTruncChars 824
winEnterEvent 133, 287, 345
WinEraseChars 825
WinEraseLine 826
WinErasePixel 827
WinEraseRectangle 827
WinEraseRectangleFrame 828
WinEraseWindow 828
winExitEvent 133, 345
WinFillLine 829
WinFillRectangle 829
WinGetActiveWindow 830
WinGetBitmap 830
WinGetClip 831
WinGetDisplayExtent 831
WinGetDisplayWindow 831
WinGetDrawWindow 832
WinGetFirstWindow 832
WinGetFramesRectangle 833
WinGetPattern 833
WinGetPatternType 834
WinGetPixel 834
WinGetWindowBounds 835
WinGetWindowExtent 835
WinGetWindowFrameRect 836
WinGlue.h 1155
WinGlueDrawChar 1157
WinGlueDrawTruncChars 1157
WinHandle 809

WinIndexToRGB 836
WinInvertChars 837
WinInvertLine 837
WinInvertPixel 838
WinInvertRectangle 838
WinInvertRectangleFrame 839
WinLineType 809
WinLockInitType 853
WinModal 840
WinPaintBitmap 840
WinPaintChar 841
WinPaintChars 842
WinPaintLine 843
WinPaintLines 844
WinPaintPixel 844
WinPaintPixels 845
WinPaintRectangle 846
WinPaintRectangleFrame 846
WinPalette 847
WinPopDrawState 849
WinPtr 810
WinPushDrawState 850
WinResetClip 850
WinRestoreBits 851
WinRGBToIndex 851
WinSaveBits 852
WinScreenLock 853
WinScreenMode 646, 854
WinScreenModeOperation 854
WinScreenUnlock 857
WinScrollRectangle 857
WinSetActiveWindow 133, 858
WinSetBackColor 859
WinSetClip 859
WinSetDrawMode 860
WinSetDrawWindow 860
WinSetForeColor 861
WinSetPattern 861
WinSetPatternType 862
WinSetTextColor 863
WinSetUnderlineMode 864
WinSetWindowBounds 864
WinUseTableIndexes 848

Index

Palm OS SDK Reference 1225

WinValidateHandle 865
WinWindowToDisplayPt 865
wireless internet feature set 1187
WirelessIndicator.h 1153
word wrap 604

write callback function 896
WriteBlock 1090
WriteByte 1091
WriteProc 896

	Table of Contents
	About This Document
	Palm OS SDK Documentation
	What This Volume Contains
	Conventions Used in This Guide

	User Interface
	Application Launch Codes
	Launch Codes
	sysAppLaunchCmdAddRecord
	sysAppLaunchCmdAlarmTriggered
	sysAppLaunchCmdCountryChange
	sysAppLaunchCmdDisplayAlarm
	sysAppLaunchCmdExgAskUser
	sysAppLaunchCmdExgReceiveData
	sysAppLaunchCmdFind
	sysAppLaunchCmdGoto
	sysAppLaunchCmdGoToURL
	sysAppLaunchCmdInitDatabase
	sysAppLaunchCmdLookup
	sysAppLaunchCmdNotify
	sysAppLaunchCmdOpenDB
	sysAppLaunchCmdPanelCalledFromApp
	sysAppLaunchCmdReturnFromPanel
	sysAppLaunchCmdSaveData
	sysAppLaunchCmdSyncNotify
	sysAppLaunchCmdSystemLock
	sysAppLaunchCmdSystemReset
	sysAppLaunchCmdTimeChange
	sysAppLaunchCmdURLParams

	Launch Flags

	Palm OS Resources
	System Resources
	The ‘code’ #1 Resource
	The ‘code’ #0 and ‘data’ #0 Resources
	The ‘pref’ #0 Resource

	Resource Types
	Catalog Resources
	Project Resources

	Alert Resource
	Button Resource
	Check Box Resource
	Field Resource
	Form Resource
	Form Bitmap Resource
	Gadget Resource
	Graffiti Shift Indicator Resource
	Label Resource
	List Resource
	Menus and Menu Bars
	Popup Trigger Resource
	Push Button Resource
	Repeating Button Resource
	Scroll Bar Resource
	Selector Trigger Resource
	String Resource
	Table Resource

	Palm OS Events
	Event Data Structures
	eventsEnum
	EventType
	EventPtr

	Event Reference
	appStopEvent
	ctlEnterEvent
	ctlExitEvent
	ctlRepeatEvent
	ctlSelectEvent
	daySelectEvent
	fldChangedEvent
	fldEnterEvent
	fldHeightChangedEvent
	frmCloseEvent
	frmGadgetEnterEvent
	frmGadgetMiscEvent
	frmGotoEvent
	frmLoadEvent
	frmOpenEvent
	frmSaveEvent
	frmTitleEnterEvent
	frmTitleSelectEvent
	frmUpdateEvent
	inetSockReadyEvent
	inetSockStatusChangeEvent
	keyDownEvent
	lstEnterEvent
	lstExitEvent
	lstSelectEvent
	menuCloseEvent
	menuCmdBarOpenEvent
	menuEvent
	menuOpenEvent
	nilEvent
	penDownEvent
	penMoveEvent
	penUpEvent
	popSelectEvent
	sclEnterEvent
	sclExitEvent
	sclRepeatEvent
	tblEnterEvent
	tblExitEvent
	tblSelectEvent
	winEnterEvent
	winExitEvent

	Categories
	Category Data Structures
	AppInfoType

	Category Constants
	Category Functions
	CategoryCreateList
	CategoryCreateListV10
	CategoryEdit
	CategoryEditV20
	CategoryEditV10
	CategoryFind
	CategoryFreeList
	CategoryFreeListV10
	CategoryGetName
	CategoryGetNext
	CategoryInitialize
	CategorySelect
	CategorySelectV10
	CategorySetName
	CategorySetTriggerLabel
	CategoryTruncateName

	Clipboard
	Clipboard Data Structures
	ClipboardFormatType

	Clipboard Functions
	ClipboardAddItem
	ClipboardAppendItem
	ClipboardGetItem

	Controls
	Control Data Structures
	ButtonFrameType
	ControlAttrType
	ControlPtr
	ControlStyleType
	ControlType
	GraphicControlType
	SliderControlType

	Control Resources
	Control Functions
	CtlDrawControl
	CtlEnabled
	CtlEraseControl
	CtlGetLabel
	CtlGetSliderValues
	CtlGetValue
	CtlHandleEvent
	CtlHideControl
	CtlHitControl
	CtlNewControl
	CtlNewGraphicControl
	CtlNewSliderControl
	CtlSetEnabled
	CtlSetGraphics
	CtlSetLabel
	CtlSetSliderValues
	CtlSetUsable
	CtlSetValue
	CtlShowControl
	CtlValidatePointer

	Date and Time Selector
	Date and Time Selections Data Structures
	SelectDayType
	DaySelectorType
	HMSTime

	Date and Time Selection Functions
	DayHandleEvent
	SelectDay
	SelectDayV10
	SelectOneTime
	SelectTime
	SelectTimeV33

	Fields
	Field Data Structures
	FieldAttrType
	FieldPtr
	FieldType
	LineInfoPtr
	LineInfoType

	Field Resources
	Field Functions
	FldCalcFieldHeight
	FldCompactText
	FldCopy
	FldCut
	FldDelete
	FldDirty
	FldDrawField
	FldEraseField
	FldFreeMemory
	FldGetAttributes
	FldGetBounds
	FldGetFont
	FldGetInsPtPosition
	FldGetMaxChars
	FldGetNumberOfBlankLines
	FldGetScrollPosition
	FldGetScrollValues
	FldGetSelection
	FldGetTextAllocatedSize
	FldGetTextHandle
	FldGetTextHeight
	FldGetTextLength
	FldGetTextPtr
	FldGetVisibleLines
	FldGrabFocus
	FldHandleEvent
	FldInsert
	FldMakeFullyVisible
	FldNewField
	FldPaste
	FldRecalculateField
	FldReleaseFocus
	FldScrollable
	FldScrollField
	FldSendChangeNotification
	FldSendHeightChangeNotification
	FldSetAttributes
	FldSetBounds
	FldSetDirty
	FldSetFont
	FldSetInsertionPoint
	FldSetInsPtPosition
	FldSetMaxChars
	FldSetScrollPosition
	FldSetSelection
	FldSetText
	FldSetTextAllocatedSize
	FldSetTextHandle
	FldSetTextPtr
	FldSetUsable
	FldUndo
	FldWordWrap

	Find
	Find Functions
	FindDrawHeader
	FindGetLineBounds
	FindSaveMatch
	FindStrInStr

	Forms
	Form Data Structures
	FormAttrType
	FormBitmapType
	FormFrameType
	FormGadgetAttrType
	FormGadgetType
	FormLabelType
	FormLineType
	FormObjAttrType
	FormObjectKind
	FormObjectType
	FormObjListType
	FormPopupType
	FormPtr
	FormRectangleType
	FormTitleType
	FormType
	FrmGraffitiStateType

	Form Constants
	Form Resources
	Form Functions
	FrmAlert
	FrmCloseAllForms
	FrmCopyLabel
	FrmCopyTitle
	FrmCustomAlert
	FrmCustomResponseAlert
	FrmDeleteForm
	FrmDispatchEvent
	FrmDoDialog
	FrmDrawForm
	FrmEraseForm
	FrmGetActiveForm
	FrmGetActiveFormID
	FrmGetControlGroupSelection
	FrmGetControlValue
	FrmGetFirstForm
	FrmGetFocus
	FrmGetFormBounds
	FrmGetFormId
	FrmGetFormPtr
	FrmGetGadgetData
	FrmGetLabel
	FrmGetNumberOfObjects
	FrmGetObjectBounds
	FrmGetObjectId
	FrmGetObjectIndex
	FrmGetObjectPosition
	FrmGetObjectPtr
	FrmGetObjectType
	FrmGetTitle
	FrmGetWindowHandle
	FrmGotoForm
	FrmHandleEvent
	FrmHelp
	FrmHideObject
	FrmInitForm
	FrmNewBitmap
	FrmNewForm
	FrmNewGadget
	FrmNewGsi
	FrmNewLabel
	FrmPointInTitle
	FrmPopupForm
	FrmRemoveObject
	FrmRestoreActiveState
	FrmReturnToForm
	FrmSaveActiveState
	FrmSaveAllForms
	FrmSetActiveForm
	FrmSetCategoryLabel
	FrmSetControlGroupSelection
	FrmSetControlValue
	FrmSetEventHandler
	FrmSetFocus
	FrmSetGadgetData
	FrmSetGadgetHandler
	FrmSetMenu
	FrmSetObjectBounds
	FrmSetObjectPosition
	FrmSetTitle
	FrmShowObject
	FrmUpdateForm
	FrmUpdateScrollers
	FrmValidatePtr
	FrmVisible

	Application-Defined Functions
	FormCheckResponseFunc
	FormEventHandler
	FormGadgetHandler

	Graffiti Shift
	GraffitiShift Functions
	GsiEnable
	GsiEnabled
	GsiInitialize
	GsiSetLocation
	GsiSetShiftState

	Insertion Point
	Insertion Point Functions
	InsPtEnable
	InsPtEnabled
	InsPtGetHeight
	InsPtGetLocation
	InsPtSetHeight
	InsPtSetLocation

	Lists
	List Data Structures
	ListAttrType
	ListType

	List Resources
	List Functions
	LstDrawList
	LstEraseList
	LstGetNumberOfItems
	LstGetSelection
	LstGetSelectionText
	LstGetVisibleItems
	LstHandleEvent
	LstMakeItemVisible
	LstNewList
	LstPopupList
	LstScrollList
	LstSetDrawFunction
	LstSetHeight
	LstSetListChoices
	LstSetPosition
	LstSetSelection
	LstSetTopItem

	Application-Defined Function

	Menus
	Menu Data Structures
	MenuBarAttrType
	MenuCmdBarButtonType
	MenuCmdBarResultType
	MenuCmdBarType
	MenuBarPtr
	MenuBarType
	MenuItemType
	MenuPullDownPtr
	MenuPullDownType

	Menu Constants
	Menu Resources
	Menu Functions
	MenuAddItem
	MenuCmdBarAddButton
	MenuCmdBarDisplay
	MenuCmdBarGetButtonData
	MenuDispose
	MenuDrawMenu
	MenuEraseStatus
	MenuGetActiveMenu
	MenuHandleEvent
	MenuHideItem
	MenuInit
	MenuSetActiveMenu
	MenuSetActiveMenuRscID
	MenuShowItem

	Private Records
	Private Record Data Structures
	privateRecordViewEnum

	Private Record Functions
	SecSelectViewStatus
	SecVerifyPW

	Progress Manager
	Progress Manager Functions
	PrgHandleEvent
	PrgStartDialog
	PrgStartDialogV31
	PrgStopDialog
	PrgUpdateDialog
	PrgUserCancel

	Application-Defined Functions
	PrgCallbackFunc

	Scroll Bars
	Scroll Bar Data Structures
	ScrollBarAttrType
	ScrollBarPtr
	ScrollBarType

	Scroll Bar Resources
	Scroll Bar Functions
	SclDrawScrollBar
	SclGetScrollBar
	SclHandleEvent
	SclSetScrollBar

	System Dialogs
	System Dialog Functions
	SysAppLauncherDialog
	SysFatalAlert
	SysGraffitiReferenceDialog

	Tables
	Table Data Structures
	TableAttrType
	TableColumnAttrType
	TableItemPtr
	TableItemType
	TablePtr
	TableRowAttrType
	TableType

	Table Constants
	Table Resource
	Table Functions
	TblDrawTable
	TblEditing
	TblEraseTable
	TblFindRowData
	TblFindRowID
	TblGetBounds
	TblGetColumnSpacing
	TblGetColumnWidth
	TblGetCurrentField
	TblGetItemBounds
	TblGetItemFont
	TblGetItemInt
	TblGetItemPtr
	TblGetLastUsableRow
	TblGetNumberOfRows
	TblGetRowData
	TblGetRowHeight
	TblGetRowID
	TblGetSelection
	TblGrabFocus
	TblHandleEvent
	TblHasScrollBar
	TblInsertRow
	TblMarkRowInvalid
	TblMarkTableInvalid
	TblRedrawTable
	TblReleaseFocus
	TblRemoveRow
	TblRowInvalid
	TblRowMasked
	TblRowSelectable
	TblRowUsable
	TblSelectItem
	TblSetBounds
	TblSetColumnEditIndicator
	TblSetColumnMasked
	TblSetColumnSpacing
	TblSetColumnUsable
	TblSetColumnWidth
	TblSetCustomDrawProcedure
	TblSetItemFont
	TblSetItemInt
	TblSetItemPtr
	TblSetItemStyle
	TblSetLoadDataProcedure
	TblSetRowData
	TblSetRowHeight
	TblSetRowID
	TblSetRowMasked
	TblSetRowSelectable
	TblSetRowStaticHeight
	TblSetRowUsable
	TblSetSaveDataProcedure
	TblUnhighlightSelection

	Application-Defined Functions
	TableDrawItemFuncType
	TableLoadDataFuncType
	TableSaveDataFuncType

	UI Color List
	UI Color Data Types
	UIColorTableEntries

	UI Color Functions
	UIColorGetTableEntryIndex
	UIColorGetTableEntryRGB
	UIColorSetTableEntry

	UI Controls
	UI Control Functions
	UIBrightnessAdjust
	UIContrastAdjust
	UIPickColor

	Miscellaneous User Interface Functions
	Miscellaneous User Interface Functions
	PhoneNumberLookup
	ResLoadConstant
	ResLoadForm
	ResLoadMenu

	System Management
	Alarm Manager
	Alarm Manager Functions
	AlmGetAlarm
	AlmGetProcAlarm
	AlmSetAlarm
	AlmSetProcAlarm

	Application-Defined Functions
	AlmAlarmProcPtr

	Bitmaps
	Bitmap Data Structures
	BitmapCompressionType
	BitmapFlagsType
	BitmapPtr
	BitmapType
	ColorTableType
	RGBColorType

	Bitmap Constants
	Bitmap Resources
	Bitmap Functions
	BmpBitsSize
	BmpColortableSize
	BmpCompress
	BmpCreate
	BmpDelete
	BmpGetBits
	BmpGetColortable
	BmpSize
	ColorTableEntries

	Character Attributes
	Character Attribute Functions
	ChrHorizEllipsis
	ChrIsHardKey
	ChrNumericSpace
	GetCharAttr
	GetCharCaselessValue
	GetCharSortValue

	Data and Resource Manager
	Data Manager Data Structures
	DmOpenRef
	DmResID
	DmResType
	SortRecordInfoType

	Data Manager Constants
	Category Constants
	Record Attribute Constants
	Database Attribute Constants
	Error Codes
	Open Mode Constants

	Data Manager Functions
	DmArchiveRecord
	DmAttachRecord
	DmAttachResource
	DmCloseDatabase
	DmCreateDatabase
	DmCreateDatabaseFromImage
	DmDatabaseInfo
	DmDatabaseProtect
	DmDatabaseSize
	DmDeleteCategory
	DmDeleteDatabase
	DmDeleteRecord
	DmDetachRecord
	DmDetachResource
	DmFindDatabase
	DmFindRecordByID
	DmFindResource
	DmFindResourceType
	DmFindSortPosition
	DmFindSortPositionV10
	DmGetAppInfoID
	DmGetDatabase
	DmGetDatabaseLockState
	DmGetLastErr
	DmGetNextDatabaseByTypeCreator
	DmGetRecord
	DmGetResource
	DmGetResourceIndex
	DmGet1Resource
	DmInsertionSort
	DmMoveCategory
	DmMoveRecord
	DmNewHandle
	DmNewRecord
	DmNewResource
	DmNextOpenDatabase
	DmNextOpenResDatabase
	DmNumDatabases
	DmNumRecords
	DmNumRecordsInCategory
	DmNumResources
	DmOpenDatabase
	DmOpenDatabaseByTypeCreator
	DmOpenDatabaseInfo
	DmOpenDBNoOverlay
	DmPositionInCategory
	DmQueryNextInCategory
	DmQueryRecord
	DmQuickSort
	DmRecordInfo
	DmReleaseRecord
	DmReleaseResource
	DmRemoveRecord
	DmRemoveResource
	DmRemoveSecretRecords
	DmResizeRecord
	DmResizeResource
	DmResourceInfo
	DmSearchRecord
	DmSearchResource
	DmSeekRecordInCategory
	DmSet
	DmSetDatabaseInfo
	DmSetRecordInfo
	DmSetResourceInfo
	DmStrCopy
	DmWrite
	DmWriteCheck

	Application-Defined Functions
	DmComparF

	Time Manager
	Time Manager Data Structures
	TimeFormatType
	DaylightSavingsTypes
	DateFormatType
	DateTimeType
	TimeType
	DateType

	Time Manager Constants
	Time Manager Functions
	DateAdjust
	DateDaysToDate
	DateSecondsToDate
	DateTemplateToAscii
	DateToAscii
	DateToDays
	DateToDOWDMFormat
	DayOfMonth
	DayOfWeek
	DaysInMonth
	TimAdjust
	TimDateTimeToSeconds
	TimGetSeconds
	TimGetTicks
	TimSecondsToDateTime
	TimSetSeconds
	TimeToAscii

	Error Manager
	ERROR_CHECK_LEVEL Define
	Error Manager Functions
	ErrAlert
	ErrDisplay
	ErrDisplayFileLineMsg
	ErrFatalDisplayIf
	ErrNonFatalDisplayIf
	ErrThrow

	Feature Manager
	Feature Manager Functions
	FtrGet
	FtrGetByIndex
	FtrPtrFree
	FtrPtrNew
	FtrPtrResize
	FtrSet
	FtrUnregister

	File Streaming
	File Streaming Constants
	Primary Open Mode Constants
	Secondary Open Mode Constants

	File Streaming Functions
	FileClearerr
	FileClose
	FileControl
	FileDelete
	FileDmRead
	FileEOF
	FileError
	FileFlush
	FileGetLastError
	FileOpen
	FileRead
	FileRewind
	FileSeek
	FileTell
	FileTruncate
	FileWrite

	File Streaming Error Codes

	Float Manager
	Float Manager Functions
	FplAdd
	FplAToF
	FplBase10Info
	FplDiv
	FplFloatToLong
	FplFloatToULong
	FplFree
	FplFToA
	FplInit
	FplLongToFloat
	FplMul
	FplSub

	Fonts
	Font Functions
	FntAverageCharWidth
	FntBaseLine
	FntCharHeight
	FntCharsInWidth
	FntCharsWidth
	FntCharWidth
	FntDefineFont
	FntDescenderHeight
	FntGetFont
	FntGetFontPtr
	FntGetScrollValues
	FntLineHeight
	FntLineWidth
	FntSetFont
	FntWidthToOffset
	FntWordWrap
	FntWordWrapReverseNLines
	FontSelect

	Graffiti Manager
	Graffiti Manager Functions
	GrfAddMacro
	GrfAddPoint
	GrfCleanState
	GrfDeleteMacro
	GrfFilterPoints
	GrfFindBranch
	GrfFlushPoints
	GrfGetAndExpandMacro
	GrfGetGlyphMapping
	GrfGetMacro
	GrfGetMacroName
	GrfGetNumPoints
	GrfGetPoint
	GrfGetState
	GrfInitState
	GrfMatch
	GrfMatchGlyph
	GrfProcessStroke
	GrfSetState

	Key Manager
	Key Manager Functions
	KeyCurrentState
	KeyRates
	KeySetMask

	Memory Manager
	Memory Manager Functions
	MemCardInfo
	MemCmp
	MemDebugMode
	MemHandleCardNo
	MemHandleDataStorage
	MemHandleFree
	MemHandleHeapID
	MemHandleLock
	MemHandleNew
	MemHandleResize
	MemHandleSetOwner
	MemHandleSize
	MemHandleToLocalID
	MemHandleUnlock
	MemHeapCheck
	MemHeapCompact
	MemHeapDynamic
	MemHeapFlags
	MemHeapFreeBytes
	MemHeapID
	MemHeapScramble
	MemHeapSize
	MemLocalIDKind
	MemLocalIDToGlobal
	MemLocalIDToLockedPtr
	MemLocalIDToPtr
	MemMove
	MemNumCards
	MemNumHeaps
	MemNumRAMHeaps
	MemPtrCardNo
	MemPtrDataStorage
	MemPtrFree
	MemPtrHeapID
	MemPtrNew
	MemPtrRecoverHandle
	MemPtrResize
	MemPtrSetOwner
	MemPtrSize
	MemPtrToLocalID
	MemPtrUnlock
	MemSet
	MemSetDebugMode
	MemStoreInfo

	Notification Manager
	Notification Data Structures
	SleepEventParamType
	SysNotifyDisplayChangeDetailsType
	SysNotifyParamType

	Notification Constants
	Notification Manager Event Constants
	Miscellaneous Constants

	Notification Functions
	SysNotifyBroadcast
	SysNotifyBroadcastDeferred
	SysNotifyRegister
	SysNotifyUnregister

	Application-Defined Functions
	SysNotifyProcPtr

	Overlay Manager
	Overlay Manager Data Structures
	OmLocaleType
	OmOverlayRscType
	OmOverlaySpecType

	Overlay Manager Constants
	Overlay Manager Functions
	OmGetCurrentLocale
	OmGetIndexedLocale
	OmGetRoutineAddress
	OmGetSystemLocale
	OmLocaleToOverlayDBName
	OmOverlayDBNameToLocale
	OmSetSystemLocale

	Password
	Password Functions
	PwdExists
	PwdRemove
	PwdSet
	PwdVerify

	Pen Manager
	Pen Manager Functions
	PenCalibrate
	PenResetCalibration

	Preferences
	Preferences Functions
	PrefGetAppPreferences
	PrefGetAppPreferencesV10
	PrefGetPreference
	PrefGetPreferences
	PrefOpenPreferenceDBV10
	PrefSetAppPreferences
	PrefSetAppPreferencesV10
	PrefSetPreference
	PrefSetPreferences

	Rectangles
	Rectangle Functions
	RctCopyRectangle
	RctGetIntersection
	RctInsetRectangle
	RctOffsetRectangle
	RctPtInRectangle
	RctSetRectangle

	Sound Manager
	Sound Manager Data Structures
	SndCallbackInfoType
	SndCmdIDType
	SndCommandType
	SndMidiListItemType
	SndMidiRecHdrType
	SndMidiRecType
	SndSmfCallbacksType
	SndSmfChanRangeType
	SndSmfOptionsType

	Sound Manager Functions
	SndCreateMidiList
	SndDoCmd
	SndGetDefaultVolume
	SndPlaySmf
	SndPlaySmfResource
	SndPlaySystemSound

	Application-Defined Functions
	SndComplFuncType
	SndBlockingFuncType

	Standard IO
	Standard IO Functions
	fgetc
	fgets
	fprintf
	fputc
	fputs
	getchar
	gets
	printf
	putc
	putchar
	puts
	SioAddCommand
	sprintf
	system
	vfprintf
	vsprintf

	Standard IO Provider Functions
	SioClearScreen
	SioExecCommand
	SioFree
	SioHandleEvent
	SioInit

	Application-Defined Function
	SioMain

	String Manager
	String Manager Functions
	StrAToI
	StrCaselessCompare
	StrCat
	StrChr
	StrCompare
	StrCopy
	StrDelocalizeNumber
	StrIToA
	StrIToH
	StrLen
	StrLocalizeNumber
	StrNCaselessCompare
	StrNCat
	StrNCompare
	StrNCopy
	StrPrintF
	StrStr
	StrToLower
	StrVPrintF

	System Event Manager
	System Event Manager Data Structures
	System Event Manager Functions
	EvtAddEventToQueue
	EvtAddUniqueEventToQueue
	EvtCopyEvent
	EvtDequeuePenPoint
	EvtDequeuePenStrokeInfo
	EvtEnableGraffiti
	EvtEnqueueKey
	EvtEventAvail
	EvtFlushKeyQueue
	EvtFlushNextPenStroke
	EvtFlushPenQueue
	EvtGetEvent
	EvtGetPen
	EvtGetPenBtnList
	EvtGetSilkscreenAreaList
	EvtKeydownIsVirtual
	EvtKeyQueueEmpty
	EvtKeyQueueSize
	EvtPenQueueSize
	EvtProcessSoftKeyStroke
	EvtResetAutoOffTimer
	EvtSetAutoOffTimer
	EvtSetNullEventTick
	EvtSysEventAvail
	EvtWakeup

	System Manager
	System Functions
	SysAppLaunch
	SysBatteryInfo
	SysBatteryInfoV20
	SysBinarySearch
	SysBroadcastActionCode
	SysCopyStringResource
	SysCreateDataBaseList
	SysCreatePanelList
	SysCurAppDatabase
	SysErrString
	SysFormPointerArrayToStrings
	SysGetOSVersionString
	SysGetROMToken
	SysGetStackInfo
	SysGetTrapAddress
	SysGraffitiReferenceDialog
	SysGremlins
	SysHandleEvent
	SysInsertionSort
	SysKeyboardDialog
	SysKeyboardDialogV10
	SysLibFind
	SysLibLoad
	SysLibRemove
	SysQSort
	SysRandom
	SysReset
	SysSetAutoOffTime
	SysSetTrapAddress
	SysStringByIndex
	SysTaskDelay
	SysTicksPerSecond
	SysUIAppSwitch

	Text Manager
	Text Manager Data Structures
	CharEncodingType

	Text Manager Functions
	TxtByteAttr
	TxtCaselessCompare
	TxtCharAttr
	TxtCharBounds
	TxtCharEncoding
	TxtCharIsAlNum
	TxtCharIsAlpha
	TxtCharIsCntrl
	TxtCharIsDelim
	TxtCharIsDigit
	TxtCharIsGraph
	TxtCharIsHardKey
	TxtCharIsHex
	TxtCharIsLower
	TxtCharIsPrint
	TxtCharIsPunct
	TxtCharIsSpace
	TxtCharIsUpper
	TxtCharIsValid
	TxtCharSize
	TxtCharWidth
	TxtCharXAttr
	TxtCompare
	TxtEncodingName
	TxtFindString
	TxtGetChar
	TxtGetNextChar
	TxtGetPreviousChar
	TxtGetTruncationOffset
	TxtMaxEncoding
	TxtNextCharSize
	TxtParamString
	TxtPreviousCharSize
	TxtReplaceStr
	TxtSetNextChar
	TxtStrEncoding
	TxtTransliterate
	TxtWordBounds

	Windows
	Window Data Structures
	CustomPatternType
	DrawStateType
	FrameBitsType
	FrameType
	IndexedColorType
	PatternType
	UnderlineModeType
	WindowFlagsType
	WindowType
	WinDrawOperation
	WinHandle
	WinLineType
	WinPtr

	Window Functions
	WinClipRectangle
	WinCopyRectangle
	WinCreateBitmapWindow
	WinCreateOffscreenWindow
	WinCreateWindow
	WinDeleteWindow
	WinDisplayToWindowPt
	WinDrawBitmap
	WinDrawChar
	WinDrawChars
	WinDrawGrayLine
	WinDrawGrayRectangleFrame
	WinDrawInvertedChars
	WinDrawLine
	WinDrawPixel
	WinDrawRectangle
	WinDrawRectangleFrame
	WinDrawTruncChars
	WinEraseChars
	WinEraseLine
	WinErasePixel
	WinEraseRectangle
	WinEraseRectangleFrame
	WinEraseWindow
	WinFillLine
	WinFillRectangle
	WinGetActiveWindow
	WinGetBitmap
	WinGetClip
	WinGetDisplayExtent
	WinGetDisplayWindow
	WinGetDrawWindow
	WinGetFirstWindow
	WinGetFramesRectangle
	WinGetPattern
	WinGetPatternType
	WinGetPixel
	WinGetWindowBounds
	WinGetWindowExtent
	WinGetWindowFrameRect
	WinIndexToRGB
	WinInvertChars
	WinInvertLine
	WinInvertPixel
	WinInvertRectangle
	WinInvertRectangleFrame
	WinModal
	WinPaintBitmap
	WinPaintChar
	WinPaintChars
	WinPaintLine
	WinPaintLines
	WinPaintPixel
	WinPaintPixels
	WinPaintRectangle
	WinPaintRectangleFrame
	WinPalette
	WinPopDrawState
	WinPushDrawState
	WinResetClip
	WinRestoreBits
	WinRGBToIndex
	WinSaveBits
	WinScreenLock
	WinScreenMode
	WinScreenUnlock
	WinScrollRectangle
	WinSetActiveWindow
	WinSetBackColor
	WinSetClip
	WinSetDrawMode
	WinSetDrawWindow
	WinSetForeColor
	WinSetPattern
	WinSetPatternType
	WinSetTextColor
	WinSetUnderlineMode
	WinSetWindowBounds
	WinValidateHandle
	WinWindowToDisplayPt

	Miscellaneous System Functions
	Crc16CalcBlock
	IntlGetRoutineAddress
	LocGetNumberSeparators

	Communications
	Connection Manager
	Connection Manager Functions
	CncAddProfile
	CncDeleteProfile
	CncGetProfileInfo
	CncGetProfileList

	Exchange Manager
	Exchange Manager Data Structures
	ExgAskResultType
	ExgGoToType
	ExgSocketType

	Exchange Manager Functions
	ExgAccept
	ExgDBRead
	ExgDBWrite
	ExgDisconnect
	ExgDoDialog
	ExgPut
	ExgReceive
	ExgRegisterData
	ExgSend

	Application-Defined Functions
	DeleteProc
	ReadProc
	WriteProc

	IR Library
	IR Library Data Structures
	IrConnect
	IrPacket
	IrIASObject
	IrIasQuery
	IrCallbackParms

	IR Stack Callback Events
	LEVENT_DATA_IND
	LEVENT_DISCOVERY_CNF
	LEVENT_LAP_CON_CNF
	LEVENT_LAP_CON_IND
	LEVENT_LAP_DISCON_IND
	LEVENT_LM_CON_CNF
	LEVENT_LM_CON_IND
	LEVENT_LM_DISCON_IND
	LEVENT_PACKET_HANDLED
	LEVENT_STATUS_IND
	LEVENT_TEST_CNF
	LEVENT_TEST_IND

	IR Library Functions
	IrAdvanceCredit
	IrBind
	IrClose
	IrConnectIrLap
	IrConnectReq
	IrConnectRsp
	IrDataReq
	IrDisconnectIrLap
	IrDiscoverReq
	IrIsIrLapConnected
	IrIsMediaBusy
	IrIsNoProgress
	IrIsRemoteBusy
	IrLocalBusy
	IrMaxRxSize
	IrMaxTxSize
	IrOpen
	IrSetConTypeLMP
	IrSetConTypeTTP
	IrSetDeviceInfo
	IrTestReq
	IrUnbind

	IAS Functions
	IrIAS_Add
	IrIAS_GetInteger
	IrIAS_GetIntLsap
	IrIAS_GetObjectID
	IrIAS_GetOctetString
	IrIAS_GetOctetStringLen
	IrIAS_GetType
	IrIAS_GetUserString
	IrIAS_GetUserStringCharSet
	IrIAS_GetUserStringLen
	IrIAS_Next
	IrIAS_Query
	IrIAS_SetDeviceName
	IrIAS_StartResult

	Application-Defined Functions
	IrIasQueryCallBack

	Modem Manager
	Modem Manager Functions
	MdmDial
	MdmHangUp

	Net Library
	Net Library Data Structures
	NetHostInfoBufType
	NetHostInfoType
	NetServInfoBufType
	NetServInfoType
	NetSocketAddrEnum
	NetSocketAddrINType
	NetSocketAddrRawType
	NetSocketAddrType
	NetSocketRef
	NetSocketTypeEnum

	Net Library Constants
	I/O Flags
	Tracing Bits

	Net Library Functions
	NetHToNL
	NetHToNS
	NetLibAddrAToIN
	NetLibAddrINToA
	NetLibClose
	NetLibConnectionRefresh
	NetLibDmReceive
	NetLibFinishCloseWait
	NetLibGetHostByAddr
	NetLibGetHostByName
	NetLibGetMailExchangeByName
	NetLibGetServByName
	NetLibIFAttach
	NetLibIFDetach
	NetLibIFDown
	NetLibIFGet
	NetLibIFSettingGet
	NetLibIFSettingSet
	NetLibIFUp
	NetLibMaster
	NetLibOpen
	NetLibOpenCount
	NetLibReceive
	NetLibReceivePB
	NetLibSelect
	NetLibSend
	NetLibSendPB
	NetLibSettingGet
	NetLibSettingSet
	NetLibSocketAccept
	NetLibSocketAddr
	NetLibSocketBind
	NetLibSocketClose
	NetLibSocketConnect
	NetLibSocketListen
	NetLibSocketOpen
	NetLibSocketOptionGet
	NetLibSocketOptionSet
	NetLibSocketShutdown
	NetLibTracePrintF
	NetLibTracePutS
	NetNToHL
	NetNToHS

	Network Utilities
	Network Utility Functions
	NetUReadN
	NetUTCPOpen
	NetUWriteN

	New Serial Manager
	New Serial Manager Data Structures
	DeviceInfoType
	SrmCtlEnum
	SrmCallbackEntryType

	New Serial Manager Constants
	Serial Capabilities Constants
	Serial Settings Constants
	Status Constants

	New Serial Manager Functions
	SrmClearErr
	SrmClose
	SrmControl
	SrmGetDeviceCount
	SrmGetDeviceInfo
	SrmGetStatus
	SrmOpen
	SrmOpenBackground
	SrmPrimeWakeupHandler
	SrmReceive
	SrmReceiveCheck
	SrmReceiveFlush
	SrmReceiveWait
	SrmReceiveWindowClose
	SrmReceiveWindowOpen
	SrmSend
	SrmSendCheck
	SrmSendFlush
	SrmSendWait
	SrmSetReceiveBuffer
	SrmSetWakeupHandler

	New Serial Manager Application-Defined Function
	WakeupHandlerProc

	Script Plugin
	Script Plugin Data Types
	PluginCallbackProcType
	PluginCmdPtr
	PluginCmdType
	PluginExecCmdType
	PluginInfoPtr
	PluginInfoType
	ScriptPluginLaunchCodesEnum

	Script Plugin Constants
	Command Constants
	Size Constants

	Script Plugin Functions
	ScriptPluginSelectorProc

	Serial Manager
	Serial Manager Data Structures
	SerCtlEnum
	SerSettingsType

	Serial Manager Functions
	SerClearErr
	SerClose
	SerControl
	SerGetSettings
	SerGetStatus
	SerOpen
	SerReceive
	SerReceive10
	SerReceiveCheck
	SerReceiveFlush
	SerReceiveWait
	SerSend
	SerSend10
	SerSendFlush
	SerSendWait
	SerSetReceiveBuffer
	SerSetSettings

	Serial and Virtual Drivers
	Driver Data Structures
	DrvrInfoType
	DrvrRcvQType
	DrvrStatusEnum
	SdrvAPIType
	SdrvCtlOpCodeEnum
	VdrvAPIType
	VdrvCtlOpCodeEnum

	Driver Constants
	Port Feature Constants

	Serial Driver-Defined Functions
	DrvEntryPoint
	SdrvClose
	SdrvControl
	SdrvISP
	SdrvOpen
	SdrvReadChar
	SdrvStatus
	SdrvWriteChar

	Virtual Driver-Defined Functions
	DrvEntryPoint
	VdrvClose
	VdrvControl
	VdrvOpen
	VdrvStatus
	VdrvWrite

	Serial Manager Queue Functions
	GetSize
	GetSpace
	WriteBlock
	WriteByte

	Serial Link Manager
	Serial Link Manager Functions
	SlkClose
	SlkCloseSocket
	SlkFlushSocket
	SlkOpen
	SlkOpenSocket
	SlkReceivePacket
	SlkSendPacket
	SlkSetSocketListener
	SlkSocketPortID
	SlkSocketSetTimeout

	Libraries
	Internet Library
	Internet Library Data Structures
	INetCompressionTypeEnum
	INetConfigNameType
	INetContentTypeEnum
	INetHTTPAttrEnum
	INetSchemeEnum
	INetSettingEnum
	INetSockSettingEnum
	INetStatusEnum

	Internet Library Constants
	Configuration Aliases
	URL Info Constants
	URL Open Constants

	Internet Library Functions
	INetLibCacheGetObject
	INetLibCacheList
	INetLibCheckAntennaState
	INetLibClose
	INetLibConfigAliasGet
	INetLibConfigAliasSet
	INetLibConfigDelete
	INetLibConfigIndexFromName
	INetLibConfigList
	INetLibConfigMakeActive
	INetLibConfigRename
	INetLibConfigSaveAs
	INetLibGetEvent
	INetLibOpen
	INetLibSettingGet
	INetLibSettingSet
	INetLibSockClose
	INetLibSockConnect
	INetLibSockHTTPAttrGet
	INetLibSockHTTPAttrSet
	INetLibSockHTTPReqCreate
	INetLibSockHTTPReqSend
	INetLibSockOpen
	INetLibSockRead
	INetLibSockSettingGet
	INetLibSockSettingSet
	INetLibSockStatus
	INetLibURLCrack
	INetLibURLGetInfo
	INetLibURLOpen
	INetLibURLsAdd
	INetLibWiCmd

	PalmOSGlue Library
	PalmOSGlue Functions
	FntGlueGetDefaultFontID
	TxtGlueCharIsVirtual
	TxtGlueGetHorizEllipsisChar
	TxtGlueGetNumericSpaceChar
	TxtGlueLowerChar
	TxtGlueLowerStr
	TxtGluePrepFindString
	TxtGlueStripSpaces
	TxtGlueUpperChar
	TxtGlueUpperStr

	System Use Only Functions
	Compatibility Guide
	2.0 New Feature Set
	Launch Codes
	Functions
	Existing Functions that Changed
	Other Changes

	3.0 New Feature Set
	Launch Codes
	Font
	Functions
	Existing Functions that Changed
	Other Changes

	3.1 New Feature Set
	Functions
	Changes to the Character Encoding
	Other Changes in 3.1

	3.2 New Feature Set
	Functions
	Existing Functions that Changed
	Other Changes in 3.2

	International Feature Set
	Functions

	Japanese Feature Set
	Wireless Internet Feature Set
	Launch Codes
	Events
	Functions

	New Serial Manager Feature Set
	Functions

	3.5 New Feature Set
	Launch Codes
	Events
	Functions
	Existing Functions that Changed
	New Data Types
	Changes to Events
	Other Changes

	Notification Feature Set

	Index

