
Blender Documentation Volume I - User Guide

Last modified December 07 2004 S68

Claudio Andaur

Manuel Bastioni

Baldassarre Cesarano

Alejandro Conty Estevez

Karsten Dambekalns

Florian Findeiss

Alex Heizer

Tim van Howe

Wouter van Heyst

Joeri Kassenaar

Martin Kleppman

Lyubomir Kovacev

Johnny Matthews

Reevan McKay

Kent Mein

Martin Middleton

Eric Oberlander

Jason Oppel

Willem-Paul van Overbruggen

Ton Roosendaal

Bastian Samela

Stefano Selleri

Kenneth Styrberg

Bart Veldhuizen

Chris Williamson

Carsten Wartmann

Blender Documentation Volume I - User Guide: Last modified December 07 2004 S68
by Claudio Andaur, Manuel Bastioni, Baldassarre Cesarano, Alejandro Conty Estevez, Karsten
Dambekalns, Florian Findeiss, Alex Heizer, Tim van Howe, Wouter van Heyst, Joeri Kassenaar,
Martin Kleppman, Lyubomir Kovacev, Johnny Matthews, Reevan McKay, Kent Mein, Martin
Middleton, Eric Oberlander, Jason Oppel, Willem-Paul van Overbruggen, Ton Roosendaal,
Bastian Samela, Stefano Selleri, Kenneth Styrberg, Bart Veldhuizen, Chris Williamson, and
Carsten Wartmann

Copyright © 2002 by Stichting Blender Foundation. Permission is granted to copy, distribute
and/or modify this document under the terms of the Open Content License. A copy of the
license is included in the appendix.

This is the Blender Documentation project official Guide. Feel free to add or modify
your changes and send them clearly marked to the Blender documentation board
(bf-docboard@blender.org).

Table of Contents
I. Introduction to Blender..1

1. Introduction ..1
What is Blender? ...1
Blender’s History..1
About Free Software and the GPL ...3
Getting support - the Blender community..3

2. Installation...5
Downloading and installing the binary distribution5
Building Blender from source...9

3. Understanding the interface ...13
Blender’s Interface Concept ..13
Navigating in 3D Space ...22
The vital functions ..29

4. Your first animation in 30 + 30 minutes ..33
Warming up...33
Building the body ...34
Let’s see what Gus looks like ..43
Materials and Textures...49
Rigging ...57
Skinning ...60
Posing ...65
Gus walks! ...69

II. Modelling, Materials and Lights ..71
5. ObjectMode ...71

Selecting objects ..71
Moving (translating) objects ...71
Rotating objects ...72
Scaling/mirroring objects..73
Transform Properties Panel...74
Duplicate..74
Parenting (Grouping) ...75
Tracking..76
Other Actions ..77
Boolean operations ...77

6. Basic Mesh Modelling..81
Basic Objects ..81
EditMode ...82
Smoothing..87
Extrude ...91
Spin and SpinDup ..97
Screw ..105
Warp Tool...106
Object Hooks ...108

7. Advanced Mesh Modelling ..111
Catmull-Clark Subdivision Surfaces (-)...111
Weighted creases for subdivision surfaces ...118
Edge Tools..120
Bevelling Tools ..124
Symmetrical Modelling ...124
Proportional Editing Tool ..127
Noise...130
Decimator Tool ..131

8. Meta Objects..135
9. Curves and Surfaces ..137

Curves ..137
Surfaces ..146
Text..148

v

Extrude Along Path..150
Curve Taper ...154
Curve Deform ...156
Skinning ...159

10. Materials and Textures ..163
Diffusion ..163
Specular Reflection ...164
Materials in practice ...166
Ramp Shaders (-) ..170
Raytracing Reflections (-) ..170
Raytraced Transparencies (-)...170
Multiple Materials ..170
Special Materials ...173

11. Textures..177
Textures ..177
Environment Maps...186
Displacement Maps..191
Solid and Hollow Glass ...195
UV Editor and FaceSelect ..198
Unwrapping Suzanne ..207
Texture Plugins ...220

12. Lighting..221
Introduction...221
Lamp Types (-) ..221
Ray Shadows ...231
Buffer Shadows ...231
Volumetric Light ...233
Tweaking Light ...236

13. The World and The Universe..253
The World Background..253
Exposure (-) ...254
Mist ...254
Stars ..256
Ambient Occlusion...257

III. Animation..263
14. Animation of Undeformed Objects ...263

IPO Block ...263
Key Frames ..263
The IPO Curves...264
IPO Curves and IPO Keys ...268
Other applications of IPO Curves ..269
The Time Ipo..270
Path Animation...272

15. Animation of Deformations..277
Absolute Vertex Keys ...277
Relative VertexKeys..281
Lattice Animation ...288

16. Character Animation ...291
Introduction: Lights, Camera and... ACTION !..291
General Tools...291
The Armature Object..292
Skinning ...296
Posemode...299
Action Window...300
Non Linear Animation...301
Constraints...304
Rigging a Hand and a Foot ...308
Rigging Mechanics ...324
How to setup a walkcycle using NLA...332

vi

IV. Rendering ..339
17. Rendering ..339

Rendering by Parts ...340
Panoramic renderings ..341
Antialiasing ...343
Output formats ...344
Rendering Animations...346
Motion Blur..347
Depth of Field..350
Cartoon Edges ...353
The Unified Renderer...355
Preparing your work for video...357

18. Radiosity..361
The Blender Radiosity method ...361
Radiosity Rendering...363
Radiosity as a Modelling Tool...366
Radiosity Juicy example ..370

19. Raytracing ...381
V. Advanced Tools ..383

20. Particles..383
Introduction...383
Simple Particles...383
Particle Interaction..399

21. Other Effects..403
Introduction...403
Build Effect ..403
Wave Effect ..403

22. Special modelling techniques ...407
Introduction...407
DupliVerts ..407
DupliFrames..417
Modelling with lattices ..429

23. Volumetric Effects ..439
24. Sequence Editor ..445

Learning the Sequence Editor...445
Sound Sequence Editor..471
Sequence Editor Plugins ..471

VI. Extending Blender..473
25. Python Scripting...473

A working Python example ..475
Python Reference ..480
Python Scripts ...480

26. Blender’s Plugins System..481
Writing a Texture Plugin..481
Specification:..481
Generic Texture Plugin: ...484
Our Modifications:..485
Compiling: ...486
Writing a Sequence Plugin ..487

VII. Beyond Blender...493
27. Yafray as an Integrated External Renderer...493

Part 1...493
Part 2...496
Part 3...507
Glossary for the geeks..515
Glossary for the geeks..516

28. From Blender to YafRay Using YableX..521
What is Yable? ...521

vii

Installing the script ...521
The Interface..522
Yable Juicy example..535

29. YafRay ..539
Introduction...539
Installation ...540
Scene Description Language Overview ..541
Shaders ...542
Renderable Objects ...551
Lights ..552
Background..561
Camera ...563
Render ..563
Filters ..564

Glossary ..567

viii

Chapter 1. Introduction

What is Blender?
Blender is an integrated suite of tools enabling the creation of a broad range
of 3D content. It offers full functionality for modelling, rendering, animation,
post-production, creation and playback of interactive 3D content with the singular
benefits of cross-platform operability and a download file size of less than 2.5MB.

Aimed at media professionals and artists, Blender can be used to create 3D visualiza-
tions, stills as well as broadcast quality video, while the incorporation of a real-time
3D engine allows for the creation of 3D interactive content for stand-alone playback.

Originally developed by the company ’Not a Number’ (NaN), Blender now is con-
tinued as ’Free Software’, with the sources available under GNU GPL.

Key Features:

• Fully integrated creation suite, offering a broad range of essential tools for the cre-
ation of 3D content, including modelling, animation, rendering, video post pro-
duction and game creation;

• Small executable size, for easy distribution;

• Cross platform, with OpenGL based GUI, ready to use for all flavours of Windows,
Linux, OSX, FreeBSD, Irix and Sun;

• High quality 3D architecture enabling fast and efficient creation work-flow;

• Free support channels via www.blender3d.org;

• More than 250.000 people worldwide user community;

You can download the latest version of Blender at download.blender.org.

Blender’s History
In 1988 Ton Roosendaal co-founded the Dutch animation studio NeoGeo. NeoGeo
quickly became the largest 3D animation studio in the Netherlands and one of the
leading animation houses in Europe. NeoGeo created award-winning productions
(European Corporate Video Awards 1993 and 1995) for large corporate clients such
as multi-national electronics company Philips. Within NeoGeo Ton was responsible
for both art direction and internal software development. After careful deliberation
Ton decided that the current in-house 3D tool set for NeoGeo was too old and cum-
bersome to maintain and upgrade and needed to be rewritten from scratch. In 1995
this rewrite began and was destined to become the 3D software creation suite we
all now know as Blender. As NeoGeo continued to refine and improve Blender it be-
came apparent to Ton that Blender could be used as a tool for other artists outside of
NeoGeo.

In 1998, Ton decided to found a new company called Not a Number (NaN) as a spin-
off of NeoGeo to further market and develop Blender. At the core of NaN was a
desire to create and distribute a compact, cross platform 3D creation suite for free.
At the time this was a revolutionary concept as most commercial modellers cost sev-
eral thousands of (US) dollars. NaN hoped to bring professional level 3D modelling
and animation tools within the reach of the general computing public. NaN’s busi-
ness model involved providing commercial products and services around Blender. In
1999 NaN attended its first Siggraph conference in an effort to more widely promote
Blender. Blender’s first 1999 Siggraph convention was a huge success and gathered a
tremendous amount of interest from both the press and attendees. Blender was a hit
and its huge potential confirmed!

1

Chapter 1. Introduction

On the wings of a successful Siggraph in early 2000, NaN secured financing of
4.5 million EUR from venture capitalists. This large inflow of cash enabled NaN
to rapidly expand its operations. Soon NaN boasted as many as fifty employees
working around the world trying to improve and promote Blender. In the summer
of 2000, Blender v2.0 was released. This version of Blender added the integration of
a game engine to the 3D suite. By the end of 2000, the number of users registered on
the NaN website surpassed 250,000.

Unfortunately, NaN’s ambitions and opportunities didn’t match the company’s capa-
bilities and the market realities of the time. This overextension resulted in restarting
NaN with new investor funding and a smaller company in April 2001. Six months
later NaN’s first commercial software product, Blender Publisher was launched. This
product was targeted at the emerging market of interactive web-based 3D media.
Due to disappointing sales and the ongoing difficult economic climate, the new in-
vestors decided to shut down all NaN operations. The shutdown also included dis-
continuing the development of Blender. Although there were clearly shortcomings
in the current version of Blender, with a complex internal software architecture, un-
finished features and a non-standard way of providing the GUI, enthusiastic support
from the user community and customers who had purchased Blender Publisher in
the past, Ton couldn’t justify leaving Blender to disappear into oblivion. Since restart-
ing a company with a sufficiently large team of developers wasn’t feasible, in March
2002 Ton Roosendaal founded the non-profit organization Blender Foundation.

The Blender Foundation’s primary goal was to find a way to continue developing
and promoting Blender as a community-based Open Source1 project. In July 2002, Ton
managed to get the NaN investors to agree to a unique Blender Foundation plan to at-
tempt to Blender as open source. The "Free Blender" campaign sought to raise 100,000
EUR so that the Foundation could buy the rights to the Blender source code and intel-
lectual property rights from the NaN investors and subsequently release Blender to
the open source community. With an enthusiastic group of volunteers, among them
several ex-NaN employees, a fund raising campaign was launched to "Free Blender."
To everyone’s surprise and delight the campaign reached the 100,000 EUR goal in
only seven short weeks. On Sunday October 13, 2002, Blender was released to the
world under the terms of the GNU General Public License (GPL). Blender develop-
ment continues to this day driven by a team of far-flung, dedicated volunteers from
around the world led by Blender’s original creator, Ton Roosendaal.

Blender’s history and road-map

• 1.00 Jan 1995 Blender in development at animation studio NeoGeo

• 1.23 Jan 1998 SGI version published on the web, IrisGL

• 1.30 April 1998 Linux and FreeBSD version, port to OpenGL and X

• 1.3x June 1998 NaN founded

• 1.4x Sept 1998 Sun and Linux Alpha version released

• 1.50 Nov 1998 First Manual published

• 1.60 April 1999 C-key (new features behind a lock, $95), Windows version released

• 1.6x June 1999 BeOS and PPC version released

• 1.80 June 2000 End of C-key, Blender full freeware again

• 2.00 Aug 2000 Interactive 3D and real-time engine

• 2.10 Dec 2000 New engine, physics and Python

• 2.20 Aug 2001 Character animation system

• 2.21 Oct 2001 Blender Publisher launch

• 2.2x Dec 2001 Mac OSX version

• 13 October 2002 Blender goes Open Source, 1st Blender Conference
2

Chapter 1. Introduction

• 2.25 Oct 2002 Blender Publisher becomes freely available

• Tuhopuu1 Oct 2002 The experimental tree of Blender is created, a coder’s play-
ground.

• 2.26 Feb 2003 The first true Open Source Blender

• 2.27 May 2003 The second Open Source Blender

• 2.28x July 2003 First of the 2.28x series.

• 2.30 October 2003 At the 2nd Blender Conference the 2.3x UI makeover is pre-
sented.

• 2.31 December 2003 Upgrade to stable 2.3x UI project.

• 2.32 January 2004 Major overhaul of internal rendering capabilities.

About Free Software and the GPL
When one hears about "free software", the first thing that comes to mind might be
"no cost". While this is true in most cases, the term "free software" as used by the
Free Software Foundation (originators of the GNU Project and creators of the GNU
General Public License) is intended to mean "free as in freedom" rather than the "no
cost" sense (which is usually referred to as "free as in free beer"). Free software in
this sense is software which you are free to use, copy, modify, redistribute, with no
limit. Contrast this with the licensing of most commercial software packages, where
you are allowed to load the software on a single computer, are allowed to make no
copies, and never see the source code. Free software allows incredible freedom to the
end user; in addition, since the source code is available universally, there are many
more chances for bugs to be caught and fixed.

When a program is licensed under the GNU General Public License (the GPL):

• you have the right to use the program for any purpose;

• you have the right to modify the program, and have access to the source codes;

• you have the right to copy and distribute the program;

• you have the right to improve the program, and release your own versions.

In return for these rights, you have some responsibilities if you distribute a GPL’d
program, responsibilities that are designed to protect your freedoms and the free-
doms of others:

• You must provide a copy of the GPL with the program, so that the recipient is
aware of his rights under the license.

• You must include the source code or make the source code freely available.

• If you modify the code and distribute the modified version, you must license your
modifications under the GPL and make the source code of your changes available.
(You may not use GPL’d code as part of a proprietary program.)

• You may not restrict the licensing of the program beyond the terms of the GPL.
(You may not turn a GPL’d program into a proprietary product.)

For more on the GPL, check the GNU Project Web site2. For reference, a copy of the
GNU General Public License is included in Volume II.

3

Chapter 1. Introduction

Getting support - the Blender community
Being freely available from the start, even while closed source, helped a lot in
Blender’s adoption. A large, stable and active community of users has gathered
around Blender since 1998.

The community showed its best in the crucial moment of freeing Blender itself, going
Open Source under GNU GPL in late summer 2002.

The community itself is now subdivided into two, widely overlapping sites:

1. The Development Community, centered around the Blender Foundation site
http://www.blender.org/. Here is the home of the development projects, the
Functionality and Documentation Boards, the CVS repository with Blender
sources, all documentation sources, and related public discussion forums. De-
velopers coding on Blender itself, Python scripters, documentation writers,
and anyone working for Blender development in general can be found here.

2. The User Community, centered around the independent site
http://www.elysiun.com/. Here Blender artists, Blender gamemakers and
Blender fans gather to show their creations, get feedback on them, and ask for
help to get a better insight into Blender’s functionality. Blender Tutorials and
the Knowledge Base can be found here as well.

These two websites are not the only Blender resources. The Worldwide community
has created a lot of independent sites, in local languages or devoted to specialized
topics. A constantly updated listing of Blender resources can be found at the above-
mentioned sites.

For immediate online feedback there are three chat boxes permanently open on
irc.freenode.net. You can join these with your favorite IRC client.

Chatboxes are #blenderchat, #blenderqa and #gameblender. The first of these is ac-
cessible even without an IRC client, using a plain Java enabled Web Browser through
the elYsiun site (http://www.elysiun.com/).

Notes
1. http://www.opensource.org/

2. http://www.gnu.org

3. http://www.blender.org/

4. http://www.elysiun.com/

5. http://www.elysiun.com/

4

Chapter 2. Installation

Relevant to Blender v2.31

Blender is available both as binary executables and as source code on the Founda-
tion site (http://www.blender.org/). From the main page look for the ’Downloads’
section.

However, for correct usage of this book, using the version as provided on the in-
cluded 2.3 Guide CDROM is highly recommended. Where in the text below "down-
load" is mentioned, we also assume retrieving it from the CDROM.

Downloading and installing the binary distribution
The Binary distributions comes in 6 basic flavors:

• Windows

• Linux

• MacOSX

• FreeBSD

• Irix

• Solaris

The Linux flavor comes actually in 4 different sub-flavors, for Intel and PowerPC
architectures, with statically linked libraries or for dynamic loading libraries.

The difference between the dynamic and the static flavor is important. The static
build has the OpenGL libraries compiled in. This makes Blender running at your
system without using hardware accelerated graphics. Use the static version to check
if Blender runs fine when the dynamic version fails! OpenGL is used in Blender for
all drawing, including menus and buttons. This dependency makes a proper and
compliant OpenGL installation at your system a requirement. Not all 3D card man-
ufacturers provide such compliancy, especially cheaper cards aimed at the gaming
market.

Of course since renderings are made by Blender rendering engine in core memory
and by the main CPU of your machine, a graphic card with hardware acceleration
makes no difference at rendering time.

Windows

Quick Install

Download the file blender-2.3#-windows.exe , being 2.3# the version number,
from the downloads section of the Blender Website. Start the installation by
double-clicking the file. This presents you with some questions, for which the
defaults should be ok. After setup is complete, you can start Blender right away, or
use the entry in the Start menu.

In-depth Instructions

Download the file blender-2.3#-windows.exe from the downloads section of the
Blender Website. Choose to download it (if prompted), select a location and click
"Save". Then navigate with explorer to the location you saved the file in and double-
click it to start the installation.

5

Chapter 2. Installation

The first dialog presents you the license. You are expected to accept it if you want the
installation to go any further. After accepting the license, select the components you
wish to install (there is just one, Blender) and the additional actions you want to take.
There are three: Add a shortcut to the Start menu, Add Blender’s icon to desktop,
associate .blend files with Blender. By default they are all checked. If you don’t want
some action to be taken simply uncheck it. When done, click on Next .

Select a place to install the files to (the default should do well), and click Next to
install Blender. Press Close when installation is over.

Afterwards you will be asked whether you want to start Blender immediately.
Blender is now installed and can be started by means of the Start menu (an
entry named "Blender Foundation" has been created by the setup routine) or by
double-clicking a Blender file (*.blend).

OSX

Install

Download the file blender-2.3#-darwin-6.6-powerpc.dmg from the downloads
section of the Blender Website. Extract it by double-clicking the file. This will open a
directory with several files.

Since Blender uses OpenGL for the entire GUI, and Mac OSX draws the entire Desk-
top with OpenGL as well, you will need to verify first you have sufficient VRAM in
your system. Below 8 MB VRAM Blender will not run at all. Up to 16 MB VRAM you
will need to set your system at "1000s of colors" (System Preferences -> Displays).

You now can use Blender by double clicking the Blender icon. Or drag the Blender
icon to the Dock to make an alias there. Blender starts by default in a smaller window.
Use the "+" button in the window header to maximize. More hints and tips about the
OSX version can be found in the file OSX tips.rtf in the installation directory.

Linux

Quick Install

Download the file blender-2.3#-linux-glibc#.#.#-ARCH.tar.gz from the down-
loads section of the Blender Website. Here 2.3# is Blender version, #.#.# is glibc
version and ARCHis the machine architecture, either i386 or powerpc . You should
get the one matching your system, remember the choice between static and dynamic
builds.

Unpack the archive to a location of your choice. This will create a directory named
blender-2.3#-linux-glibc#.#.#-ARCH , in which you will find the blender binary.

To start blender just open a shell and execute ./blender, of course when running X.

In-depth Instructions

Download the file blender-2.3#-linux-glibc#.#.#-ARCH.tar.gz from the down-
loads section of the Blender Website. Choose to download it (if prompted), select a
location and click "Save". Then navigate to the location you wish blender to install to
(e.g. /usr/local/) and unpack the archive (with tar xzf /path/to/blender-2.3#-linux-
glibc#.#.#-ARCH.tar.gz). If you like, you can rename the resulting directory from
blender-2.3#-linux-glibc#.#.#-ARCH to something shorter, e.g. just blender .

6

Chapter 2. Installation

Blender is now installed and can be started on the command line by entering cd
/path/to/blender followed by pressing the enter key in a shell. If you are using KDE
or Gnome you can start Blender using your file manager of choice by navigating to
the Blender executable and (double-) clicking on it.

If you are using the Sawfish window manager, you might want to add a line like
("Blender" (system "blender &")) to your .sawfish/rc file.

To add program icons for Blender in KDE

1. Select the "Menu Editor" from the System submenu of the K menu.

2. Select the submenu labeled "Graphics" in the menu list.

3. Click the "New Item" button. A dialog box will appear that prompts you to
create a name. Create and type in a suitable name and click "OK". "Blender" or
"Blender 2.3#" would be logical choices, but this does not affect the functional-
ity of the program.

4. You will be returned to the menu list, and the Graphics submenu will expand,
with your new entry highlighted. In the right section, make sure the following
fields are filled in: "Name", "Comment", "Command", "Type" and "Work Path".

• The "Name" field should already be filled in, but you can change it here at
any time.

• Fill the "Comment" field. This is where you define the tag that appears when
you roll over the icon.

• Click the folder icon at the end of the "Command" field to browse to the
blenderpublisher program icon. Select the program icon and click "OK" to
return to the Menu Editor.

• The "Type" should be "Application".

• The "Work Path" should be the same as the "Command", with
the program name left off. For example, if the "Command"
field reads /home/user/blender-publisher-#.##-linux-
glibc#.#.#-ARCH/blender , the "Work Path" would be
/home/user/blender-publisher-#.##-linux-glibc#.#.#-ARCH/ .

5. Click "Apply" and close out of the Menu Editor.

To add a link to Blender on the KPanel, right-click on a blank spot on the KPanel, then
hover over "Add", then "Button", then "Graphics", and select "Blender" (or whatever
you named the menu item in step 3). Alternately, you can navigate through the "Con-
figure Panel" submenu from the K menu, to "Add", "Button", "Graphics", "Blender".

To add a Desktop icon for Blender, open Konquerer (found on the Panel by default,
or in the "System" submenu of the K menu) and navigate to the blenderpublisher
program icon where you first unzipped it. Click and hold the program icon, and
drag it from Konquerer to a blank spot on your Desktop. You will be prompted to
Copy Here, Move Here or Link Here, choose Link Here.

To add program icons for Blender in GNOME

1. Select "Edit menus" from the Panel submenu of the GNOME menu.

2. Select the "Graphics" submenu, and click the "New Item" button.

3. In the right pane, fill in the "Name:", "Comment:" and "Command:"
fields. Fill the "Name:" field with the program name, for example
"Blender". You can name this whatever you’d like, this is what appears
in the menu, but does not affect the functionality of the program.
Fill the "Comment:" field with a descriptive comment. This is what
is shown on the tooltips popups. Fill the "Command:" field with

7

Chapter 2. Installation

the full path of the blenderpublisher program item, for example,
/home/user/blender-publisher-#.##-linux-glibc#.#.#-ARCH/blender

4. Click the "No Icon" button to choose an icon. There may or may
not be an icon for Blender in your default location. You can make
one, or look for the icon that goes with KDE. This should be
/opt/kde/share/icons/hicolor/48x48/apps/blender.png . If your
installation directory is different, you can search for it using this command in
a Terminal or Console: find / -name "blender.png" -print

5. Click the "Save" button and close the Menu Editor.

To add a Panel icon, right-click a blank area of the Panel, then select "Programs", then
"Graphics", then "Blender". Alternatively, you could click the GNOME menu, then
select "Panel", then "Add to panel", then "Launcher from menu", then "Graphics",
and "Blender".

To add a Desktop icon for Blender, open Nautilus (double-click the Home icon in the
upper-left corner of your Desktop, or click the GNOME menu, then "Programs", then
"Applications", and "Nautilus"). Navigate to the folder which contains the blender-
publisher program icon. Right-click the icon, and drag it to the Desktop. A menu will
appear asking to Copy Here, Move Here, Link Here or Cancel. Select Link Here.

FreeBSD

Install

Download the file blender-2.3#-freebsd-#.#-i386.tar.gz from the downloads
section of the Blender Website. Here 2.3# is Blender version, #.# is FreeBSD version
and i386 is the machine architecture.

To start blender just open a shell and execute ./blender, of course when running X.

Irix

Install

Download the file blender-2.3#-irix-6.5-mips.tar.gz from the downloads sec-
tion of the Blender Website. Here 2.3# is Blender version, 6.5 is Irix version and
mips is the machine architecture.

To start Blender just open a shell and execute ./blender, of course when running X.
Blender was originally developed for the IRIX platform, but is currently not actively
being maintained for all IRIX workstation versions. For some workstations perfor-
mance troubles have been reported.

Solaris

Install

Download the file blender-2.3#-solaris-2.8-sparc.tar.gz from the downloads
section of the Blender Website. Here 2.3# is Blender version, 2.8 is Solaris version
and sparc is the machine architecture.

8

Chapter 2. Installation

Currently no further instructions for Sun Solaris are available. Please use the Blender
website forums for support.

Building Blender from source
Relevant to Blender v2.31

This document describes the tools necessary to build Blender from source, either from
CVS or from a source package. Building from CVS requires the use of more tools.
While this may be a bit more troublesome than building from a source package, this
may be necessary for some people. For example, when you want to build Blender for
an unsupported platform or when you want to implement some new features.

This is a very early version of this document. This means that it is incomplete and that
some procedures or concepts might be incorrect for your system. Please keep this in
mind when reading this. Also keep in mind Blender is a complex product which will
require you to create the right environment for.

Getting the sources
The following paragraphs will describe how and where to get the sources needed for
building Blender.

Get the latest stable source package

The sources are available on CDROM accompanying this book. You can also download it from
the website, http://www.blender3d.org/Download/?sub=Source

Get the latest sources from CVS

CVS stands for Concurrent Versioning System. It is a software configuration tool
that keeps the various source files in a central repository. CVS enables developers
to quickly update to the latest state of the repository and commit changes. The tool
keeps track of the changes between each version of a file. To get the current state
of the repository, you don’t need to have a username for accessing the sources. This
feature is optional, but in an opensource development, it’s almost a requirement. To
commit changes to the repository, however, you need to have developer access. Since
this document only describes how to get the latest state of the sources, the commit
procedures are not described here.

To get the latest state of the sources use:

export CVSROOT=:pserver:anonymous@cvs.blender.org:/cvs01

cvs login

password: Enter

cvs -z3 co blender

Please do not use a higher level of compression for accessing the Blender server.

If you already have a working set of files obtained from the server, you can use the
update command to update the sources to the current state of the repository. cd to
the blender source tree on your system and type in the following command:

cvs -z3 update .

9

Chapter 2. Installation

External libraries needed
Blender is a package that uses a lot of external packages for expanding its functional-
ity. Each of these packages have, just as Blender, a history of changes. Newer versions
of such a package will probably have more features and less known problems. As a
developer it is exciting to work with the latest features available to get the most out
of the tool. However, the number of developers out there is much lower than the
number of end-users who are not interested in the latest feature, these users want
an application that works. Since Blender has to run on multiple platforms, all those
platforms have to have the same minimum functionality available in the external
packages.

The table below displays the packages needed and the minimum version of those
packages. Over time it is possible that those minimum versions are increased as the
demand for the newer features is high.

Table 2-1. Minimum version external libraries

Library Version

glibc 2.2.4

libjpeg 6b

libpng 1.0.14

libsdl 1.0

libz 1.1.4

mesa 3.4.2

openAL N/A

openGL 1.1 (1.2 for engine)

python 2.2

Not all libraries apply to all platforms. The following table gives an overview of
the currently supported platforms and the required libraries. An ’X’ means that it
is needed, a ’-’ means that it is not needed and an ’O’ means that it is optional.

Table 2-2. Platform dependent library requirements

Library Linux Windows FreeBSD IRIX MacOS X

glibc X - X X X

libjpeg X X X X X

libpng X X X X X

libsdl O O O O O

libz X X X X X

mesa X X X - -

openAL X X X X X

openGL - - - X X

python X X X X X

Tools needed
Having the necessary libraries installed and the Blender sources downloaded to your
system means that you’re now able to build Blender. The entire build process requires

10

Chapter 2. Installation

some tools to be available on your system. In the table below, the list of tools along
with the minimum version is shown. The third column shows if the tool is required
for CVS only (’X’). If the tool is not required for a source package build, a ’-’ is shown.

Table 2-3. Minimum version tools

Tool Version CVS Note

autoconf 2.53 X

automake 1.6.2 X

cvs 1.11.1p1 X

docbook 3.1 O

doxygen N/A O

gawk 3.1.0 X

gcc 2.96 -

gettext 0.11 -

gmake 3.79.1 -

m4 1.4 X

sed 3.02 X

sh 2.05.1 -

Visual C++ 6.0 SP5 - Windows only

Python: Python is not included in this table although it is used to build Blender. The
reason that it is not included is because Python is also needed as an external library and
thus has to be installed already as has been written in the previous section.

Building Blender
There are two build systems for using gcc or cc compilers; regular Makefiles, which
stem from the period Blender was developed in the company NaN, and the au-
tomake/autoconf "configure" style one. Using "configure" can write over the NaN
Makefiles, so you have to choose either one.

For Windows MSVC, Blender supports usage of project files and workspaces.

The files describing detailed build information are located in the blender root direc-
tory:

• INSTALL: general information, download links for libraries

• INSTALL.AUTO: using autoconf and configure scripts

• INSTALL.MAKE: using regular makefiles

• INSTALL.MSVC: using Microsoft Visual C project files

Technical support

• portal: http://www.blender.org

• overview: http://www.blender.org/docs/get_involved.html

11

Chapter 2. Installation

• mailinglist: http://www.blender.org/mailman/listinfo/bf-committers/

• bug tracker: http://projects.blender.org/tracker/?group_id=9

• IRC: irc.freenode.net, #blendercoders

Notes
1. http://www.blender.org/

12

Chapter 3. Understanding the interface

By Martin Kleppmann

If you are new to Blender, you should get a good grip on how to work with the
user interface before modelling. The concepts behind Blender’s interface are non-
standard, and different from other 3D software packages. Windows users especially
will need to get used to the different way that Blender handles controls, such as but-
ton choices and mouse movements. But this difference is in fact one of Blender’s great
strengths: once you understand how to work the Blender way, you will find that you
can work exceedingly quickly and productively.

Furthermore, Blender’s interface greatly changed in the transition from version 2.28
to version 2.3, so even experienced users might profit from this chapter.

Blender’s Interface Concept
Relevant to Blender v2.31

The user interface is the vehicle for two way interaction between the user and the
program. The user communicates with the program via the keyboard and the mouse,
the program gives feedback via the screen and its windowing system.

Keyboard and mouse
Blender’s interface makes use of three mouse buttons and a wide range of hotkeys
(for a complete in-depth discussion refer to Volume II). If your mouse has only two
buttons, you can emulate the middle mouse button (the Section called User preferences
and Themes describes how). A mouse wheel can be used, but it is not necessary as
there are also appropriate keyboard shortcuts.

This book uses the following conventions to describe user input:

• The mouse buttons are called LMB (left mouse button), MMB (middle mouse
button) and RMB (right mouse button).

• If your mouse has a wheel, MMB refers to clicking the wheel as if it were a button,
while MW means rolling the wheel.

• Hotkey letters are named by appending KEY to the letter, i.e. GKEY refers to the
letter g on the keyboard. Keys may be combined with the modifiers SHIFT, CTRL
and/or ALT. For modified keys the KEY suffix is generally dropped, for example
CTRL-W or SHIFT-ALT-A.

• NUM0 to NUM9, NUM+ and so on refer to the keys on the separate numeric
keypad. NumLock should generally be switched on.

• Other keys are referred to by their names, such as ESC, TAB, F1 to F12.

• Other special keys of note are the arrow keys, UPARROW, DOWNARROW and
so on.

Because Blender makes such extensive use of both mouse and keyboard, a "golden
rule" has evolved among Blender users: keep one hand on the mouse and the other
on the keyboard! If you normally use a keyboard that is significantly different from
the English keyboard layout, you may want to think about changing to the English
or American layout for your work with Blender. The most frequently used keys are
grouped so that they can be reached by the left hand in standard position (index fin-
ger on FKEY) on the English keyboard layout. This assumes that you use the mouse
with your right hand.

13

Chapter 3. Understanding the interface

The window system
Now it’s time to start Blender and begin playing around.

Figure 3-1. The default Blender scene.

Figure 3-1 shows the screen you should get after starting Blender (except for the
added text and arrows). At default it is separated into three windows: The main
menu at the top, the large 3D Window and the Buttons Window at the bottom. Most
windows have a header (the strip with a lighter grey background containing icon
buttons - for this reason we will also refer to the header as the window ToolBar); if
present, the header may be at the top (as with the Buttons window) or the bottom (as
with the 3D Window) of a window’s area.

If you move the mouse over a window, note that its header changes to a lighter shade
of grey. This means that it is "focused;" all hotkeys you press will now affect the
contents of this window.

You can easily customize Blender’s window system to suit your needs and wishes.
You can create a new window by splitting an existing one in half. Do so by focusing
the window you want to split (move the mouse into it), clicking the border with
MMB or RMB, and selecting Split Area (Figure 3-2). You can now set the new
border’s position by clicking with LMB, or cancel your action by pressing ESC. The
new window will start as a clone of the window you split, but can then be set to a
different window type, or to display the scene from a different point of view.

Interface Items: Labels in the interface buttons, menu entries and, in general, all text
shown on the screen is highlighted in this book like this .

14

Chapter 3. Understanding the interface

Figure 3-2. The Split menu for creating new windows.

Create a new vertical border by choosing Split Area from a horizontal border, and
vice versa. You can resize each window by dragging a border with LMB. To reduce
the number of windows, click a border between two windows with MMB or RMB
and choose Join Areas . The resulting window receives the properties of the previ-
ously focused window.

To set a header’s position click RMB on the header and choose Top or Bottom . You
can also hide the header by choosing No Header , but this is only advisable if you
know all the relevant hotkeys. You can show a hidden header again by clicking the
window’s border with MMB or RMB and selecting Add Header .

Window types
Each window frame may contain different types and sets of information, depending
upon what you are working on. These may include 3D models, animation, surface
materials, Python scripts, and so on. You can select the type for each window by
clicking its header’s leftmost button with LMB (Figure 3-3).

15

Chapter 3. Understanding the interface

Figure 3-3. The window type selection menu.

We’ll explain the functions and usage of the respective window types later in this
book. For now we only need to concern ourselves with the three window types that
are already provided in Blender’s default scene:

3D Viewport

Provides a graphical view into the scene you are working on. You can view your
scene from any angle with a variety of options; see the Section called Navigating
in 3D Space for details. Having several 3D Viewports on the same screen can be
useful if you want to watch your changes from different perspectives at the same
time.

Buttons Window

Contains most tools for editing objects, surfaces, textures, Lights, and much
more. You will need this window constantly if you don’t know all hotkeys by
heart. You might indeed want more than one of these windows, each with a
different set of tools.

User preferences (Main menu)

This window is usually hidden, so that only the menu part is visible - see the Sec-
tion called User preferences and Themes for details. It’s rarely used though, since it
contains global configuration settings.

16

Chapter 3. Understanding the interface

There are several novelties in Blender 2.30. First of all window headers tend to be
much cleaner, less cluttered by buttons, and menus are now present in many headers.

Most window headers, immediately next to this first "Window Type" Menu button
exhibit a set of menus; this is one of the main new features of the 2.30 interface.
Menus now allow you to directly access many of the features and commands which
previously were only accessible via hot keys or arcane buttons. Menus can be hidden
and showed via the triangular button next to them.

Menu are not only window-sensitive (they change with window type) but also con-
text sensitive (they change with selected object) so they are always very compact,
showing only actions which can actually be performed.

All Menu entries shows the relevant hotkey shortcut, if any. Blender Workflow is
at his best when hotkeys are used. So the rest of this Book will mostly present you
hotkeys, rather than Menu entries. Menus are anyway precious since they give a
complete as possible overview of all tools and commands Blender offers.

One feature of windows that sometimes comes in handy for precise editing is that of
maximizing to full screen. If you use the appropriate View>>Maximize Window Menu
entry or the hotkey CTRL-DOWNARROW, the focused window will extend to fill
the whole screen. To return to normal size, use the View>>Tile Window button again
or CTRL-UPARROW.

Contexts, Panels and Buttons
Blender’s buttons are more exciting than those in most other user interfaces, and they
became even nicer in 2.30. This is largely due to the fact that they are vector-based
and drawn in OpenGL, which makes them elegant and zoomable.

Buttons are mostly grouped in the Button Window. As of Blender 2.3 the Button
Window shows six main contexts, which can be chosen via the first icon row in the
header (Figure 3-4), each of which might be subdivided into a variable number of
sub-contexts, which can be chosen via the second icon row in the header (Figure 3-4):

Figure 3-4. Contexts and Sub-Contexts

• Logic - shortcut F4

• Script - no shortcut

• Shading - shortcut F5

• Lamp - no shortcut

• Material - no shortcut

• Texture - shortcut F6

• Radio - no shortcut

• World - shortcut F8

17

Chapter 3. Understanding the interface

• Object - shortcut F7

• Editing - shortcut F9

• Scene - shortcut F10

• Rendering - no shortcut

• Anim/Playback - no shortcut

• Sound - no shortcut

Once the Context is selected by the user, the sub-context is usually determined by
Blender on the basis of the active Object. For example, with the "Shading" context, if
a Lamp Object is selected then sub-context shows Lamp Buttons, if a Mesh or other
renderable Object is selected, then Material Buttons is the active sub-context, and if a
Camera is selected the active sub-context is World.

The most notable novelty in the interface is probably the presence of Panels to logi-
cally group buttons. Each panel is the same size. They can be moved around the But-
ton Window by LMB clicking and dragging on their header. Panels can be aligned by
RMB on the Buttons Window and chosing the desired layout from the Menu which
appears (Figure 3-5).

Figure 3-5. Button Window Menu.

MW scrolls Panels in their aligned direction, CTRL-MW and CTRL-MMB zooms
panels in and out. Single panels can be collapsed/expanded by LMB clicking the
triangle on the left of their header.

Particularly complex Panels are organized in Tabs. Clicking LMB on a Tab in the Panel
header changes the buttons shown (Figure 3-6). Tabs can be "torn out" of a panel to
form independent panels by clicking LMB on their header and dragging them out. In
a similar way separate Panels can be turned into a single panel with Tabs by dropping
one Panel’s header into another.

18

Chapter 3. Understanding the interface

Figure 3-6. Panel with Tabs.

As a last interface item in the chain there are several kind of buttons which are dis-
posed in the Panel’s Tabs:

Operation Button

These are buttons that perform an operation when they are clicked (with LMB, as
all buttons). They can be identified by their brownish color in the default Blender
scheme (Figure 3-7).

Figure 3-7. An operation button

Toggle Button

Toggle buttons come in various sizes and colors (Figure 3-8). The colors green, violet,
and grey do not change functionality, they just help the eye to group the buttons and
recognize the contents of the interface more quickly. Clicking this type of button does
not perform any operation, but only toggles a state as "on" or "off."

Some buttons also have a third state that is identified by the text turning yellow (the
Ref button in Figure 3-8). Usually the third state means "negative," and the normal
"on" state means "positive."

Figure 3-8. Toggle buttons

19

Chapter 3. Understanding the interface

Radio Buttons

Radio buttons are particular groups of mutually exclusive Toggle buttons. No more
than one Radio Button in a given group can be "on" at one time.

Num Buttons

Number buttons (Figure 3-10) can be identified by their captions, which contain a
colon followed by a number. Number buttons are handled in several ways: To in-
crease the value, click LMB on the right of the button, where the small triangle is
shown; to decrease it, click on the left of the button, where another triangle is shown.
To change the value in a wider range, hold down LMB and drag the mouse to the left
or right. If you hold CTRL while doing this, the value is changed in discrete steps;
if you hold SHIFT, you’ll have finer control over the values. ENTER can be used in
place of LMB here.

Figure 3-9. Number buttons

You can enter a value from the keyboard by holding SHIFT and clicking LMB. Press
SHIFT-BACKSPACE to clear the value; SHIFT-LEFTARROW to move the cursor to
the beginning; and SHIFT-RIGHTARROW to move the cursor to the end. Press ESC
to restore the original value.

Some number buttons contain a slider rather than just a number with side triangles.
The same method of operation applies, except that single LMB clicks must be per-
formed on the left or on the right of the slider, while clicking on the label or the
number automatically enters keyboard input mode.

Menu Buttons

Use the Menu buttons to choose from dynamically created lists. Menu buttons are
principally used to link DataBlocks to each other. (DataBlocks are structures like
Meshes, Objects, Materials, Textures, and so on; by linking a Material to an Object,
you assign it.) You’ll see an example for such a block of buttons in Figure 3-10. The
first button (with the tiny up and down pointing triangles) opens a menu that lets
you select the DataBlock to link to by holding down LMB and releasing it over the
requested item. The second button displays the type and name of the linked Dat-
aBlock and lets you edit its name after clicking LMB. The "X" button clears the link,
the "car" button generates an automatic name for the DataBlock, and the "F" button
specifies whether the DataBlock should be saved in the file even if it is unused (un-
linked).

Unlinked objects: Unlinked data is not lost until you quit Blender. This is a powerful Undo
feature. if you delete an object the material assigned to it becomes unlinked, but is still
there! You just have to re-link it to another object or press the "F" button.

20

Chapter 3. Understanding the interface

Figure 3-10. Datablock link buttons

Toolbox
By pressing SPACE in the 3D Viewport, or by holding LMB or RMB with a still
mouse for more than half a second opens the Toolbox. This contains 6 main contexts,
arranged on two lines, each of which opens menus and submenus.

Three of these contexts open the same three menus present in the 3D Viewport
header, of the other three, Add allows adding new Objects to the scene while Edit
and Transform shows all possible operations on selected Object(s) (Figure 3-11).

Figure 3-11. The Toolbox

Screens
Blender’s flexibility with windows lets you create customized working environments
for different tasks, such as modeling, animating, and scripting. It is often useful to
quickly switch between different environments within the same file. This is made

21

Chapter 3. Understanding the interface

possible by creating several screens: All changes to windows as described in the Sec-
tion called The window system and the Section called Window types are saved within
one screen, so if you change your windows in one screen, other screens won’t be
affected. But the scene you are working on stays the same in all screens.

Three different default screens are provided with Blender; they are available via the
SCRMenu Buttons in the User Preferences Window header shown in Figure 3-12. To
change to the next screen alphabetically, press CTRL-RIGHTARROW; to change to
the previous screen alphabetically, press CTRL-LEFTARROW.

Figure 3-12. Screen and Scene selectors

Scenes
It is also possible to have several scenes within the same Blender file. The scenes may
use one another’s objects or be completely separate from one another. You can select
and create scenes with the SCEMenu Button buttons in the User Preferences Window
header (Figure 3-12).

When you create a new scene, you can choose between four options to control its
contents:

• Empty creates an empty scene.

• Link Objects creates the new scene with the same contents as the currently se-
lected scene. Changes in one scene will also modify the other.

• Link ObData creates the new scene based on the currently selected scene, with
links to the same meshes, materials, and so on. This means that you can change
objects’ positions and related properties, but modifications to the meshes, materi-
als, and so on will also affect other scenes unless you manually make single-user
copies.

• Full Copy creates a fully independent scene with copies of the currently selected
scene’s contents.

Navigating in 3D Space
Relevant to Blender v2.31

Blender lets you work in three-dimensional space, but our monitor screens are only
two-dimensional. To be able to work in three dimensions, you must be able to change
your viewpoint as well as the viewing direction of the scene. This is possible in all of
the 3D Viewports.

Even if we will describe the 3D Viewport Window, most non-3D windows use an
equivalent series of functions, for example it is even possible to translate and zoom a
Buttons Window and its Panels.

22

Chapter 3. Understanding the interface

The viewing direction (rotating)
Blender provides three default viewing directions: Side, Front, and Top. As Blender
uses a right-hand coordinate system with the Z axis pointing upwards, "side" cor-
responds to looking along the X axis, in the negative direction; "front" along the Y
axis; and "top" along the Z axis. You can select the viewing direction for a 3D View-
port with the View Menu entries (Figure 3-13) or by pressing the hotkeys NUM3 for
"side", NUM1 for "front", and NUM7 for "top".

Hotkeys: Remember that most hotkeys affect the window that has focus, so check that
the mouse cursor is in the area you want to work in before your use the hotkeys!

23

Chapter 3. Understanding the interface

Figure 3-13. A 3D Viewport’s view menu.

Apart from these three default directions, the view can be rotated to any angle you
wish. Click and drag MMB on the Viewport’s area: If you start in the middle of the
window and move up and down or left and right, the view is rotated around the
middle of the window. If you start at the edge and don’t move towards the middle,
you can rotate around your viewing axis. Play around with this function until you
get the feeling for it.

To change the viewing angle in discrete steps, use NUM8 and NUM2, which corre-
spond to vertical MMB dragging. Or use NUM4 and NUM6, which correspond to
horizontal MMB dragging.

24

Chapter 3. Understanding the interface

Translating and Zooming the View
To translate the view, hold down SHIFT and drag MMB in the 3D Viewport. For dis-
crete steps, use the hotkeys CTRL-NUM8, CTRL-NUM2, CTRL-NUM4 and CTRL-
NUM6 as with rotating.

You can zoom in and out by holding down CTRL and dragging MMB. The hotkeys
are NUM+ and NUM-. The View>>Viewport Navigation sub-menu holds these
functions too.

Wheel Mouse: If you have a wheel mouse, you can perform all of the actions that you
would do with NUM+ and NUM- by rotating the wheel (MW). The direction of rotation
selects the action.

If You Get Lost...: If you get lost in 3D space, which is not uncommon, two hotkeys will
help you: HOME changes the view so that you can see all objects (View>>Frame All
Menu entry,) while NUM. zooms the view to the currently selected objects (View>>Frame
Selected Menu entry.)

Perspective and Orthographic Projection
Each 3D Viewport supports two different types of projection. These are demonstrated
in Figure 3-14: orthographic (left) and perspective (right).

25

Chapter 3. Understanding the interface

Figure 3-14. Orthographic (left) and perspective (right) projection.

Our eye is used to perspective viewing because distant objects appear smaller. Ortho-
graphic projection often seems a bit odd at first, because objects stay the same size
independent of their distance: It is like viewing the scene from an infinitely distant
point. Nevertheless, orthographic viewing is very useful (it is the default in Blender
and most other 3D applications), because it provides a more "technical" insight into
the scene, making it easier to draw and judge proportions.

Perspective and Orthographic: Perspective view is geometrically constructed this way:
you have a scene in 3D and you are an observer palced in a point O. The 2D perspective
scene is built by placing a plane, a sheet of paper where the 2D scene is to be drawn in
front of point O, perpendicular to the viewing direction. For each point P in the 3D scene
a line is drawn, passing from O and P. The intersection point S between this line and the
plane is the perspective projection of that point. By projecting all points P of the scene
you get a perspective view.

In an orthographic projection, also called "orthonormal", on the other hand, you have a
viewing direction but not a viewing point O. The line is then drawn through point P so
that it is parallel to the viewing direction. The intersections S between the line and the
plane is the orthographic projection. And by projecting all point P of the scene you get the
orthographic view.

To change the projection for a 3D Viewport, choose View>>Orthographic or
View>>Perspective Menu entries (Figure 3-13). The hotkey NUM5 toggles
between the two modes.

Camera projection: Note that changing the projection for a 3D Viewport does not affect
the way the scene will be rendered. Rendering is in perspective by default. If you need to

26

Chapter 3. Understanding the interface

create an Orthographic rendering, select the camera and press Ortho in the EditButtons
(F9) Camera Panel.

The View>>Camera Menu entry sets the 3D Viewport to camera mode (Hotkey:
NUM0). The scene is then displayed as it will be rendered later (see Figure 3-15): the
rendered image will contain everything within the outer dotted line. Zooming in
and out is possible in this view, but to change the viewpoint, you have to move or
rotate the camera.

Figure 3-15. Demonstration of camera view.

Draw mode
Depending on the speed of your computer, the complexity of your Scene, and the
type of work you are currently doing, you can switch between several drawing
modes:

• Textured - Attempts to draw everything as completely as possible, though it is
still no alternative to rendering. Note that if you have no lighting in your scene,
everything will remain black.

• Shaded - Draws solid surfaces including the lighting calculation. As with textured
drawing, you won’t see anything without lights.

• Solid - Surfaces are drawn as solids, but the display also works without lights.

• Wireframe - Objects only consist of lines that make their shapes recognizable. This
is the default drawing mode.

• Bounding Box - Objects aren’t drawn at all; instead this mode shows only the
rectangular boxes that correspond to each object’s size and shape.

27

Chapter 3. Understanding the interface

The drawing mode can be selected with the appropriate Menu Button in the header
(Figure 3-16) or with hotkeys: ZKEY toggles between wireframe and solid display,
SHIFT-Z toggles between wireframe and shaded display.

Figure 3-16. A 3D Viewport’s draw mode button.

Local view
When in local view, only the selected objects are displayed, which can make editing
easier in complex scenes. To enter local view, first select the objects you want (see
the Section called Selecting objects in Chapter 5) and then use the View>>Local View
Menu entry; use the View>>Global View Menu entry to go back to Global View.
(Figure 3-13). The hotkey is NUM/, which toggles Local/Global View.

The layer system
3D scenes often become exponentially more confusing with growing complexity. To
get this under control, objects can be grouped into "layers," so that only the layers
you select are displayed at any one time. 3D layers differ from the layers you may
know from 2D graphics applications: they have no influence on the drawing order
and are there (except for some special functions) solely to provide the modeler with
a better overview.

Blender provides 20 layers; you can choose which are to be displayed with the small
unlabeled buttons in the header (Figure 3-17). To select only one layer, click the ap-
propriate button with LMB; to select more than one, hold SHIFT while clicking.

Figure 3-17. A 3D Viewport’s layer buttons.

28

Chapter 3. Understanding the interface

To select layers via the keyboard, press 1KEY to 0KEY (on the main area of the key-
board) for layers 1 through 10 (the top row of buttons), and ALT-1 to ALT-0 for layers
11 through 20 (the bottom row). The SHIFT key for multiple selection works for these
hotkeys too.

By default, the lock button directly to the right of the layer buttons is pressed; this
means that changes to the viewed layers affect all 3D Viewports. To select only certain
layers in one window, deselect locking first.

To move selected objects to a different layer, press MKEY, select the layer you want
from the pop-up dialog, then press the Ok button.

The vital functions
Relevant to Blender v2.31

Loading files
Blender uses the .blend file format to save nearly everything: Objects, scenes, tex-
tures, and even all your user interface window settings.

To load a Blender file from disk, press F1. The focused window then temporarily
transforms into the File Selection Window as shown in Figure 3-18. The bar on the
left can be dragged with LMB for scrolling. To load a file, select it with LMB and
press ENTER, or simply click it with MMB.

Figure 3-18. File Selection Window - loading.
29

Chapter 3. Understanding the interface

The upper text box displays the current directory path, and the lower one contains
the selected filename. The P button (PKEY) moves you up to the parent directory
and the button with the dash maintains a list of recently used paths. On Windows
operating systems, the latter also contains a list of all drives (C:, D:, etc).

Note: Blender expects that you know what you are doing! When you load a file, you
are not asked to save unsaved changes to the scene you were previously working on:
completing the file load dialog is regarded as being enough confirmation that you didn’t
do this by accident. Make sure that you save your files.

Saving files
Saving files is like loading files: When you press F2, the focused window temporarily
changes into a File Selection Window, as shown in Figure 3-19. Click the lower edit
box to enter a filename. If it doesn’t end with ".blend," the extension is automatically
appended. Then press ENTER to write the file. If a file with the same name already
exists, you will have to confirm that you want to save the file at the overwrite prompt.

Figure 3-19. File Selection Window - saving.

The save dialog contains a little feature to help you to create multiple versions of
your work: Pressing NUM+ or NUM- increments or decrements a number contained
in the filename. To simply save over the currently loaded file and skip the save dialog,
press CTRL-W instead of F2 and just confirm at the prompt.

Rendering
This section will give you only a quick overview of what you’ll need in order to
render your scene. You’ll find a detailed description of all options in Chapter 17.

The render settings are in the Scene Context and Rendering Buttons Sub-context
(Figure 3-20) which is reached by clicking the , or by pressing F10.

30

Chapter 3. Understanding the interface

Figure 3-20. Rendering options in the RenderingButtons.

For now we are only interested in the Format Panel. The size (number of pixels hori-
zontally and vertically) and file format of the image to be created are picked here. You
can set the size using the SizeX and SizeY buttons. Clicking the selection box below
(in Figure 3-20, "Targa" is chosen) opens a menu with all available output formats for
images and animations. For still images we might choose Jpeg, for example.

Now that the settings are complete, the scene may be rendered by hitting the REN-
DERbutton in the Render Panel or by pressing F12. Depending on the complexity
of the scene, this usually takes between a few seconds and several minutes, and the
progress is displayed in a separate window. If the scene contains an animation, only
the current frame is rendered. (To render the whole animation, see the Section called
Rendering Animations in Chapter 17.)

If you don’t see anything in the rendered view, make sure your scene is constructed
properly. Does it have lighting? Is the camera positioned correctly, and does it point
in the right direction? Are all the layers you want to render visible?

Note: A rendered image is not automatically saved to disk. If you are satisfied with the
rendering, you may save it by pressing F3 and using the save dialog as described in the
Section called Saving files. The image is saved in the format you selected previously in
the DisplayButtons.

File Extensions: Blender does not add the type extension automatically to image files!
You should type the extension explicitly, if you need it.

User preferences and Themes
Blender has a few options that are not saved with each file, but which apply to all
of a user’s files instead. These preferences primarily concern user interface handling
details, and system properties like mouse, fonts, and languages.

As the user preferences are rarely needed, they are neatly hidden behind the main
menu. To make them visible, pull down the window border of the menu (usually the
topmost border in the screen). The settings are grouped into seven categories which
can be selected with the violet buttons shown in Figure 3-21.

31

Chapter 3. Understanding the interface

Figure 3-21. User preferences window.

Because most buttons are self-explanatory or display a helpful tool-tip if you hold
the mouse still over them, we won’t describe them in detail here. Instead, we will
just give you an overview of the preference categories:

View & Controls

Settings concerning how the user interface should react to user input, such as
which method of rotation should be used in 3D views. Here you can also activate
3-button mouse emulation if you have a two-button mouse. MMB can then be
input as ALT-LMB.

Edit Methods

Lets you specify the details for the workings of certain editing commands like
duplicate .

Language & Fonts

Select an alternative TrueType font for display in the interface, and choose from
available interface languages.

Themes

Since version 2.30 Blender allows the utilization of Themes to define custom
interface colors. You can create and manage themes from here.

Auto Save

Auto saves can be set so that you will have an emergency backup in case some-
thing goes wrong. These files are named Filename.blend1, Filename.blend2, etc.

System & OpenGL

You should consult this section if you experience problems with graphics or
sound output, or if you don’t have a numerical keypad and want to emulate it
(for laptops). Furthermore here you can set the light scheme for Solid and shaded
draw modes.

File Paths

Choose the default paths for various file load dialogs.

Setting the default scene
You don’t like Blender’s default window set-up, or want specific render settings for
each project you start, or you want to save your Theme? No problem. You can use
any scene file as a default when Blender starts up. Make the scene you are currently
working on the default by pressing CTRL-U. The scene will then be copied into a file
called .B.blend in your home directory.

You can clear the working project and revert to the default scene anytime by pressing
CTRL-X. But remember to save your changes to the previous scene first!

32

Chapter 4. Your first animation in 30 + 30 minutes

This chapter will guide you step-by-step through the animation of a small "Ginger-
bread Man" character. We’ll describe all actions completely, but we’ll assume that
you have read the entire Chapter 3, and that you understand the conventions used
throughout this book.

In the first 30 minutes of this tutorial we’ll build a still gingerbread man. Then, in the
next 30 minutes, we’ll give him a skeleton and animate a walk cycle.

Warming up
Relevant to Blender v2.31

Let’s begin.

1. Fire up Blender by double clicking its icon or running it from the command line.
Blender will open showing you, from top view, the default set-up: a camera and a
plane. The plane is pink, meaning it is selected (Figure 4-1). Delete the plane with
XKEY and confirm by clicking the Erase Selected entry in the dialog which ap-

pears.

Figure 4-1. Blender window as soon as you start it.

Now select the camera with RMB and press MKEY. A small toolbox, like the one in
Figure 4-2, will appear beneath your mouse, with the first button checked. Check the
rightmost button on the top row and then the OKbutton. This will move your camera
to layer 10.

Blender provides you with 20 layers to help you organize your work. You can see
which layers are currently visible from the group of twenty buttons in the 3D window
toolbar (Figure 4-3). You can change the visible layer with LMB and toggle visibility
with SHIFT-LMB.

33

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-2. Layer control toolbox.

Figure 4-3. Layer visibility controls.

Building the body
Relevant to Blender v2.31

Change to the front view with NUM1 and add a cube by pressing SPACE and
selecting menu Add, submenu Mesh, sub-submenu Cube. (In the book we will use
SPACE>>ADD>>Mesh>>Cube as shorthand for these kinds of actions). A cube will
appear (Figure 4-4). This newly added cube is in EditMode, a mode in which you can
move the single vertices that comprise the mesh. By default, all vertices are selected
(highlighted in yellow - unselected vertices are pink).

Figure 4-4. Our cube in EditMode, all vertices selected.

We will call our Gingerbread man "Gus". Our first task is to build Gus’s body by
working on our cube in EditMode. To see the Blender tools that we’ll use for this
purpose, press the button showing a square with yellow vertices in the Button win-
dow header (Figure 4-5), or press F9.

34

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-5. The Edit Buttons Window button.

Now locate the Subdivide button in the Mesh Tools panel and press it once (Fig-
ure 4-6). This will split each side of the cube in two, creating new vertices and faces
(Figure 4-7).

Figure 4-6. The Edit Buttons window for a Mesh.

Figure 4-7. The cube, subdivided once.

With your cursor hovering in the 3D window press AKEY to deselect all elements.
Vertices will turn pink. Now press BKEY; the cursor will change to a couple of or-
thogonal grey lines. Move the cursor above the top left corner of the cube, press and
hold LMB, then drag the mouse down and to the right so that the grey box encom-

35

Chapter 4. Your first animation in 30 + 30 minutes

passes all the leftmost vertices. Now release the LMB. This sequence, which lets you
select a group of vertices in a box, is summarized in Figure 4-8.

Box Select: On many occasions you may have vertices hidden behind other vertices, as
is the case here. Our subdivided cube has 26 vertices, yet you can only see nine because
the others are hidden.

A normal RMB click selects only one of these stacked vertices, whereas a box select
selects all. Thus, in this case, even if you see only three vertices turning yellow you have
actually selected nine vertices.

Figure 4-8. The sequence of Box selecting a group of vertices.

Now press XKEY and, from the menu that pops up, select Vertices to erase the
selected vertices (Figure 4-9).

Figure 4-9. The pop-up menu of the Delete (XKEY) action.

36

Chapter 4. Your first animation in 30 + 30 minutes

Undo: Introduced in version 2.3, Blender has a Mesh Undo feature. Pressing UKEY in
EditMode makes Blender Undo the last Mesh edit. Keep pressing UKEY to roll back
changes as long as the Undo buffer will allow, while SHIFT-U re-does changes. ALT-U
opens a menu with a list of possible undoes, so that you can easily find the point to which
you want to revert to.

Mesh Undo works only in EditMode and only for one mesh at a time. Undo data is not lost
when you switch out of EditMode, only when you start editing a different mesh.

Another way to revert to the previously saved state is to press ESC in the middle of an
action. This cancels the action, reverting to the previous state.

Now, using the sequence you just learned, Box Select the two top-rightmost vertices
(Figure 4-10, left). Press EKEY and click on the Extrude menu entry to extrude them.
This will create new vertices and faces which you can move and which will follow
the mouse. Move them to the right.

To constrain the movement horizontally or vertically, click MMB while moving. You
can switch back to unconstrained movement by clicking MMB again. Alternatively
you can use XKEY to constrain movement to x axis, YKEY for y axis and so on.

Let’s create Gus’s arms and legs. Move these new vertices one and a half squares to
the right, then click LMB to fix their position.

Extrude again with EKEY then move the new vertices another half square to the
right. Figure 4-10 show this sequence.

Figure 4-10. Extruding the arm in two steps.

Gus should now have a left arm (he’s facing us). We will build the left leg the same
way by extruding the lower vertices. Try to produce something like that shown in
Figure 4-11.

Note: We use the Extrude tool three times to produce the leg. We don’t care about elbows,
but we will need a knee later on!

37

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-11. Half body.

Coincident vertices: If you extrude, and in the process of moving you change your mind
and press ESC to recover, the extruded vertices will still be there, in their original location!
While you can move, scale, or rotate them by pressing GKEY, you probably don’t want
to extrude them again. To fully undo the extrusion, look for the Remove Doubles button,
highlighted in Figure 4-12. This will eliminate coincident vertices.

Figure 4-12. The Edit Buttons window.

38

Chapter 4. Your first animation in 30 + 30 minutes

Note: The CD contains a .blend file with this example, saved at various modelling phases.
The first file, Quickstart00.blend contains what you should have obtained up to now.

Subsequent steps are numbered progressively, Quickstart01.blend ,
Quickstart02.blend and so on, while Quickstart.blend contains the final result. This
standard applies to all other examples in the Book.

Now we’ll create the other half of Gus:

1. Select all vertices (AKEY) and choose the 3D Cursor entry in the
Rotation/Scaling Pivot Menu of the 3D Window header. (Figure 4-13).

2. Press SHIFT-D to duplicate all selected vertices, edges, and faces. The new objects
are in Grab mode, press ESC to exit from this mode without moving the vertices.

3. Press MKEY to open the Mirror Axis Menu. Choose Global X . The result is
shown in Figure 4-14.

Figure 4-13. Setting the reference center to the cursor.

39

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-14. Flip the copy of the half body to obtain a full body.

4. Deselect all then reselect all by pressing AKEY twice, then eliminate the coincident
vertices by pressing the Remove doubles button (Figure 4-12). A box will appear,
notifying you that eight vertices have been removed.

Reference center: In Blender, scaling, rotating and other mesh modifications occur ei-
ther with respect to the cursor position, the object’s center, or the barycenter (center
of mass) of the selected items, depending upon which entry of the Rotation/Scaling
Pivot Menu (Figure 4-13) is active. The crosshair button selects the cursor as reference.

Moving the cursor: To place the cursor at a specific grid point, position it next to where
you want it and press SHIFT-S to bring up the Snap Menu. The entry Curs->Grid places
the cursor exactly on a grid point. The Curs->Sel places it exactly on the selected object.
The other entries move objects other than the cursor.

Gus Needs a head:

1. Move the cursor so that it is exactly one grid square above Gus’ body (Figure 4-15,
left). Add a new cube here (SPACE>>ADD>>Mesh>>Cube).

2. Press GKEY to switch to Grab Mode and move the newly created vertices down,
constraining the movement with MMB, for about one third of a grid unit (Figure
4-15, right).

40

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-15. The sequence of adding the head.

3. This produces a rough figure at best. To make it smoother, locate the SubSurf
Toggle Button (Figure 4-16) in the Mesh panel and switch it on. Be sure to set both
the two NumButtons below to 2.

Note: SubSurfacing is an advanced modelling tool, it dynamically refines a given coarse
mesh creating a much denser mesh and locating the vertices of the finer mesh so that
they smoothly follow the original coarse mesh. The shape of the Object is still controlled
by the location of the coarse mesh vertices, but the rendered shape is the smooth, fine
mesh one.

4. Switch out of EditMode (TAB) and switch from the current default Wireframe
mode to Solid mode with ZKEY to have a look at Gus. He should look like Figure
4-17 left.

Figure 4-16. The Edit Buttons window.

41

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-17. Setting Gus to smooth.

5. To make Gus look smooth, press the SetSmooth button in Figure 4-16. Gus will now
appear smooth but with funny black lines in his middle (Figure 4-17, middle). These
lines appear because the SubSurfed finer mesh is computed using information about
the coarse mesh normal directions, which may not be self consistent, that is, some
face normals might point outward, some inward, if extrusions and flippings have
been made. To reset the normals, switch back to EditMode (TAB), select all vertices
(AKEY), and press CTRL-N. Click with LMB on the Recalc normals outside box
which appears. Now Gus should be nice and smooth, as shown in Figure 4-17, right.

Press MMB and drag the mouse around to view Gus from all angles. Oops, he is too
thick! To fix that, switch to side view NUM3. Now, switch to EditMode (if you are
not there already), then back to Wireframe mode (ZKEY), and select all vertices with
AKEY (Figure 4-18, left).

42

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-18. Slimming Gus using constrained scaling.

Let’s make Gus thinner:

1. Press SKEY and start to move the mouse horizontally. (Click MMB to constrain
scaling to just one axis or press YKEY to obtain the same result). If you now move
the mouse toward Gus he should become thinner but remain the same height.

2. The three numbers on the 3DWindow toolbar show the scaling factor. Once you
constrained scaling, only one of these numbers will vary. Press and hold CTRL. The
scale factor will now vary in discrete steps of value 0.1. Scale Gus down so that the
factor is 0.2, then set this dimension by clicking LMB.

3. Return to Front view and to Solid mode (ZKEY), then rotate your view via MMB.
Gus is much better now!

Let’s see what Gus looks like
Relevant to Blender v2.31

We’re just about ready to see our first rendering, but first, we’ve got some work to
do.

1. SHIFT-LMB on the top right small button of the layer visibility buttons in the
3DWindow toolbar (Figure 4-19) to make both Layer 1 (Gus’s layer) and Layer 10
(the layer with the camera) visible.

43

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-19. Making both layer 1 and 10 visible.

Note: Remember that the last layer selected is the active layer, so all subsequent addi-
tions will automatically be on layer 10.

2. Select the camera (RMB) and move it to a location like (x=7, y=-10, z=7). Do this
by pressing GKEY and dragging the camera while keeping CTRL pressed to move it
in steps of 1 grid unit.

Entering precise locations and rotations: If you prefer to enter numerical values for an
object’s location you can do so by pressing NKEY and modifying the NumButtons in the
Panel that appears (Figure 4-20). Remember to press OKto confirm your input.

Figure 4-20. The Panel for numerical input of object position/rotation etc.

To make the camera point at Gus, keep your camera selected then select Gus via
SHIFT-RMB. The camera should be magenta and Gus light pink. Now press CTRL-
T and select the Old Track entry in the pop up. This will force the camera to track
Gus and always point at him. This means that you can move the camera wherever
you want and be sure that Gus will always be in the center of the camera’s view.

Tracking: If the tracking object already has a rotation of its own, as is often the case, the
result of the CTRL-T sequence might not be as expected. If it is not, select the tracking
object (in our example the camera), and press ALT-R to remove any object rotation. Once
you do this the camera will really track Gus.

Figure 4-21 shows top, front, side and camera view of Gus. To obtain a camera view
press NUM0.

44

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-21. Camera position with respect to Gus.

Now we need to create the ground for Gus to stand on.

1. In top view (NUM7), and out of EditMode, add a plane
(SPACE>>ADD>>Mesh>>Plane).

Note: It is important to be out of EditMode, otherwise the newly added object would be
part of the object currently in EditMode, as it was for Gus’ head when we added it. If the
cursor is where Figure 4-21 shows, such a plane would be in the middle of Gus’s body.

2. Switch to ObjectMode and Front view (NUM1) and move (GKEY) the plane down
to Gus’s feet, using CTRL to keep it aligned with Gus.

3. Switch the reference center from cursor (where we set it at the beginning) to object
by pressing the highlighted button Figure 4-22.

4. Go to Camera view (NUM0) and, with the plane still selected, press SKEY to start
scaling.

Figure 4-22. Set the reference center to Object center.

5. Enlarge the plane so that its edges extend beyond the camera viewing area, as
indicated by the outer white dashed rectangle in Camera view.

Now, some light!

1. In Top view (NUM7), add a Lamp light (SPACE>>ADD>>Lamp) in front of Gus,
but on the other side of the camera; for example in (x=-9, y=-10, z=7) (Figure 4-23).

45

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-23. Inserting a Lamp.

2. Switch to the Lamp Buttons in the Shading context via the button with a lamp in
the Button Window toolbar (Figure 4-24) or F5.

Figure 4-24. The Lamp Buttons window button.

3. In the Buttons Window, Preview Panel, press the Spot toggle button to make the
lamp a Spotlight (Figure 4-25) of pale yellow (R=1, G=1, B=0.9). Adjust ClipSta:
Num Button to 5, Samples: to 4, and Soft: to 8.

Figure 4-25. Spot light settings.

4. Make this spotlight track Gus just as you did for the camera by selecting Spot,
SHIFT, then Gus, then by pressing CTRL-T. If you added the spot in Top View you
should not need to clear its rotation via ALT-R.

5. Add a second lamp in the same location as the spot, and again in Top View, with
(SPACE>>ADD>>Lamp). Make this lamp a Hemi lamp with energy of 0.6 (Figure
4-26).

Figure 4-26. The Hemi lamp settings
46

Chapter 4. Your first animation in 30 + 30 minutes

Two lamps?: Use two or more lamps to help produce soft, realistic lighting, because in
reality natural light never comes from a single point. You will learn more about this in
Chapter 12.

We’re almost ready to render. As a first step, go to the Scene context and Render
buttons by pressing the image-like icon in the Button window toolbar (Figure 4-27)
or F10.

Figure 4-27. The Rendering buttons window buttons.

In the Render Buttons, Format Panel, set the image size to 640x480 with the Num but-
tons at the top right. In the Render Panel set the Shadows Toggle Button top center
to On, and the OSAToggle Button center-left to On as well (Figure 4-28). These lat-
ter controls will enable shadows and oversampling (OSA) which will prevent jagged
edges.

Figure 4-28. The Rendering Buttons window

Now press the RENDERbutton or F12. The result, shown in Figure 4-29, is actually
quite poor. We still need materials, and lots of details, such as eyes, and so on.

47

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-29. Your first rendering. Congratulations!

Saving: If you have not done so already, now would be a good time to save your work,
via the File >>Save menu shown in Figure 4-30, or CTRL-W. Blender will warn you if you
try to overwrite an existing file.

Blender does automatic saves into your system’s temporary directory. By default, this
happens every four minutes and the file name is a number. Loading these saves is another
way to undo unwanted changes.

48

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-30. The Save menu.

Materials and Textures
Relevant to Blender v2.31

It’s time to give Gus some nice cookie-like material:

1. Select Gus. Then, in the Button Window header, select the Shading Context by
pressing the red dot button (Figure 4-31) or using the F5 key.

Figure 4-31. The Material Buttons window Button.

2. The Button window will be almost empty because Gus has no materials yet. To
add a material, click on the Menu Button in the Material Panel (the one with two
triangles, pointing up and down) and select Add New(Figure 4-32).

Figure 4-32. The Material Menu button.

49

Chapter 4. Your first animation in 30 + 30 minutes

3. The Buttons window will be populated by Panels and Buttons and a string holding
the Material name, "Material" by default, will appear next to the white square button.
Change this to something meaningful, like GingerBread.

4. Modify the default values as per Figure 4-33 to obtain a first rough material.

Figure 4-33. The Material Buttons window and a first gingerbread material.

5. Press the Menu Button in the Textures Panel area (Figure 4-34) and select Add new.
We’re adding a texture in the first channel. Call it "GingerTex."

Figure 4-34. The Textures menu button in the Material Buttons

6. Select the Texture Buttons by clicking the button in Figure 4-35 or by pressing F6.

Figure 4-35. The Texture Buttons window Button.

7. From the columns of ToggleButtons which appear in the Texture panel select
Stucci and set all parameters as in Figure 4-36.

Figure 4-36. The Texture Buttons window with a stucci texture.
50

Chapter 4. Your first animation in 30 + 30 minutes

8. Return to the Material buttons (F5) and set the Map Input and Map To tabs of the
Texture Panel as in Figure 4-37. Release the Col Toggle Button and set the Nor Toggle
Button, then raise the Nor slider to 0.75. These changes will make our Stucci texture
act as a "bumpmap" and make Gus look more biscuit-like.

Figure 4-37. Settings for the Stucci texture in the Material Buttons window.

9. Now add a second texture, name it "Grain," and make it affect only the Ref prop-
erty with a 0.4 Var (Figure 4-38). The texture itself is a plain Noise texture.

Figure 4-38. Settings for an additional Noise texture in channel 2.

Give the ground an appropriate material, such as the dark blue one shown in Figure
4-39.

Figure 4-39. A very simple material for the ground.

To give some finishing touches we’ll add eyes and some other details.

1. First make Layer 1 the only one visible by clicking with LMB on the layer 1 button
(Figure 4-40). This will hide the lamps, camera, and ground.

Figure 4-40. Layer visibility buttons on toolbar.

2. Place the cursor at the center of Gus’s head. (Remember that you are in 3D so be
sure to check at least two views to be sure!)

51

Chapter 4. Your first animation in 30 + 30 minutes

3. Add a sphere (SPACE>>ADD>>Mesh>>UVsphere). You will be asked for the
number of Segments: (meridians) and Rings: (parallels) into which to divide the
sphere. The default of 32 is more than we need here, so use a value of 16 for both. The
sphere is in the first image at the top left of the sequence in Figure 4-41.

4. Scale the sphere down (SKEY) to a factor 0.1 in all dimensions, then switch to side
view (NUM3) and scale it only in the horizontal direction (YKEY) a further 0.5 (see
the second two images in Figure 4-41).

Figure 4-41. Sequence for creation of the eyes.

5. Zoom a little if necessary via NUM+, MW, or CTRL-MMB, and drag the sphere
(GKEY) to the left so that it is halfway into the head (as shown in the first image in
the second row of Figure 4-41).

6. Return to front view (NUM1) and move the sphere sideways, to the right. Place it
where Gus should have an eye.

7. Flip a duplicate around the cursor by following the sequence you learned when
flipping Gus’s body. (Select the crosshair toolbar button, in EditMode AKEY to select
all, SHIFT-D, ESC MKEY, Global X Menu entry). Now Gus has two eyes.

8. Exit EditMode (TAB), and place the cursor as close as you can to the center of Gus’s
face. Add a new sphere and scale and move it exactly as before, but make it smaller
and place it lower than and to the right of the cursor, centered on the SubSurfed mesh
vertex Figure 4-42).

52

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-42. Creating a mouth with Spinning tools.

9. Now, in the Edit Buttons (F9), locate the group of buttons at bottom in the Mesh
Tools Panel (Figure 4-43). Set Degr: to 90, Steps: to 3, and verify that the Clock-
wise: TogButton is on. Then, with all vertices still selected, press SpinDup . This
will create three duplicates of the selected vertices on an arc of 90 degrees, centered
around the cursor. The result should be Gus’s mouth, like the last image of the se-
quence shown in Figure 4-42.

Figure 4-43. The Spin Tools buttons in the Edit Buttons window.

Now that you have learned the trick, add three more of these ellipsoids to form
Gus’s buttons. Once you have made one button, you can simply exit EditMode, press
SHIFT-D to create a duplicate, and move the duplicate into place, as shown in Figure
4-44.

53

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-44. The complete Gus!

Give the eyes a chocolate-like material, like the one shown at the top in Figure 4-45.
Give the mouth a white sugar like material, like the second one shown in Figure 4-
45, and give the buttons a red, white, and green sugar like material. These are shown
from top to bottom in Figure 4-45 too.

54

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-45. Some other candy materials.

Objects sharing a material: To give one object the same material as another object,
select that material in the Menu list which appears when you press the Menu Button
ButtonWindow Material Panel.

Figure 4-46. Selecting an existing material from the Material Menu.

Once you have finished assigning materials, make layer 10 visible again (you should
know how), so that lights and the camera also appear, and do a new rendering (F12).
The result should look more or less like Figure 4-47.

55

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-47. The complete Gus still rendering.

Save your image, if you so wish, by pressing F3. Enter the name of your image in the
file window and save.

Image types and extension: You must choose the image format (JPEG, PNG, and so
on) by setting it in the Rendering buttons before pressing F3 (Figure 4-27) and using the
Menu (Figure 4-48) in the Format Panel. Blender does not add an extension to the file
name; you must enter one if you wish.

56

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-48. File type selection menu in the Rendering Buttons window.

Rigging
Relevant to Blender v2.31

If we were going for a still picture, our work up to this point would be enough, but
we want Gus to move! The next step is to give him a skeleton, or Armature, which
will move him. This is called the fine art of rigging. Gus will have a very simple
rigging: four limbs (two arms and two legs) and a few joints (no elbows, only knees),
but no feet or hands. To add the rigging:

1. Set the cursor where the shoulder will be, press SPACE>>Add>>Armature. A
rhomboidal object will appear, a bone of the armature system, stretching from cursor
to mouse pointer. Place the other end of the armature in Gus’s hand (Figure 4-49)
with LMB. This will fix the bone and create a new one from the end point of the
previous one, producing a bone chain. We don’t need any other bones right now, so
press ESC to exit.

57

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-49. Adding the first bone, an elbowless arm.

2. Stay in EditMode, then move the cursor to where the hip joint will be and add
a new bone (SPACE>>ADD>>Armature) down to the knee. Press LMB and a new
bone should automatically appear there. Stretch this bone down to the foot (Figure
4-50).

58

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-50. Adding the second and third bones, a leg bone chain.

Bone position: The bones we are adding will deform Gus’s body mesh. To produce a
neat result, try to place the bone joints as shown in the illustrations.

3. Now place the cursor in the center and select all bones with AKEY. Duplicate them
with SHIFT-D and exit grab mode with ESC then flip them with MKEY relatively to
the cursor and Global X axis as you did with meshes (Figure 4-51).

59

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-51. The complete armature after duplicating and flipping.

Once you’ve selected all of the bones (AKEY), the Edit Buttons window should show
an Armature Bones Panel which contains the Armature buttons (Figure 4-52).

Figure 4-52. The Edit Buttons window for an armature.

Press the Draw Names button to see the names of the bones, then SHIFT-LMB on the
names in the Edit Button window (Figure 4-52) to change them to something appro-
priate like Arm.R, Arm.L, UpLeg.R, LoLeg.R, UpLeg.L and LoLeg.L. Exit EditMode
with (TAB).

Naming Bones: It is very important to name your bones with a trailing ’.L’ or ’.R’ to dis-
tinguish between left and right ones, so that the Action editor will be able to automatically
flip your poses.

Skinning
Relevant to Blender v2.31

60

Chapter 4. Your first animation in 30 + 30 minutes

Now we must make it so that a deformation in the armature causes a matching de-
formation in the body. We do this with Skinning, which assigns vertices to bones so
that the former are subject to the latter’s movements.

1. Select Gus’s body, then SHIFT select the armature so that the body is magenta and
the armature is light pink.

2. Press CTRL-P to parent the body to the armature. A pop up dialog will appear
(Figure 4-53). Select the Use Armature entry.

Figure 4-53. The pop-up menu which appears when parenting an Object to an Ar-
mature.

3. A new menu appears, asking if you want Blender to do nothing, create empty
vertex groups, or create and populate vertex groups (Figure 4-54).

Figure 4-54. Automatic Skinning options.

4. We’ll use the automatic skinning option. Go ahead and select Create From Clos-
est Bones .

Now select only Gus’s body and go to EditMode (TAB). You will notice in the Edit
Buttons (F9) Window and Mesh Tools 1 Panel, the presence of a Vertex Group menu

61

Chapter 4. Your first animation in 30 + 30 minutes

and buttons (Figure 4-55).

Figure 4-55. The vertex groups buttons in the Edit Buttons window of a mesh.

By pressing the Menu Button a menu with all available vertex group pops up (six in
our case, but a truly complex character, with hands and feet completely rigged, can
have tens of them! Figure 4-56). The buttons Select and Deselect show you which
vertices belong to which group.

Figure 4-56. The menu with the vertex groups automatically created in the skinning
process.

Select the Right arm (Arm.R) group and, with all vertices de-selected (AKEY, if
needed) press Select . You should see something like Figure 4-57.

62

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-57. Gus in EditMode with all the vertices of group Arm.R selected.

The vertices marked with yellow circles in Figure 4-57 belong to the deformation
group, but they should not. The autoskinning process found that they were very
close to the bone so it added them to the deformation group. We don’t want them in
this group because, since some are in the head and some are in the chest, adding them
to the deformation group would deform those body parts. To remove them from the
group, deselect all the other vertices, those which should remain in the group using
Box selection (BKEY), but use MMB, not LMB, to define the box, so that all vertices
within the box become deselected.

Once only the ’undesired’ vertices are selected, press the Removebutton (Figure 4-55)
to eliminate them from group Arm.R.

Deselect all (AKEY) then check another group. Check them all and be sure that they
look like those in Figure 4-58.

63

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-58. The six vertex groups.

Vertex groups: Be very careful when assigning or removing vertices from vertex groups.
If later on you see unexpected deformations, you might have forgotten some vertices, or
placed too many in the group. You can modify your vertex groups at any time.

Other details: Our deformations will affect only Gus’s body, not his eyes, mouth, or but-
tons, which are separate objects. While this is not an issue to consider in this simple
animation, it’s one that must be taken into account for more complex projects, for exam-
ple by parenting or otherwise joining the various parts to the body to make a single mesh.
(We’ll describe all of these options in detail in later Chapters).

64

Chapter 4. Your first animation in 30 + 30 minutes

Posing
Relevant to Blender v2.31

Once you have a rigged and skinned Gus you can start playing with him as if he were
a doll, moving his bones and viewing the results.

1. Select the armature only, then select Pose Mode from the "Mode" Menu (Figure
4-59). This option only appears if an armature is selected.

Figure 4-59. The toggle button to switch to pose mode in the 3D Window toolbar.

2. The armature will turn blue. You are in Pose Mode. If you now select a bone it will
turn cyan, not pink, and if you move it (GKEY), or rotate it (RKEY), the body will
deform!

65

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-60. You are in pose mode now!

Original position: Blender remembers the original position of the bones. You can set
your armature back by pressing the RestPos button in the Armature Edit Buttons (Figure
4-52).

Forward and Inverse Kinematics: While handling bones in pose mode you will notice
that they act as rigid, inextensible bodies with spherical joints at the end. You can actually
grab only the first bone of a chain and all the other will follow it. All subsequent bones in
the chain cannot be grabbed and moved, you can only rotate them, so that the selected
bone rotates with respect to the previous bone in the chain while all the subsequent bones
of the chain follow its rotation.

This procedure, called Forward Kinematics (FK) is easy to follow, but it makes precise
location of the last bone of the chain difficult. We can use another method, Inverse Kine-
matics (IK) where you actually define the position of the last bone in the chain, and all the
other assume a position, automatically computed by Blender, to keep the chain without
gaps. Hence precise positioning of hands and feet is much easier.

We’ll make Gus walk by defining four different poses relative to four different stages
of a stride. Blender will do the work of creating a fluid animation.

1. First, verify that you are at frame 1 of the timeline. The frame number appears in a
NumButton on the right of the Buttons Window Toolbar (Figure 4-61). If it is not set
to 1, set it to 1 now.

66

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-61. The current frame Num Button in the Buttons window Toolbar.

2. Now, by rotating only one bone at a time (RKEY), we’ll raise UpLeg.L and bend
LoLeg.L backwards while raising Arm.R a little and lowering Arm.L a little, as shown
in Figure 4-62.

Figure 4-62. Our first pose.

3. Select all bones with AKEY. With the mouse pointer on the 3D Window, press
IKEY. A menu pops up (Figure 4-63). Select LocRot from this menu. This will get
the position and orientation of all bones and store it in a pose at frame 1. This pose
represents Gus in the middle of his stride, while moving his left leg forward and
above the ground.

Figure 4-63. Storing the pose to the frame.

4. Now move to frame 11 either by entering the number in the NumButton or by
pressing UPARROW. Then move Gus to a different position, like Figure 4-64, with
his left leg forward and right leg backward, both slightly bent. Gus is walking in
place!

67

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-64. Our second pose.

5. Select all bones again and press IKEY to store this pose at frame 11.

6. We now need a third pose at frame 21, with the right leg up, because we are in the
middle of the other half of the stride. This pose is the mirror of the one we defined at
frame 1. Therefore, return to frame 1 and, in the Armature Menu in the 3D Window
header select the Copy Pose entry. (Figure 4-65). You have copied the current pose to
the buffer.

Figure 4-65. Copying the pose to the buffer

7. Go to frame 21 and paste the pose with the Paste Flipped Pose option in the
Armature Menu (Figure 4-66). This button will paste the cut pose, exchanging the
positions of bones with suffix .L with those of bones with suffix .R, effectively flipping
it!

68

Chapter 4. Your first animation in 30 + 30 minutes

Figure 4-66. Pasting the copy as a new, flipped, pose.

The pose is there but it has not been stored yet! You must press IKEY with all bones
selected.

8. Now apply the same procedure to copy the pose at frame 11 to frame 31, also
flipping it.

9. To complete the cycle, we need to copy the pose at frame 1 without flipping to frame
41. Do so by copying it as usual, and by using Paste Pose entry. End the sequence
by storing the pose with IKEY.

Checking the animation: To preview your Animation, set the current frame to 1 and press
ALT-A in the 3D window.

Gus walks!
Relevant to Blender v2.31

The single step in-place is the core of a walk, and once you have defined one there
are techniques to make a character walk along a complex path. But, for the purpose
of our Quick Start, this single step in- place is enough.

Change to the Rendering Buttons (F10) and set the animation start and end to 1 and
40 respectively (Figure 4-67). Because frame 41 is identical to frame 1, we only need
to render frames from 1 to 40 to produce the full cycle.

Figure 4-67. Setting the Rendering Buttons for an animation.

2. Select AVI Raw as the file type in Format Panel (Figure 4-67). While this is generally
not the best choice, mainly for file size issues (as will be explained later on), it is fast
and it will run on any machine, so it suits our needs. (You can also select AVI Jpeg
to produce a more compact file, but using lossy Jpeg compression and obtaining a
movie that some external render might not be able to play).

69

Chapter 4. Your first animation in 30 + 30 minutes

3. Finally, press ANIM button in Anim Panel. Remember that all the layers that you
want to use in the animation must be shown! In our case, these are layers 1 and 10.

Stopping a Rendering: If you make a mistake, like forgetting to set layer 10 to on, you
can stop the rendering process with the ESC key.

Our scene is pretty simple, and Blender will probably render each of the 40 images
in a few seconds. Watch them as they appear.

Stills: Of course you can always render each of your animation frames as a still by se-
lecting the frame you wish to render and pressing the RENDERbutton.

Once the rendering is complete you should have a file named 0001_0040.avi in a
render subdirectory of your current directory - the one containing your .blend file.
You can play this file directly within Blender by pressing the Play button beneath
the ANIM button (Figure 4-67). The animation will automatically cycle. To stop it press
ESC.

We have produced only a very basic walk cycle. There is much more in Blender, as
you’ll soon discover!

70

Chapter 5. ObjectMode

By Martin Kleppmann

The geometry of a Blender scene is constructed from one or more Objects: Lamps,
Curves, Surfaces, Cameras, Meshes, and the basic objects described in the Section
called Basic Objects in Chapter 6. Each object can be moved, rotated and scaled in
ObjectMode. For more detailed changes to the geometry, you can work on the mesh
of an Object in EditMode (see the Section called EditMode in Chapter 6).

Once you’ve added a basic object via SPACE>>Add menu, Blender changes into
EditMode by default if the Object is a Mesh, a Curve or a Surface. You can change
to ObjectMode by pressing TAB. The object’s wireframe, if any, should now appear
pink, meaning that the object is now selected and active.

Selecting objects
Relevant to Blender v2.31

To select an object, click it with the RMB. To select multiple objects, hold down SHIFT
and click with the RMB. Generally, the last object to be selected becomes the active
one: It appears in light pink, whereas the non-active selected objects appear purple.
The definition of the active object is important for various reasons, including parent-
ing.

To deselect the active object, click it again with RMB, if multiple Objects are selected
hold SHIFT to maintain the other selected. Press AKEY to select all objects in the
scene (if none are currently selected) or to deselect all (if one or more is selected).

BKEY activates Border select. Use Border select to select a group of objects by drawing
a rectangle while holding down LMB. You will select all objects that lie within or
touch this rectangle.

Note: Border select adds to the previous selection, so to select only the contents of the
rectangle, deselect all with AKEY first. Use MMB while you draw the border to deselect
all objects within the rectangle.

Moving (translating) objects
Relevant to Blender v2.31

To move groups of objects, press GKEY to activate Grab mode for all selected objects.
The selected objects will be displayed as white wireframes and can be moved with
the mouse (without pressing any mouse buttons). To confirm the new position, click
LMB or press ENTER; to cancel Grab mode, click RMB or press ESC. The header of
the 3D Window displays the distance you are moving.

To lock movement to an axis of the global coordinate system, enter Grab mode, move
the object roughly along the desired axis, then press MMB. To deactivate locking
press MMB again. As a new 2.3 feature you can constrain movement to a given axis
by pressing XKEY, YKEY or ZKEY. A single key constrains movement to the cor-
responding global axis, as MMB does. A second keypress of the same key constrains
movement to the corresponding Object local axis. A third keypress of the same key
removes constraints. Lines are drawn to let you better visualize the constraint.

Once grabbing is activated you can enter the Object translation numerically by sim-
ply typing in a number. This will let you enter the first co-ordinate shown in the 3D
Window header. You can change co-ordinate with TAB use NKEY to exit/re-start
numeric input mode, ENTER to finalize and ESC to exit. BACKSPACE will return

71

Chapter 5. ObjectMode

to original values. Please note that you must use the keyboard .KEY not the NUM.
for decimals.

If you keep CTRL pressed while moving the object you will activate snap mode, and
the object will move by a whole number of Blender units (grid squares). Snap mode
ends when you release CTRL so be sure to confirm the position before releasing it.

The location of selected objects can be reset to the default value by pressing ALT-G.

Note: If you are striving for very fine and precise positioning, keep SHIFT pressed as you
move. This way a large mouse movement will translate to a small object movement, which
allows for fine tuning.

Blender Gesture System: You can also enter Grab mode by drawing a straight line while
holding down LMB .

Rotating objects
Relevant to Blender v2.31

To rotate objects, activate Rotate mode by pressing RKEY. As in Grab mode, you can
change the rotation by moving the mouse, confirm with LMB, or ENTER cancel with
RMB or ESC.

Rotation in 3D space occurs around an axis, and there are various ways to define
this axis. Blender defines an axis by direction and a point that it passes through. For
example, by default, the direction of the axis is orthogonal to your screen.

If you are viewing the scene from the front, side, or top, the rotation axis will be
parallel to one of the global coordinate system axes. If you are viewing the scene
from an angle, the rotation axis is angled too, which can easily lead to a very odd
rotation of your object. In this case, you may want to keep the rotation axis parallel to
the coordinate system axes. Toggle this behaviour by pressing MMB during Rotate
mode and watch the angle display in the window header.

Alternatively, once you are in rotate mode, you can press XKEY, YKEY or ZKEY
to constrain rotation along that axis of the global reference. By pressing XKEY-XKEY
(XKEY twice) you constrain rotation around the x axis of the Object local reference.
The same is true for double YKEY and ZKEY. As for Grab, a third keypress removes
constraints.

It is possible to have a numerical imput for rotation exactly as it was for translations.

Select the point for the rotation axis to pass through with the pertinent menu in the
header of the 3D window, as discussed below. (Figure 5-1).

72

Chapter 5. ObjectMode

Figure 5-1. The rotation point selection buttons

• Bounding Box Center - the axis passes through the center of the selection’s bounding
box. (If only one object is selected, the point used is the center point of the object,
which might not necessarily be in the geometric center. In Figure 5-1 it is on the
middle of the rightmost edge, marked by a purple dot. For more on this point, see
the Section called EditMode in Chapter 6.)

• Median Point - the axis passes through the median point of the selection. This dif-
ference is only relevant in EditMode, and the ’Median’ point is the barycentrum of
all vertices.

• 3D Cursor - the axis passes through the 3D cursor. The cursor can be placed any-
where you wish before rotating. You can use this option to easily perform certain
translations the at the same time that you rotate an object.

• Individual Object Centers - each selected object receives its own rotation axis, all
mutually parallel and passing through the center point of each object, respectively.
If you select only one object, you will get the same effect as with the first button.

If you’re just getting started with rotation, don’t worry too much about the foregoing
details. Just play around with Blender’s tools and you’ll get a feeling for how to work
with them.

Keeping CTRL pressed switches to snap mode. In snap mode rotations are con-
strained to 5ï¿½ steps. Keeping SHIFT pressed allows fine tuning here too. The rota-
tion of selected objects can be reset to the default value by pressing ALT-R.

Blender Gesture System: You can also enter Rotate mode by drawing a circular line
while holding down LMB .

Scaling/mirroring objects
Relevant to Blender v2.31

To change the size of objects, press SKEY. As in grab mode and rotate mode, scale the
objects by moving the mouse, confirm with LMB or ENTER, and cancel with RMB
or ESC.

Scaling in 3D space requires a center point. This point is defined with the same but-
tons as the axis’ supporting point for rotation (Figure 5-1). If you increase the size of

73

Chapter 5. ObjectMode

the object, all points are moved away from the selected center point; if you decrease
it, all points move towards this point.

By default, the selected objects are scaled uniformly in all directions. To change the
proportions (make the object longer, broader, and so on), you can lock the scaling
process to one of the global coordinate axes, just as you would when moving objects.
To do so, enter scale mode, move the mouse a bit in the direction of the axis you want
to scale, then press MMB. To return to uniform scaling, press MMB again. You will
see the scaling factors in the header of the 3D window.

Again all considerations on constraining to given axis made for Grabbing still holds,
as well as those on numerical input.

Here again CTRL switches to snap mode, with discrete scaling at 0.1 steps. Press
SHIFT for fine tuning. The scaling of selected objects can be reset to the default value
by pressing ALT-S.

Mirroring objects is a different application of the scale tool. Mirroring is effectively
nothing but scaling with a negative factor in one direction. To mirror in the direction
of the X or Y axes, press SKEY to go to scaling mode, then NKEY to switch to numeric
input. Select the desired coordinates and enter ’-1’ as scaling factor.

Blender Gesture System: You can also enter scale mode by drawing a V-shaped line
while holding down LMB .

Transform Properties Panel
Relevant to Blender v2.31

Say you want to display the position/rotation/scaling of your object in numbers. Or,
you want to enter the location, rotation, and scaling values for an object directly at
once. To do so, select the object you want to edit and press NKEY. The Transform
Properties Panel (Figure 5-2) is displayed. SHIFT-LMB-click a number to enter a
value, then press OK to confirm the changes or move the mouse outside the window
to cancel.

Figure 5-2. The number dialog

The panel also displays the Object name in the OB: Button. You can edit it from here.

74

Chapter 5. ObjectMode

Duplicate
Relevant to Blender v2.31

To duplicate an object, press SHIFT-D to create an identical copy of the selected ob-
jects. The copy is created at the same position, in Grab mode.

This is a new object except that it shares any Material, Texture, and IPO with the
original. These attributes are linked to both copies and changing the material of one
object also changes the material of the other. (You can make separate materials for
each, as described in the Materials Chapter.)

You can create a Linked Duplicate rather than a real duplicate by pressing ALT-D. This
will create a new object with all of its data linked to the original object. If you modify
one of the linked objects in EditMode, all linked copies are also modified.

Parenting (Grouping)
Relevant to Blender v2.31

To create a group of objects, you must first make one of them the parent of the others.
To do so, select at least two objects, press CTRL-P, and confirm on the dialog Make
Parent? . The active object will be made the parent of all the others. The center of all
children is now linked to the center of the parent by a dashed line. At this point, grab-
bing, rotating, and scaling the parent will do the same to the children being grabbed,
rotated and scaled likewise.

Parenting is a very important tool with many advanced applications, as we’ll see in
later chapters.

Press SHIFT-G with an active object to see the Group Selection menu (Figure 5-3).
This contains:

• Children - Selects all the active objects’ children, and the children’s children, up
to the last generation.

• Immediate Children - Selects all the active objects’ children but not these latter’s
children.

• Parent - Selects the parent of the active object.

• Objects on shared layers - This actually has nothing to do with parents. It
selects all objects on the same layer(s) of the active object.

Figure 5-3. Group Select

75

Chapter 5. ObjectMode

Move the child to the parent by clearing its origin (select it and press ALT-O).

Remove a parent relation via ALT-P. You can (Figure 5-4):

• Clear parent - Frees the children, which return to their original location, rotation,
and size.

• Clear parent...and keep transform - Frees the children, and keeps the loca-
tion, rotation, and size given to them by the parent.

• Clear parent inverse - Places the children with respect to the parent as if they
were placed in the Global reference. This effectively clears the parent’s transforma-
tion from the children.

Figure 5-4. Freeing Children

Tracking
Relevant to Blender v2.31

To make an object rotate so that it faces another object, and keep this facing even if
either object is moved, select at least two objects and press CTRL-T. A dialog appears
asking if you want to use a Track constraint or the old (Pre-2.30) track system. The
Track constraint will be analyzed in the Section called Constraints in Chapter 16 and
is the preferred method.

Here we will briefly treat the old track system, so, let’s assume you have selected Old
Track in the dialog. By default the inactive object(s) now track the active object so
that their local y axis points to the tracked object. However, this may not happen if
the tracking object already has a rotation of its own. You can produce correct tracking
by canceling the rotation (ALT-R) of the tracking object.

The orientation of the tracking object is also set so that the z axis is upward. To change
this, select the tracking object, change the Button Window to Object Context (, or
F7) and select the track axis from the first row of six radio buttons and the upward-
pointing axis from the second in the Anim Setting panel. (Figure 5-5).

Figure 5-5. Setting track axis.

76

Chapter 5. ObjectMode

To clear a track constraint, select the tracking object and press ALT-T. As with clearing
a parent constraint, you must choose whether to lose or save the rotation imposed by
the tracking.

Other Actions
Relevant to Blender v2.31

Erase

Press XKEY or DEL to erase the selected objects. Using XKEY is more practical for
most people, because it can easily be reached with the left hand on the keyboard.

Join

Press CTRL-J to join all selected objects to one single object. (The objects must be of
the same type.) The center point of the resulting object is obtained from the previ-
ously active object.

Select Links

Press SHIFT-L to select all objects sharing a link with the active one. You can select
objects sharing an IPO, data, material, or texture link (Figure 5-6).

Figure 5-6. Selecting links.

Boolean operations
Relevant to Blender v2.31

Boolean operations are particular actions which can be taken only on mesh type ob-
jects. While they will work for all Mesh objects, they are really intended for use with
solid, closed objects with a well defined interior and exterior region. Thus, it is very
important to define the normals in each object consistently, that is all each normal of
each face should point outward. See Chapter 6 for further info on normals and on
why you can end up with normals pointing partuially outward and partially inward.

In the case of open objects, the interior is defined mathematically by extending the
boundary faces of the object to infinity. As such, you may find that you get unex-
pected results for these objects.

A boolean operation never affects the original operands, the result is always a new
Blender object.

77

Chapter 5. ObjectMode

Boolean operations are invoked by selecting exactly two meshes and pressing WKEY.
There are three types of boolean operations to choose from in the popup menu, In-
tersect , Union and Difference .

The boolean operations also take materials and UV-Textures into account, producing
objects with material indices or multi UV-mapped objects.

Figure 5-7. Options for boolean operations

Consider the object Figure 5-7.

• The Intersect operation creates a new object whose surface encloses the volume
common to both original objects.

• The Union operation creates a new object whose surface encloses the volume of
both original objects.

• The Difference operation is the only one in which the order of selection is im-
portant. The active object (light purple in wireframe view) is subtracted from the
selected object. That is, the resulting object surface encloses a volume which is the
volume belonging to the selected and inactive object, but not to the selected and
active one.

Figure 5-8 shows the results of the three operations.

78

Chapter 5. ObjectMode

Figure 5-8. Resulting objects for: intersect, union, difference (top to bottom).

The number of polygons generated can be very large compared to the original
meshes, especially when using complex concave objects. Furthermore, the polygons
that are generated can be of generally poor quality: very long and thin and
sometimes very small. Try using the Mesh Decimator (EditButtons F9) to fix this
problem.

Vertices in the resulting mesh that fall on the boundary of the two original objects
often do not match up, and boundary vertices are duplicated. This is good in some
respects because it means that you can select parts of the original meshes by selecting
one vertex in the result and pressing the select linked button (LKEY). This is handy
if you want to assign materials and such to the result.

Note: Sometimes the boolean operation can fail with a message saying ("An internal
error occurred -- sorry"). If this occurs, try to move or rotate the objects just a very small

79

Chapter 5. ObjectMode

amount.

80

Chapter 6. Basic Mesh Modelling

The principal Object of a 3D scene is usually a Mesh. In this chapter we will first
enumerate the basic mesh objects, or primitives, then follow with the description of
the most basic actions you can take on a Mesh Objects.

Basic Objects
Relevant to Blender v2.31

To create a basic Object press SPACE and select "ADD>>Mesh", or, access the ’Add’-
menu by pressing SHIFT-A or simply hold LMB on 3D Window, for more than half a
second. Select the basic object you’d like to create from the menu. We describe every
basic object or primitive you can create within Blender below. Figure 6-1 also shows
the variety of basic objects that can be created.

Figure 6-1. Basic Objects

Plane

A standard plane contains four vertices, four edges, and one face. It is like a piece of
paper lying on a table; it is not a real three-dimensional object because it is flat and
has no thickness. Objects that can be created with planes include floors, tabletops, or
mirrors.

Cube

A standard cube contains eight vertices, 12 edges, and six faces, and is a real three-
dimensional object. Objects that can be created out of cubes include dice, boxes, or
crates.

Circle

A standard circle is comprised of n vertices. The number of vertices can be specified
in the popup window which appears when the circle is created. The more vertices the
circle contains, the smoother its contour will be. Examples of circle objects are disks,
plates, or any kind of flat and round object.

UVSphere

A standard UVsphere is made out of n segments and m rings. The level of detail
can be specified in the popup window which appears when the UVsphere is created.
Increasing the number of segments and rings makes the surface of the UVsphere
smoother. Segments are like Earth meridians, going pole to pole, rings are like Earth
parallels. Example objects that can be created out of UVspheres are balls, heads or
pearls for a necklace.

Note: If you specify a six segment, six ring UVsphere you’ll get something which, in top
view, is a hexagon (six segments), with five rings plus two points at the poles. Thus, one
ring fewer than expected, or two more, if you count the poles as rings of radius 0.

81

Chapter 6. Basic Mesh Modelling

Icosphere

An Icosphere is made up of triangles. The number of subdivisions can be specified
in the window that pops up when the Icosphere is created; increasing the number of
subdivisions makes the surface of the Icosphere smoother. At level 1 the Icosphere is
an icosahedron, a solid with 20 equilateral triangular faces. Any increasing level of
subdivision splits each triangular face into four triangles, resulting in a more spheri-
cal appearance. Icosphere’s are normally used to achieve a more isotropical and eco-
nomical layout of vertices than a UVsphere.

Cylinder

A standard cylinder is made out of n vertices. The number of vertices in the circular
cross-section can be specified in the popup window that appears when the object
is created; the higher the number of vertices, the smoother the circular cross-section
becomes. Objects that can be created out of cylinders include handles or rods.

Tube

A standard tube is made out of n vertices. The number of vertices in the hollow circu-
lar cross-section can be specified in the popup window that appears when the object
is created; the higher the number of vertices, the smoother the hollow circular cross-
section becomes. Objects that can be created out of tubes include pipes or drinking
glasses. (The basic difference between a cylinder and a tube is that the former has
closed ends.)

Cone

A standard cone is made out of n vertices. The number of vertices in the circular base
can be specified in the popup window that appears when the object is created; the
higher the number of vertices, the smoother the circular base becomes. Objects that
can be created out of cones include spikes or pointed hats.

Grid

A standard grid is made out of n by m vertices. The resolution of the x-axis and y-
axis can be specified in the popup window which appears when the object is created;
the higher the resolution, the more vertices are created. Example objects that can be
created out of grids include landscapes (with the proportional editing tool) and other
organic surfaces.

Monkey

This is a gift from old NaN to the community and is seen as a programmer’s joke or
"Easter Egg". It creates a monkey’s head once you press the Oooh Oooh Ooohbutton.
The Monkey’s name is Suzanne and is Blender’s mascot.

EditMode
Relevant to Blender v2.31

When working with geometric objects in Blender, you can work in two modes: Ob-
jectMode and EditMode. Basically, as seen in the previous section, operations in Ob-
jectMode affect whole objects, and operations in EditMode affect only the geometry
of an object, but not its global properties such as the location or rotation.

In Blender you switch between these two modes with the TAB key. EditMode only
works on one object at a time: the active object. An object outside EditMode is drawn
in purple in the 3D Windows (in wireframe mode) when selected; it is black other-
wise. The active object is drawn black in EditMode, but each vertex is highlighted
in purple (Figure 6-2). Selected vertices are drawn in yellow (Figure 6-3) and, if ap-

82

Chapter 6. Basic Mesh Modelling

propriate buttons in the Editing (F9) Context Mesh Tools 1 Panel are pressed (Draw
Faces and Draw Edges) also selected edges and faces are highlighted.

Figure 6-2. Two pyramids, one in EditMode (left) and one in ObjectMode (right).

Figure 6-3. Cube with selected vertices in yellow.

Structures: Vertices, Edges and Faces
In basic meshes, everything is built from three basic structures: Vertices, Edges and
Faces. (We’re not talking about Curves, NURBS, and so forth here.) But there is no
need to be disappointed: This simplicity still provides us with a wealth of possibilities
that will be the foundation for all our models.

Vertices

A vertex is primarily a single point or position in 3D space. It is usually invisible
in rendering and in ObjectMode. (Don’t mistake the center point of an object for a
vertex. It looks similar, but its bigger and you can’t select it.)

To create a new vertex, change to EditMode, hold down CTRL, and click with the
LMB. Of course, as a computer screen is two-dimensional, Blender can’t determine
all three vertex coordinates from one mouse click, so the new vertex is placed at

83

Chapter 6. Basic Mesh Modelling

the depth of the 3D cursor ’into’ the screen. Any vertices selected previously are
automatically connected to the new one with an edge.

Edges

An edge always connects two vertices with a straight line. The edges are the ’wires’
you see when you look at a mesh in wireframe view. They are usually invisible on
the rendered image. They are used to construct faces. Create an edge by selecting two
vertices and pressing FKEY.

Faces

A Face is the most high level structure in a mesh. Faces are used to build the actual
surface of the object. They are what you see when you render the mesh. A Face is
defined as the area between either three or four vertices, with an Edge on every side.
Triangles always work well, because they are always flat and easy to calculate.

Take care when using four-sided faces, because internally they are simply divided
into two triangles each. Four-sided faces only work well if the Face is pretty much
flat (all points lie within one imaginary plane) and convex (the angle at no corner is
greater than or equal to 180 degrees). This is the case with the faces of a cube, for
example. (That’s why you can’t see any diagonals in its wireframe model, because
they would divide each square face into two triangles. While you could build a cube
with triangular faces, it would just look more confusing in EditMode.)

An area between three or four vertices, outlined by Edges, doesn’t have to be a face.
If this area does not contain a face, it will simply be transparent or non-existent in
the rendered image. To create a face, select three or four suitable vertices and press
FKEY.

Basic Editing
Most simple operations from ObjectMode (like selecting, moving, rotating, and scal-
ing) work identically on vertices as they do on objects. Thus, you can learn how to
handle basic EditMode operations very quickly. The only notable difference is a new
scaling option, ALT-S which scales the selected vertices along the direction of the nor-
mals (shrinks-fattens). The truncated pyramid in Figure 6-4, for example, was created
with the following steps:

1. Add a cube to an empty scene. Enter EditMode.

2. Make sure all vertices are deselected (purple). Use border select (BKEY) to
select the upper four vertices.

3. Check that the scaling center is set to anything but the 3D cursor (see Figure 5-
1), then switch to scale mode (SKEY), reduce the size, and confirm with LMB.

4. Exit EditMode by pressing TAB.

Figure 6-4. Chopped-off pyramid

84

Chapter 6. Basic Mesh Modelling

One Extra feature for Edit Mode is the Mirroring tool. If you have some vertices
selected and you press MKEY you will be presented with a Menu containing nine
options. You can select from these to mirror the selected vertice with respect to any
of the X,Y or Z axis of the Global, Local, or Viewing reference.

One additional feature of EditMode is the CircleSelect mode. It is invoked by pressing
BKEY twice instead of only once, as you would for BorderSelect. A light grey circle
is drawn around the cursor and any LMB click selects all vertices within. NUM+ and
NUM- or the MW, if any, enlarge or shrink the circle.

All operations in EditMode are ultimately performed on the vertices; the connected
edges and faces automatically adapt, as they depend on the vertices’ positions. To
select an edge, you must select the two endpoints or either place the mouse on the
edge and press CTRL-ALT-RMB. To select a face, each corner must be selected.

EditMode operations are many, and most are summarized in the Editing Context
Buttons window, accessed via the () header button or via F9 (Figure 6-5). Note
the group of buttons in the Mesh Tools 1 Panel:

Figure 6-5. Edit Context.

• NSize: - Determines the length, in Blender Units, of the normals to the faces, if
they are drawn.

• Draw Normals - Toggle drawing of Normals. If this is ON, face normals are drawn
as cyan segments.

• Draw Faces - If this is ON, faces are drawn as semi-transparent blue, or as semi-
transparent purple if they are selected. If this is OFF, faces are invisible.

• Draw Edges - Edges are always drawn black, but if this button is ON, selected
edges are drawn in yellow. Edges joining a selected node and an un-selected one
have a yellow-black gradient.

• All Edges - Only those edges strictly necessary to show an object’s shape are
shown in Object mode. You can force Blender to draw all edges with this button.

Note: Of course, all these colors are customizable in the Theme editor.

With WKEY you can call up the "Specials" menu in EditMode (Figure 6-6). With this
menu you can quickly access functions which are frequently required for polygon-
modelling.

Tip: You can access the entries in a PopupMenu by using the corresponding numberkey.
For example, pressing WKEY and then 1KEY will subdivide the selected edges without
you having to touch the mouse at all.

85

Chapter 6. Basic Mesh Modelling

Figure 6-6. Specials Menu

• Subdivide - Each selected edge is split in two, new vertices are created at middle
points, and faces are split too, if necessary.

• Subdivide Fractal - As above, but new vertices are randomly displaced within
a user-defined range.

• Subdivide Smooth - As above, but new vertices are displaced towards the
barycenter (centre of mass) of the connected vertices.

• Merge - Merges selected vertices into a single one, at the barycenter position or at
the cursor position.

• Remove Doubles - Merges all of the selected vertices whose relative distance is
below a given threshold (0.001 by default).

• Hide - Hides selected vertices.

• Reveal - Shows hidden vertices.

• Select Swap - All selected vertices become unselected and vice-versa.

• Flip Normals - Change the Normal directions in the selected faces.

• Smooth - Smooths out a mesh by moving each vertex towards the barycenter of the
linked vertices.

• Mirror - Same as MKEY described above.

Many of these actions have a button of their own in the Mesh Tools Panel of the Edit
Buttons Window (Figure 6-5). The Remove doubles threshold can be adjusted here,
too.

Mesh Undo
As of Blender 2.3 we finally have a true Undo. It works only for Meshes and only in
EditMode.

86

Chapter 6. Basic Mesh Modelling

Mesh undo works in the background saving copies of your mesh in memory as you
make changes. Pressing the UKEY in mesh EditMode reverts to the previously saved
mesh, undoing the last edit operation (Figure 6-7).

Undo operations are only stored for one mesh at a time. You can leave and re-enter
EditMode for the same mesh without losing any undo information, but once another
mesh is edited, the undo information for the first is lost.

Figure 6-7. Undo and Redo

Pressing SHIFT-U re-does the last undo operation (Figure 6-7). Pressing ALT-U
brings up the Undo Menu (Figure 6-8). This lists all the undo steps by name so you
can quickly find your way back to a known good point in your work. The ALT-U
menu also contains the option All Changes . This option is more powerful than
merely pressing UKEY repeatedly, and will reload the mesh data as it was at the
beginning of your edit session, even if you have used up all your undo steps.

Figure 6-8. Undo Menu

Edit undo can be memory intensive. A mesh of 64,000 faces and verts can use over
3Mb of RAM per undo step. If you are on a machine that is strapped for RAM, in
the User Preference Window, under Edit Methods , there is a NumButton for deter-
mining the maximum number of undo steps saved. The allowable range is between
1 and 64. The default is 32.

87

Chapter 6. Basic Mesh Modelling

Smoothing
Relevant to Blender v2.31

As seen in the previous sections, polygons are central to Blender. Most objects in
Blender are represented by polygons and truly curved objects are often approximated
by polygon meshes.

When rendering images, you may notice that these polygons appear as a series of
small, flat faces. (Figure 6-9). Sometimes this is a desirable effect, but usually we want
our objects to look nice and smooth. This section shows you how to smooth an object,
and how to apply the AutoSmooth filter to quickly and easily combine smooth and
faceted polygons in the same object.

Figure 6-9. Simple un-smoothed test object

There are two ways to activate Blender’s face smoothing features. The easiest way
is to set an entire object as smooth or faceted by selecting a mesh object, in Object-
Mode, switching to the Editing Context (F9), and clicking the Set Smooth button in
the Link and Materials Panel (Figure 6-10). The button does not stay pressed, but
forces Blender to assign the "smoothing" attribute to each face in the mesh. Now, ren-
dering the image with F12 should produce the image shown in Figure 6-11. Notice
that the outline of the object is still strongly faceted. Activating the smoothing fea-
tures doesn’t actually modify the object’s geometry; it changes the way the shading
is calculated across the surfaces, giving the illusion of a smooth surface.

Click the Set Solid button in the same Panel to revert the shading to that shown in
Figure 6-9.

88

Chapter 6. Basic Mesh Modelling

Figure 6-10. Set Smooth and Set Solid buttons of EditButtons window

Figure 6-11. Same object as above, but completely smoothed by ’Set Smooth’

Alternatively, you can choose which faces to smooth by entering EditMode for the
object with TAB, then selecting the faces and clicking the Set Smooth button (Fig-
ure 6-12). When the mesh is in editmode, only the selected faces will receive the
"smoothing" attribute. You can set solid faces (removing the "smoothing" attribute)
in the same way: by selecting faces and clicking the Set Solid button.

89

Chapter 6. Basic Mesh Modelling

Figure 6-12. Object in editmode with some faces selected.

It can be difficult to create certain combinations of smooth and solid faces using the
above techniques alone. Though there are workarounds (such as splitting off sets
of faces by selecting them and pressing YKEY), there is an easier way to combine
smooth and solid faces, by using AutoSmooth.

Press the AutoSmooth button in the Mesh Panel of the Edit Buttons (Figure 6-13) to
tell Blender to decide which faces should be smoothed on the basys of the angle
between faces (Figure 6-14). Angles on the model that are sharper than the angle
specified in the Degr NumBut will not be smoothed. Higher values will produce
more smoothed faces, while the lowest setting will look identical to a mesh that has
been set completely solid.

Only faces that have been set as smooth will be affected by the AutoSmooth fea-
ture. A mesh, or any faces that have been set as solid will not change their shading
when AutoSmooth is activated. This allows you extra control over which faces will
be smoothed and which ones won’t by overriding the decisions made by the Au-
toSmooth algorithm.

Figure 6-13. AutoSmooth button group in the EditButtons window.

90

Chapter 6. Basic Mesh Modelling

Figure 6-14. Same test object with AutoSmooth enabled

Extrude
Relevant to Blender v2.31

One tool of paramount importance for working with Meshes is the "Extrude" com-
mand (EKEY). This command allows you to create cubes from rectangles and cylin-
ders from circles, as well as to very easily create such things as tree limbs. Although
the process is quite intuitive, the principles behind Extrude are fairly elaborate as
discussed below.

• First, the algorithm determines the outside edge-loop of the Extrude; that is, which
among the selected edges will be changed into faces. By default, the algorithm
considers edges belonging to two or more selected faces as internal, and hence not
part of the loop.

• The edges in the edge-loop are then changed into faces.

• If the edges in the edge-loop belong to only one face in the complete mesh, then
all of the selected faces are duplicated and linked to the newly created faces. For
example, rectangles will result in cubes during this stage.

• In other cases, the selected faces are linked to the newly created faces but not
duplicated. This prevents undesired faces from being retained ’inside’ the resulting
mesh. This distinction is extremely important since it ensures the construction of
consistently coherent, closed volumes at all times when using Extrude.

• Edges not belonging to selected faces, which form an ’open’ edge-loop, are dupli-
cated and a new face is created between the new edge and the original one.

• Single selected vertices which do not belong to selected edges are duplicated and
a new edge is created between the two.

Grab mode is automatically started when the Extrude algorithm terminates, so newly
created faces, edges, and vertices can be moved around with the mouse.

Extrude is one of the most frequently used modelling tools in Blender. It’s simple,
straightforward, and easy to use, yet very powerful. The following short lesson de-
scribes how to build a sword using Extrude.

91

Chapter 6. Basic Mesh Modelling

The Blade
1. Start Blender and delete the default plane. In top view add a mesh circle with eight
vertices. Move the vertices so they match the configuration shown in Figure 6-15.

Figure 6-15. Deformed circle, to become the blade cross section.

2. Select all the vertices and scale them down with the SKEY so the shape fits in two
grid units. Switch to front view with NUM1.

3. The shape we’ve created is the base of the blade. Using Extrude we’ll create the
blade in a few simple steps. With all vertices selected press EKEY, or click the Ex-
trude button in the Mesh Tools Panel of the Editing Context (F9 - Figure 6-16). A
box will pop up asking Ok? Extrude (Figure 6-17).

Click this text or press ENTER to confirm, otherwise move the mouse outside or press
ESC to exit. If you now move the mouse you’ll see that Blender has duplicated the
vertices, connected them to the original ones with edges and faces, and has entered
grab mode.

Figure 6-16. Extrude button in EditButtons context.

Figure 6-17. Extrude confirmation box.

92

Chapter 6. Basic Mesh Modelling

4. Move the new vertices up 30 units, constraining the movement with CTRL, then
click LMB to confirm their new position and scale them down a little bit with the
SKEY (Figure 6-18).

Figure 6-18. The Blade

5. Press EKEY again to extrude the tip of the blade, then move the vertices five units
up. To make the blade end in one vertex, scale the top vertices down to 0.000 (hold
CTRL for this) and press WKEY>Remove Doubles (Figure 6-19) or click the Rem
Doubles button in the EditButtons (F9). Blender will inform you that it has removed
seven of the eight vertices and only one vertex remains. The blade is complete! (Fig-
ure 6-20)

93

Chapter 6. Basic Mesh Modelling

Figure 6-19. Mesh Edit Menu

Figure 6-20. The completed blade

The Handle
6. Leave edit mode and move the blade to the side. Add a UVsphere with 16 segments
and rings and deselect all the vertices with the AKEY.

7. Borderselect the top three rings of vertices with BKEY and delete them with
XKEY>>Vertices (Figure 6-21).

94

Chapter 6. Basic Mesh Modelling

Figure 6-21. UV sphere for the handle: vertices to be removed

Figure 6-22. First extrusion for the handle

8. Select the top ring of vertices and extrude them. Move the ring up four units and
scale them up a bit (Figure 6-22), then extrude and move four units again twice and
scale the last ring down a bit (Figure 6-23).

9. Leave EditMode and scale the entire handle down so that it’s in proportion with
the blade. Place it just under the blade.

95

Chapter 6. Basic Mesh Modelling

Figure 6-23. Complete handle

The Hilt
By now you should be used to the ’extrude>move>scale’ sequence, so try to model a
nice hilt with it. Start out with a cube and extrude different sides a few times, scaling
them where needed. You should be able to get something like that shown in Figure
6-24.

Figure 6-24. Complete Hilt

After texturing, the sword looks like Figure 6-25

96

Chapter 6. Basic Mesh Modelling

Figure 6-25. Finished sword, with textures and materials

As you can see, extrude is a very powerful tool that allows you to model relatively
complex objects very quickly (the entire sword was created in less than one half
hour). Getting the hang of extrude>move>scale will make your life as a Blender mod-
eler a lot easier.

Spin and SpinDup
Relevant to Blender v2.31

Spin and spin dup are two other very powerful modelling tools allowing you to
easily create bodies of revolution or axially periodic structures.

Spin
Use the Spin tool to create the sort of objects that you would produce on a lathe. (This
tool is often called a "lathe"-tool or a "sweep"-tool in the literature, for this reason.)

First, create a mesh representing the profile of your object. If you are modeling a
hollow object, it is a good idea to thicken the outline. Figure 6-26 shows the profile
for a wine glass we will model as a demonstration.

97

Chapter 6. Basic Mesh Modelling

Figure 6-26. Glass profile

In EditMode, with all the vertices selected, access the Editing Context (F9). The Degr
button in the Mesh Tools Panel indicates the number of degrees to spin the object
(in this case we want a full 360◦ sweep). The Steps button specifies how many pro-
files there will be in the sweep (Figure 6-27).

Figure 6-27. Spin Buttons

Like Spin Duplicate (discussed in the next section), the effects of Spin depend on the
placement of the cursor and which window (view) is active. We will be rotating the
object around the cursor in the top view. Switch to the top view with NUM7.

1. Place the cursor along the center of the profile by selecting one of the vertices along
the center, and snapping the cursor to that location with SHIFT-S>>Curs->Sel.

Figure 6-28 shows the wine glass profile from top view, with the cursor correctly
positioned.

98

Chapter 6. Basic Mesh Modelling

Figure 6-28. Glass profile, top view in edit mode, just before spinning.

Before continuing, note the number of vertices in the profile. You’ll find this informa-
tion in the Info bar at the top of the Blender interface (Figure 6-29).

Figure 6-29. Mesh data - Vertex and face numbers.

2. Click the "Spin" button. If you have more than one window open, the cursor will
change to an arrow with a question mark and you will have to click in the window
containing the top view before continuing. If you have only one window open, the
spin will happen immediately.

Figure 6-30 shows the result of a successful spin.

Figure 6-30. Spinned profile

3. The spin operation leaves duplicate vertices along the profile. You can select all
vertices at the seam with Box select (BKEY) (Figure 6-31) and do a Remove Doubles
operation.

99

Chapter 6. Basic Mesh Modelling

Figure 6-31. Seam vertex selection

Notice the selected vertex count before and after the Remove Doubles operation (Fig-
ure 6-32). If all goes well, the final vertex count (38 in this example) should match the
number of the original profile noted in Figure 6-29. If not, some vertices were missed
and you will need to weld them manually. Or, worse, too many vertices will have
been merged.

Figure 6-32. Vertex count after removing doubles.

Merging two vertices in one: To merge (weld) two vertices together, select both of them
by holding SHIFT and RMB on them. Press SKEY to start scaling and hold down CON-
TROL while scaling to scale the points down to 0 units in the X,Y and Z axis. LMB to
complete the scaling operation and click the Remove Doubles button in the EditButtons
window.

Alternatively, you can press WKEY and select Merge from the appearing Menu (Figure 6-
33). Then, in a new menu, choose whether the merged node will have to be at the center
of the selected nodes or at the cursor. The first choice is better in our case.

100

Chapter 6. Basic Mesh Modelling

Figure 6-33. Merge menu

All that remains now is to recalculate the normals by selecting all vertices and press-
ing CTRL-N>>Recalc Normals Outside . At this point you can leave EditMode and
apply materials or smoothing, set up some lights, a camera and make a rendering.
Figure 6-34 shows our wine glass in a finished state.

Figure 6-34. Final render of the glasses.

SpinDup
The Spin Dup tool is a great way to quickly make a series of copies of an object along
a circle. For example, if you have modeled a clock, and you now want to add hour
marks.

101

Chapter 6. Basic Mesh Modelling

Figure 6-35. Hour mark indicated by the arrow

Model just one mark, in the 12 o’clock position (Figure 6-35). Select the mark and
switch to the Editing Context with F9. Set the number of degrees in the Degr: Num
Button in the Mesh Tools Panel to 360. We want to make 12 copies of our object, so
set the Steps to 12 (Figure 6-36).

Figure 6-36. Spin Dup buttons

• Switch the view to the one in which you wish to rotate the object by using the
keypad. Note that the result of the Spin Dup command depends on the view you
are using when you press the button.

• Position the cursor at the center of rotation. The objects will be rotated around this
point.

• Select the object you wish to duplicate and enter EditMode with TAB.

• In EditMode, select the vertices you want to duplicate (note that you can select all
vertices with AKEY or all of the vertices linked to the point under the cursor with
LKEY). See Figure 6-37.

Cursor Placement: To place the cursor at the precise location of an existing object or
vertex, select the object or vertex, and press SHIFT-S>>CURS>>SEL.

102

Chapter 6. Basic Mesh Modelling

Figure 6-37. Mesh selected and ready to be SpinDuped

• Press the Spin Dup button. If you have more than one 3DWindow open, you will
notice the mouse cursor change to an arrow with a question mark. Click in the
window in which you want to do your rotation. In this case, we want to use the
front window (Figure 6-38).

If the view you want is not visible, you can dismiss the arrow/question mark with
ESC until you can switch a window to the appropriate view with the keypad.

Figure 6-38. View selection for Spin Dup.

When spin-duplicating an object 360 degrees, a duplicate object is placed at the same
location of the first object, producing duplicate geometry. You will notice that after
clicking the Spin Dup button, the original geometry remains selected. To delete it,

103

Chapter 6. Basic Mesh Modelling

simply press XKEY>>Vertices. The source object is deleted, but the duplicated ver-
sion beneath it remains (Figure 6-39).

Figure 6-39. Removal of duplicated object

Avoiding duplicates: If you like a little math you needn’t bother with duplicates because
you can avoid them at the start. Just make 11 duplicates, not 12, and not around the
whole 360◦, but just through 330◦ (that is 360*11/12). This way no duplicate is placed
over the original object.

In general, to make n duplicates over 360 degrees without overlapping, just spin one less
object over 360*(n-1)/n degrees.

Figure 6-40 shows the final rendering of the clock.

Figure 6-40. Final Clock Render.

104

Chapter 6. Basic Mesh Modelling

Screw
Relevant to Blender v2.31

The "Screw" tool combines a repetitive "Spin" with a translation, to generate a screw-
like, or spiral-shaped, object. Use this tool to create screws, springs, or shell-shaped
structures.

Figure 6-41. How to make a spring: before (left) and after (right) the Screw tool.

The method for using the "Screw" function is strict:

• Set the 3DWindow to front view (NUM1).

• Place the 3DCursor at the position through which the rotation axis must pass. Such
an axis will be vertical.

• Ensure that an open poly line is available. This can be a single edge, as shown in
the figure, or a half circle, or whatever. You need only to ensure that there are
two ’free’ ends; two vertices belonging to a single edge linking then to another
vertex. The "Screw" function localizes these two points and uses them to calculate
the translation vector that is added to the "Spin" per each full rotation (Figure 6-
41). If these two vertices are at the same location, this creates a normal "Spin".
Otherwise, interesting things happen!

• Select all vertices that will participate in the "Screw".

• Assign the Num Buttons Steps: and Turns: in the Mesh Tools Panel the desired
values. Steps: determines how many times the profile is repeated within each 360◦
rotation, while Turns: sets the number of complete 360◦ rotations to be performed.

• Press Screw !

If there are multiple 3DWindows, the mouse cursor changes to a question mark. Click
on the 3DWindow in which the "Screw" is to be executed.

If the two "free" ends are aligned vertically the result is the one seen above. If they
are not, the translation vector remains vertical, equal to the vertical component of the
vector joining the two ’free’ vertices, while the horizontal component generates an
enlargement (or reduction) of the screw as shown in Figure 6-42.

105

Chapter 6. Basic Mesh Modelling

Figure 6-42. Enlarging screw (right) obtained with the profile on the left.

Warp Tool
Relevant to Blender v2.31

The warp tool is a little-known tool in Blender, partly because it is not found in the
EditButtons window, and partly because it is only useful in very specific cases. At
any rate, it is not something that the average Blender-user needs to use every day.

A piece of text wrapped into a ring shape is useful when creating flying logos, but it
would be difficult to model without the use of the warp tool. For our example, we’ll
warp the phrase "Amazingly Warped Text" around a sphere.

1. First add the sphere.

2. Then add the text in front view, in the Editing Context and Curve and Surface
Panel set Ext1 to 0.1 - making the text 3D, and set Ext2 to 0.01, adding a nice bevel to
the edge. Make the BevResol 1 or 2 to have a smooth bevel and lower the resolution
so that the vertex count will not be too high when you subdivide the object later
on (Figure 6-43 - and see the Section called Text in Chapter 9). Convert the object to
curves, then to a mesh, (ALT-C twice) because the warp tool does not work on text or
on curves. Subdivide the mesh twice, so that the geometry will change shape cleanly,
without artifacts.

106

Chapter 6. Basic Mesh Modelling

Figure 6-43. Text settings

Switch to top view and move the mesh away from the 3D cursor. This distance de-
fines the radius of the warp. (See Figure 6-44.)

Figure 6-44. Top view of text and sphere

Place the mesh in Edit Mode (TAB) and press AKEY to select all vertices. Press
SHIFT-W to activate the warp tool. Move the mouse up or down to interactively
define the amount of warp. (Figure 6-45). Holding down CTRL makes warp change
in steps of five degrees.

107

Chapter 6. Basic Mesh Modelling

Figure 6-45. Warped text

Now you can switch to camera view, add materials, lights and render (Figure 6-46).

Figure 6-46. Final rendering

Object Hooks
by Kenneth Styrberg

Relevant to Blender v2.35

Hooks give access at object level to the underlying geometry of meshes, curves, sur-
faces or lattices. A hook is an object feature and it is like a parent to an object, but for
vertices. You can create as many hooks to an object as you like, and assign for each
hook vertices that will be affected. Overlapping hooks is also possible, here a weight-
ing factor per hook is provided that determines the amount each hook will affect the
overlapping vertices.

108

Chapter 6. Basic Mesh Modelling

Note: When you completely remodel something, you most likely have to reassign existing
hooks as well.

Adding hooks
Since hooks relate to vertices or control points, most editing options are available in
edit mode for meshes, curves, surfaces and lattices. Select any number of vertices,
and press CTRL-H to access the hooks menu.

Figure 6-47. Hooks menu

Add, New Empty Adds a new hook and create a new empty object, that will be a
parent to the selection, at the center of the selection.

Add, To Selected Object When another object is selected (you can do that in edit
mode with CTRL-RMB) the new hook is created and parented to that object.

Using hooks
Inside of edit mode, hooks are disabled, to enable modeling better. Only in object
mode you can actually use the hooks. All object level options and transformations
are possible now, including using hierarchies, constraints, ipo and path animations.

You can also make the hook-parent a child of the original object if you don’t want
object transformations to deform the hooks.

EditMode options
Once hooks are available in an object, the CTRL-H menu will give additional options:

Figure 6-48. Hooks extended menu

Remove... This will give a new menu with a list of hooks to remove.

109

Chapter 6. Basic Mesh Modelling

Reassign... Use this if you want to assign new vertices to a hook.

Select... To select the vertices of a specific hook.

Clear Offset... This will neutralize the current transformation of a hook parent.

Hooks panel
You can find buttons for hooks in the object context (F7) in the Hooks tab. Here you
can give a hook a new name, the default name is the parent name, give it a new
parent by typing the new parents name or assign it a Force weighting factor.

Figure 6-49. Hooks panel

Force Since multiple hooks can work on the same vertices, you can weight the influ-
ence of a hook this way. Weighting rules are:

• If the total of all forces is smaller than 1.0, the remainder, 1.0-forces, will be the
factor the original position have as force.

• If the total of all ’forces’ is larger than 1.0, it only uses the hook transformations,
averaged by their weights.

Falloff If not zero, the falloff is the distance where the influence of a hook goes to zero.
It currently uses a smooth interpolation, comparable to the Proportional Editing
Tools . (See the Section called Proportional Editing Tool in Chapter 7)

Delete Delete the hook from the object.

Clear offset Neutralize the current transformation of a hook.

110

Chapter 7. Advanced Mesh Modelling

Blender provides several advanced Mesh Modeling features, mostly aimed at han-
dling easily complex meshes or rather enabling economical, lov-vertex number mod-
eling of complex smooth surfaces.

Catmull-Clark Subdivision Surfaces (-)
Relevant to Blender v2.31 MISSING SIMPLE SUBSURF and CREASES (so let’s wait 2.234
to update)

With any regular Mesh as a starting point, Blender can calculate a smooth subdivision
on the fly, while modelling or while rendering, using Catmull-Clark Subdivision Sur-
faces or, in short SubSurf . SubSurf is a mathematical algorithm to compute a "smooth"
subdivision of a mesh. This allows high resolution Mesh modelling without the need
to save and maintain huge amounts of data. This also allows for a smooth ’organic’
look to the models.

Actually a SubSurfed Mesh and a NURBS surface have many points in common inas-
much as both rely on a "coarse" low-poly "mesh" to define a smooth "high definition"
surface. But there are also notable differences:

• NURBS allow for finer control on the surface, since you can set "weights" indepen-
dently on each control point of the control mesh. On a SubSurfed mesh you cannot
act on weights.

• SubSurfs have a more flexible modelling approach. Since a SubSurf is a mathe-
matical operation occurring on a mesh, you can use all the modelling techniques
described in this chapter on the mesh. There are more techniques, which are far
more flexible, than those available for NURBS control polygons.

SubSurf is a Mesh option, activated in the Editing Context Mesh Panel (F9 - Figure 7-
1). The Num Buttons immediately below it define, on the left, the resolution (or level)
of subdivision for 3D visualization purposes; the one on the right, the resolution
for rendering purposes. You can also use SHIFT-O if you are in ObjectMode. This
switches SubSurf On/Off. The SubSurf level can also be controlled via CTRL-1 to
CTRL-4, but this only affects the visualization sub-division level.

Since SubSurf computations are performed both real-time, while you model, and at
render time, and they are CPU intensive, it is usually good practice to keep the Sub-
Surf level low (but non-zero) while modelling; higher while rendering.

Figure 7-1. SubSurf buttons

From version 2.3 Blender has a new SubSurfed-related button: Optimal . This changes
the way SubSurf meshes are drawn and can be of great help in modelling. Figure 7-

111

Chapter 7. Advanced Mesh Modelling

2 shows a series of pictures showing various different combinations on Suzanne’s
Mesh.

112

Chapter 7. Advanced Mesh Modelling

Figure 7-2. SubSurfed Suzanne.

113

Chapter 7. Advanced Mesh Modelling

Figure 7-3 shows a 0,1,2,3 level of SubSurf on a single square face or on a single
triangular face. Such a subdivision is performed, on a generic mesh, for each square
or rectangular face.

It is evident how each single quadrilateral face produces 4^n faces in the SubSurfed
mesh. n is the SubSurf level, or resolution, while each triangular face produces
3*4^(n-1) new faces (Figure 7-3). This dramatic increase of face (and vertex) number
results in a slow-down of all editing, and rendering, actions and calls for lower
SubSurf level in the editing process than in the rendering one.

Figure 7-3. SubSurf of simple square and rectangular faces.

Blender’s subdivision system is based on the Catmull-Clarke algorithm. This pro-
duces nice smooth SubSurf meshes but any ’SubSurfed’ face, that is, any small face
created by the algorithm from a single face of the original mesh, shares the normal
orientation of that original face.

This is not an issue for the shape itself, as Figure 7-4 shows, but it is an issue in the
rendering phase and in solid mode, where abrupt normal changes can produce ugly
black lines (Figure 7-5).

114

Chapter 7. Advanced Mesh Modelling

Figure 7-4. Side view of subsurfed meshes. With random normals (top) and with
coherent normals (bottom)

Use the CTRL-N command in EditMode, with all vertices selected, to make Blender
recalculate the normals.

Figure 7-5. Solid view of SubSurfed meshes with inconsistent normals (top) and
consistent normals (bottom).

In these images the face normals are drawn cyan. You can enable drawing normals
in the EditButtons (F9) menu.

115

Chapter 7. Advanced Mesh Modelling

Note that Blender cannot recalculate normals correcty if the mesh is not "Manifold".
A "Non-Manifold" mesh is a mesh for which an ’out’ cannot unequivocally be com-
puted. Basically, from the Blender point of view, it is a mesh where there are edges
belonging to more than two faces.

Figure 7-6 shows a very simple example of a "Non-Manifold" mesh. In general a
"Non-Manifold" mesh occurs when you have internal faces and the like.

Figure 7-6. A "Non-Manifold" mesh

A "Non-Manifold" mesh is not a problem for conventional meshes, but can give rise
to ugly artifacts in SubSurfed meshes. Also, it does not allow decimation, so it is
better to avoid them as much as possible.

Use these two hints to tell whether a mesh is "Non Manifold":

• The Recalculation of normals leaves black lines somewhere

• The "Decimator" tool in the Mesh Panel refuses to work stating that the mesh is
"No Manifold"

The SubSurf tool allows you to create very good "organic" models, but remember that
a regular Mesh with square faces, rather than triangular ones, gives the best results.

Figure 7-7 and Figure 7-8 show an example of what can be done with Blender Sub-
Surfs.

116

Chapter 7. Advanced Mesh Modelling

Figure 7-7. A Gargoyle base mesh (left) and pertinent level 2 SubSurfed Mesh
(right).

Figure 7-8. Solid view (left) and final rendering (right) of the Gargoyle.

117

Chapter 7. Advanced Mesh Modelling

Weighted creases for subdivision surfaces
by Kenneth Styrberg

Relevant to Blender v2.34

Weighted creases for subdivision surfaces allows for tuning of the edge sharpness.

Creases are a property of mesh edges, and can be edited in mesh Edit Mode when the
mesh is a subsurf. Select the edges you want to have creased, and press SHIFT-E to
change the amount of the edge sharpness.

You can enable an indication of your edge sharpness by enabling Draw Creases. See
Figure 7-9.

Figure 7-9. Mesh Tools 1 panel

The sharpness value on the edge is indicated as a thicker part on the edge. If the edge
has a sharpness value of 1.0, the edge will have a thicker look, and if sharpness value
is 0.0, the edge will be thin. If sharpness value is between 0.0 and 1.0, only part of the
edge will be thicker. See Figure 7-10.

Figure 7-10. Edge sharpness around 0.5

To use creases we need to activate subsurfaces. Select the default cube, if you do not
have one, add one! Go to the Edit panel (F9) and press the SubSurf button. Make sure
the subsurf type is Catmull-Clark in the drop-down list, now move up the subdivision
level to 3 for both display and render values. See Figure 7-11. The cube will get the
look of a sphere.

118

Chapter 7. Advanced Mesh Modelling

Figure 7-11. Mesh panel

Enter Edit Mode (TAB), with cube selected. By default you are in Vertices Select mode,
now press CTRL-TAB to get a Select Mode menu, Figure 7-12, select Edges.

Figure 7-12. Select Mode menu

Now select all edges by pressing AKEY. All edges should get a yellowish color, Fig-
ure 7-13. If all edges are black, then something was already previously selected. Press
AKEY again to select all edges.

Figure 7-13. All edges selected

Now press SHIFT-E to edit the edge sharpness value. The sharpness value will be
seen in realtime in the tool bar, Figure 7-14. Move mouse pointer closer to or away
from the edge/s to alter the sharpness value. Set the value for all edges to 1.0. The
cube will get back it’s normal look as a cube.

Figure 7-14. Edge sharpness

Now select two opposite edges on top of cube. Press SHIFT-E to edit the edge sharp-
ness value. Set the value for the edges to 0.0, Figure 7-15.

119

Chapter 7. Advanced Mesh Modelling

Figure 7-15. Two edges selected

If you render you will get a nice cube with a rounded top, Figure 7-16. A very good
improvement in workflow to achieve this kind of mesh!

Figure 7-16. Result

Edge Tools
Relevant to Blender v2.33

In Blender 2.30 some brand new modelling tools were added. These focused on edges
and faces, as opposed to vertices.

A key issue in Modelling is often the necessity to add vertices in certain zones of
the mesh, and this is often regarded as splitting, or adding, edges in a given region.
Blender now offers two tools for this, a Knife Tool able to split edges in desired loca-
tions, and a Face Loop tool, able to select face paths and split them consistently.

Many Edge Tools are grouped in a menu which is linked to KKEY Hotkey, but each
individual tool has its own hotkey as well.

Edge/Face select
In EditMode, by pressing ALT-B one activates the edge/face select tool. If ALT-B is
pressed once, then Blender is in edge select mode. The edge under the cursor is high-
lighted cyan. For each end point in the edge the following operations are performed:

1. It checks to see if it connects to only 3 other edges.

2. If the edge in question has already been added to the list, the selection ends.

120

Chapter 7. Advanced Mesh Modelling

3. Of the 3 edges that connect to the current edge, the ones that share a face with
the current edge are eliminated and the remaining edge is added to the list and
is made the current edge.

This way a loop of edges is highlighted (Figure 7-17). By pressing LMB such a high-
lighted loop is converted into a set of selected vertices. Any previously selected ver-
tices become unselected. If you wish to add the highlighted loop to the current se-
lection use SHIFT-LMB, while if you want to subtract the highlighted loop from the
current selection use ALT-LMB.

Figure 7-17. One open (left) and one closed (right) Edgeloop.

If ALT-B is pressed twice a Face Loop, rather than an Edge Loop, is highlighted. A
face loop is made by two neighbouring edge loops and extends only to quadrilateral
faces, ending when a triangular face is met (and the two bounding edgeloops merge
into one). The same mouse actions apply as for the edge loops (Figure 7-18).

Face loop selection is also invoked with SHIFT-R in EditMode.

Figure 7-18. One open (left) and two closed (center and right) Faceloops.

Face Loop Splitting
The Loop tool allows you, eventually, to split, a loop of faces. This loop is defined as
described in the previous section.

In EditMode press CTRL-R rather than SHIFT-R. The edge under the cursor is aqua-
marine, the median line of the corresponding face loop is highlighted yellow (Figure
7-19, left). Once the face loop selection is performed via LMB a cyan line is high-
lighted between the two edgeloops defining the faceloop.

One of the two vertices pertaining to the edge under the mouse pointer defining
the edgeloop is highlighted via a big magenta dot (Figure 7-19, center left). Now by
moving the mouse the cyan edge loop moves towards or away from the magenta dot.
In the 3D Window header the distance of the edge loop from the reference magenta
point is given as a percentage of the edge length.

121

Chapter 7. Advanced Mesh Modelling

You can force the edge to move in 10% steps by keeping CTRL pressed. You can flip
the reference vertex of the reference edge (the magenta point) with FKEY (Figure
7-19, center right).

By clicking LMB the edge loop is created, all faces and internal edges of the face loop
are split in half at the points highlighted by the cyan edge loop. (Figure 7-19, right).

Figure 7-19. Splitting a Faceloop.

This is a really useful way to refine a mesh in a SubSurface-friendly way.

By default the new, cyan, edge loop is created so that each edge is divided into two
parts which are proportional one to the other and the proportionality ratio is the
percentage given on the header (Figure 7-20, left). You can force the new edge loop
to stay at a given, fixed, distance from the edge loop to which the reference vertex
belongs by switching proportional mode off with PKEY. This turns the highlighted
edgeloop blue too (Figure 7-20, center). PKEY acts as an on/off switch.

Figure 7-20. Proportional and Smooth face cuts.

Furthermore, by default, new vertices for the new edge loop are placed exactly on the
pre-existing edges. This keeps subdivided faces flat. If a smoother result is desired
SKEY can be used, prior to finalazing the split, to set smooth mode on/off. If smooth
mode is on then new vertices are not on the previous edge any more but displaced in
the direction of the normal to the edge by a given percentage. A pop up asks for the
percentage after LMB is pressed to finalize the split (Figure 7-20, right).

Note: Both Face Loop tools are present in the KKEY menu too.

Knife Tool
The Knife Tool works by subdividing edges if both their verts are selected and the
edge is intersected by a user-drawn ’knife’ line. For example, if you wish to cut a
hole only in the front of a sphere, you can select only the front vertices, and then
draw the line with the mouse.

122

Chapter 7. Advanced Mesh Modelling

To test the tool add a Grid Mesh. You will be in EditMode and all vertices are selected.
Press SHIFT-K to activate the Knife Tool. You are prompted to choose the type of
cut: Exact will divide the edges exactly where the knife line crosses them, Centers
divides an intersected edge at its midpoint. For this cut, we chose Centers .

Now you can click LMB and start drawing. If you move and click LMB you draw
straight segments from clicked point to clicked point; if you hold LMB pressed while
dragging you draw freehand lines. The polylines can be drawn with an arbitrary
number of segments, but the intersection routines only detect one crossing per edge.
Crossing back over an edge multiple times does not perform additional cuts on it.
MMB constrains drawing to an axis as expected. Snap to grid is not currently imple-
mented, but is being looked at for future releases. When you have finished drawing
your line, hit ENTER to confirm the cut. ESC at any time cancels the operation. Fig-
ure 7-21 shows some examples.

Figure 7-21. Center knife with polyline (top); Exact Knife with single segment
(middle) and Exact freehand knife (bottom).

Note: With a large mesh, it will be quicker to select a smaller number of vertices, those
defining only the edges you plan to split since the Knife will save time in testing selected
vertices for knife trail crossings.

123

Chapter 7. Advanced Mesh Modelling

Bevelling Tools
Relevant to Blender 2.33

Blender has, since version 2.32, a Bevel tool. A Bevel is something that smooths out
a sharp edge or corner. True world edges are very seldom exactly sharp. Not even a
knife blade edge can be considered perfectly sharp, if you really go for accuracy, and
most edges are intentionally bevelled for mechanical and practical reasons.

Blender’s Bevel tool is still under heavy development and the current implementa-
tion is rather crude since all edges in a given mesh are bevelled. There’s no control
over edges you want to keep sharp, or edges on nearly flat surfaces, which you don’t
need to bevel at all.

The Bevel tool can be used in EditMode, and can be accessed via the WKEY menu,
where an entry reads Bevel (Figure 7-22, left). Once selected, a popup asks for the
number of recursions in the bevel (Figure 7-22, center left). If it is one, then each face
is reduced in size and each edge becomes a single new face. Tri and quad faces are
created as necessary at vertices. If the Recursion number is greater than one, then the
aforementioned procedure is applied that number of times, hence for Recur: 2 each
edge is transformed into 4 edges, three new faces appear at the edge, smoothing the
original one. In general the number of new edges is 2 elevated to the Recur power.

Vertex Number: Remember that for each new edge two new vertices are created, and
some more vertices are created at an intersection between edges, so your vertex number
can quickly become enormous if you bevel with a high recursion!

Figure 7-22. Bevelling a cube.

Once the Recur number is set each face of the mesh receives a yellow highlight (Fig-
ure 7-22, center right). By moving the mouse pointer, the yellow highlights shrink or
grow, and their current shrinking factor is reported on the windows header. By press-
ing CTRL shrinkage occurs in 0.1 steps, by pressing SHIFT fine tuning is possible.
By pressing SPACE a popup appears, asking you to type in the bevel value.

LMB finalizes the operation, RMB or ESC aborts it. The final result can be seen in
(Figure 7-22, right).

Symmetrical Modelling
Relevant to Blender v2.34

You often need to model objects which exhibit some sort of symmetry. For radial,
rotational or multiple symmetry the best approach is to carefully model one base
structure and then, as a last step, duplicate the base cell via SpinDup or whichever
command is most appropriate.

124

Chapter 7. Advanced Mesh Modelling

For objects with bilateral symmetry, those with one plane of symmetry, such as most
animals (humans included) and many machines, the above method implies mod-
elling one half of the object, and then mirroring a duplicate of the first half to get the
whole object.

Since it is usually difficult to attain correct proportions by only modelling a half, it
is possible to duplicate the half before it is completely modelled, and act on one half
and automatically update the other.

Figure 7-23. A plane.

In Front View add a plane or whatever (Figure 7-23). Consider it as a starting point
for one half of the object. Let’s say the object’s right half, which for us in frontal view
is on the left of the screen. The plane of symmetry is the yz plane. Move the mesh, in
EditMode, so that it is completely on the left of center. Delete some nodes, and add
some others, to give it its general shape, as in Figure 7-24.

Figure 7-24. Right half.

Now switch to ObjectMode and, with the half selected, make a linked duplicate with
ALT-D. Press ESC to exit from Grab Mode and press NKEY. In the Numeric input
panel which appears, set SizeX to -1 (Figure 7-25). This effectively mirrors the linked
duplicate with respect to the Object’s center, hence the importance of keeping the
center on the plane of symmetry.

125

Chapter 7. Advanced Mesh Modelling

Figure 7-25. Mirroring the linked duplicate.

Having duplicated the Object as a linked duplicate implies that the two objects share
the same mesh data, which is implicitly mirrored by the unitary negative scaling along
the x axis, which is normal to the symmetry plane.

Now you can edit either of the two halves. Since they share mesh data any change, be
it an extrude, delete, face loop cut etc. immediately reflects on the other side (Figure
7-26).

Figure 7-26. Editing one half.

By carefully editing one half, and possibly by using a blueprint as a background to
provide guidelines, very interesting results can be achieved (Figure 7-27, left).

Figure 7-27. A head. Left: EditMode; Center: ObjectMode; Right: Joined.

126

Chapter 7. Advanced Mesh Modelling

As a final step, when symmetrical modelling is complete, the two halves must be
selected and joined into a single Object (CTRL-J). This makes the seam (very visible
in Figure 7-27, center) disappear. Once you have a single object (Figure 7-27, right),
you can start modelling the subtle asymmetries which every being has.

Note: In Blender 2.33 and earlier versions the OpenGL implementation causes mirrored
linked duplicates to have wrong normals, so that one of the two halves is black. This is
fixed in Blender 2.34, but older versions can use this technique anyway by setting the
mesh to single sided while symmetrical modelling is used.

Proportional Editing Tool
Relevant to Blender v2.31

When working with dense meshes, it can become difficult to make subtle adjustments
to the vertices without causing nasty lumps and creases in the model’s surface. When
you face situations like these, use the proportional editing tool. It acts like a magnet
to smoothly deform the surface of the model, without creating lumps and creases.

In a top-down view, add a plane mesh to the scene with
SPACE>>Add>>Mesh>>Plane. Subdivide it a few times with WKEY>>Subdivide
(or by clicking on the Subdivide button in the Editing Context Mesh Tools
Panel) to get a relatively dense mesh (Figure 7-28). Or, add a grid directly via
SPACE>>Add>>Mesh>>Grid, specifying the number of vertices in each direction.
When you are finished, deselect all vertices with AKEY.

Vertex limit: In Blender, up to 2.31, a single mesh can have no more than 65,000 vertices.
From 2.32 onwards meshes can have 2 billion vertices.

Figure 7-28. A planar dense mesh.

Select a single vertex in the mesh by clicking it with RMB (Figure 7-29).

127

Chapter 7. Advanced Mesh Modelling

Figure 7-29. A planar dense mesh with just one selected vertex.

While still in EditMode, activate the proportional editing tool by pressing OKEY or
by using the Mesh>>Proportional Editing Menu entry (Figure 7-30 top).

Figure 7-30. Proportional Editing icon and schemes

Switch to a front view (NUM 1) and activate the grab tool with GKEY. As you drag
the point upwards, notice how nearby vertices are dragged along with it (Figure 7-
31).

Change the curve profile used by either using the Mesh>>Proportional Faloff sub-
menu or by pressing SHIFT-O to toggle between the two options Sharp and Smooth .
Note that you cannot do this while you are in the middle of a proportional editing
operation; you will have to press ESC to cancel the editing operation before you can
change the curve.

When you are satisfied with the placement of the vertex, press LMB to fix its position.
If you are not satisfied, nullify the operation and revert your mesh to the way it
looked before you started dragging the point with ESC key.

128

Chapter 7. Advanced Mesh Modelling

Figure 7-31. Different ’Magnets’ for proportional Editing.

While you are editing you can increase or decrease the radius of influence (shown by
the dotted circle in Figure 7-31) by pressing NUM+ and NUM- respectively. As you
change the radius, the points surrounding your selection will adjust their positions
accordingly. You can also use MW to enlarge and shrink the circle.

You can use the proportional editing tool to produce great effects with the scaling
(SKEY) and rotation (RKEY) tools, as Figure 7-32 shows.

Figure 7-32. A landscape obtained via Proportional Editing

Combine these techniques with vertex painting to create fantastic landscapes.

Figure 7-33 shows the results of proportional editing after the application of textures
and lighting.

Figure 7-33. Final rendered landscape

129

Chapter 7. Advanced Mesh Modelling

Noise
Relevant to Blender v2.31

The Noise function allows you to displace vertices in meshes based on the grey-
values of a texture applied to it. That way you can generate great landscapes or carve
text into meshes.

Figure 7-34. Subdivide tool

Add a plane and subdivide it at least five times with the special menu
WKEY>>Subdivide (Figure 7-34). Now add a material and assign a Clouds texture
to it. Adjust the NoiseSize: to 0.500. Choose white as the color for the material and
black as the texture color, to give us good contrast for the noise operation.

Figure 7-35. Noise button in EditButtons

Ensure that you are in EditMode and that all vertices are selected, then switch to the
Editing Context F9. Press the Noise button in the Mesh Tools Panel (Figure 7-35)
several times until the landscape looks nice. Figure 7-36 shows the original - textured
- plane as well as what happens as you press Noise . Remove the texture from the
landscape now because it will disturb the look. Then add some lights, some water,
set smooth and SubSurf the terrain, and so on. (Figure 7-37).

130

Chapter 7. Advanced Mesh Modelling

Figure 7-36. Noise application process. From top left to bottom right: Plane with
texture, sub-divided plane, "Noise" button hit 2, 4, 6 and 8 times.

Figure 7-37. Noise generated landscape

Note: The noise displacement always occurs along the mesh’s z coordinate, which is
along the direction of the z axis of the Object local reference.

Decimator Tool
Relevant to Blender v2.33

The Decimator tool is an often overlooked feature which allows you to reduce the
vertex/face count of a mesh with minimal shape changes.

131

Chapter 7. Advanced Mesh Modelling

This is not applicable to meshes which have been created by modelling carefully
and economically, where all vertices and faces are necessary to correctly define the
shape, but if the mesh is the result of complex modelling, with proportional editing,
successive refinements, possibly some conversions from SubSurfed to non-SubSurfed
meshes, you might very well end up with meshes where lots of vertices are not really
necessary.

A simple example is a plane, and a 4x4 undeformed Grid object. Both render exactly
the same, but the plane has 1 face and 4 vertices, while the grid has 9 faces and 16
vertices, hence lots of unneeded vertices and faces.

The Decimator Tool (Figure 7-38) allows you to eliminate these unneeded faces. Its
NumButton reports the number of faces of the selected mesh in ObjectMode. The
decimator tool only handles triangles, so each quadrilateral face is implicitly split
into two triangles for decimation.

Figure 7-38. Decimator buttons.

Let’s consider the example we used in the Bevel section. As you might notice there
is a tiny triangular face on each cube vertex which might very well be unnecessary
(Figure 7-39, top left). The header says the cube has 98 faces and 96 vertices. The
Decimator button says the cube has 188 triangular face, namely 90 quads (which are
180 tris) and 8 tris.

132

Chapter 7. Advanced Mesh Modelling

Figure 7-39. Decimator at work.

By changing the number in the decimator NumBut, by either clicking or typing it
in, the mesh immediately changes to triangles only. As the number gets lower, faces
disappear one after the other. Blender causes coplanar faces and vertices on aligned
edges to disappear first. This tends to keep the shape of the mesh. As more and more
faces are asked to be removed faces less and less coplanar and vertices less and less
colinear are merged, hence sensible shape change might occur (Figure 7-39, top cen-
ter).

In this particular case, if we just want the central tri face of each cube vertex to disap-
pear we expect the final mesh to be 2x6=12 faces for each cube face, 2x3x12=72 faces
for each bevelled edge, and 9x8=72 faces for each bevelled vert, totalling 156 faces.
It is very uncommon to know beforehand how many faces the final mesh can have,
usually you must look carefully at the mesh in a 3D window to check that the shape
is still good.

The two buttons below the Decimator finalize or cancel the decimation. Once it is
finalized triangles are not shown any more (Figure 7-39, top right) but the mesh is
nevertheless made only of triangles (Figure 7-39, bottom left). You can revert to quads
if you so wish, by selecting all vertices and hitting ALT-J (Figure 7-39, bottom center).
This way we reduce the vertex count to 80 and face count to 82 without any noticeable
shape loss. It might look a small gain, but if this cube is going to be dupliverted on a
particle system with 1000 particles it might be worth it.

133

Chapter 7. Advanced Mesh Modelling

Figure 7-40. Decimated landscape, top: original; middle: lightly decimated; bottom:
heavily decimated.

Figure 7-40 shows a landscape generated via a careful application of the Noise tech-
nique described earlier, on a quite vast grid. On top, the result for the original mesh
and below, two different levels of decimation. To the eye the difference is indeed
almost unnoticeable, but as the vertex count goes down there is a huge gain.

134

Chapter 8. Meta Objects

Relevant to Blender v2.31

Meta Objects consist of spherical, tubular and cuboidal elements that can affect each
other’s shape. You can only create rounded and fluid ’mercurial’, or ’clay-like’, forms
that exist procedurally, that is are computed dynamically. Use Meta Objects for special
effects or as a basis for modelling.

Meta Objects are also called implicit surfaces, again to point out that they are not ex-
plicitly defined by vertices (as meshes are) or control points (as surfaces are).

Meta Objects are defined by a directing structure which can be seen as the source of a
static field. The field can be either positive or negative and hence the field generated
by neighbouring directing structures can attract or repel.

The implicit surface is defined as the surface where the 3D field generated by all the
directing structures assumes a given value. For example a Meta Ball, whose directing
structure is a point, generates an isotropic field around it and the surfaces at constant
field value are spheres centered at the directing point. Two neighbouring Meta balls
interact and, if they are close enough, the two implicit surfaces merge into a single
surface (Figure 8-1).

Figure 8-1. Two Metaballs

In fact, Meta Objects are nothing more than mathematical formulas that perform log-
ical operations on one another (AND, OR), and that can be added and subtracted
from each other. This method is also called CSG, Constructive Solid Geometry. Be-
cause of its mathematical nature, CSG uses little memory, but requires lots of CPU
to compute. To optimize this the implicit surfaces are polygonized. The complete CSG
area is divided into a 3D grid, and for each edge in the grid a calculation is made, and
if (and more importantly where) the formula has a turning point, a ’vertex’ for the
polygonize is created.

To create a Meta Object press SPACE and select Add>>MBall . You can select the base
shapes: Ball, Tube, Plane, Ellipsoid and Cube.

MetaBalls have a point directing structure, MetaTubes have a segment as a directing
structure, MetaPlanes a plane, and MetaCubes a cube. The underlying structure be-
comes more evident as you lower the Wiresize and raise the Threshold values in
the Meta Ball Panel.

135

Chapter 8. Meta Objects

When in EditMode, you can move and scale the Meta Objects as you wish. This is the
best way to construct static - as opposed to animated - forms. Meta Objects can also
influence each other outside EditMode. When outside EditMode you have much more
freedom; the balls can rotate or move and they get every transformation of the Parent
Objects. This method requires more calculation time and is thus somewhat slow.

The following rules describe the relation between Meta Objects:

• All Meta Objects with the same ’family’ name (the name without the number)
influence each other. For example "MBall", "MBall.001", "MBall.002", "MBall.135".
Note here that we are not talking about the name of the MetaBall ObData block.

• The Object with the family name without a number determines the basis, the reso-
lution, and the transformation of the polygonize. It also has the Material and texture
area and will be referred to as base Meta Object.

Only one Material can be used for a Meta Object set. In addition, Meta Objects save
a separate texture area; this normalises the coordinates of the vertices. Normally
the texture area is identical to the boundbox of all vertices. The user can force a
texture area with the TKEY command (outside of EditMode).

The fact that the base Object dictates the polygonalization implies that, if we have
two Meta Objects and we move one of them we will see the polygonalization of
the non-base Object change during motion, regardless of which of the two object is
actually moving.

The Meta Ball Panel in Editing context offers few settings. If in Object Mode, only
this Panel is present. You can define the polygonalization average dimension both
in the 3D Viewport via the Wiresize Num Button, and at rendering time via the
Rendersize Num Button. The lower these are, the smoother the Meta Object is, and
the slower its computation.

The Threshold Num Button is an important setting for MetaObjects. It controls the
’field level’ at which the surface is computed. To have finer control, when in Ed-
itMode, the Stiffness Num Button of the Meta Ball Tools Panel allows you to
enlarge or reduce the MetaObject’s field of influence.

In this latter Panel you can also change the Meta Object type and set it negative (that
is subtractive, rather than additive) with other Meta Objects of the same set.

136

Chapter 9. Curves and Surfaces

Curves and surfaces are objects like meshes, but differ in that they are expressed in
terms of mathematical functions, rather than as a series of points.

Blender implements Bézier and Non Uniform Rational B-Splines (NURBS) curves
and surfaces. Both, though following different mathematical laws, are defined in
terms of a set of "control vertices" which define a "control polygon." The way the
curve and the surface are interpolated (Bézier) or attracted (NURBS) by these might
seem similar, at first glance, to Catmull-Clark subdivision surfaces.

When compared to meshes, curves and surfaces have both advantages and disad-
vantages. Because curves are defined by less data, they produce nice results using
less memory at modelling time, whereas the demands increase at rendering time.

Some modelling techniques, such as extruding a profile along a path, are only possi-
ble with curves. But the very fine control available on a per-vertex basis on a mesh,
is not possible with curves.

There are times when curves and surfaces are more advantageous than meshes, and
times when meshes are more useful. If you have read the previous Chapter, and if
you read this you will be able to choose whether to use meshes or curves.

Curves
Relevant to Blender v2.31

This section describes both Bézier and NURBS curves, and shows a working example
of the former.

Béziers
Bézier curves are the most commonly used type for designing letters or logos. They
are also widely used in animation, both as paths for objects to move along and as IPO
curves to change the properties of objects as a function of time.

A control point (vertex) of a Bézier curve consists of a point and two handles. The
point, in the middle, is used to move the entire control point; selecting it also selects
the other two handles, and allows you to move the complete vertex. Selecting one or
two of the other handles allows you to change the shape of the curve by dragging the
handles.

A Bézier curve is tangent to the line segment which goes from the point to the handle.
The ’steepness’ of the curve is controlled by the handle’s length.

There are four types of handles (Figure 9-1):

• Free Handle (black). This can be used in any way you wish. Hotkey: HKEY (toggles
between Free and Aligned);

• Aligned Handle (purple). These handles always lie in a straight line. Hotkey:
HKEY (toggles between Free and Aligned);

• Vector Handle (green). Both parts of a handle always point to the previous handle
or the next handle. Hotkey: VKEY;

• Auto Handle (yellow). This handle has a completely automatic length and direc-
tion, set by Blender to ensure the smoothest result. Hotkey: SHIFT-H.

137

Chapter 9. Curves and Surfaces

Figure 9-1. Types of Handles for Bézier curves

Handles can be grabbed, rotated and scaled exactly as ordinary vertices in a mesh
would.

As soon as the handles are moved, the type is modified automatically:

• Auto Handle becomes Aligned;

• Vector Handle becomes Free.

Although the Bézier curve is a continuous mathematical object it must nevertheless
be represented in discrete form from a rendering point of view.

This is done by setting a resolution property, which defines the number of points
which are computed between every pair of control points. A separate resolution can
be set for each Bézier curve (Figure 9-2).

Figure 9-2. Setting Bézier resolution.

138

Chapter 9. Curves and Surfaces

NURBS
NURBS curves are defined as rational polynomials, and are more general, strictly
speaking, than conventional B-Splines and Bézier curves inasmuch they are able to
exactly follow any contour. For example a Bézier circle is a polynomial approximation
of a circle, and this approximation is noticeable, whereas a NURBS circle is exactly a
circle. NURBS curves have a large set of variables, which allow you to create mathe-
matically pure forms (Figure 9-3). However, working with them requires a little more
theory:

Figure 9-3. Nurbs Control Buttons.

• Knots. Nurbs curves have a knot vector, a row of numbers that specifies the para-
metric definition of the curve. Two pre-sets are important for this. Uniform pro-
duces a uniform division for closed curves, but when used with open ones you
will get "free" ends, which are difficult to locate precisely. Endpoint sets the knots
in such a way that the first and last vertices are always part of the curve, which
makes them much easier to place;

• Order. The order is the ’depth’ of the curve calculation. Order ’1’ is a point, or-
der ’2’ is linear, order ’3’ is quadratic, and so on. Always use order ’5’ for Curve
paths because it behaves fluidly under all circumstances, without producing irri-
tating discontinuities in the movement. Mathematically speaking this is the order
of both the Numerator and the Denominator of the rational polynomial defining
the NURBS;

• Weight. Nurbs curves have a ’weight’ per vertex - the extent to which a vertex
participates in the "pulling" of the curve.

139

Chapter 9. Curves and Surfaces

Figure 9-4. Setting Nurbs Control polygon and weights.

Figure 9-4 shows the Knot vector settings as well as the effect of varying a single knot
weight. As with Béziers, the resolution can be set on a per curve basis.

Working example
Blender’s curve tools provide a quick and easy way to build great looking extruded
text and logos. We will use these tools to turn a rough sketch of a logo into a finished
3D object.

Figure 9-5 shows the design of the logo we will be building.

Figure 9-5. The sketched logo

First, we will import our original sketch so that we can use it as a template.
Blender supports TGA, PNG, and JPG format images. To load the image, select

140

Chapter 9. Curves and Surfaces

the View>>Background Image... menu entry of the 3D Window you are using.
A transparent panel will appear, allowing you to select a picture to use as a
background. Activate the BackGroundPic button and use the LOADbutton to locate
the image you want to use as a template (Figure 9-6). You can set the "strength" of
the background pic with the Blend slider.

Figure 9-6. 3D window settings.

Get rid of the Panel with ESC or by pressing the X button in the panel header (Figure
9-7). You can hide the background image when you are finished using it by returning
to the Panel and deselecting the BackGroundPic button.

Figure 9-7. Logo sketch loaded as background

Add a new curve by pressing SPACE>>Curve>>Bezier Curve . A curved segment
will appear and Blender will enter EditMode. We will move and add points to make
a closed shape that describes the logo you are trying to trace.

You can add points to the curve by selecting one of the two endpoints, then holding
CTRL and clicking LMB. Note that the new point will be connected to the previously
selected point. Once a point has been added, it can be moved by selecting the control
vertex and pressing GKEY. You can change the angle of the curve by grabbing and
moving the handles associated with each vertex (Figure 9-8).

141

Chapter 9. Curves and Surfaces

Figure 9-8. Bézier handles

You can add a new point between two existing points by selecting the two points and
pressing WKEY>>Subdivide (Figure 9-9).

Figure 9-9. Adding a Control Point.

Points can be removed by selecting them and pressing XKEY>>Selected . To cut a
curve in two, select two adjacent control vertices and press XKEY>>Segment .

To make sharp corners, select a control vertex and press VKEY. You will notice that
the color of the handles changes from purple to green (Figure 9-10). At this point,
you can move the handles to adjust the way the curve enters and leaves the control
vertex (Figure 9-11).

Figure 9-10. Vector (green) handles.

142

Chapter 9. Curves and Surfaces

Figure 9-11. Free (black) handles.

To close the curve and turn it into a single continuous loop, select at least one of the
control vertices on the curve and press CKEY. This will connect the last point in the
curve with the first one (Figure 9-12). You may need to manipulate additional handles
to get the shape you want.

Figure 9-12. The finished outline.

Leaving EditMode with TAB and entering shaded mode with ZKEY should reveal
that the curve renders as a solid shape (Figure 9-13). We want to cut some holes into
this shape to represent the eyes and wing details of the dragon.

Surfaces and Holes: When working with curves, Blender automatically detects holes in
the surface and handles them accordingly to the following rules. A closed curve is always
considered the boundary of a surface and hence rendered as a flat surface. If a closed
curve is completely included within another one, the inner one is subtracted from the outer
one, effectively defining a hole.

143

Chapter 9. Curves and Surfaces

Figure 9-13. Shaded logo.

Return to wireframe mode with ZKEY and enter EditMode again with TAB. While
still in EditMode, add a circle curve with SPACE>>Curve>>Bezier Circle (Figure 9-
14). Scale the circle down to an appropriate size with SKEY and move it with GKEY.

Figure 9-14. Adding a circle.

Shape the circle using the techniques we have learned (Figure 9-15). Remember to
add vertices to the circle with WKEY>>Subdivide .

Figure 9-15. Defining the eye.

Create a wing cutout by adding a Bézier circle, converting all of the points to sharp
corners, and then adjusting as necessary. You can duplicate this outline to save time
when creating the second wing cutout. To do so, make sure no points are selected,
then move the cursor over one of the vertices in the first wing cutout and select all
linked points with LKEY (Figure 9-16). Duplicate the selection with SHIFT-D and
move the new points into position.

144

Chapter 9. Curves and Surfaces

Figure 9-16. Defining the wings.

To add more geometry that is not connected to the main body (placing an orb in
the dragon’s curved tail for example), use the SHIFT-A menu to add more curves as
shown in Figure 9-17.

Figure 9-17. Orb placement within the tail.

Now that we have the curve, we need to set its thickness and beveling options. With
the curve selected, go to the EditButtons (F9) and locate the Curves and Surface
panel. The Ext1 parameter sets the thickness of the extrusion while Ext2 sets the size
of the bevel. BevResol sets how sharp or curved the bevel will be.

Figure 9-18 shows the settings used to extrude this curve.

Figure 9-18. Bevel settings

From Curves to Meshes: To perform more complex modelling operations, convert the
curve to a mesh with ALT-C>>Mesh. Note that this is a one-way operation: you cannot
convert a mesh back into a curve.

145

Chapter 9. Curves and Surfaces

When your logo model is complete, you can add materials and lights and make a
nice rendering (Figure 9-19).

Figure 9-19. Final rendering.

Surfaces
Relevant to Blender v2.31

Surfaces are actually an extension of NURBS curves. In Blender they are a separate
ObData type.

Whereas a curve produces only one-dimensional interpolation, Surfaces have a sec-
ond extra dimension. The first dimension is U, as for curves, and the second is V. A
two-dimensional grid of control points defines the form for these NURBS surfaces.

Use Surfaces to create and revise fluid curved surfaces. Surfaces can be cyclical in
both directions, allowing you to easily create a ’donut’ shape, and they can be drawn
as ’solids’ in EditMode (zbuffered, with OpenGL lighting). This makes working with
surfaces quite easy.

Note: Currently Blender has a basic tool set for Surfaces, with limited Ability to create
holes and melt surfaces. Future versions will contain increased functionality in these ar-
eas.

You can take one of the various surface ’primitives’ from the ADD menu as a starting
point (Figure 9-20). Note that you can choose ’Curve’ and ’Circle’ from the ’surface’
menu! This is possible because NURBS curves are intrinsically NURBS Surfaces, sim-
ply having one dimension neglected.

Note: A NURBS ’true’ curve and a NURBS ’surface’ curve are not interchangeable, as
you’ll see as you follow the extruding process below and the skinning section further on.

146

Chapter 9. Curves and Surfaces

Figure 9-20. Add surface menu.

When you add a ’surface’ curve you can create a true surface simply by extruding
the entire curve (EKEY). Each edge of a surface can then be extruded as you wish
to form the model. Use CKEY to make the U or V direction cyclic. Be sure to set the
’knots’ to Uniform or Endpoint with one of the pre-sets from the EditButtons Curve
Tools panel.

When working with surfaces, it is handy to always work on a complete column or
row of vertices. Blender provides a selection tool for this: SHIFT-R, "Select Row".
Starting from the last selected vertex, a complete row of vertices is extend selected
in the ’U’ or ’V’ direction. Choose Select Row again with the same vertex to toggle
between the ’U’ of ’V’ selection.

Figure 9-21. A sphere surface
147

Chapter 9. Curves and Surfaces

NURBS can create pure shapes such as circles, cylinders, and spheres (but note that
a Bézier circle is not a pure circle.) To create pure circles, globes, or cylinders, you
must set the weights of the vertices. This is not intuitive, and you should read more
on NURBS before trying this.

Basically, to produce a circular arc from a curve with three control points, the end
points must have a unitary weight, while the weight of the central control point must
be equal to one-half the cosine of half the angle between the segments joining the
points. Figure 9-21 shows this for a globe. Three standard numbers are included as
presets in the EditButtons Curve Tools panel (Figure 9-22).

Note: To read the weight of a selected vertex, press the NKEY.

Figure 9-22. Pre-set weights

Text
Relevant to Blender v2.31

Figure 9-23. Text Examples.

148

Chapter 9. Curves and Surfaces

Text is a special curve type for Blender. Blender has its own built-in font but can use
external fonts too, including both PostScript Type 1 fonts and True Type fonts (Figure
9-23).

Open Blender or revert to a fresh scene by pressing CTRL-X. Add a TextObject with
the Toolbox (SPACE>>Add>>Text). You can edit the text with the keyboard in Edit-
Mode; a text cursor shows your position in the text. When you leave EditMode with
TAB, Blender fills the text-curve, producing a flat filled object that is renderable at
once.

Now go to the EditButtons F9 (Figure 9-24).

Figure 9-24. Text edit buttons

As you can see in the Font panel MenuButton, Blender uses its own <builtin>
font by default when creating a new TextObject. Now click Load Font . Browse in
the FileWindow to a directory containing PostScript Type 1 or True Type fonts and
load a new font. (You can download several free PostScript fonts from the web, and
Microsoft Windows includes many True Type fonts of its own - though in the latter
case be aware that some of them are copyrighted!).

Try out some fonts. Once you’ve loaded a font, you can use the MenuButton to switch
the font for a TextObject.

For now we have only a flat object. To add some depth, we can use the Ext1: and
Ext2: buttons in the Curve and Surface panel just as we did with curves.

Use the TextOnCurve: option to make the text follow a 2D-curve. Use the alignment
buttons above the TextOnCurve: text field in the Font panel to align the text on the
curve.

One particularly powerful Blender function is that a TextObject can be converted
with ALT-C to a Bézier curve, which allows you to edit the shape of every single
character on the curve. This is especially handy for creating logos or when producing
custom lettering. The transformation from text to curve is irreversible and, of course,
a further transformation from curve to mesh is possible too.

Special Characters
Normally, a Font Object begins with the word "Text", which can be deleted simply
with SHIFT-BACKSPACE. In EditMode, the Text Object only reacts to text input.
Nearly all of the hotkeys are disabled. The cursor can be moved with the arrow keys.
Use SHIFT-ARROWLEFT and SHIFT-ARROWRIGHT to move the cursor to the
end of the lines or to the beginning or end of the text.

Nearly all ’special’ characters are available. A summary of these characters follows:

• ALT-c: copyright

149

Chapter 9. Curves and Surfaces

• ALT-f: Dutch Florin

• ALT-g: degrees

• ALT-l: British Pound

• ALT-r: Registered trademark

• ALT-s: German S

• ALT-x: Multiply symbol

• ALT-y: Japanese Yen

• ALT-1: a small 1

• ALT-2: a small 2

• ALT-3: a small 3

• ALT-?: Spanish question mark

• ALT-!: Spanish exclamation mark

• ALT->: a double >>

• ALT-<: a double <<

All the characters on your keyboard should work, including stressed vowels and so
on. If you need special characters (such as accented letters, which are not there on
a US keyboard) you can produce many of them using a combination of two other
characters. To do so, press ALT-BACKSPACE within the desired combination, and
then press the desired combination to produce the special character. Some examples
are given below.

• AKEY, ALT-BACKSPACE, TILDE: ã

• AKEY, ALT-BACKSPACE, COMMA: à

• AKEY, ALT-BACKSPACE, ACCENT: á

• AKEY, ALT-BACKSPACE, OKEY: å

• EKEY, ALT-BACKSPACE, QUOTE: ë

• OKEY, ALT-BACKSPACE, SLASH: ø

You can also add complete ASCII files to a Text Object. Save the file as /tmp/.cutbuffer
and press ALT-V.

Otherwise you can write your text in a Blender Text Window, load text into such
a window, or paste it into the window from the clipboard and press ALT-M. This
creates a new Text Object from the content of the text buffer (Up to 1000 characters).

Extrude Along Path
Relevant to Blender v2.31

The "Extrude along path" technique is a very powerful modelling tool. It consists of
creating a surface by sweeping a given profile along a given path.

Both the profile and the path can be a Bézier or a NURBS curve.

Let’s assume you have added a Bézier curve and a Bézier circle as separate objects to
your scene (Figure 9-25).

150

Chapter 9. Curves and Surfaces

Figure 9-25. Profile (left) and path (right).

Play a bit with both to obtain a nice ’wing-like’ profile and a fancy path (Figure 9-26).
By default, Béziers exist only on a plane, and are 2D objects. To make the path span
in all three directions of space, as in the example shown above, press the 3D button in
the Curve EditButtons (F9) Curve and Surface panel (Figure 9-27).

Figure 9-26. Modified profile (left) and path (right).

Figure 9-27. 3D Curve button.

Now look at the name of the profile object. By default it is "CurveCircle" and it is
shown on the NKEY panel when it is selected. You can change it by SHIFT-LMB on

151

Chapter 9. Curves and Surfaces

the name, if you like (Figure 9-28).

Figure 9-28. Profile name.

Now select the path. In its EditButtons locate the BevOb: Text Button in the Curve
and Surface panel and write in there the name of the profile object. In our case
"CurveCircle" (Figure 9-29).

Figure 9-29. Specify the Profile on the path.

The result is a surface defined by the Profile, sweeping along the path (Figure 9-30).

152

Chapter 9. Curves and Surfaces

Figure 9-30. Extrusion result.

To understand the results, and hence obtain the desired effects it is important to un-
derstand the following points:

• The profile is oriented so that its z-axis is tangent (i.e. directed along) the path and
that its x-axis is on the plane of the path; consequently the y-axis is orthogonal to
the plane of the path;

• If the path is 3D the "plane of the path" is defined locally rather than globally and
is visually rendered, in EditMode, by several short segments perpendicular to the
path (Figure 9-31);

• The y-axis of the profile always points upwards. This is often a source of unex-
pected results and problems, as we’ll explain later on.

Figure 9-31. Path local plane.

Tilting: To modify the orientation of the local path plane select a control point and press
TKEY. Then move the mouse to change the orientation of the short segments smoothly in

153

Chapter 9. Curves and Surfaces

the neighborhood of the control point. LMB fixes the position, and ESC reverts to previous
state.

With the y-axis constrained upwards, unexpected results can occur when the path is
3D and the profile being extruded comes to a point where the path is exactly vertical.
Indeed if the path goes vertical and then continues to bend there is a point where the
y-axis of the profile should begin to point downwards. If this occurs, since the y-axis
is constrained to point upwards there is an abrupt 180◦ rotation of the profile, so that
the y-axis points upwards again.

Figure 9-32 shows the problem. On the left there is a path whose steepness is such
that the normal to the local path plane is always upward. On the right we see a path
where, at the point circled in yellow, such a normal begins to point down. The result
of the extrusion presents an abrupt turn there.

Figure 9-32. Extrusion problems due to y-axis constraint.

The only solutions to this problems are: To use multiple - matching - paths, or to
carefully tilt the path to ensure that a normal always points upwards.

Changing profile orientation: If the orientation of the profile along the curve is not as
you expected, and you want to rotate it for the entire path length, there is a better way to
do so than tilting all path control points.

You can simply rotate the profile in EditMode on its plane. This way the profile will change
but its local reference will not.

Curve Taper
by Kenneth Styrberg

Relevant to Blender v2.35

154

Chapter 9. Curves and Surfaces

Taper is a tool for curve objects. In the Edit panel (F9) you have a TaperOb field where
you put the name of the curve that will define the width of the curve object.

Figure 9-33. Curve and Surface panel

Note: Important rules

• Only the first curve in a TaperOb is evaluated.

• Starting width is from left to right.

• Negative widths are possible too, but rendering can cause artifacts.

• It scales the width of normal extrusions based on evaluating the taper curve, which
means sharp corners in taper curve won’t be easily visible.

Figure 9-34. Taper example 1

In Figure 9-34 you can clearly see the effect the left taper curve has on the right curve
object. Here the left taper curve is closer to the object center and that results in a
smaller curve object to the right.

155

Chapter 9. Curves and Surfaces

Figure 9-35. Taper example 2

In Figure 9-35 a control point in the taper curve to the left is moved away from the
center and that gives a wider result to the curve object on the right.

Note: The curve object is extruded with a curve circle. (See the Section called Extrude
Along Path for more on curve extruding).

In Figure 9-36, we see the use of a more irregular taper curve added to a curve circle.

Figure 9-36. Taper example 3

Curve Deform
by Kenneth Styrberg

Relevant to Blender v2.35

Introduction
Curve Deform provide a simple but efficient method to define a deformation on a
mesh. By parenting a mesh object to a curve, you can deform the mesh along the
curve by moving the mesh along, or orthogonal to, the dominant axis.

The Curve Deform work on a dominant axis, X, Y, or Z. This means that when you
move your mesh in the dominant direction, the mesh will traverse along the curve.
Moving the mesh in an orthogonal direction will move the mesh object closer or
further away from the curve. The default settings in Blender map the Y axis to the
dominant axis. When you move the object beyond the curve endings the object will
continue to deform based on the direction vector of the curve endings.

Tip: Try to position your object over the curve while moving it around. This gives the best
control over how the deformation work.

156

Chapter 9. Curves and Surfaces

Interface
When parenting a mesh to a curve (CTRL-P), you will be presented with a menu,
Figure 9-37. By selecting Curve Deform you have enable the Curve Deform function
on the mesh object.

Figure 9-37. Make Parent menu.

The dominant axis setting is set on the mesh object. By default the dominant axis in
Blender is Y. This can be changed by selecting one of the Track X,Y or Z buttons in
Anim Panel , Figure 9-38, in Object Context (F7).

Figure 9-38. Anim settings panel.

Cyclic curves work as expected, where the object deformation traverse along the path
in cycles.

CurveStretch gives an option to let the mesh object stretch , or squeeze, over the
entire curve. This option is in Edit Context (F9) for the curve. See Figure 9-39.

Figure 9-39. Curve and Surface panel.

Example
Lets make a simple example.

1. Remove default cube object from scene and add a Monkey! (SHIFT-A -> Add ->
Mesh -> Monkey, Figure 9-40)

157

Chapter 9. Curves and Surfaces

Figure 9-40. Add a Monkey!.

2. Now press TAB to exit Edit Mode . Now add a curve. (SHIFT-A -> Add -> Curve
-> Bezier Curve, Figure 9-41)

Figure 9-41. Add a Curve.

3. While in editmode, move the control points of the curve as Figure 9-42, then exit
Edit Mode , (TAB).

Figure 9-42. Edit Curve.

4. Select the Monkey, (RMB), and then shift select the curve, (SHIFT-RMB). Press
CTRL-P to open up the Make Parent menu. Select Curve Deform. Figure 9-37.

The Monkey should be positioned on the curve as Figure 9-43.

158

Chapter 9. Curves and Surfaces

Figure 9-43. Monkey on a Curve.

5. Now if you select the Monkey, (RMB), and move it, (G), in the Y-direction, (the
dominant axis by default), the Monkey will deform nicely along the curve.

Tip: If you press MMB while moving the Monkey you will constrain the movement to one
axis only.

6. In Figure 9-44, you can see the Monkey at different positions along the curve. To
get a cleaner view over the deformation I have activated SubSurf with Subdiv 2 and
Set Smooth on the Monkey mesh. (F9 to get Edit options).

Tip: Moving the Monkey in other directions than the dominant, will create some odd de-
formations. Sometime this is what you want to achieve so you’ll need to experiment and
try it out!

Figure 9-44. Monkey deformations.

Skinning
Relevant to Blender v2.31

159

Chapter 9. Curves and Surfaces

Skinning is the fine art of defining a surface using two or more profiles. In Blender
you do so by preparing as many curves of the the desired shape and then converting
them to a single NURBS surface.

As an example we will create a sailboat. The first thing to do, in side view (NUM3),
is to add a Surface Curve. Be sure to add a Surface curve and not a curve of Bézier or
NURBS flavour, or the trick won’t work (Figure 9-45).

Figure 9-45. A Surface curve for skinning.

Give the curve the shape of the middle cross section of the boat, by adding vertices as
needed with the Split button and, possibly, by setting the NURBS to ’Endpoint’ both
on ’U’ and ’V’ (Figure 9-46) as needed.

Figure 9-46. Profile of the ship.

Now duplicate (SHIFT-D) the curve as many times as necessary, to the left and to
the right (Figure 9-47). Adjust the curves to match the various sections of the ship
at different points along its length. To this end, blueprints help a lot. You can load a
blueprint on the background (as we did for the logo design in this chapter) to prepare
all the cross section profiles (Figure 9-48).

160

Chapter 9. Curves and Surfaces

Note that the surface we’ll produce will transition smoothly from one profile to the
next. To create abrupt changes you would need to place profiles quite close to each
other, as is the case for the profile selected in Figure 9-48.

Figure 9-47. Multiple profiles along ship’s axis.

Figure 9-48. Multiple profiles of the correct shapes.

Now select all curves (with AKEY or BKEY), and join them by pressing CTRL-J
and by answering Yes to the question ’Join selected NURBS?’. The profiles are all
highlighted in Figure 9-49.

Figure 9-49. Joined profiles.

161

Chapter 9. Curves and Surfaces

Now switch to EditMode (TAB) and select all control points with AKEY; then press
FKEY. The profiles should be ’skinned’ and converted to a surface (Figure 9-50).

Note: As should be evident from the first and last profiles in this example, the cross-
sections need not be defined on a family of mutually orthogonal planes.

Figure 9-50. Skinned surface in edit mode.

Tweak the surface, if necessary, by moving the control points. Figure 9-51 shows a
shaded view. You will very probably need to increase ResolU and RelolV to obtain a
better shape.

Figure 9-51. Final hull.

Profile setup: The only limitation to this otherwise very powerful technique is that all
profiles must exhibit the same number of control points. This is why it is a good idea to
model the most complex cross section first and then duplicate it, moving control points as
needed, without adding or removing them, as we’ve shown in this example.

162

Chapter 10. Materials and Textures

Before you can understand how to design effectively with materials, you must un-
derstand how simulated light and surfaces interact in Blender’s rendering engine
and how material settings control those interactions. A deep understanding of the
engine will help you to get the most from it.

The rendered image you create with Blender is a projection of the scene onto an imag-
inary surface called the viewing plane. The viewing plane is analogous to the film in
a traditional camera, or the rods and cones in the human eye, except that it receives
simulated light, not real light.

To render an image of a scene we must first determine what light from the scene is
arriving at each point on the viewing plane. The best way to answer this question
is to follow a straight line (the simulated light ray) backwards through that point
on the viewing plane and the focal point (the location of the camera) until it hits a
renderable surface in the scene, at which point we can determine what light would
strike that point. The surface properties and incident light angle tell us how much of
that light would be reflected back along the incident viewing angle (Figure 10-1).

Figure 10-1. Rendering engine basic principle.

Two basic types of phenomena take place at any point on a surface when a light
ray strikes it: diffusion and specular reflection. Diffusion and specular reflection are
distinguished from each other mainly by the relationship between the incident light
angle and the reflected light angle.

Diffusion
Relevant to Blender v2.31

Light striking a surface and then re-irradiated via a Diffusion phenomenon will be
scattered, i.e., re-irradiated in all directions isotropically. This means that the camera
will see the same amount of light from that surface point no matter what the incident
viewing angle is.

It is this quality that makes diffuse light viewpoint independent. Of course the amount
of light that strikes the surface depends on the incident light angle. If most of the
light striking a surface is reflected diffusely, the surface will have a matte appearance
(Figure 10-2).

163

Chapter 10. Materials and Textures

Figure 10-2. Light re-irradiated in the diffusion phenomenon.

Since version 2.28, Blender has implemented three different mathematical formulae
to compute diffusion. And, even more notably, the diffusion and specular phenom-
ena, which are usually bound in a single type of material, have been separated so that
it is possible to select diffusion and specular reflection implementation separately.

The three Diffusion implementations, or shaders, use two or more parameters each.
The first two parameters are shared by all Diffuse Shaders and are the Diffuse color, or
simply color, of the material, and the amount of incident light energy that is actually
diffused. This latter quantity, given in a [0,1] range, is actually called Refl in the
interface.

The implemented shaders are:

• Lambert - This was Blender’s default diffuse shader up to version 2.27. As such,
all old tutorials refer to this, and all pre-2.28 images were created with this. This
shader has only the default parameters.

• Oren-Nayar - This shader was first introduced in Blender 2.28. It takes a somewhat
more ’physical’ approach to the diffusion phenomena because, besides the two
default parameters, it has a third one which is used to determine the amount of
microscopical roughness of the surface.

• Toon - This shader was first introduced in Blender 2.28. It is a very ’un-physical’
shader in that it is not meant to fake reality but to produce ’toonish’ rendering,
with clear light-shadow boundaries and uniformly lit/shadowed regions. Even
though it is relatively simple, it still requires two more parameters which define
the size of the lit area and the sharpness of the shadow boundaries.

A subsequent section, devoted to the actual implementation of the material, will an-
alyze all these and their relative settings.

Specular Reflection
Relevant to Blender v2.31

Unlike Diffusion, Specular reflection is viewpoint dependent. According to Snell’s Law,
light striking a specular surface will be reflected at an angle which mirrors the inci-
dent light angle, which makes the viewing angle very important. Specular reflection
forms tight, bright highlights, making the surface appear glossy (Figure 10-3).

164

Chapter 10. Materials and Textures

Figure 10-3. Specular Reflection.

In reality, Diffusion and Specular reflection are generated by exactly the same process
of light scattering. Diffusion is dominant from a surface which has so much small-
scale roughness in the surface, with respect to wavelength, that light is reflected in
many different directions from each tiny bit of the surface, with tiny changes in sur-
face angle.

Specular reflection, on the other hand, dominates on a surface which is smooth, with
respect to wavelength. This implies that the scattered rays from each point of the sur-
face are directed almost in the same direction, rather than being diffusely scattered.
It’s just a matter of the scale of the detail. If the surface roughness is much smaller
than the wavelength of the incident light it appears flat and acts as a mirror.

Note: It is important to stress that the Specular reflection phenomenon discussed here is
not the reflection we would see in a mirror, but rather the light highlights we would see on
a glossy surface. To obtain true mirror-like reflections you would need to use a raytracer.
Blender is not a raytracer as such, but it can produce convincing mirror-like surfaces via
careful application of textures, as will be shown later on.

Like Diffusion, Specular reflection has a number of different implementations, or
specular shaders. Again, each of these implementations shares two common param-
eters: the Specular colour and the energy of the specularity, in the [0-2] range. This
effectively allows more energy to be shed as specular reflection as there is incident
energy. As a result, a material has at least two different colors, a diffuse, and a specu-
lar one. The specular color is normally set to pure white, but it can be set to different
values to obtain interesting effects.

The four specular shaders are:

• CookTorr - This was Blender’s only Specular Shader up to version 2.27. Indeed, up
to that version it was not possible to separately set diffuse and specular shaders
and there was just one plain material implementation. Besides the two standard
parameters this shader uses a third, hardness, which regulates the width of the spec-
ular highlights. The lower the hardness, the wider the highlights.

• Phong - This is a different mathematical algorithm, used to compute specular high-
lights. It is not very different from CookTorr, and it is governed by the same three
parameters.

• Blinn - This is a more ’physical’ specular shader, thought to match the Oren-Nayar
diffuse one. It is more physical because it adds a fourth parameter, an index of re-
fraction (IOR), to the aforementioned three. This parameter is not actually used to
compute refraction of rays (a ray-tracer is needed for that), but to correctly compute

165

Chapter 10. Materials and Textures

specular reflection intensity and extension via Snell’s Law. Hardness and Specular
parameters give additional degrees of freedom.

• Toon - This specular shader matches the Toon diffuse one. It is designed to pro-
duce the sharp, uniform highlights of toons. It has no hardness but rather a Size
and Smooth pair of parameters which dictate the extension and sharpness of the
specular highlights.

Thanks to this flexible implementation, which keeps separate the diffuse and specu-
lar reflection phenomena, Blender allows us to easily control how much of the inci-
dent light striking a point on a surface is diffusely scattered, how much is reflected as
specularity, and how much is absorbed. This, in turn, determines in what directions
(and in what amounts) the light is reflected from a given light source; that is, from
what sources (and in what amounts) the light is reflected toward a given point on the
viewing plane.

It is very important to remember that the material color is just one element in the
rendering process. The color is actually the product of the light color and the material
color.

Materials in practice
Relevant to Blender v2.31

In this section we look at how to set up the various material parameters in Blender,
and what you should expect as a result.

Figure 10-4. Add new material.

Once an Object is selected, by pressing the F5 key or , you switch to Shading
context and the Material Buttons window appears. This window will appear terri-
bly empty, unless the Object already has a material linked to it. If there is no linked
material, add a new one with the menu button (Figure 10-4).

Once you have added a material the buttons will appear as shown in Figure 10-5.
Four panels are present, left to right: a Preview panel, a Material panel, a Shader
panel and a Texture panel. We will concentrate on the first three, for now.

Figure 10-5. Material Buttons.

166

Chapter 10. Materials and Textures

The Preview panel shows the material preview. By default it shows a plane seen
from the top, but it can be set to a sphere or a cube with the buttons on the right of
the panel (Figure 10-6).

Figure 10-6. Material Preview, plane (left) sphere (middle) and cube (right).

Material Colors
The Material Panel (Figure 10-7) allows, among other things, setting of the material
colors.

Figure 10-7. Material colors buttons.

Each material can exhibit up to three colors:

• The basic material color, or the Diffuse color, or, briefly the Color tout court (Col
button in the interface) which is the color used by the diffuse shader.

• The Specular color, indicated by the Spe button in the interface, is the color used by
the specular shader.

• The Mirror color, indicated by the Mir button in the interface, is the color used by
special textures to fake mirror reflections. (You’ll find more information on this in
the Environment Mapping section).

The aforementioned buttons select the pertinent color, which is shown in preview
immediately to the left of each button. The three sliders at the right allow you to
change the values for the active color in both a RGB scheme and in a HSV scheme.
You can select these schemes via the RGBand HSVbuttons at the bottom.

The DYNbutton is used to set the Dynamic properties of the Object in the RealTime
engine (which is outside the scope of this book), while the four buttons above relate
to advanced Vertex Paint and UV Texture.

The Shaders
The Shader panel (Figure 10-8) displays two MenuButtons allowing you to select one
diffuse shader (Figure 10-9) and one specular shader (Figure 10-10).

167

Chapter 10. Materials and Textures

Figure 10-8. Material Shader buttons.

Figure 10-9. Material Diffuse shaders.

Figure 10-10. Material Specular shaders.

The two sliders on the side, valid for all shaders, determine the intensity of the Dif-
fusion and Specular phenomena. The Ref slider has a 0 to 1 range whereas the Spec
has a 0 to 2 range. Speaking in strictly physical terms, if A is the light energy imping-
ing on the object, Ref times A is the energy diffused and Spec times A is the energy
specularly reflected. To be physically correct this must be Ref + Spec < 1 or the object
would radiate more energy than it receives. But this is CG, so don’t be too strict on
physics.

Depending on the chosen shader other sliders may be present, allowing you to set
the various parameters discussed in the introduction.

For the sake of completeness, Figure 10-11 shows all possible combinations. Of
course, since there are so many parameters, these are just a small sample.

168

Chapter 10. Materials and Textures

Figure 10-11. Shader overview.

Tweaking Materials
The remaining material buttons both in the Material and Shaders panels perform
some interesting effects.

Figure 10-12. Additional material sliders.

Figure 10-12 shows some interesting sliders. Alpha governs the opacity of the mate-
rial; 1 is fully opaque and 0 is fully transparent. SpecTra forces specularity highlights
on transparent bodies to be opaque. Shadeless makes the material insensitive to its
shading, giving it a uniformly diffuse color.

In the Shaders panel, the Emit slider gives, if non zero, an emitting property to the
material. This property makes material visible even without lights and can be itself a
source of light if the Radiosity engine is used. (Figure 10-13).

Figure 10-13. Regular material (left), material with Alpha < 1 (center) and material
with Emit > 0 (right).

The remaining column of buttons (Figure 10-14) activates some special features. Top
Halo Button makes the material an ’Halo’ material, which will be described later on.

169

Chapter 10. Materials and Textures

By default the Traceable , Shadows and Radio are activated. The first allows the ma-
terial to cast shadows, while the second allows the material to receive shadows; the
third allows the material to be taken into account if a Radiosity rendering is per-
formed.

Figure 10-14. Material special buttons.

Wire renders the Object as a wireframe. ZTransp is necessary to activate the Alpha
transparency effect.

The other buttons are not used that often and are described in the reference section
at the end of the book.

Ramp Shaders (-)
TO BE WRITTEN

Raytracing Reflections (-)
TO BE WRITTEN

Raytraced Transparencies (-)
TO BE WRITTEN

Multiple Materials
Relevant to Blender v2.31

Most objects are assembled so that they can be modelled in parts, with each part
composed of a different material. But on some occasions it may be useful to have an
object modelled as a single Mesh, yet exhibiting different materials.

Consider the mushroom image shown in Figure 10-15. This object is a single mesh to
which we need to assign two materials: one for the stem and one for the cap. Here’s
how to do it.

170

Chapter 10. Materials and Textures

Figure 10-15. Mushroom Mesh

Figure 10-16. Mushroom with one material

1. Create a creamy stem material of your choice, and assign it to the entire mushroom.
(Figure 10-16).

171

Chapter 10. Materials and Textures

Figure 10-17. Mushroom with cap vertices selected

2. In a 3DWindow enter EditMode for the mushroom and select all the vertices be-
longing to the cap (Figure 10-17).

3. Go to the Link and Material Panel in the Mesh Edit Buttons (F9) and press New
(Figure 10-18).

Figure 10-18. Adding a new material to the mesh

4. The mesh should now have two materials. The label should now read 2 Mat: 2
meaning that material number 2 out of 2 is active. The selected faces are assigned to
this new material once you press the Assign button; the unselected faces keep any
previous material assignment.

To see which faces belong to which material use the Select and Deselect buttons.
Switch among materials with the Mat: NumButton. You can have up to 16 materials
per mesh.

5. At any rate, both mesh materials are instances of the same material! So, keeping
the material you want to change active, switch to the Material Buttons (F5) where
you will find a similar "2 Mat 2" button. The material now has two users, as indicated
by the blue color in the name of the material, and the number button showing "2"
(Figure 10-19).

Figure 10-19. Multiple user material

172

Chapter 10. Materials and Textures

Click on the "2" and confirm the OK? Single user question. You have now dupli-
cated the material. The original material is still called "Stem" and the duplicate is
"Stem.001". Rename the duplicate to "Cap". You can now edit the material as needed
to obtain a nice looking cap. (Figure 10-20).

Figure 10-20. Mushroom with two materials.

Textures: If your material uses textures they remain linked even after you make the ma-
terial single-user. To unlink textures, so that you can edit the two material textures sep-
arately, go to the TextureButtons for that material, and make the texture single-user as
well.

Special Materials
Relevant to Blender v2.31

Blender provides a set of materials which do not obey the shader paradigm and
which are applied on a per-vertex rather than on a per-face basis.

Halo Materials
Press F5 to display the Material buttons, and then press the Halo button on the
Shaders Panel. The Panels change as shown in Figure 10-21.

Figure 10-21. Halo buttons

173

Chapter 10. Materials and Textures

As you can see, the Mesh faces are no longer rendered; instead a ’halo’ is rendered
at each vertex. This is most useful for particle systems because they generate free
vertices, but it can also come in very handy when creating certain special effects,
when making an object glow, or when creating a viewable light source.

As you can see in the three colors which, in standard material were Diffuse, Specular
and Mirror colors are now relative to three different characteristics: the color of the
halo itself, the color of any possible ring and the color of any possible line you might
want to add with the relevant toggle buttons in Figure 10-21.

Figure 10-22. Halo results

Figure 10-22 shows the result of applying a halo material to a single vertex mesh. The
halo size, alpha, and hardness can be adjusted with the pertinent sliders in Figure 10-
21. The Add sliders determine how much the halo colors are ’added to’, rather than
mixed with, the colors of the objects behind and together with other halos.

To set the number of rings, lines, and star points independently, once they are enabled
with the relative Toggle Button, use the Num Buttons Rings: , Lines: and Star: .
Rings and lines are randomly placed and oriented, to change their pattern you can
change the Seed: Num Button which sets the random numbers generator seed.

Let’s use a halomaterial to create a dotmatrix display.

1. To begin, add a grid with the dimensions 32x16. Then add a camera and adjust
your scene so that you have a nice view of the billboard.

2. Use a 2D image program to create some red text on a black background, using a
simple and bold font. Figure 10-23 shows an image 512 pixels wide by 64 pixels high,
with some black space at both sides.

Figure 10-23. Dot matrix image texture.

3. Add a material for the billboard, and set it to the type Halo . Set the HaloSize to
0.06 and when you render the scene you should see a grid of white spots.

4. Add a Texture, then change to the Texture Buttons and make it an image texture.
When you load your picture and render again you should see some red tinted dots
in the grid.

174

Chapter 10. Materials and Textures

5. Return to the Material Buttons and adjust the sizeX parameter to about 0.5 then
render again; the text should now be centered on the Billboard.

6. To remove the white dots, adjust the material color to a dark red and render. You
should now have only red dots, but the billboard is still too dark. To fix this enter Ed-
itMode for the board and copy all vertices using the SHIFT-D shortcut. Then adjust
the brightness with the Add value in the MaterialButtons.

Figure 10-24. Dot Matrix display

You can now animate the texture to move over the billboard, using the ofsX value in
the Texture panel of the MaterialButtons. (You could use a higher resolution for the
grid, but if you do you will have to adjust the size of the halos by shrinking them, or
they will overlap. (Figure 10-24).

Halo Texturing: By default, textures are applied to objects with Object coordinates and
reflects on the halos by affecting their color, as a whole, on the basis of the color of the
vertex originating the halo.

To have the texture take effect within the halo, and hence to have it with varying colors or
transparencies press the HaloTex button; this will map the whole texture to every halo.
This technique proves very useful when you want to create a realistic rain effect using
particle systems, or similar.

Lens Flares
Our eyes have been trained to believe that an image is real if it shows artifacts that
result from the mechanical process of photography. Motion blur, Depth of Field, and
lens flares are just three examples of these artifacts. The first two are discussed in the
Chapter 17; the latter can be produced with special halos.

A simulated lens flare tells the viewer that the image was created with a camera,
which makes the viewer think that it is authentic. We create lens flares in Blender
from a mesh object using first the Halo button and then the Flare options in the
Shaders Panel of the material settings. Try turning on Rings and Lines , but keep the
colors for these settings fairly subtle. Play with the Flares: number and Fl.seed:
settings until you arrive at something that is pleasing to the eye. You might need
to play with FlareBoost: for a stronger effect (Figure 10-25). (This tool does not
simulate the physics of photons travelling through a glass lens; it’s just a eye candy.)

175

Chapter 10. Materials and Textures

Figure 10-25. Lens Flare settings

Blender’s lens flare looks nice in motion, and disappears when another object oc-
cludes the flare mesh. (Figure 10-26).

Figure 10-26. Lens Flare

176

Chapter 11. Textures

Textures are...

Textures
Relevant to Blender v2.31 MISSING AL NEW STUFF!

The material settings that we’ve seen up to now produce nice, smooth, uniform ob-
jects. Of course, such objects are never true to reality, where disuniformities are most
common.

Blender accounts for these disuniformities, whether in color, reflective or specular
power, roughness, and so on, via textures.

Textures from the Material Point of View
In Blender, the Materials and Textures form separate blocks in order to keep the inter-
face simple and to allow universal integration between Textures, Lamps, and World
blocks.

The relationship between a Material and a Texture, called the ’mapping,’ is two-sided.
First, the information that is passed on to the Texture must be specified. Then the
effect of the Texture on the Material is specified. The Texture panel on the right-
hand side (and similar panels exist for the the Lamp and World buttons) defines all
these calculations.

For an untextured material the panel shows a column of eight empty texture channels
(Figure 11-1), by selecting one and pressing Add Newor by selecting an existing tex-
ture with the MenuButton right below (Figure 11-2) you add a texture and the Panel
shows two more tabs: Map Input and Map To. The Tabs buttons are organized in the
sequence in which the ’texture pipeline’ is performed.

Figure 11-1. Texture Channels

Each channel has its own individual mapping. By default, textures are executed one
after another and then superimposed. As a result, an added second Texture channel
can completely replace the first one! Next to each non-empty texture channel a check
button allows you to select or de-select a given channel. De-selected channels are
simply removed from the pipeline.

177

Chapter 11. Textures

Figure 11-2. Texture selection block

The Texture itself is designated by its name, which you can edit in the Text Button
above the Texture selection MenuButton.

Figure 11-3. Material Coordinate input

Figure 11-3 shows the Map Input panel. Each Texture has a 3D coordinate (the texture
coordinate) as input. The values, passed to the texture as coordinates for each pixel of
the rendered image belonging to a given material, are computed according to these
buttons:

• UV Uses a special kind of mapping called ’UV’ mapping. This is especially useful
when using images as textures, as we’ll see in the Section called UV Editor and
FaceSelect.

• Object Uses an Object as source of coordinates; usually an Empty. The Object name
must be specified in the text button on the right. This is the preferred way to place
a small image as a logo or whatever at a given point on the object.

• Glob Uses Blender Global 3D coordinates.

• Orco Uses the Object local, original, coordinates.

• Stick Uses the Object local, sticky, coordinates.

• Win Uses the rendered image window coordinates.

• Nor Uses the direction of the normal vector as coordinates.

• Refl Uses the direction of the reflection vector as coordinates.

Figure 11-4. Texture mapping

If the texture is an image it is 2D, and we must map the 3D space onto it. The most
flexible way to do so is with UV mapping, otherwise four possible pre-set mappings
are provided (Figure 11-4).

Figure 11-5. Coordinate transformation

The X, Y and Z coordinates passed to the texture can be shuffled about to obtain
special effects. The buttons in Figure 11-5 allow you to switch X into Y or Z and so
on, or to turn them off.

178

Chapter 11. Textures

Figure 11-6. Texture coordinate Offsets and Scaling factors

Coordinates can be scaled and translated by assigning an offset (Figure 11-6).

Figure 11-7. Texture Inputs

Moving to the Map To tab, Figure 11-7 shows the texture input settings. The three
buttons determine whether the texture should be used as a Stencil (a Mask for
subsequent texture channels); a Negative texture (assigning negative, rather than
positive, values); or as a black and white (No RGB), intensity only, texture. The three
sliders below these buttons define the texture base color, which can be overridden
by color specifications inside the texture definition. Finally the last slider defines the
intensity of the texture effect.

Figure 11-8. Texture Outputs

Figure 11-8 shows the toggle buttons which determine which characteristic of the
material will be affected by the texture. Some of these button are three state buttons,
meaning that the texture can be applied as positive or negative. All of these buttons
are independent.

• Col (on/off) Uses the texture to alter the Material color.

• Nor (off/positive/negative) Uses the texture to alter the direction of the local nor-
mal. This is used to fake surface imperfections or unevenness via bump mapping.

• Csp (on/off) Uses the texture to alter the Specular color.

• Cmir (on/off) Uses the texture to alter the Mirror color.

• Ref, Spec, Hard, Alpha, Emit (off/positive/negative) Uses the texture to alter
the Corresponding Material value.

179

Chapter 11. Textures

Figure 11-9. Output settings

The output settings (Figure 11-9) determine the strength of the effect of the Texture
output. Mixing is possible with a standard value, including addition, subtraction, or
multiplication. Textures give three types of output:

• RGB textures: return three values, which always affect color.

• Bump textures: return three values, which always affect the normal vector. Only
the "Stucci" and "Image" texture can give normals.

• Intensity textures: return a single value. This intensity can control "Alpha," for
example, or determine the strength of a color specified using the mapping buttons.

You can adjust the intensity of these settings separately using the pertinent sliders
(Figure 11-9).

Textures themselves
Once a new texture has been added to a material, it can be defined by switching to
the Texture Buttons (F6) or sub-context of the Shading context to obtain Figure
11-10.

Figure 11-10. Texture buttons

A new, empty texture Button Window presents two panels: a Texture Preview and a
Texture panel, the latter with two tabs.

In the Preview panel toggle buttons define if this is a Material, Lamp or World tex-
ture, and a button Default Var allows to return texture parameters to default values.

The Texture tab replicates the texture channels and the Texture Menu Button of the
linked Material. The two columns of Toggle Buttons selects the Texture type. The
button Image allows an image to be loaded and used as a texture (the first button
simply is "no texture"). The third button allows for the use of a very special kind of
texture, the Environment Map (EnvMap). The last button (Plugin) allows for loading
an external piece of code to define the texture. (These three buttons are rather unique
and will be treated separately later on.) As soon as a texture type is chosen a new
Panel appears, with a name matching the texture type, where texture parameters can
be set.

180

Chapter 11. Textures

The remaining buttons define 3D procedural textures, which are textures that are de-
fined mathematically. They are generally simpler to use, and will give outstanding
results once mastered. We will describe just one of these, the Wood button, leaving
you to investigate further. (The reference chapter in this book contains a full details
on each.)

Woodis a procedural, which means that each 3D coordinate can be translated directly
into a color or a value. These types of textures are ’real’ 3D. By that we mean that
they fit together perfectly at the edges and continue to look like what they are meant
to look like even when they are cut; as if a block of wood had really been cut in two.

Procedural textures are not filtered or anti-aliased. This is hardly ever a problem: the
user can easily keep the specified frequencies within acceptable limits.

Procedural texture can either produce colored textures or intensity only textures. If
intensity only ones are used the result is a black and white texture, which can be
greately enhanced by the use of colorbands. The colorband is an often-neglected tool
in the Colors tab in the Texture Panel that gives you an impressive level of control
over how procedural textures are rendered. Instead of simply rendering each texture
as a linear progression from 0.0 to 1.0, you can use the colorband to create a gradient
which progresses through as many variations of color and transparency (alpha) as
you like (Figure 11-11).

Figure 11-11. Texture Colorband.

Skilled use of colorbands leads to really cool marble and cloud textures. To use it,
select a procedural texture, such as Wood. Click the Colorband button.

The Colorband is Blender’s gradient editor. Each point on the band can be placed at
any location and can be assigned any color and transparency. Blender will interpolate
the values from one point to the next. To use it, select the point you want to edit with
the Cur: number button, then add and delete points with the Add and Del buttons.
The RGB and Alpha values of the current point are displayed, along with the point’s
location on the band. Drag with the left mouse to change the location of the current
point.

We can use two Wood textures to make ring patterns in two different scales, each of
which will have different effects on the appearance of the wood. The Wood textures
are identical except for the way in which they are mapped in the material buttons
window, and in the different color bands used.

We will also also use a Clouds texture to make a grain pattern. To see the result of
just one texture, isolated from the others, remember the Check buttons in the Texture
Panel in Material Buttons.

Figure 11-12. Copying and Pasting Textures

181

Chapter 11. Textures

Copying texture settings: By adding an existing texture you link that texture, but all the
Material mapping parameters remains as they are. To copy all texture settings, inclusive
of mappings, you must copy a given texture channel and paste it into another by using the
two arrow buttons in Figure 11-12.

Figure 11-13, Figure 11-14 and Figure 11-15 show the three individual textures which,
when combined in a single material and mapped to various material parameters,
create a nice wood texture (Figure 11-16).

Figure 11-13. First Wood ring texture

Figure 11-14. Second Wood ring texture

182

Chapter 11. Textures

Figure 11-15. Clouds texture

Figure 11-16. Final result

ImageTexture
The Image texture is the only true 2D texture, and is the most frequently used and
most advanced of Blender’s textures. The standard, built-in bump mapping
and perspective-corrected mip-mapping, filtering, and anti-aliasing guarantee
outstanding images (set DisplayButtons OSA to ON for this). Because pictures are
two-dimensional, the way in which the 3D texture coordinate is translated to 2D
must be specified in the mapping buttons (Figure 11-4).

The four standard mappings are: Flat , Cube, Tube and Sphere . Depending on the
overall shape of the object, one of these types is more useful.

183

Chapter 11. Textures

Figure 11-17. Flat Mapping.

The Flat mapping (Figure 11-17) gives the best results on single planar faces. It does
produce interesting effects on the sphere, but compared to a sphere-mapped sphere
the result looks flat. On faces not in the mapping plane the last pixel of the texture is
repeated, which produces stripes on the cube and cylinder.

Figure 11-18. Cube Mapping.

The cube-mapping (Figure 11-18) often gives the most useful results when the objects
are not too curvy and organic (notice the seams on the sphere).

184

Chapter 11. Textures

Figure 11-19. Tube Mapping.

The tube-mapping (Figure 11-19) maps the texture around an object like a label on
a bottle. The texture is therefore more stretched on the cylinder. This mapping is of
course very good for making the label on a bottle or assigning stickers to rounded
objects. However, this is not a cylindrical mapping so the ends of the cylinder are
undefined.

Figure 11-20. Sphere Mapping.

The sphere-mapping (Figure 11-20) is the best type for mapping a sphere, and it is
perfect for making a planet and similar stuff. It is often very useful for creating or-
ganic objects. It too produces interesting effects on a cylinder.

185

Chapter 11. Textures

Moving a texture: As described in the previous section you can manipulate the texture in
the texture part of the MaterialButtons. There is one more important feature to manipulate
the textures.

When you select an object and press TKEY, you get the option to visually scale and move
the texture space, but not to rotate the texture. The Object coordinate mapping is anyway
much more flexible.

Environment Maps
Relevant to Blender v2.31

The shiny surfaces that Blender generates show specular highlights. The ironic thing
about these specular shaders, though, is that they are sensitive only to lamps. Specif-
ically, specular shaders surfaces show you a bright spot as a mirror-like reflection of
a lamp.

This all makes sense except that if you turn the camera directly toward the lamp
you won’t see it! The camera sees this light only if it is being reflected by a specular
shader, not directly. On the other hand, objects that appear very bright in your scene
(that reflect a lot of light to the camera) but are not lamps don’t show up in these
highlights.

It is easy enough to make a lamp which is directly visible to the camera by placing
some renderable object in the scene which looks like some appropriate sort of lamp
fixture, flame, sun, and so on. However, there is no immediate fix for the fact that
surrounding objects do not show up on specular highlights.

In a word, we lack reflections. This is the sort of problem we will address using the
technique of environment mapping.

Just as we render the light that reaches the viewing plane using the camera to define
a viewpoint, we can render the light that reaches the surface of an object (and hence,
the light that might ultimately be reflected to the camera).

Blender’s environment mapping renders a cubic image map of the scene in the six
cardinal directions from any point. When the six tiles of the image are mapped onto
an object using the Refl input coordinates, they create the visual complexity that the
eye expects to see from shiny reflections.

Note: It’s useful to remember here that the true goal of this technique is believability ,
not accuracy . The eye doesn’t need a physically accurate simulation of the light’s travel;
it just needs to be lulled into believing that the scene is real by seeing the complexity it
expects. The most unbelievable thing about most rendered images is the sterility, not the
inaccuracy.

The first step to follow when creating an environment map is to define the viewpoint
for the map. To begin, add an empty to the scene and place it in the specular position of
the camera with respect to the reflecting surface. (This is possible, strictly speaking, only
for planar reflecting surfaces.)

Ideally, the location of the empty would mirror the location of the camera across the
plane of the polygon onto which it is being mapped. It would be ridiculously difficult
to create a separate environment map for every polygon of a detailed mesh, so we
take advantage of the fact that the human eye is very gullible.

In particular, for relatively small and complex objects, we can get away with simply
placing the empty near the center. We name the empty env so that we can refer to it
by name in the environment map settings.

186

Chapter 11. Textures

We will create a reflective sphere over a reflective plane, using the set up depicted in
Figure 11-21.

Figure 11-21. Environment Map utilization example

Note the ’env’ Empty is placed exactly below the camera, at a distance from the re-
flecting plane equal to 3 blender units, which is equal to the height of the camera over
the same plane.

Now, let’s place some lights, leave the sphere without a given material, and move the
plane to a different layer. For example, say that everything is on layer 1, except for the
plane which is in layer 2.

Give the plane a low Ref and Spec material and add a texture on channel two with
the parameters in Figure 11-22.

Figure 11-22. Reflecting plane material.

Note both the Refl mapping and the Cmir effect. We use channel 2 and not 1 because
we will need channel 1 later on in this example.

Figure 11-23. Reflecting plane EnvMap settings.

187

Chapter 11. Textures

Now define the newly assigned texture as an EnvMap in the Texture Buttons (F6)
(Figure 11-23). In the Envmap Panel, note the Ob: field containing the name of the
Empty with respect to which we compute the EnvMap. Note also the resolution of
the cube on which the EnvMap will be computed and, most important, the Don’t
render layer: buttons.

Because the EnvMap is computed from the Empty location it must have an unob-
structed view of the scene. Since the reflecting plane would completely hide the
sphere, it must be on its own layer which must be marked as ’Not renderable’ for
the EnvMap calculation.

Pressing F12 starts the rendering process. First, six different square images compris-
ing the EnvMap are computed, after which the final image is produced, of the sphere
reflected over the plane.

Figure 11-24. Sphere on a reflecting surface.

To add more visual appeal to the scene, add a big sphere encompassing the whole
scene and map a sky image onto it to fake a real, cloudy world. Then add a new
Empty in the center of the Sphere and move the Sphere to Layer 3. Next, give the
sphere an EnvMap exactly as you did for the plane (but this time layer 3 must not be
rendered!)

Now add some cylinders, to make the environment even more interesting, and, be-
fore pressing F12 return to the plane’s texture and press the Free Data button. This
will force Blender to recalculate the EnvMap for the new, different, environment.

This time in the rendering process twelve images, six for each EnvMap, will be com-
puted. The result is in Figure 11-25. The sphere is shiner than the plane due to slightly
different settings in the materials.

188

Chapter 11. Textures

Figure 11-25. Reflecting sphere on a reflecting surface.

But wait, there is a problem! The Sphere reflects the Plane, but the Plane reflects a
dull grey Sphere! This is because the Plane EnvMap is computed before the sphere
EnvMap. As such, when it is computed the sphere is still dull grey, while when the
Sphere EnvMap is computed the plane already has its Reflection.

To fix this locate the Depth Num Button in the Envmap panel of the Texture buttons
and set it to 1 both for the plane and the sphere EnvMap texture. This force recursive
computation of EnvMaps. Each EnvMap is computed, then they are recomputed as
many times as ’Depth’ is set to, always one after the other. The result is in to fix this
Figure 11-26.

Figure 11-26. Reflecting sphere on a reflecting surface with multiple reflections.

Now, if you are still wondering why the first texture channel of the Plane material
was kept empty... Add a new texture to the first channel of the plane material. Make
it Glob , affecting the Nor with a 0.25 intensity (Figure 11-27).

189

Chapter 11. Textures

Figure 11-27. Additional texture set-up for BumpMapping.

This new texture should be of Stucci type; tune the Noise Size down to 0.15 or so.
If you now render the image the plane will look like rippled water (Figure 11-28).

Figure 11-28. Reflecting sphere on a reflecting water with multiple reflections.

You must have the BumpMap on a channel preceding the EnvMap because textures
are applied in sequence. If you were to do this the other way around the reflection
would appear to be broken by waves.

You can save EnvMaps for later use and load them with the pertinent buttons in the
Texture Buttons. You can also build your own envmap. The standard is to place the
six images mapped on the cube on two rows of three images each, as in Figure 11-29.

Figure 11-29. The EnvMap as it is stored.
190

Chapter 11. Textures

Blender allows three types of environment maps, as you can see in Figure 11-23:

• Static - The map is only calculated once during an animation or after loading a
file.

• Anim - The map is calculated each time a rendering takes place. This means moving
Objects are displayed correctly in mirroring surfaces.

• Load - When saved as an image file, environment maps can be loaded from disk.
This option allows the fastest rendering with environment maps.

Note: You can animate the water of the previous example by setting an IPO for the ofsX
and ofsY values of the texture placement in the Material Buttons. Rendering the animation
would then show moving ripples on the surface, with reflections changing accordingly!

Note: The EnvMap of the Plane needs to be computed only once at the beginning if noth-
ing else moves! Hence it can be static . The Envmap on the sphere is another matter,
since it won’t reflect the changes in the reflections in the water unless it is computed at
each frame of the animation. Hence it should be of type Anim .

If the camera is the only moving object and you have a reflecting plane, the Empty
must move too and you must use Anim EnvMaps. If the object is small and the Empty
is in its center, the EnvMap can be Static , even if the object itself rotates since the
Empty does not move. If, on the other hand, the Object translates the Empty should
follow it and the EnvMap be of Anim type.

Other settings are:

• Filter: - With this value you can adjust the sharpness or blurriness of the reflec-
tion.

• Clipsta, ClipEnd - These values define the clipping boundaries when render-
ing the environment map images.

Note: EnvMap calculation can be disabled at a global level by the EnvMap Tog Button in
the Render Panel of the Rendering Buttons.

Displacement Maps
by Kenneth Styrberg

Relevant to Blender v2.35

Displacement mapping is a powerful technique that allows a texture input, either
procedural or image, to manipulate the position of rendered faces. The displacement
is controlled like a NORmap, a brighter texture will have a higher displacement. Un-
like Normal or Bumpmapping, where the normals are skewed to give an illusion of
a bump, this creates real bumps. They cast shadows, occlude other objects, and do
everything real geometry can do.

Displacement mapping is set up to behave as a texture channel, with one very im-
portant difference, in order to manipulate the positions of renderfaces smoothly, the
faces have to be very small and this eats memory and CPU time.

For distant/non-critical items, NORmapping should still be used. NORmaps, com-
pared to Displacement maps, imposes very little additional CPU cost per render-

191

Chapter 11. Textures

face, and you can NORmap independantly of renderface count. Use of Displacement
maps quickly leads to million face scenes.

Here we see the difference using NORmaps versus Displacement Maps , Figure 11-30.
The left object has 240 faces and the right has 60717 faces at rendertime!

Figure 11-30. Difference between NOR and Displacement Maps.

Note: Use Displacement Maps when you need your geometry to be more accurate.

Displacement Maps on Objects
Here is a list, from best to worst, that shows how different object types work with
Displacement Maps .

• Subsurf Meshes (Catmull-Clark) size is controlled with the render subsurf level.
Displacement will work great!

• Simple Subsurf Meshes Control renderfaces with render subsurf level. Displace-
ment will work but there is a pitfall at sharp edges if the texture there is not neutral
gray.

• Manually subdivided meshes Control renderfaces with number of subdivides.
This can slow editing down because you can not turn down the subdivide level
when editing dense meshes.

• Metaballs Control renderfaces with render wiresize. A small wiresize gives more
faces.

The use of Displacement Maps on the following object types are possible but that
they can give normal errors and visible seams when rendered.

The face count is directly connected to the U/V resolution of the surfaces. Higher
resolution gives more renderfaces.

• Open Nurbs surfaces

• Closed Nurbs surfaces

• Curves and Text

Note: It is recommended that you convert curve and surface object types to meshes
before applying displacement.

192

Chapter 11. Textures

Interface
The interface to Displacement Maps is two buttons and two value sliders in Mate-
rials context (F5), Map To panel. Figure 11-31

Figure 11-31. Map To panel.

The intensity displacement is controlled with the Disp slider and the normal dis-
placement is controlled by the Nor slider.

Displacement Map usage
There are two modes in which displacement works in:

• Displace rendered vertices by intensity, vertices move along vertex normals.

• Displace rendered vertices by texture normal, vertices move according to tex-
ture’s NORinput.

The two modes are not exclusive. The amount of each type can be mixed using the
sliders in the Materials context (F5), Map To panel, Figure 11-31.

Not all textures provide both types of input though. Stucci , for example, only pro-
vides Normal , while Magic only provides Intensity . Cloud, Wood and Marble pro-
vide both Normal and Intensity . Image provides both Intensity and a derived
Normal .

Note: Texture OSA is not currently working correct for images mapped to displacement.

Intensity displacement, gives a smoother, more continous surface, since the vertices
are displaced only outward. Normal displace, gives a more aggregated surface, since
the vertices are displaced in multiple directions.

Here is an example of Figure 11-30, (right object), but with a Nor slider setting of
about 2.0. Note that the Nor button is still unselected! You can clearly see the more
aggregated displacement when Nor settings is used together with Disp .

193

Chapter 11. Textures

Figure 11-32. Disp and Nor settings.

The depth of the displacement is scaled with an object’s scale, but not with the rela-
tive size of the data. This means if you double the size of an object in Object mode ,
the depth of the displacement is also doubled, so the relative displacement appears
the same.

If you scale in Editmode , the displacement depth is not changed, and thus the relative
depth appears smaller or bigger.

The textures intensity defines the displacement. Neutral gray, RGB = 128,128,128,
means no displacement. For positive displacement, Figure 11-33, white is a peak,
black is a groove.

Figure 11-33. Positive Displacement selected.

For negative displacement, Figure 11-34, it is reversed.

Figure 11-34. Negative Displacement selected.

Example
Here is a example showing the effect the subdivision level has to the end result of
diplacement maps. This is a Catmull-Clark subdivision type and the texture is a
simple Cloud texture added to a Ico Sphere . See the Section called Catmull-Clark
Subdivision Surfaces (-) in Chapter 7 for more on subdivision surfaces.

The subdivision levels range from 0 - (none) to 6 - (maximum) subdivision.

194

Chapter 11. Textures

Figure 11-35. Subsurf level 0.

Solid and Hollow Glass
Relevant to Blender v2.31

Glass and tranparent materials are generally tricky to render because they exhibit
refraction; that is, the bending of light rays due to the different optical density, or index
of refraction of the various materials. Unfortunately, to fully account for refraction a
ray tracer is mandatory. Still, we can produce convincing results in Blender using
EnvMaps and advanced Texturing techniques.

Consider a scene with some basic geometries, including a cube, a cone, a sphere, and
a torus. As a first example we will make the sphere look like a solid ball of glass and,
as a second example, that same sphere will become a glass bubble.

To create this effect, we need to make the light appear to bend as it passes through
the sphere, since we would expect objects behind the solid glass sphere to appear
heavily warped, as if through a very thick lens. On the other hand, the hollow glass
sphere’s center should be almost transparent while the sides should deflect light.

Solid Glass
1. To begin, we set up an environment map for the sphere’s material just as we did
for the ball in the previous section, with an empty which locates the EnvMap’s per-
spective at the center of the sphere.

195

Chapter 11. Textures

2. To fake Refraction we’ll tweak the output mapping with the ofsZ , sizeX , sizeY ,
sizeZ and Col sliders to warp the map in a way that creates the effect of refraction.
To do so, use the settings in Figure 11-36.

Figure 11-36. Envmap settings to fake refraction.

3. Select the Mir RGB material sliders and lower the R and Ga bit to give the texture
a blue tint. (Our experience with the idiosyncrasies of Blender’s handling of mirror
colors dictates this unintuitive approach when combining environment-mapped re-
flections and refractions in a single material.)

4. Turn the Ref slider all the way down. (Figure 11-37). You should now have pro-
duced a blue-tinted refraction of the environment.

Figure 11-37. Material settings

5. Shiny glass also needs a reflection map, so we’ll place the same texture into another
texture channel. Press the Add, Col , and Emit buttons, and use the Refl button for
the coordinates. Make the material Color black and turn Emit all the way up. (Figure
11-38).

Figure 11-38. Reflection Map

6. This changes our first texture considerably. In order to return the refraction texture
to a nice blue tint, we have to add a new texture, leaving the texture type set to None.
Select the Mix and Cmir buttons, and set the Col slider about halfway up. Click the
Neg button and set the texture input RGB sliders to a dark blue (Figure 11-39).

196

Chapter 11. Textures

Figure 11-39. Final touches

The final result should look like Figure 11-40. The refraction effect is most noticeable
when the scene is animated.

Figure 11-40. Rendering

Hollow Glass
The procedure we’ve described above works fine for a solid lump of glass, but how
do we produce the appearance of hollow glass, like a vase?

Thin glass has strong refraction only where it slopes away from the eye at a steep
angle. We can easily mimic this effect by using Blender’s Blend texture to control
the object’s transparency, as well as another transparency texture to keep the bright
highlights visible.

1. Add a new texture to the material. Select Blend as the type and select the Sphere
option.

2. Return to the material buttons. Select Nor as the mapping type, and disable the X
and Y axes in the input coordinates.

3. Mix the texture with Alpha , then move the Alpha material slider to 0.0 and set the
ZTransp option (Figure 11-41).

197

Chapter 11. Textures

Figure 11-41. Setting transparency.

This produces the effect of nice transparency as the surface angles toward the eye, but
we want the bright environment-mapped reflections to show up on those otherwise-
transparent areas. For example, if you look at glass windows, you will see that bright
light reflecting from the surface is visible, preventing you from seeing through a pane
that would otherwise be transparent. We can produce this effect easily by selecting
the environment-mapped reflection texture in the material window and enabling the
Alpha option (Figure 11-42).

Figure 11-42. Setting Reflections

That’s all there is to it. The result should look like Figure 11-43.

Figure 11-43. Hollow Glass

UV Editor and FaceSelect
Relevant to Blender 2.33

198

Chapter 11. Textures

Introduction
UV mapping is a way to map 2D image textures to 3D models. It can be used to apply
textures to arbitrary and complex shapes, like human heads or animals. Often these
textures are painted images, created in applications like The Gimp, Photoshop, or
your favorite painting application.

Procedurals as seen in the previous chapters are a nice way to texture a model. What
is really nice about them is that they will always "fit". 2D images will not always fit on
3D shapes. Creating procedural textures is relatively easy, and they provide a quick
way to get good results.

However, there are cases when this kind of textures is not good enough. For instance,
the skin on a human head will never look quite right when procedurally generated.
Wrinkles on a human head, or scratches on car do not occur in random places, but
depend on the shape of the model and its usage. Manually painted images give the
artist full control over the final result. Instead of playing with some numerical sliders,
artists will be able to control every pixel on the surface. This means more work, but
will lead to better images in the end.

A UV map is a way to assign a part of an image to a polygon in the model. Each poly-
gon’s vertex gets assigned to 2D coordinates that define which part of the image gets
mapped. These 2D coordinates are called UVs (compare this to the XYZ coordinates
in 3D). The operation of generating these UV maps is also called "unwrap", since it is
as if the mesh were unfolded onto a 2D plane.

Tip: UV mapping is also essential in the Blender game engine, or any other game. It is the
de facto standard for applying textures to models; almost any model you find in a game is
UV mapped.

The UV Editor
UV Mapping is done in Blender within the UV Editor window and a special mode
in the 3D Window called the Face Select Mode. The UV-Editor allows you to map
textures directly onto the faces of meshes.

Each face can have individual texture coordinates and an individual image assigned
to it, and can be combined with vertex colors to make the texture brighter or darker
or to give it a color.

By using the UV-Editor each face of the Mesh is assigned two extra features:

• four UV coordinates These coordinates define the way an image or a texture is
mapped onto the face. These are 2D coordinates, which is why they’re called UV,
to distinguish them from XYZ coordinates. These coordinates can be used for ren-
dering or for realtime OpenGL display.

• a link to an Image Every face in Blender can have a link to a different image. The
UV coordinates define how this image is mapped onto the face. This image then
can be rendered or displayed in realtime.

A 3D window has to be in "Face Select" mode to be able to assign Images or change
UV coordinates of the active Mesh Object.

199

Chapter 11. Textures

Figure 11-44. Entering Face Select Mode.

First add a Mesh Object to your Scene, then enter the FaceSelect choosing the UV face
select entry in the Mode menu.

Your Mesh will now be drawn Z-buffered. If you enter the Textured draw mode (ALT-
Z, also called "potato mode") you will see your Mesh drawn in white, which indicates
that there is currently no Image assigned to these faces. You can control the way the
faces are drawn using the Draw Edges and Draw Faces buttons in the UV Calculation
Panel. If Draw Edges is activated all faces will be drawn outlined. With Draw Faces
activated, all selected faces will be shown in a light pink tone (or the theme colour).

Figure 11-45. Face Select Mode.

200

Chapter 11. Textures

Figure 11-46. UV Calculation Panel.

Press AKEY and all faces of the Mesh will be selected and highlighted by dotted
lines. You can select faces with RMB, or BorderSelect (BKEY) in the 3D window. If
you have problems with selecting the desired faces, you can also enter EditMode and
select the vertices you want. After leaving EditMode the faces defined by the selected
vertices should be selected as well.

Only one face is active. Or in other words: the Image Window only displays the image
of the active face. As usual within Blender, only the last selected face is active and
selection is done with RMB.

Change one window into the UV Editor/Image Window with SHIFT-F10. Here you
can load or browse an image with the Load button. Images have to be multiples of
64 pixels (64x64, 128x64 etc.) to be able to be drawn in realtime (note: most 3D cards
don’t support images larger than 256x256 pixels). However, Blender can render all
assigned images regardless of size when creating stills or animations.

201

Chapter 11. Textures

Figure 11-47. UV Editor.

Loading or browsing an image in FaceSelect automatically assigns the image to the
selected faces. You can immediately see this in the 3D window (when in Textured
view mode).

Unwrapping tools
In the 3D window, you can press UKEY in FaceSelect mode to get a menu to calculate
UV coordinates for the selected faces. You can also perform an unwrapping using the
UV Calculation Panel in Edit Buttons. This panel also provides better control over the
unwrapping process.

202

Chapter 11. Textures

Figure 11-48. UV pre-sets.

The available UV unwrapping algorithms are:

• Cube This determines cubical mapping.

• Cylinder, Sphere Cylindrical/spherical mapping, calculated from the center of the
selected faces.

• Bounds to 1/8, 1/4, 1/2, 1/1 UV Coordinates are calculated using the projection as
displayed in the 3D window, then scaled to the given fraction of the image texture.

• Standard 1/8, 1/4, 1/2, 1/1 Each face gets a set of default square UV coordinates
which are then scaled to the requested fraction of the image texture.

• From Window UV coordinates are calculated using the projection as displayed in
the 3D window.

• LSCM UV coordinates are calculated using the Least Squares Conforming Maps
algorithm. Use it together with the marked seams.

In the UV mapping panel, you can tweak the way the mapping is done and how it is
shown in the 3D window when the model is in Face Select Mode.

With View Aligns Face enabled, Cylindrical and Spherical unwrapping is affected
by the view. The view is supposed to be in front of the Cylinder/Sphere, with the
caps at the top and bottom of the view. The Cylinder/Sphere is cut at the opposite
side of the view.

Size and Radius define the scaling of the map when using Cube or
Spherical/Cylindrical mapping respectively.

With VA Top (View Aligns Top) enabled, the view must look through the Cylinder /
Sphere. It is cut at the top of the view. With this activated you can also define how
the view is rotated in respect to the poles using Polar ZX and Polar ZY options.

If Al Obj is enabled, the Cylinder/Sphere is rotated based on the Object’s rotation.

Draw Edges and Draw Faces in the panel activate visualization of edges and faces in
the 3D Window while in Face Select Mode. Selected faces in this mode will be drawn
in a transparent purple (or the theme color), similar to Edit Mode. Drawing of Seams
in Edit Mode and Face Select Mode can be toggled with Draw Seams. The colors of
seams can also be changed in the Themes options.

203

Chapter 11. Textures

Editing UV coordinates
In the UV Editor you will see a representation of your selected faces as yellow or
purple vertices connected with dotted lines. You can use the same techniques here as
in the Mesh EditMode to select, move, rotate, scale, and so on. With the Lock button
pressed you will also see realtime feedback in 3D of what you are doing. Scaling and
Translating of vertices can be done in the local X or Y axis of the map if needed. Just
press XKEY or YKEY after entering the scale command (SKEY). Proportional editing
tool is also available and it works the same way that in Edit Mode for meshes. Vertices
in the UV Editor can be hidden or shown using the HKEY and ALT-H respectively,
the same way as in Edit Mode.

Figure 11-49. UV Transformation Menu.

There are several selection modes available in the UV Editor. Since a vertex is drawn
in the Editor for each face it belongs, sometimes is hard to tell if we are selecting the
same vertex or not.

With Stick UVs to Mesh Vertex enabled, a RMB click will not only select one UV
vertex, but also all the UV vertices that belong to the same mesh vertex. You can use
this mode even if it is not activated in the menu, by keeping CTRL pressed when
selecting a vertex.

Stick Local UVs to Mesh Vertex works in the same way, but only select the UVs
that are ’connected’, meaning they are within a 5 pixel range of the first selected UV.
You can also use this mode even if it is not set as default, by keeping SHIFT pressed
when selecting a vertex.

These options are toggled on/off by respectively pressing CTRL-C and SHIFT-C.

With Active Face Select enabled, a RMB click will select a face, and make it the
active face. This can be toggled on/off by pressing CKEY.

For all three of these options a special icon is displayed in the bottom left of the UV
Editor. Note that Active Face Select and Stick UVs to Mesh Vertex can also be
combined.

Unlink Selection will based on the current selection, only leave those UVs se-
lected, of which the faces are fully selected. As the name implies, this is particularly
useful to unlink faces and move them elsewhere. The hotkey is ALT-L.

Select Linked UVs works similar to Select Linked in the 3D View. It will select
all UVs that are ’connected’ to currently selected UVs. The difference with the 3D
view is that in the UV Editor, UVs are connected ’implicitly’. Two UVs are considered
selected if the distance between them is no longer than 5 pixels. The hotkey is LKEY.

Different parts of a UV map can be stitched if the border UV vertices correspond to
the same mesh vertices by using the Stitch command (VKEY). The Stitch command
works joining irregular outlines, just select the vertices at the border line using the
"Stick UVs to Mesh Vertex".

Limit Stitch works in the same way. The difference is that it only snaps together
UVs within a given range. The default limit is 20 pixels. Its advantage over ’Stitch’
is that it prevents UVs, that are supposed to stay separate, from being stitched to-

204

Chapter 11. Textures

gether. You can see on the screenshots how Limit Stitch prevents wraparounds when
stitching together two parts of a Cylinder.

Figure 11-50. "Stitch" and "Limit Stitch".

You can merge UVs that do not correspond to the same mesh vertex by using the
Weld command (WKEY). You can also use the Weld command to align in X or Y
several vertices. After pressing WKEY press XKEY or YKEY to choose which axis
you to align to

Some tips:

• Press RKEY in the 3D window to get a menu that allows rotation of the UV coor-
dinates.

• Sometimes it is necessary to move image files to a new location on your hard disk.
Press NKEY in the ImageWindow to get a Replace Image name menu. You can
fill in the old directory name, and the new one. Pressing OKchanges the paths of
all images used in Blender using the old directory. (Note: use as new directory the
code "//" to indicate the directory where the Blender file is).

• You can also use FaceSelect and VertexPaint (VKEY) simultaneously. Vertex paint-
ing then only works on the selected faces. This feature is especially useful to paint
faces as if they don’t share vertices. Note that the vertex colors are used to modu-
late the brightness or color of the applied image texture.

Figure 11-51. vertex colors modulate texture.

205

Chapter 11. Textures

LSCM Unwrap
LSCM means Least Squares Conforming Map. This is an advanced mathematical
method to automatically create a UV-mapping while keeping texture stretch and
deformation to a minimum. It works by preserving local angles. Just as any other
existing UV unwrapping mode, it will unwrap the selected faces in UV Face Select
Mode. It is available by either pressing the UKEY key, and then choosing LSCM, or by
choosing LSCM Unwrapfrom the UV Calculation panel.

To be able to correctly unwrap a mesh with LSCM, you must make sure your mesh
can be flattened without too much deformations (in mathematical term, it should be
equivalent to a disc). This is done by defining seams, i.e. places where the mesh will
be cut. You don’t need to add seam if the mesh can be unwrapped directly in a plane.

In Edit Mode, selected edges can be marked or cleared as seams, using CTRL-E. Here
you can see a cube with seams, and the resulting UV map after applying LSCM.

Figure 11-52. LSCM unwrapping method.

Often a mesh cannot be unwrapped as only one group of faces, but must be cut up
into multiple groups. If seams divide the selected faces into multiple face groups,
then LSCM unwrapping will unwrap them separately, and position them in the UV
Editor so the face groups don’t overlap. To ease selection of face groups, Select Linked
in UV Face Select Mode (press LKEY) will select all linked faces, if no seam divides
them. This way, you can select a face group by selecting one face of the group, and
executing Select Linked.

To further tweak the result, UVs in the UV Editor can be pinned to a fixed position.
If LSCM is executed, these UVs will stay in place, and the resulting UV map will
adapt to the pinned UVs. In the UV Editor, selected UVs will be pinned or unpinned
by pressing PKEY or ALT-P. Pressing EKEY in the UV Editor will launch LSCM un-
wrapping on the faces visible in the UV Editor. Pinned UVs are marked in red.

206

Chapter 11. Textures

Texture Paint
Once you have loaded an image into the UV Editor, you can modify it using the Tex-
ture Paint mode. Use the Paint Tool option in the View menu, to modify paintbrush
Size, Opacity, and Colour. Currently there is only a default brush to paint, but work
is being done to provide more brushes.

All changes you make will be instantly reflected in the 3D View if the model is in
potato mode. However the modified texture will not be saved until you explicitly do
so. Use the Save Image option in the Image menu to save your work with a different
name or overwriting the original image.

Figure 11-53. The "Paint" tool in action.

Notice that the Draw Shadow Mesh option becomes very helpful to keep a reference
of the UV map while texture painting.

Rendering and UV coordinates
Even without an Image assigned to faces, you can render textures utilizing the UV
coordinates. For this, use the green UVbutton in the MaterialButtons (F5) menu.

If you want to render the assigned Image texture as well, you will have to press the
TexFace button in the MaterialButtons. Combine this with the VertexCol option to
use vertex colors as well.

Unwrapping Suzanne
Relevant to Blender 2.34

by Claudio ’Malefico’ Andaur

When dealing with complex models like characters, the need for more powerful tools
becomes apparent. Since Blender 2.34 several new tools have been incorporated into
the Blender source code, like Seams and the LSCM unwrapping method.

207

Chapter 11. Textures

In this tutorial, I’m going to use two approaches to fully unwrap Suzanne to show
you how to use these new tools.

Easy as it "seams"
A mesh can be organized with the use of seams which provide a nice way to cre-
ate "Face Groups" prior to doing an unwrap. These "groups" are just a way to call
a selection of faces, and not a separate entity like Vertex Groups are. Seams are cre-
ated by selecting a loop of vertices in Edit Mode and pressing CTRL-E or, using the
menus, by selecting Edge Menu->Mark Seam sub-option. A thick continuous line will
be drawn in the 3D window showing the newly created Seam. It is possible to visual-
ize this seam both in Edit Mode and in Face Select Mode activating the Draw Seams
option in the Edit buttons.

Once a closed seam is marked, we can select each side of the model in Face Select
Mode, by selecting first a face, and then pressing the LKEY. All connected faces that
are isolated from the rest by this seam will be selected. By strategically creating seams
in our model, we will be able to work later on with this group of faces only, thus
greatly simplifying our job.

Ideally we should mark a seam wherever we want the UV map to have "cuts". For
instance to isolate the arms of a character from its torso, we should mark a closed
seam in each shoulder. There will be cases where we will not need to mark a closed
seam but an open one.

Let’s do some tests. Add a Suzanne to our scene, and select the vertical central loop
of vertices, be sure to completely select it. Press CTRL-E to mark this loop as a seam.
Let’s test it, enter Face Select Mode, we should see the seam. Select a face, and the
press LKEY, all faces from this side should have been selected. Had the whole model
been selected instead, this would mean that we have missed some vertices from the
central loop, if this is the case please go and select the missing vertices. Easy, right ?
That’s the idea.

Figure 11-54. Suzanne with marked seams.

Create some more seams, try to isolate complex zones from each other, like the ears
from the head. When we unwrap it, these seams will act as cuts in the surface and
also in the UV map.

Remember using the vertex loop selection tool ALT-B to help you in selecting vertex
loops for seams. An interesting loop to add a seam to is the main face loop of Suzanne,
so we can separate the front side from the back.

208

Chapter 11. Textures

Unwrapping the mesh
Open an UV Editor window besides the 3D viewport. Now select the model and
enter Face Select Mode.

Select the faces in the left and right side of Suzanne’s head including the ears. We
are going to unwrap these groups using the Sphere option which will give us a nice
starting point for LSCM later on. It is very likely that you’ll get something "almost"
perfect. However, I always get a couple of faces on the wrong side of the map. This
can be easily fixed by hand, but I’m such a lazy guy that I will not do anything at all.
Press CKEY in the UV Editor to enter Active Face Selection mode. Select some
of the faces around the "ears", just the ones that look radially unwrapped. Leave this
mode and select the vertices in the upper central zone. The ones in the central lower
part are a bit tricky. We will do them in a while. Now, with these vertices selected,
press PKEY. This is the Pin command. It will fix the locations of the selected vertices
so "nothing" can damage our layout. More on this later.

Figure 11-55. Pinning UVs.

Now that we have pinned the nicely unwrapped vertices, unselect everything in the
3D window apart from the two faces in the chin. In the UV Editor, pin the central two
vertices of these faces that were unaccessible previously. We are almost done.

Figure 11-56. Accessing occluded UVs.

209

Chapter 11. Textures

Now it’s time for some LSCM magic. In the 3D window select all faces linked to
the ones in the chin, (use LKEY, remember?). You should not select the ears this
time. The selected faces should appear mapped in the UV editor. Now press EKEY.
Blender will ask about doing LSCM. Accept the query. Wonderful things will happen.
Suddenly, the "unpinned" faces will be relocated to a nicer location, overlapping of
faces is magically fixed. Cameron Diaz is on the phone.

If you select the ear faces in the 3D window, you will see they are still there, don’t
worry about them right now.

Now we should make some space in the map for the front faces. We can do this by
selecting the border vertices and scaling them. The UV Editor supports the Propor-
tional Editing Tool (OKEY) just like meshes. It is very useful for making some space
here without overlapping faces.

Figure 11-57. LSCM in action.

Once we have made some space, select the front faces, set the viewport to the front
view, and mapped the faces using the "From Window" option. Scale them down a bit
in Y or X so they fit in the space we have reserved for them in the map. Just press
SKEY followed by YKEY or XKEY like you would do with meshes.

We now have the front faces nicely unwrapped in the UV Editor.

210

Chapter 11. Textures

Figure 11-58. Front group mapped "From Window".

Figure 11-59. Two islands in the map.

If we unselect the currently selected faces in the 3D window, we will not be able to see
them anymore in the UV editor, but you can activate the Draw Shadow Mesh option
in the UV editor’s View menu to help you visualize the unselected faces.

Stitching the Map
Now we need to join these two "islands". Activate Stick UVs to Mesh (CTRL-C) so
we can select all UVs to be stitched at once. Select a UV vertex from the face contour,
you will see its homologous in the other island selected too. "Stitch" them together
by pressing VKEY. They will merge into a UV located at the middle of the original
ones.

211

Chapter 11. Textures

Figure 11-60. Stitching.

Now, it might be a little tedious to continue vertex by vertex. Select all vertices in the
border of Suzanne’s face. Now stitch. Pin the selected vertices. Remember to pin only
if there are no overlaps. If after a stitch, there are overlapping faces, keep stitching the
rest and do not pin the stitched vertex.

Figure 11-61. Stitching all together.

Now we have both islands stitched. However there are zones where faces are over-
lapped. Be sure to have pinned the "nice" vertices and do some LSCM again. Just
press EKEY, you don’t need to select anything. If you do well, each LSCM step will
fix vertices location at overlapping faces, that you should pin to "keep".

Feel free to scale or move the vertices before doing a LSCM calculation but always
select pairs to keep the symmetry controlled.

Again, please ;-)
All right. We have used a bunch of tools and got a more or less decent UV map.
However in honor to truth, we could have done it a lot faster and better.

These seams I marked, do not have to be "closed" necessarily. As I stated before, these
are only cuts in the surface which Blender will use to unfold it. So, if we are clever

212

Chapter 11. Textures

enough we could do almost all the work in one or two LSCM steps.

Unmark all seams in Suzie. The main idea is to keep the stretching areas as far from
the view as possible. Like a plastic surgeon, we don’t want to leave our "seams" in
evidence. So, I will mark a seam from somewhere in the middle of the top part of
Suzie’s head, to somewhere near the chin, without touching the face. I’ve just loop
selected the central vertex loop, and then unselected the vertices near the face. Mark
it as a seam. Notice that this seam is "open" meaning it’s not a complete loop around
the head as in our first unwrap.

Figure 11-62. Seams revisited.

Now I’ve selected a short loop from the initial vertex of the previous seam, to some-
where near one ear. Then select the symmetrical loop and marked both as seams.
That’s all.

Select all faces except the eyes faces, and unwrap them using LSCM. This definitely
looks better.

213

Chapter 11. Textures

Figure 11-63. New LSCM unwrap...

Now, we can stitch and pin some vertices just like we did before, but with a lot less
work.

Finishing it up
Now we are going to use the methods explained before, to fix all overlapping faces
in Suzanne’s ears.

First, try to separate the outer UVs from both ears, by selecting them and scale them
in X. Pin the UVs and do a LSCM step. You will see that ear UVs start to unfold.
Continue with an inner pair of UVs and scale them and move them away from the
center of each ear. Pin the newly moved UVs. Do a LSCM step after every pinning.
After a couple more steps, things should look pretty clear.

214

Chapter 11. Textures

Figure 11-64. Unfolding the ears.

You can help yourself selecting whole faces from the inner part and scale them. You
can even select the whole ear and rotate them 5 or 10 degrees clockwise and anti-
clockwise (depending on each ear).

With a little patience, you will get an almost completely pinned ear, with no overlap-
ping whatsoever.

215

Chapter 11. Textures

Figure 11-65. The unwrapping stages. Notice the pinned vertices.
216

Chapter 11. Textures

There is no too much work to do. We can select the eyes face groups and map them
From Window or LSCM. Since the eye meshes are not linked to the rest of the mesh,
the Stitch command will not work. If you want to merge the eyes with the rest of
the face you will have to do it with the Weld command (WKEY) instead. However I
prefer having them aside, so when painting the texture I can give some extra detail
to the eyes more comfortably.

If your character has eyelids, it is advisable to uvmap them almost closed in order to
have a nice surface to paint the texture later on.

What now ?
Once we have completed the unwrapping, we can export it using the Save UV Lay-
out option in the menu, which will launch a Python script included with the Official
Blender Release. There you have to set the Image size (remember that the UV layout
is a square image), and set a proper name to it. It will save a TGA image of your UV
map which you can load into Gimp, Photoshop or any other software, as a reference
layer for painting your texture.

Figure 11-66. Final exported UV layout.

To be able to use this UV map as a reference, you need your 2D software to be able
to manage transparent layers. In my case I chose Gimp since I work on a Linux box,
but you can use whatever you find suitable.

Create a new image, same size as the UV map, and load the map into one layer. Add a
few more layers on top of the map layer. I have created three layers, named COLOR,
BUMP and SPEC-REF. These will generate three different images which I will use as
separate texture maps for Col, Nor and Ref/Spec channels in my Blender material.
However you might want to use a unique texture map for everything. The good thing
about using several textures is that you can for instance tweak the Bumping of your
material without altering the Colour work.

217

Chapter 11. Textures

Figure 11-67. Gimp is a 2D app that supports transparent layers.

I have switched every layer off except for the layer I’m working on, and the UV map
layer. You must reduce the opacity of the working layer so you can have a view of
the UV map all the time.

Figure 11-68. Using the UV map as reference for texture maps.

218

Chapter 11. Textures

The colour map doesn’t have too many mysteries. These colours will be mapped over
the model exactly as they look. The SPEC-REF and BUMP textures are a little more
sophisticated. Everything in white will look as "more reflective" this is more lighted,
in the first case, or "bumpy" in the second case. The black areas at the contrary will
look darker or depressed respectively.

Figure 11-69. The three texture maps.

You can generate as many texture maps as channels you have available in Blender,
counting Raytraced Mirroring, Translucency, Emit, Specularity, etc. All these texture
maps will share the same UV map as long as you indicate it so using the UVoption in
the Texture Coordinate Input panel in the material buttons.

To use this texture maps we have created, we need to create first a material, and then
the required Image textures. Take care in activating the UV option for every texture
map, and applying to the intended texture channel. If you use the Colour map for
Bump, it will look a little weird. You can mix a material colour with the Colour map
if you feel so. Just slide down the Col slider for that texture.

You only need to load the texture map in the UV editor if you want to tweak the map
based on the how the texture looks, or if you want to do some extra paint on it using
the texture painting tools. Otherwise it’s not really needed to get your render done.

Figure 11-70. Adjusting the colour texture map.

Well, there is no much left to say about UV texturing. In the rendered example I have
used two materials with almost the same settings for the head and the eyes. I have
used a non-zero value for Emit in the eyes, but everything else is the same. You can
tweak the UV map, so the texture map fits better if you need it.

See you and keep blending !

219

Chapter 11. Textures

Figure 11-71. Final render. Really ugly textures... I should paint them again...

Texture Plugins
Relevant to Blender v2.31

As a final note on texture, let’s look at the fourth texture type button, Plugin .

Blender allows the dynamic linking at run time of shared objects, both texture and
sequence plugins. In both cases these objects are pieces of C code written according
to a given standard (Chapter 26). In the case of texture plugins, these chunks of code
define functions accepting coordinates as input and providing a Color, Normal and
Intensity output, exactly as the procedural Textures do.

To use a Texture plugin, select this option, and then click the Load Plugin button
which appears in the Texture Buttons. A neighboring window will turn into a File
Select window in which you can select a plugin. These plugins are .dll files on Win-
dows and .so files on various Unix flavors.

Once a plugin is loaded it turns the Texture Buttons window into its own set of but-
tons, as described in the individual plugin references.

220

Chapter 12. Lighting

Introduction
Relevant to Blender v2.31

Lighting is a very important topic in rendering, standing equal to modelling, materi-
als and textures.

The most accurately modelled and textured scene will yield poor results without a
proper lighting scheme, while a simple model can become very realistic if skilfully
lit.

Lighting, sadly, is often overlooked by the inexperienced artist who commonly be-
lieves that, since real world scenes are often lit by a single light (a lamp, the sun, etc.)
a single light will also do in computer graphics.

This is false because in the real world even if a single light source is present, the
light shed by such a source bounces off objects and is re-irradiated all over the scene
making shadows soft and shadowed regions not pitch black, but partially lit.

The physics of light bouncing is simulated by Ray Tracing renderers and can be sim-
ulated within Blender by resorting to the Radiosity (Chapter 18) engine.

Ray tracing and radiosity are slow processes. Blender can perform much faster ren-
dering with its internal scanline renderer. A very good scanline renderer indeed. This
kind of rendering engine is much faster since it does not try to simulate the real be-
haviour of light, assuming many simplifying hypothesis.

In this chapter we will analyse the different type of lights in Blender and their be-
haviour, we will analyse their strong and weak points, ending with describing a ba-
sic ’realistic’ lighting scheme, known as the three point light method, as well as more
advanced, realistic but, of course, CPU intensive, lighting schemes.

Lamp Types (-)
Relevant to Blender v2.31 MISSING AREA LIGHT AND RAYSHADOW HINTS

Blender provides four Lamp types:

• Sun Light

• Hemi Light

• Lamp Light

• Spot Light

Any of these lamps can be added to the scene by pressing SPACE and by selecting the
Lamp menu entry. This action adds a Lamp Light lamp type. To select a different lamp
type, or to tune the parameters, you need to switch to the Shading Context window
Figure 12-1 (F5) and Lamp Sub-context ().

A column of toggle buttons, in the Preview Panel, allows you to choose the lamp
type.

Figure 12-1. Lamp Buttons.

221

Chapter 12. Lighting

The lamp buttons can be divided into two categories: Those directly affecting light,
which are clustered in the Lamp and Spot Panels, and those defining textures for
the light, which are on the right-hand Texture Panel, which has two Tabs. The tabs
are very similar to those relative to materials. In the following subsections we will
focus on the first two Panels (Figure 12-2), leaving a brief discussion on texture to the
Tweaking Light section (the Section called Tweaking Light).

Figure 12-2. Lamp General Buttons.

The Lamp Panel contains buttons which are mostly general to all lamp types, hence
deserve to be explained beforehand.

Negative - Makes the light cast ’negative’ light, that is, the light shed by the lamp is
subtracted, rather than added, to that shed by any other light in the scene.

Layer - Makes the light shed by the lamp affect only the objects which are on the
same layer as the lamp itself.

No Diffuse - Makes the light cast a light which does not affect the ’Diffuse’ material
shader, hence giving only ’Specular’ highlights.

No Specular - Makes the light cast a light which does not affect the ’Specular’ mate-
rial shader, hence giving only ’Diffuse’ shading.

Energy - The energy radiated by the lamp.

R, G, B sliders - The red, green and blue components of the light shed by the lamp.

Sun Light
The simplest light type is probably the Sun Light (Figure 12-3). A Sun Light is a
light of constant intensity coming from a given direction. In the 3D view the Sun
light is represented by an encircled yellow dot, which of course turns to purple when
selected, plus a dashed line.

This line indicates the direction of the Sun’s rays. It is by default normal to the view
in which the Sun lamp was added to the scene and can be rotated by selecting the
Sun and by pressing RKEY.

222

Chapter 12. Lighting

Figure 12-3. Sun Light.

The lamp buttons which are of use with the Sun are plainly those described in the
’general’ section. An example of Sun light illumination is shown in Figure 12-4. As is
evident, the light comes from a constant direction, has a uniform intensity and does
not cast shadows.

This latter is a very important point to understand in Blender: no lamp, except for
the "Spot" type, casts shadows. The reason for this lies in the light implementation in
a scanline renderer and will be briefly discussed in the ’Spot’ and ’Shadows’ subsec-
tions.

Lastly, it is important to note that since the Sun light is defined by its energy, colour
and direction, the actual location of the Sun light itself is not important.

Figure 12-4. Sun Light example.

Figure 12-5 shows a second set-up, made by a series of planes 1 blender unit dis-
tant one from the other, lit with a Sun light. The uniformity of lighting is even more
evident. This picture will be used as a reference to compare with other lamp types.

223

Chapter 12. Lighting

Figure 12-5. Sun Light example.

Sun Tips: A Sun light can be very handy for a uniform clear day-light open-space illumi-
nation. The fact that it casts no shadows can be circumvented by adding some ’shadow
only’ spot lights. See the Section called Tweaking Light !

Hemi Light
The Hemi light is a very peculiar kind of light designed to simulate the light coming
from a heavily clouded or otherwise uniform sky. In other words it is a light which is
shed, uniformly, by a glowing hemisphere surrounding the scene (Figure 12-6).

It is probably the least used Blender light, but it deserves to be treated before the two
main Blender Lights because of its simplicity.

This light set-up basically resembles that of a Sun light. Its location is unimportant,
while its orientation is important. Its dashed line represents the direction in which
the maximum energy is radiated, that is the normal to the plane defining the cut of
the hemisphere, pointing towards the dark side.

Figure 12-6. Hemi Light conceptual scheme.

224

Chapter 12. Lighting

The results of a Hemi Light for the 9 sphere set up are shown in Figure 12-7 the
superior softness of the Hemi light in comparison to the Sun light is evident.

Figure 12-7. Hemi Light example.

Hemi Light Tip: To achieve quite realistic, were it not for the absence of shadows, outdoor
lighting you can use both a Sun light, say of Energy 1.0 and warm yellow/orange tint, and
a weaker bluish Hemi light faking the light coming from every point of a clear blue sky.
Figure 12-8 shows an example with relative parameters. The figure also uses a World.
See the pertinent chapter.

Figure 12-8. Outdoor Light example. Sun Light Energy=1 RGB=(1.,0.95,0.8)
Sun direction in a polar reference is (135 ◦,135◦). Hemi Light Energy=0.5
RGB=(0.64,0.78,1.) pointing down.

Lamp Light
The Lamp light is an omni-directional point light, that is a dimensionless point ra-
diating the same amount of light in all directions. In blender it is represented by a

225

Chapter 12. Lighting

plain, circled, yellow dot.

Being a point light source the light rays direction on an object surface is given by
the line joining the point light source and the point on the surface of the object itself.
Furthermore, light intensity decays accordingly to a given ratio of the distance from
the lamp.

Besides the above-mentioned buttons three more buttons and two sliders in the Lamp
Panel are of use in a Lamp light (Figure 12-9):

Distance - This gives, indicatively, the distance at which the light intensity is half the
Energy. Objects closer than that receive more light, object further than that receive less
light.

Quad - If this button is off, a linear - rather unphysical - decay ratio with distance is
used. If it is on, a more complex decay is used, which can be tuned by the user from
a fully linear, as for Blender default, to a fully - physically correct - quadratic decay
ratio with the distance. This latter is a little more difficult to master, it is governed by
the two Quad1 and Quad2 Num Buttons and will be explained later on.

Sphere - If this button is pressed the light shed by the source is confined in the Sphere
of radius Distance rather than going to infinity with its decay ratio.

Figure 12-9. Lamp Light Buttons.

Following Figure 12-10 shows the same set-up as in the latter Sun light example, but
with a Lamp light of different Distance values and with Quadratic decay on and off.

226

Chapter 12. Lighting

Figure 12-10. Lamp Light example. In Quad examples Quad1=0, Quad2=1.

The effect of the Distance parameter is very evident, while the effect of the Quad
button is more subtle. In any case the absence of shadows is still a major issue. As a
matter of fact only the first plane should be lit, because all the others should fall in
the shadow of the first.

For the Math enthusiasts, and for those desiring deeper insight, the laws governing
the decay are the following.

Let be the value of the Distance Numeric Button, the value of the Energy slider
and the distance from the Lamp to the point where rhe light intensity is to be
computed.

If Quad and Sphere buttons are off:

It is evident what affirmed before: That the light intensity equals half the energy for
= .

If Quad Button is on:

This is a little more complex and depends from the Quad1 () and Quad2 () slider
values. Nevertheless it is apparent how the decay is fully linear for =1, =0 and
fully quadratic for =0, =1, this latter being the default. Interestingly enough if =

=0 then light intensity does not decay at all.

227

Chapter 12. Lighting

If the Sphere button is on the above computed light intensity is further modified
by multiplication by the term which has a linear progression for from 0 to and
is identically 0 otherwise.

If the Quad button is off and the Sphere button is on:

If both Quad and Sphe buttons are on:

Figure 12-11 might be helpful in understanding these behaviours graphically.

Figure 12-11. Light decays: a) Blender default linear; b) Blender default quadratic
with Quad1=0, Quad2=1; c) Blender quadratic with Quad1=Quad2=0.5; d) Blender
quadratic with Quad1=Quad2=0. Also shown in the graph the same curves, in the
same colours, but with the Sphere button turned on.

Lamp Light Tip: Since the Lamp light does not cast shadows it shines happily through
walls and the like. If you want to achieve some nice effects like a fire, or a candle-lit room
interior seen from outside a window, the Sphere option is a must. By carefully working
on the Distance value you can make your warm firelight shed only within the room, while
illuminating outside with a cool moonlight, the latter achieved with a Sun or Hemi light or
both.

Spot Light
The Spot light is the most complex of Blender lights and indeed among the most used
thanks to the fact that it is the only one able to cast shadows.

228

Chapter 12. Lighting

A Spot light is a cone shaped beam generated from the light source location, which
is the tip of the cone, in a given direction. Figure 12-12 should clarify this.

Figure 12-12. Spot Light Scheme.

The Spot light uses all buttons of a Lamp Light, and with the same meaning, but it is
so more complex that it needs a second Panel of buttons (Figure 12-13): Spot .

Spot Options

Figure 12-13. The Lamp Options buttons

Shadows - Toggles shadow casting on and off for this spot.

229

Chapter 12. Lighting

Only Shadow - Let the spot cast only the shadow and no light. This option will be
analysed later on in the Section called Tweaking Light.

Square - Spot lights usually by default cast a cone of light of circular cross-section.
There are cases where a square cross section would be helpful, and indeed have a
pyramid of light rather than a cone. This button toggles this option.

Halo - Let the spot cast a halo as if the light rays were passing through a hazy
medium. This option is explained later on in the ’Volumetric Light’ section (the Sec-
tion called Volumetric Light).

Spot Buttons

Figure 12-14. Spot Light Buttons.

The rightmost column of buttons in the Spot Panel handles Spot geometry and shad-
ows (Figure 12-14):

SpotSi - The angle at the tip of the cone, or the Spot aperture.

SpotBl - The blending between the light cone and the surrounding unlit area. The
lower the sharper the edge, the higher the softer. Please note that this applies only to
the spot edges, not to the softness of the edges of the shadows cast by the spot, these
latter are governed by another set of buttons described in the ’Shadows’ subsection.

HaloInt - If the Halo button is On this slider defines the intensity of the spot halo.
Again, you are referred to the Section called Volumetric Light.

The bottom button group of the Spot light governs shadows and it is such an ample
topic that it deserves a subsection by its own. Before switching to Shadows, Figure
12-15 shows some results for a Spot light illuminating our first test case for different
configurations.

230

Chapter 12. Lighting

Figure 12-15. Spot Light Examples for SpotSi=45◦

Note: In Figure 12-15 shadows are turned off! Shadows are treated in the next section.

Ray Shadows
TO BE WRITTEN

Buffer Shadows
Relevant to Blender v2.31

The lighting schemes analysed up to now produce on the objects only areas which
are more or less lit, but no cast- or self-shadowing, and a scene without proper shad-
owing looses depth and realism.

On the other hand, proper shadow calculation requires a full - and slow - ray tracer.
For a scan liner, as Blender is, shadows can be computed using a shadow buffer for
shadow casting lights. This implies that an ’image’, as seen from the Spot Light itself,
is ’rendered’ and that the distance for each point from the spotlight saved. Any point
of the rendered image further than any of those points is then considered to be in
shadow.

The shadow buffer stores this data. To keep the algorithm compact, efficient and fast
this shadow buffer has a size which is fixed from the beginning and which in Blender
can be from 512x512 to 5120x5120. The higher value is the most accurate.

The user can control the algorithm via the bottom buttons in the Spot Panel (Figure
12-16).

231

Chapter 12. Lighting

Figure 12-16. Spot Light shadow buttons.

ShadowBuffSize - Numeric Button, from 512 to 5120, defining the shadow buffer
size.

ClipSta, ClipEnd - To further enhance efficiency the shadow computations are ac-
tually performed only in a predefined range of distances from the spot position. This
range goes from ClipSta , nearer to the Spot light, to ClipEnd , further away (Fig-
ure 12-12). All objects nearer than ClipSta from the Spot light are never checked for
shadows, and are always lit. Objects further than ClipEnd are never checked for light
and are always in shadow. To have a realistic shadow ClipSta must be less than the
smallest distance between any relevant object of the scene and the spot, and ClipEnd
larger than the largest distance. For the best use of the allocated memory and bet-
ter shadow quality, ClipSta must be as large as possible and ClipEnd as small as
possible. This minimizes the volume where shadows will be computed.

Samples - To obtain soft shadows the shadow buffer, once computed, is rendered via
its own anti-aliasing algorithm which works by averaging the shadow value over
a square of a side of a given number of pixels. Samples is the number of pixels. Its
default is 3, that is a 3x3 square. Higher values give better anti-aliasing, and a slower
computation time.

Bias - Is the bias used in computing the shadows, again the higher the better, and the
slower.

Soft - Controls the softness of the shadow boundary. The higher the value, the softer
and more extended the shadow boundaries will be. Commonly it should be assigned
a value which ranges from the same value of the Sample NumButton to double that
value.

Halo step - The stepping of the halo sampling for volumetric shadows when volu-
metric light is on. This will be explained in the Section called Volumetric Light.

232

Chapter 12. Lighting

Figure 12-17. Spot Light shadow examples.

Note: For Shadows to be rendered, they must be enabled at a global level. This means
that the Shadow Button of the Render Panel in the Scene Context and Render Buttons
must be on!

Volumetric Light
Relevant to Blender v2.31

Volumetric light is the effect you see in a hazy air, when the light rays become visible
because of light scattering which occurs due to mist, fog, dust etc.

If used carefully it can add much realism to a scene... or kill it.

The volumetric light in Blender can only be generated for Spot Lights, once the Halo
button in the Spot Panel is pressed (Figure 12-18).

Figure 12-18. Spot Light halo button.

If the test set up shown in Figure 12-19 is created, and the Halo button pressed, the
rendered view will be like Figure 12-20.

233

Chapter 12. Lighting

Figure 12-19. Spot Light setup.

Figure 12-20. Halo rendering.

The volumetric light effect is rather strong. The intensity of the Halo can be regulated
with the HaloInt slider (Figure 12-21). Lower values corresponding to weaker halos.

Figure 12-21. Halo Intensity Slider.

234

Chapter 12. Lighting

The result is interesting. We have volumetric light, but we lack volumetric shadow!
The halo passes through the sphere, yet a shadow is cast. This is due to the fact that
the Halo occurs in the whole Spot Light cone unless we tell Blender to do otherwise.

The cone needs to be sampled to get volumetric shadow, and the sampling occurs
with a step defined by the HaloStep NumButton (Figure 12-22). The default value of
0 means no sampling at all, hence the lack of volumetric shadow. A value of 1 gives
finer stepping, and hence better results, but with a slower rendering time (Figure
12-23), while a higher value gives worse results with faster rendering (Figure 12-24).

Figure 12-22. Halo Step NumButton.

Figure 12-23. Halo with volumetric shadow, Halo Step = 1

235

Chapter 12. Lighting

Figure 12-24. Halo with volumetric shadow, Halo Step = 12

HaloStep values: A value of 8 is usually a good compromise between speed and accu-
racy.

Tweaking Light
Relevant to Blender v2.31

Ok, now you’ve got the basics. Now we can really talk of light. We will work on a
single example, more complex than a plain ’sphere over a plane’ setup, to see what
we can achieve in realistic lighting with Blender.

We will resort to the setup in Figure 12-25. The simian figure is Cornelius, Suzanne’s
baby brother. He has a somewhat shiny light brown material (R=0.8, G=0.704
B=0.584, Ref =0.7, Spec=0.444, Hard =10 - Yes, not very monkey-like, but we are
talking of lights, not of materials!) and stands on a blue plane (R=0.275, G=0.5,
B=1.0, Ref =0.8, Spec=0.5, Hard =50). For now he’s lit by a single spot (Energy =1.0,
R=G=B=1.0, SpotSi =45.0, SpotBl =0.15, ClipSta =0.1, ClipEnd =100, Samples =3,
Soft =3, Bias =1.0, BufSize =512).

236

Chapter 12. Lighting

Figure 12-25. Light tweaking setup.

A rendering of Cornelius in this setup, with OSA=8 and Shadows enabled, gives the
result in Figure 12-26. The result is ugly. You have very black, unrealistic shadows on
Cornelius, and the shadow cast by Cornelius himself is unacceptable.

Figure 12-26. Simple Light Spot set up.

The first tweak is on ClipSta and ClipEnd , if they are adjusted so as to encompass
the scene as tightly as possible (ClipSta =5, ClipEnd =21) the results get definitely
better, at least for projected shadow. Cornelius’s own shadow is still too dark (Figure
12-27).

237

Chapter 12. Lighting

Figure 12-27. Single Spot Light set up with appropriate Clipping.

To set good values for the Clipping data here is a useful trick: Any object in Blender
can act as a Camera in the 3D view. Hence you can select the Spot Light and switch
to a view from it by pressing CTRL-NUM0. What you would see, in shaded mode,
is shown in Figure 12-28.

All stuff nearer to the Spot than ClipSta and further from the spot than ClipEnd is
not shown at all. Hence you can fine tune these values by verifying that all shadow
casting objects are visible.

Figure 12-28. Spot Light Clipping tweak. Left: ClipSta too high; Centre: Good;
Right: ClipEnd too low.

What is still really lacking is the physical phenomenon of diffusion. A lit body sheds
light from itself, hence shadows are not completely black because some light leaks in
from neighbouring lit regions.

This light diffusion is correctly accounted for in a Ray Tracer, and in Blender too, via
the Radiosity Engine. But there are set-ups which can fake this phenomenon in an
acceptable fashion.

We will analyse these, from simplest to more complex.

Three point light
The three point light set-up is a classical, very simple scheme to achieve a scene with
softer lighting. Our Spot Light is the main, or Key, Light of the scene, the one casting
shadow. We will add two more lights to fake diffusion.

The next light needed is called the Back Light. It is placed behind Cornelius (Figure
12-29). This illuminates the hidden side of our character, and allows us to separate
the foreground of our picture from the background, adding an overall sense of depth.

238

Chapter 12. Lighting

Usually the Back Light is as strong as the Key Light, if not stronger. Here we used an
Energy 1 Lamp Light (Figure 12-30).

Figure 12-29. Back Light set up.

Figure 12-30. Key Light only (left) Back Light only (centre) and both (right).

The result is already far better. Finally, the third light is the Fill Light. The Fill light’s
aim is to light up the shadows on the front of Cornelius. We will place the Fill Light
exactly at the location of the camera, with an Energy lower than the lower of Key and
Back Lights (Figure 12-31). For this example an Energy =0.75 has been chosen (Figure
12-32).

239

Chapter 12. Lighting

Figure 12-31. Fill Light set up.

Figure 12-32. Key and Back Light only (left) Fill Light only (centre) and all three
(right).

The Fill light makes visible parts of the model which are completely in darkness with
the Key and Back light only.

Color leakage: The three-point set up can be further enhanced with the addition of a
fourth light, especially when a bright coloured floor is present, like in this case.

If there is a bright coloured floor our eye expects the floor to diffuse part of the light all
around, and that some of this light impinges on the model.

To fake this effect we place a second spot exactly specular to the Key Light with respect
to the floor. This means that - if the floor is horizontal and a z=0, as it is in our example,
and the Key light is in point (x=-5, y=-5, z=10), then the floor diffuse light is to be placed
in (x=-5, y=-5, z=-10), pointing upward (Figure 12-33).

240

Chapter 12. Lighting

Figure 12-33. Floor Diffuse Light set up.

The energy for this light should be lower than that of the Key Light (here it is 0.8) and
its colour should match the colour of the floor (here R=0.25, G=0.5, B=1.0). The result is
shown in Figure 12-34.

Figure 12-34. Four Light set up.

Please note that we used a Spot light and not a lamp, so it would be completely blocked
by the floor (shadowed) unless we set this spot shadeless by pressing the appropriate
button.

Indeed we could have used a Lamp but if the floor is shiny the light it sheds is more
reflected than diffused. Reflected light, physically is itself a cone coming from the specular
source.

You can further enhance the effect by making the Spot cast shadows and by setting its
ClipStart value high enough so that the plane casts no shadow, or by making it affect
only its layer and placing the floor on another layer.

241

Chapter 12. Lighting

Three point light - Outdoor
By using a Spot light as a key light the previous method is sadly bound to indoor
settings or, at maximum, outdoor settings at night time. This is because the Key light
is at a finite distance, its rays spread and the floor is not evenly illuminated.

If we were outdoor on a clear sunny day all the floor would be evenly lit, and shad-
ows would be cast.

To have a uniform illumination all over the floor a Sun light is good. And if we add
a Hemi light for faking the light coming from all points of the sky (as in Figure 12-8)
we can achieve a nice outdoor light... but we have no shadows!

The setup of the Key light (the Sun, R=1.0, G=0.95, B=0.9, Energy =1.0) and the
Fill/Back Light (both represented by the Hemi, R=0.8, G=0.9,B=1.0, Energy =0.4) is
shown in Figure 12-35 and the relevant rendering in Figure 12-36

Figure 12-35. Sun and Hemi light for outdoor set up.

242

Chapter 12. Lighting

Figure 12-36. Sun and Hemi light for outdoor rendering.

The lack of shadow makes Cornelius appear as if he were floating in space. To have
a shadow let’s place a Spot coincident with the Sun and with the same direction.
Let’s make this spot a Shadow Only Spot (with the appropriate button). If Energy
is lowered to 0.9 and all other settings are kept at the values used in the previous
example (BufSize =512, Samples =3, Soft =3, Bias =1, ClipSta =5, ClipEnd =21) the
result is the one of Figure 12-37 (center).

Figure 12-37. Outdoor rendering.

The shadow is a bit blocky because Cornelius has many fine details and the BufSize
is too small, and the Samples value is to low to correctly take them into account. If
BufSize is raised to 2560, Samples to 6 and Bias to 3.0 the result is the one in Figure
12-37 (right). Much smoother.

Area Light
The concept of Light coming from a point is an approximation. No real world light
source is dimensionless. All light is shed by surfaces, not by points.

This has a couple of interesting implications, mainly on shadows:

• Sharp shadows do not exist: shadows have blurry edges.

• Shadow edge blurriness depends on the relative positions and sizes of the light,
the shadow casting object and the object receiving the shadow.

The first of these issues is approximated with the ’Soft’ setting of the Spot light, but
the second is not. To have a clearer understanding of this point imagine a tall thin
pole in the middle of a flat plain illuminated by the Sun.

243

Chapter 12. Lighting

The Sun is not a point, it has a dimension and, for us Earthlings, it is half of a degree
wide. If you look at the shadow you will notice that it is very sharp at the base of the
pole and that it grows blurrier as you go toward the shadow of the tip. If the pole is
tall and thin enough its shadow will vanish.

To better grasp this concept have a look at Figure 12-38. The Sun sheds light, the
middle object completely obstructs the Sun’s rays only in the dark blue region. For a
point in the light blue region the Sun is partially visible, hence each of these areas is
partially lit.

Figure 12-38. Area light and its shadow.

The light blue region is a partial shadow region where illumination drops smoothly
from full light to full shadow. It is also evident, from Figure 12-38 than that this tran-
sition region is smaller next to the shadow casting object and grow larger far away
from it. Furthermore, if the shadow casting object is smaller than the light casting ob-
ject (and if the light casting object is the Sun this is often the case) there is a distance
beyond which only partial shadow remains Figure 12-39.

Figure 12-39. Area light and its shadow 2

In Blender, if we place a single Spot at a fixed distance from a first plane and look at
the shadow cast at a second plane as this second plane gets further away we notice
that the shadow gets larger but not softer (Figure 12-40).

244

Chapter 12. Lighting

Figure 12-40. Spot light and its shadow

To fake an area light with Blender we can use several Spots, as if we were sampling
the area casting light with a discrete number of point lights.

This can either be achieved by placing several Spots by hand, or by using Blender’s
DupliVert feature (the Section called DupliVerts in Chapter 22), which is more effi-
cient.

Add a Mesh Grid 4x4. Where the spot is, be sure normals are pointing down, by
letting Blender show the Normals and eventually flipping them, as explained in the
Section called Basic Editing in Chapter 6 (Figure 12-41). Parent the Spot to the Grid,
select the Grid and in the Object Context Anim Settings Panel (F7) press DupliVert
and Rot . Rot is not strictly necessary but will help you in positioning the Area Light
later on. You will have a set of Spots as in Figure 12-42.

Figure 12-41. Grid setup

245

Chapter 12. Lighting

Figure 12-42. Spot light and its dupliverts

Then decrease the Energy of the Spot. If for a single Spot you used a certain energy,
now you must subdivide that energy among all the duplicates. Here we have 16
spots, so each should be allotted 1/16 of Energy (that is Energy =0.0625).

The same two renderings of above, with this new hacked area light will yield the
results in Figure 12-43. The result is far from that expected, because the Spot light
sampling of the Area light is too coarse. On the other hand, a finer sampling would
yield a higher number of duplicated Spots and to unacceptable rendering times.

Figure 12-43. Fake area light with multiple spots.

A much better result can be attained by softening the spots, that is setting
SpotBl =0.45, Sample =12, Soft =24 and Bias =1.5 (Figure 12-44).

Figure 12-44. Fake area light with multiple soft spots.

Finally, Figure 12-45 shows what happens to Cornelius once the Key Light is sub-
stituted with 65 duplicated Spots of Energy=0.0154 in a circular pattern. Please note
how the shadow softly goes from sharp next to the feet to softer and softer as it gets
further away from him. This is the correct physical behavior.

246

Chapter 12. Lighting

Figure 12-45. Cornelius under Area Light.

Global Illumination (and Global Shadowing)
The above techniques work well when there is a single, or at least a finite number of
lights, casting distinct shadows.

The only exceptions are the outdoor setting, where the Hemi Light fakes the light
cast by the sky, and the Area Light, where multiple spots fake a light source of finite
extension.

The first of these two is very close to nice outdoor lighting, were it not for the fact
that the Hemi Light casts no shadows and hence you don’t have realistic results.

To obtain a really nice outdoor setting, especially for cloudy daylight, you need light
coming from all directions of the sky, yet casting shadows!

This can be obtained by applying a technique very similar to the one used for the
Area Light setup, but using half a sphere as a parent mesh. This is usually referred to
as "Global Illumination".

You can either use a UVsphere or an IcoSphere, the latter has vertices evenly dis-
tributed whereas the former has a great concentration of vertices at poles. Using an
IcoSphere hence yields a more ’uniform’ illumination, all the points of the sky radiat-
ing an equal intensity; a UVsphere casts much more light from the pole(s). Personally
I recommend the IcoSphere.

Let’s prepare a setup, comprising a plane and some solids, as in Figure 12-46. We will
use simple shapes to better appreciate the results.

247

Chapter 12. Lighting

Figure 12-46. Global Illumination scene.

Switch to top view and add an IcoSphere, a subdivision level 2 IcoSphere is usually
enough, a level 3 one yields even smoother results. Scale the IcoSphere so that it com-
pletely, and loosely, contains the whole scene. Switch to front view and, in EditMode,
delete the lower half of the IcoSphere (Figure 12-47). This will be our "Sky Dome"
where the spots will be parented and dupliverted.

Figure 12-47. Sky dome.

Again in Top View add a Spot Light, parent it to the half IcoSphere (CTRL-P) and
press the DupliVert and Rot buttons exactly as in the previous example. The result,
in FrontView, is the one in Figure 12-48.

248

Chapter 12. Lighting

Figure 12-48. Sky dome with duplicated spots.

This is not what we want, since all spots point outwards and the scene is not lit.
This is due to the fact that the IcoSphere normals point outward. It is possible to
invert their directions by selecting all vertices in Edit Mode and by pressing the Flip
Normals button in the Mesh Tools Panel of the Editing (F9) Context (Figure 12-49).

Figure 12-49. Flipping normals.

This leads to the new configuration in Figure 12-50.

249

Chapter 12. Lighting

Figure 12-50. Correct sky dome and dupliverted Spot Lights.

To obtain good results select the original Spot Light and change its parameters to a
wide angle with soft boundaries (SpotSi =70.0; SpotBl =0.5); with suitable ClipSta
and ClipEnd values; in this case 5 and 30, respectively, in any case appropriate values
to encompass the whole scene; increase samples to 6 and softness to 12. Decrease
energy to 0.1; remember you are using many spots, so each must be weak. (Figure
12-51).

Figure 12-51. Spot Light setup.

Now you can make the rendering. If some materials are given and a world set, the
result should be that of Figure 12-52. Note the soft shadows and the ’omnidirectional’
lighting. Even better results can be achieved with a level 3 IcoSphere.

250

Chapter 12. Lighting

Figure 12-52. Spot Light setup.

This Global Illumination technique effectively substitutes, at a very high computa-
tional cost, the Hemi for the above outdoor setting.

It is possible to add a directional light component by faking the Sun either via a single
spot or with an Area Light.

An alternative possibility is to make the IcoSphere ’less uniform’ by subdividing one
of its faces a number of times, as is done for one of the rear faces in Figure 12-53. This
is done by selecting one face and pressing the Subdivide button, again in the Mesh
Tools Panel of the Editing (F9) Context. Then de-select all, re-select the single inner
small face and subdivide it again, and so on.

251

Chapter 12. Lighting

Figure 12-53. Making spots denser in an area.

The result is a very soft directional light together with a global illumination sky dome
or, briefly, an anisotropic sky dome (Figure 12-54). This is quite good for cloudy con-
ditions, but not so good for clear sunny days. For really clear days, it is better to keep
the sky dome separate from the Sun light, so as to be able to use different colours for
each.

Figure 12-54. Anisotropic skydome render.

252

Chapter 13. The World and The Universe

Blender provides a number of very interesting settings to complete your renderings
by adding a nice background, and some interesting ’depth’ effects. These are acces-
sible via the Shading Context (F5) and World Buttons sub-context () shown in
Figure 13-1. By default a very plain uniform world is present. You can edit it or add
a new World.

Figure 13-1. World Buttons

The World Background
Relevant to Blender v2.31

The simplest way to use the World Buttons is to provide a nice gradient background
for images. The buttons in the World Panel (Figure 13-2) allow you to define the color
at the horizon (HoR, HoG, HoB buttons) and at the zenith (ZeR, ZeG, ZeB buttons).

Figure 13-2. Background colors

These colors are interpreted differently, according to the Buttons in the Preview Panel
(Figure 13-2):

• Blend - The background color is blended from horizon to zenith. If only this button
is pressed, the gradient runs from the bottom to the top of the rendered image
regardless of the camera orientation.

• Real - If this button is also pressed the blending is dependent on the camera orien-
tation. The horizon color is exactly at the horizon (on the x-y plane), and the zenith
color is used for points vertically above and below the camera.

• Paper - If this button is pressed the gradient occurs on the zenith-horizon-zenith
colors. Thus, there are two transitions on the image, which reflect the camera ro-
tation but which keep the horizon color to the center and the zenith color to the
extremes.

The World Buttons also provide a Texture Panel with two Tabs. They are used much
like the Materials textures, except for a couple of differences (Figure 13-3):

• There are only six texture channels.

• Texture mapping - Has only the Object and View options, with View being the
default orientation.

253

Chapter 13. The World and The Universe

• Affect - Texture affects color only, but in four different ways: It can affect the Blend
channel, making the Horizon color appear where the texture is non-zero; the color
of the Hori zon; and the color of the Zenith, up or down (ZenUp, ZenDo).

Figure 13-3. Texture buttons

Exposure (-)
TO BE WRITTEN

Mist
Relevant to Blender v2.31

Mist can greatly enhance the illusion of depth in your rendering. To create mist,
Blender basically mixes the background color with the object color and enhances
the strength of the former, the further the object is away from the camera. The Mist
settings are in the Mist Stars Physics Panel and are shown in Figure 13-4.

Figure 13-4. Mist buttons

The Mist Button toggles mist on and off. The row of three Toggle Buttons below this
button set the decay rate of the mist as Quadratic, Lin ear, and Square Root. These
settings control the law which governs the strength of the mist as you move further
away from the camera.

The mist begins at a distance from the camera as defined by the Sta: button, and is
computed over a distance defined by the Di: button. Objects further from the camera
than Sta+Di are completely hidden by the mist.

By default, the mist covers all of the image uniformly. To produce a more realistic
effect you might want to have the mist decrease with height (altitude, or z) using the
Hi: NumButton. If the value of this button is non-zero it sets, in Blender units, an
interval, around z=0 in which the mist goes from maximum intensity (below) to zero
(above).

Finally, the Misi: NumButton defines the intensity, or strength, of the mist.
254

Chapter 13. The World and The Universe

Figure 13-5 shows a possible test set up.

Figure 13-5. Mist test setup

Figure 13-6 shows the results with and without mist. The settings are shown in Figure
13-7; the texture is a plain procedural cloud texture with Hard noise set.

Figure 13-6. Rendering without mist (left) and with mist (right).

255

Chapter 13. The World and The Universe

Figure 13-7. World set up.

Mist distances: To see what the mist will actually affect, select your camera, go to Edit-
ing Context (F9) and press the Show Mist TogButton in the Camera Panel. The camera
will show mist limits as a segment projecting from the camera starting from Sta and of
distance Di .

Stars
Stars are randomly placed halo-like objects which appear in the background. The
Stars settings are on the right-hand side of the Mist Stars Physics Panel (Figure
13-8).

Figure 13-8. Star buttons

When creating stars, you need to understand a few important concepts:

StarDist: is the average distance between stars. Stars are intrinsically a 3D feature,
they are placed in space, not on the image!

MinDist: Is the minimum distance from the camera at which stars are placed. This
should be greater than the distance from the camera to the furthest object in your
scene, unless you want to risk having stars in front of your objects.

The Size: NumButton defines the actual size of the star halo. It is better to keep it
much smaller than the proposed default, to keep the material smaller than pixel-size
and have pin-point stars. Much more realistic.

256

Chapter 13. The World and The Universe

The Colnoise: NumButton adds a random hue to the otherwise plain white stars. It
is usually a good idea to add a little ColNoise.

Figure 13-9 shows the same misty image of Figure 13-7 but with stars added. The
Stars settings used for the image are shown in Figure 13-10.

Figure 13-9. Star rendering.

Figure 13-10. Star settings.

Ambient Occlusion
Ambient Occlusion is a sophisticated ambient trick which simulates soft global il-
lumination by taking into account the amount of sky (which is assumed to be the
lightsource) seen by a given point.

This is actually done by casting rays from each visible point, and by counting how
many of them actually reach the sky, and how many, on the other hand, are ob-
structed by objects. The amount of light on the point is then proportional to the num-
ber of rays which have ’escaped’ and have reached the sky.

This is done by firing a hemisphere of shadow-rays around. If a ray hits another face
(it is occluded) then that ray is considered ’shadow’, otherwise it is considered ’light’.
The ratio between ’shadow’ and ’light’ rays defines how bright a given pixel is.

257

Chapter 13. The World and The Universe

Ambient Occlusion (AO) settings are in the Shading Context, World Buttons Sub-
context, in the Amb OccTab. AO is Off by default, if it is turned On, the Tab is popu-
lated by many buttons (Figure 13-11).

Figure 13-11. Ambient Occlusion Panel.

Rays are shot at the hemisphere according to a random pattern, this causes sensible
differences in the occlusion pattern of neighbouring pixels unless the number of shot
rays is big enough to produce good statistical data. This is why AO produces a gran-
ular pattern, which looks like dirt, if there are not enough rays. The number of shot
rays is controlled via the Samples NumButton. The default value of 5 is usually good
for previews. The actual amount of shot rays is the square of this number. (i.e. Sam-
ples =5 means 25 rays). Figure 13-12 shows a simple scene, with increasing number
of samples. Of course rendering time increases as the number of samples increases!

258

Chapter 13. The World and The Universe

Figure 13-12. Effect of the different number of samples.

The Dist and Use Distances Buttons allow for subtle control over shadowing by
defining a distance dependent behaviour and damping in the occlusion.

The row of radio buttons Add, Sub and Both controls the occlusion behaviour:

• Add - The pixel receives light according to the number of non-obstructed rays. The
scene is lighter.

• Sub - The pixel receives shadow (negative light) according to the number of ob-
structed rays. The scene is darker.

259

Chapter 13. The World and The Universe

• Both - Both effects take place, the scene has more or less the same brightness.

Note: If Sub is chosen then there must be some light source somewhere, otherwise the
scene would be pitch black. In the other two cases the scene is lit even if no explicit light
is present.

The row of radio buttons Plain , Sky Color and Sky Texture controls the light color:

• Plain - The pixel receives pure white light according to the number of
non-obstructed rays.

• Sky Color - The pixel receives colored light, the color is computed on the basis of
the portion of the sky hit by the non-obstructed rays (Figure 13-13).

• Sky Texture - A Sky Image texture must be present, possibly an AngMap or a
SphereMap . It behaves as Sky Color but the ray color depends on the color of
the Sky texture pixel hit.

Figure 13-13. Ambient Occlusion with Sky Color. Zenith is blue, Horizon is orange,
and type is Blend so that sky goes full orange at Nadir.

The Energy slider controls the actual amount of light/shadows the AO procedure
creates.

Since AO occurs on the original faceted mesh, it is possible that the AO light makes
faces visible even on objects with ’smooth’ On. This is due to the way AO rays are
shot, and can be controlled with the Bias Slider. The bias setting allows you to
control how smooth ’smooth’ faces will appear in AO rendering. The bias denotes
the angle (in radians) the hemisphere will be made narrower. Values of 0.05 to 0.1
typically work well (Figure 13-14).

260

Chapter 13. The World and The Universe

Figure 13-14. Ambient Occlusion bias values.

Please note that this is just raytracing, so it tends to be slow. Furthermore, perfor-
mance severely depends on Octree size, see the Rendering Chapter for more infor-
mation.

261

Chapter 13. The World and The Universe

262

Chapter 14. Animation of Undeformed Objects

Objects can be animated in many ways. They can be animated as Objects, changing
their position, orientation or size in time; they can be animated by deforming them;
that is animating their vertices or control points; or they can be animated via very
complex and flexible interaction with a special kind of object: the Armature.

In this chapter we will cover the first case, but the basics given here are actually vital
for understanding the following chapters as well.

Three methods are normally used in animation software to make a 3D object move:

• Key frames Complete positions are saved for units of time (frames). An animation is
created by interpolating an object fluidly through the frames. The advantage of this
method is that it allows you to work with clearly visualized units. The animator can
work from one position to the next and can change previously created positions,
or move them in time.

• Motion Curves Curves can be drawn for each XYZ component for location, rotation,
and size. These form the graphs for the movement, with time set out horizontally
and the value set out vertically. The advantage of this method is that it gives you
precise control over the results of the movement.

• Path A curve is drawn in 3D space, and the Object is constrained to follow it ac-
cording to a given time function of the position along the path.

The first two systems in Blender are completely integrated in a single one, the IPO
(InterPOlation) system. Fundamentally, the IPO system consists of standard motion
curves. A simple press of a button changes the IPO to a key system, without con-
version, and with no change to the results. The user can work any way he chooses to
with the keys, switching to motion curves and back again, in whatever way produces
the best result or satisfies the user’s preferences.

The IPO system also has relevant implication in Path animations.

IPO Block
Relevant to Blender v2.31

The IPO block in Blender is universal. It makes no difference whether an object’s
movement is controlled or the material settings. Once you have learned to work with
object IPOs, how you work with other IPOs will become obvious. Anyway Blender
does distinguish between different types of IPOs and the interface keeps track of it
automatically.

Every type of IPO block has a fixed number of available channels. These each have a
name (LocX , SizeZ , etc.) that indicates how they are applied. When you add an IPO
Curve to a channel, animation begins immediately. At your discretion (and there are
separate channels for this), a curve can be linked directly to a value (LocX ...), or it
can affect a variance of it (dLocX ...). The latter enables you to move an object as you
would usually do, with the Grabber, without disrupting the IPO. The actual location
is then determined by IPO Curves relative to that location.

The Blender interface offers many options for copying IPOs, linking IPOs to more
than one object (one IPO can animate multiple objects.), or deleting IPO links. The
IPO Window Reference section gives a detailed description of this. This chapter is
restricted to the main options for application.

Key Frames
Relevant to Blender v2.31

263

Chapter 14. Animation of Undeformed Objects

Figure 14-1. Insert Key Menu.

The simplest method for creating an object IPO is with the "Insert key" (IKEY) com-
mand in the 3DWindow, with an Object selected. A Pop-up menu provides a wide
selection of options (Figure 14-1). We will select the topmost option: Loc . Now the
current location X-Y-Z, is saved and everything takes place automatically:

• If there is no IPO block, a new one is created and linked to the object.

• If there are no IPOCurves in the channels LocX , LocY and LocZ , these are created.

• Vertices are then added in the IPOCurves with the exact values of the object loca-
tion.

We go 30 frames further on (3 x UPARROW) and move the object. Again we use
IKEY. Now we can immediately press ENTER since Blender remembers our last
choice and will highlight it. The new position is inserted in the IPO Curves. We can
see this by slowly paging back through the frames (LEFTARROW). The object moves
between the two positions.

In this way, you can create the animation by paging through the frames, position by
position. Note that the location of the object is directly linked to the curves. When you
change frames, the IPOs are always re-evaluated and re-applied. You can freely move
the object within the same frame, but as soon as you change frame, the object ’jumps’
to the position determined by the IPO.

The rotation and size of the object are completely free in this example. They can be
changed or animated with the Insert key procedure by selecting from the IKEY menu
the other options such as Rotation, Size and any combination of these.

The IPO Curves
Relevant to Blender v2.31

264

Chapter 14. Animation of Undeformed Objects

Figure 14-2. The IPO window.

Now we want to see exactly what happened. The first Screen initialised in the stan-
dard Blender start-up file is excellent for this. Activate it with CTRL-LEFTARROW.
At the right we see the IPOWindow displayed (Figure 14-2). You can of course turn
any window into an IPO window with the pertinent Window Type menu entry, but
it is more handy to have both a 3D window and an IPO window at the same time.
This shows all the IPO Curves, the channels used and those available. You can zoom
in and out the IPO Window and translate it just as every other Blender Window.

In addition to the standard channels, which can be set via IKEY, you have the delta
options, such as dLocX . These channels allow you to assign a relative change. This
option is primarily used to control multiple objects with the same IPO. In addition,
it is possible to work in animation ’layers’. You can achieve subtle effects this way
without having to draw complicated curves.

Each curve can be selected individually with the RMB. In addition, the Grabber and
Size modes operate here just as in the 3DWindow. You can select IPOs also by clicking
the color button in the right channel names column. By clicking the IPO channel
name you effectively hide/show the relative curve. Selecting all curves (AKEY) and
moving them to the right (GKEY), you can move the complete animation in time.

Each curve can be placed in EditMode individually, or it can be done collectively.
Select the curves and press TAB. Now the individual vertices and handles of the curve
are displayed. The Bézier handles are coded, like it is in the Curve Object:

• Free Handle (black). This can be used any way you wish. Hotkey: HKEY (switches
between Free and Aligned).

• Aligned Handle (pink). This arranges all the handles in a straight line. Hotkey:
HKEY (toggles between Free and Aligned).

• Vector Handle (green). Both parts of a handle always point to the previous or next
handle. Hotkey: VKEY.

• Auto Handle (yellow). This handle has a completely automatic length and direc-
tion. Hotkey: SHIFT-HKEY.

Handles can be moved by first selecting the middle vertex with RMB. This selects
the other two vertices as well. Then immediately start the Grab mode with RMB-

265

Chapter 14. Animation of Undeformed Objects

hold and move. Handles can be rotated by first selecting the end of one of the vertices
and then use the Grabber by means of the RMB-hold and move action.

As soon as handles are rotated, the type is changed automatically:

• Auto Handle becomes Aligned.

• Vector Handle becomes Free.

"Auto" handles are placed in a curve by default. The first and last Auto handles al-
ways move horizontally, which creates a fluid interpolation.

The IPOCurves have an important feature that distinguishes them from normal
curves: it is impossible to place more than one curve segment horizontally. Loops
and circles in an IPO are senseless and ambiguous. An IPO can only have 1 value
at a time. This is automatically detected in the IPOWindow. By moving part of
the IPOCurve horizontally, you see that the selected vertices move ’through’ the
curve. This allows you to duplicate parts of a curve (SHIFT-D) and to move them to
another time frame.

It is also important to specify how an IPOCurve must be read outside of the curve
itself. There are four options for this in the Curve>>Extend Mode Submenu in the
IPO Window header (Figure 14-3).

Figure 14-3. IPO extension options.

The effect of each of these can be appreciated in (Figure 14-4).

Figure 14-4. Extended IPOs.

From left to right:

266

Chapter 14. Animation of Undeformed Objects

Extend mode Constant:

The ends of selected IPOCurves are continuously (horizontally) extrapolated. It is the
default behaviour.

Extend mode Extrapolation:

The ends of the selected IPOCurves continue in the direction in which they ended.

Extend mode Cyclic:

The complete width of the IPOCurve is repeated cyclically.

Extend Mode Cyclic Extrapolation:

The complete width of the IPOCurve is extrapolated cyclic.

In addition to Béziers, there are two other possible types for IPOCurves. Use the
TKEY command, and the dialog which then pops-up, or the Curve>>Interpolation
Mode submenu entry to select them. The interpolation of the selected IPOCurves can
be set to:

• Constant - after each vertex of the curve, this value remains constant. No interpo-
lation takes place.

• Linear - linear interpolation occurs between the vertices.

• Bezier - the standard fluid interpolation.

The IPO curves need not be set only by Key Framing. They can also be drawn ’by
hand’. Use the CTRL-LMB command. Here are the rules:

There is no IPO block yet (in this window) and one channel is selected:

a new IPOBlock is created along with the first IPOCurve with one vertex placed
where the mouse was clicked.

There is already an IPO block, and a channel is selected without an IPOCurve:

a new IPOCurve with one vertex is added.

There is already an IPO block, and a channel is selected with an existing
IPOCurve:

A new point is added to the selected IPOCurve.

This is not possible if multiple IPOCurves are selected or in EditMode.

Make an object rotate: This is the best method for specifying axis rotations quickly:
Select the object; in the IPOWindow, press one of the "Rot" channels and use CTRL-
LMB to insert two points. If the axis rotation must be continuous, you must use the
Curve>>Extend Mode>>Extrapolation Menu entry.

One disadvantage of working with motion curves is that the freedom of transforma-
tions is limited. You can work quite intuitively with motion curves, but only if this
can be processed on an XYZ basis. For a location, this is outstanding, but for a size
and rotation there are better mathematical descriptions available: matrices (3x3 num-
bers) for size and quaternions (4 numbers) for rotation. These could also have been
processed in the channels, but this can quite easily lead to confusing and mathemat-
ically complicated situations.

Limiting the size to the three numbers XYZ is obvious, but this limits it to a rectangu-
lar distortion. A diagonal scaling such as ’shearing’ is impossible. Simply working in
hierarchies can solve this. A non-uniform scaled Parent will influence the rotation of
a Child as a ’shear’.

267

Chapter 14. Animation of Undeformed Objects

The limitation of the three number XYZ rotations is less intuitive. This so-called Euler
rotation is not uniform - the same rotation can be expressed with different numbers
- and has the bothersome effect that it is not possible to rotate from any position to
another, the infamous gimbal lock. While working with different rotation keys, the
user may suddenly be confronted with quite unexpected interpolations, or it may
turn out to be impossible to force a particular axis rotation when making manual
changes. Here, also, a better solution is to work with a hierarchy. A Parent will always
assign the specified axis rotation to the Child. (It is handy to know that the X, Y and
Z rotations are calculated one after the other. The curve that affects the RotX channel,
always determines the X axis rotation).

Luckily, Blender calculates everything internally with matrices and quaternions. Hi-
erarchies thus work normally, and the Rotate mode does what you would expect it
to. Only the IPOs are a limitation here, but in this case the ease of use prevails above
a not very intuitive mathematical purity.

IPO Curves and IPO Keys
Relevant to Blender v2.31

The easiest way to work with motion curves is to convert them to IPO Keys. We
return to the situation in the previous example: we have specified two positions in
an object IPO in frame 1 and frame 31 with IKEY. At the right of the screen, you can
see an IPO Window. We set the current frame to 21 (Figure 14-5).

Figure 14-5. The IPOKey mode.

Press KKEY while the mouse cursor is in the 3DWindow. Two things will happen
now:

• The IPOWindow switches to IPOKey mode.

• The selected object is assigned the "DrawKey" option.

The two actions each have separate meanings.

• The IPOWindow now draws vertical lines through all the vertices of all the visible
IPOCurves (IPOS are now black). Vertices with the same ’frame’ value are linked
to the vertical lines. The vertical lines (the "IPOKeys") can be selected, moved or
duplicated, just like the vertices in EditMode. You can translate the IPOKeys only
horizontally.

• The object is not only shown in its current position but ’ghost’ objects are also
shown at all the Key positions. In addition to now being able to visualize the key
positions of the object, you can also modify them in the 3DWindow. In this exam-
ple, use the Grab mode on the object to change the selected IPOKeys.

Below are a number of instructions for utilizing the power of the system:
268

Chapter 14. Animation of Undeformed Objects

• You can only use the RMB to select IPOKeys in the IPOWindow. Border select, and
extend select, are also enabled here. Select all IPOKeys to transform the complete
animation system in the 3DWindow.

• The "Insert Key" always affects all selected objects. The IPOKeys for multiple ob-
jects can also be transformed simultaneously in the 3DWindow. Use the SHIFT-
K command: Show and select all keys to transform complete animations of a
group of objects all at once.

• Use the PAGEUP and PAGEDOWN commands to select subsequent keys in the
3DWindow.

• You can create IPOKeys with each arrangement of channels. By consciously exclud-
ing certain channels, you can force a situation in which changes to key positions in
the 3DWindow can only be made to the values specified by the visible channels.
For example, with only the channel LocX selected, the keys can only be moved in
the X direction.

• Each IPOKey consists of the vertices that have exactly the same frame value. If
vertices are moved manually, this can result in large numbers of keys, each having
only one curve. In this case, use the JKEY ("Join") command to combine selected
IPOKeys. It is also possible to assign selected IPOKeys vertices for all the visible
curves: use IKEY in the IPOWindow and choose "Selected keys".

• The DrawKey option and the IPOKey mode can be switched on and off indepen-
dently. Use the button EditButtons->DrawKey to switch off this option or object.
You can switch IPOKey mode on and off yourself with KKEY in the IPOWindow.
Only KKEY in the 3DWindow turns on/off both the DrawKey and IPOKey mode.

Other applications of IPO Curves
Relevant to Blender v2.31

There are several other application for IPOs other than just animating an Object
movement.

The IPO Type Menu Buttons in the header (Figure 14-6) allow IPO Block type selec-
tion, the active one there is the Object IPO described up to now, but there are Material
IPO, World IPO, Vertex Keys IPO, Constraints IPO and Sequence IPO. Not every en-
try is always present, depending on context. Curve IPO block appears if the selected
object is a curve and not a Mesh, the Lamp IPO only appears if the selected object is
a lamp.

Figure 14-6. The IPO window.

269

Chapter 14. Animation of Undeformed Objects

Material IPO is a way of animating a Material. Just as with objects, IPO Curves can be
used to specify ’key positions’ for Materials. With the mouse in the ButtonsWindow,
the command IKEY calls up a pop-up menu with options for the various Material
variables. If you are in a Material, Lamp or World IPO Block then a small Num But-
ton appears next to the IPO type Menu in the IPO Window toolbar. This indicates
which texture channel is active. The mapping for all 8 channels can be controlled
with IPOCurves!

Strictly speaking, with textures two other animations are possible. Since Objects can
give texture coordinates on other objects (Each object in Blender can be used as a
source for texture coordinates. To do this, the option "Object" must be selected in the
green "Coordinates input" buttons and the name of the object must be filled in. An
inverse transformation is now performed on the global render coordinate to obtain
the local object coordinate) it is possible to animate the texture simply by animating
the location, size, and rotation of the object.

Furthermore, at each frame, Blender can be made to load another (numbered) Image
as a texture map instead of having a fixed one. It is also possible to use SGI movie
files or AVI files for this.

The Time Ipo
Relevant to Blender v2.31

With the TimeIpo curve you can manipulate the animation time of objects without
changing the animation or the other Ipos. In fact, it changes the mapping of animation
time to global animation time (Figure 14-7).

270

Chapter 14. Animation of Undeformed Objects

Figure 14-7. Linear time IPO

To grasp this concept, make a simple keyframe-animation of a moving object, from
a position to another in, say, 50 frames. Then select the Time channel and create a
TimeIpo in the IpoWindow going from point (1,1) to point (50,50). It is easy to set the
start and end point of an IPO by using NKEY and entering the values numerically.

In frames where the slope of the TimeIpo is positive, your object will advance in its
animation. The speed depends on the value of the slope. A slope bigger than 1 will
animate faster than the base animation. A slope smaller than 1 will animate slower.
A slope of 1 means no change in the animation, negative power slopes allow you to
reverse the animation.

The TimeIpo is especially interesting for particle systems, allowing you to "freeze"
the particles or to animate particles absorbed by an object instead of emitted. Other
possibilities are to make a time lapse or slow motion animation.

Multiple Time IPOs: You need to copy the TimeIpo for every animation system to get
a full slow motion. But by stopping only some animations, and continue to animate, for
example, the camera you can achieve some very nice effects (like those used to stunning
effect in the movie "The Matrix")

271

Chapter 14. Animation of Undeformed Objects

Path Animation
Relevant to Blender v2.31

A different way to have Objects move in the space is to constrain them to follow a
given path.

When objects need to follow a path, or it is too hard to animate a special kind of
movement with the keyframe method (Think of a planet following its way around
the Sun. Animating that with keyframes is virtually impossible) curve objects can be
used for the 3D display of an animation path.

If the Curve object contains more than a single continuous curve only the first curve
in the object is then used.

Figure 14-8. The Action Window with Path Buttons.

As for tracking, there are two Path animation methods, the old, pre 2.30 method
described here and the new method, which actually defines a constraint, which will
be described in the Section called Constraints in Chapter 16. When parenting an Object
to a Curve you will be asked to choose a Normal Parent or a Follow Path option.
The Former is what you need for conventional Path animation, but other actions
needs to be taken later. The second option creates a "Follow Path" Constraint, and it
is all you need to do.

Any kind of curve can become a path by setting the option CurvePath Toggle Button
in the Animation Buttons window (F7) to ON (Figure 14-8).

When a Curve has childs it can be turned to a Path by selecting it, going int the
Editing Context (F9) and activating the CurvePath Toggle button in the Curve and
Surface Panel. Child objects of the Curve will now move along the specified path.
It is a good idea to set the Curve to 3D via the 3D Toggle Button of the Curve Edit
Buttons so that the paths can be freely modelled.

Otherwise, in the ADD menu under Curve->Path, there is a primitive with the correct
settings already there. This is a 5th order NURBS spline, which can be used to create
very fluid, continuous movements.

Normally a Path is 100 frames long and it is followed in 100 frames by children. You
can make it longer or shorter by varying the PathLength: Num Button.

The speed along a path is determined with an appropriate curve in the IPO Window.
To see it, in the IPO Window Header button you must select the Curve type for the
IPO block. A single channel, Speed is there. The complete path runs in the IPO Win-
dow between the vertical values 0.0 and 1.0. Drawing a curve between these values
links the time to the position on the path. Backward and pulsing movements are pos-
sible with this. For most paths, an IPO Curve must run exactly between the Y-values
0.0 and 1.0. To achieve this, use the Number menu (NKEY) in the IPO Window. If the
IPO Curve is deleted, the value of PathLen determines the duration of the path. A
linear movement is defined in this case. The Speed IPO is a finer way of controlling
Path length. The path is long 1 for time IPO, and if the time IPO goes from 0 to 1 in
200 frames then the path is 200 frames long.

272

Chapter 14. Animation of Undeformed Objects

Using the option CurveFollow , in the Curve and Surface Panel, a rotation is also
given to the Child objects of the path, so that they permanently point in the direction
of the path. Use the "tracking" buttons in the Anim settings Panel of the Object (F7)
context to specify the effect of the rotation (Figure 14-9) as you would do for Tracking:

Figure 14-9. Tracking Buttons

TrackX, Y, Z, -X, -Y, -Z This specifies the direction axis, i.e. the axis that is
placed on the path.

UpX, UpY, UpZ Specifies which axis must point ’upwards’, in the direction of the
(local) positive Z axis. If the Track and the Up axis coincides, it is deactivated.

Note: Curve paths have the same problem of Bevelled curves for what concern the defi-
nition of the "Up" direction.

To visualize these rotations precisely, we must make it possible for a Child to have its
own rotations. Erase the Child’s rotation with ALT-R. Also erase the "Parent Inverse":
ALT-P. The best method is to ’parent’ an unrotated Child to the path with the com-
mand SHIFT-CTRL-PKEY: "Make parent without inverse". Now the Child jumps
directly to the path and the Child points in the right direction.

3D paths also get an extra value for each vertex: the ’tilt’. This can be used to spec-
ify an axis rotation. Use TKEY in EditMode to change the tilt of selected vertices in
EditMode, e.g. to have a Child move around as if it were on a roller coaster.

Figure 14-10 shows a complex application. We want to make a fighter dive into a
canyon, fly next to the water and then rise again, all this by following it with our
camera and, possibly, having reflection in the water!

To do this we will need three paths. Path 1 has a fighter parented to it, the fighter will
fly following it.

273

Chapter 14. Animation of Undeformed Objects

Figure 14-10. Complex path animation

The fighter has an Empty named ’Track’ Parented to it in a strategic position. A cam-
era is then parented to another curve, Path 2, and follows it, tracking the ’Track’
Empty. The Fighter has a constant Speed IPO, the camera has not. It goes faster, then
slower, always tracking the Empty, and hence the fighter, so we will have very fluid
movements of the camera from Fighter side, to Fighter front, other side, back, etc.
(Figure 14-11)

Figure 14-11. Some frames, the camera fluidly tracking the fighter.

Since we want our fighter to fly over a river, we need to set up an Env Map for the
water surface to obtain reflections. But the Empty used for the calculations must be
always in specular position with respect to the camera... and the camera is moving
along a path!

Path 3 is hence created by mirroring path 2 with respect to the water plane, by dupli-
cating it, and using MKEY in Edit Mode with respect to the cursor, once the cursor is
on the plane.

The Empty for the Env Map calculation is then parented to this new path, and the
Time IPO of Path 2 is copied to Path 3. Figure 14-12 shows a rendered frame. Some
particle systems were used for trails.

The scene presents many subtle tricks, as particles for the jet streams, fog, a sky
sphere encircling the scene and so on.

274

Chapter 14. Animation of Undeformed Objects

Figure 14-12. A frame of the final animation.

275

Chapter 14. Animation of Undeformed Objects

276

Chapter 15. Animation of Deformations

Animating an Object/Material, is not the only thing you can do in Blender. You can
change, reshape, deform your objects in time!

There are many ways of achieving this actually, and one technique is so powerful and
general there is a full chapter for it: Character animation. The other techniques will
be handled here.

Absolute Vertex Keys
Relevant to Blender v2.31

VertexKeys (as opposed to Object keys, the specified positions of objects) can also
be created in Blender; VertexKeys are the specified positions of vertices within an
Object. Since this can involve thousands of vertices, separate motion curves are not
created for each vertex, the traditional Key position system is used instead. A sin-
gle IPOCurve is used to determine how interpolation is performed and the times at
which a VertexKey can be seen.

VertexKeys are part of the Object Data, not of the Object. When duplicating the Ob-
ject Data, the associated VertexKey block is also copied. It is not possible to permit
multiple Objects to share the same VertexKeys in Blender, since it would not be very
practical.

The Vertex Key block is universal and understands the distinction between a Mesh, a
Curve, a Surface or a Lattice. The interface and use is therefore unified. Working with
Mesh VertexKeys is explained in detail in this section, which also contains a number
of brief comments on the other Object Data.

The first VertexKey position that is created is always the reference Key. This key de-
fines the texture coordinates. Only if this Key is active can the faces and curves, or the
number of vertices, be changed. It is allowed to assign other Keys a different number
of vertices. The Key system automatically interpolates this.

A practical example is given below. When working with VertexKeys, it is very handy
to have an IPO Window open. Use the first Screen from the standard Blender file,
for example. In the IPO Window, we must then specify that we want to see the
VertexKeys. To do this use the IPO type Menu Button and select Vertex . Go to the
3DWindow with the mouse cursor and press IKEY. With a Mesh object selected and
active. The "Insert Key" menu has several options, the latter being Mesh. As soon
as this has been selected, a new dialog appears (Figure 15-1) asking for Relative or
Absolute Vertex Keys.

Figure 15-1. Insert Vertex Keys Menu.

We will choose Absolute Keys ; a yellow horizontal line is drawn in the IPO Win-
dow. This is the first key and thus the reference Key. An IPO Curve is also created for
"Speed" (Figure 15-2).

277

Chapter 15. Animation of Deformations

Figure 15-2. Reference Key and Speed IPO.

Vertex Key creation: Creating VertexKeys in Blender is very simple, but the fact that the
system is very sensitive in terms of its configuration can cause a number of ’invisible’
things to happen. The following rule must therefore be taken into consideration.

As soon as a VertexKey position is inserted it is immediately active. All subsequent
changes in the Mesh are linked to this Key position. It is therefore important that the
Key position be added before editing begins.

Go a few frames further and again select: IKEY, Mesh (in the 3DWindow). The second
Key is drawn as a light blue line. This is a normal Key; this key and all subsequent
Keys affect only the vertex information. Press TAB for EditMode and translate one of
the vertices in the Mesh. Then browse a few frames back: nothing happens! As long

278

Chapter 15. Animation of Deformations

as we are in EditMode, other VertexKeys are not applied. What you see in EditMode
is always the active VertexKey.

Leave EditMode and browse through the frames again. We now see the effect of the
VertexKey system. VertexKeys can only be selected in the IPO Window. We always do
this out of Edit Mode: the ’contents’ of the VertexKey are now temporarily displayed
in the Mesh. We can edit the specified Key by starting Editmode.

There are three methods for working with Vertex Keys:

• The ’performance animation’ method. This method works entirely in EditMode,
chronologically from position to position:

• Insert Key. The reference is specified.

• A few frames further: Insert Key. Edit the Mesh for the second position.

• A few frames further: Insert Key. Edit the Mesh for the third position.

• Continue the above process...

• The ’editing’ method.

• We first insert all of the required Keys, unless we have already created the Keys
using the method described above.

• Blender is not in EditMode.

• Select a Key. Now start EditMode, change the Mesh and leave EditMode.

• Select a Key. Start EditMode, change the Mesh and leave EditMode.

• Continue the above process....

• The ’insert’ method

• Whether or not there are already Keys and whether or not we are in EditMode
does not matter in this method.

• Go to the frame in which the new Key must be inserted.

• Insert Key.

• Go to a new frame, Insert Key.

• Continue the above process...

While in EditMode, the Keys cannot be switched. If the user attempts to do so, a
warning appears.

Each Key is represented by a line which is drawn at a given height. Height is chosen
so that the key intersects the "Speed" IPO at the frame at which the Key is taken.

Both the IPO Curve and the VertexKey can be separately selected with RMB. Since
it would otherwise be too difficult working with them, selection of the Key lines
is switched off when the curve is in Edit Mode. The channel button can be used to
temporarily hide the curve (SHIFT-LMB on "Speed") to make it easier to select Keys.

The Key lines in the IPO Window, once taken, can be placed at any vertical position.
Select the line and use Grab mode to do this. The IPO Curve can also be processed
here in the same way as described in the previous chapter. Instead of a ’value’, how-
ever, the curve determines the interpolation between the Keys, e.g. a sine curve can
be used to create a cyclical animation.

During the animation the frame count gives a certain value of the speed IPO, which
is used to chose the Key(s) which is/are to be used, possibly with interpolation, to
produce the deformed mesh.

279

Chapter 15. Animation of Deformations

The Speed IPO has the standard behaviour of an IPO, also for interpolation. The Key
line has three different interpolation types. Press TKEY with a Key line selected to to
open a menu with the options:

• Linear : interpolation between the Keys is linear. The Key line is displayed as a
dotted line.

• Cardinal : interpolation between the Keys is fluid, the standard setting.

• BSpline : interpolation between the Keys is extra fluid and includes four Keys in
the interpolation calculation. The positions are no longer displayed precisely, how-
ever. The Key line is drawn as a dashed line.

Figure 15-3 shows a simple Vertex Key animation of a cylinder. When run the cylinder
deforms to a big star, then deforms to a small star, then, since the Speed IPO goes back
to 0 the deformation is repeated in reverse order.

Figure 15-3. Absolute Keys.

Some useful tips:

• Key positions are always added with IKEY, even if they are located at the same po-
sition. Use this to copy positions when inserting. Two key lines at the same position
can also be used to change the effect of the interpolation.

• If no Keys are selected, EditMode can be invoked as usual. However, when you
leave EditMode, all changes are undone. Insert the Key in EditMode in this case.

• For Keys, there is no difference between selected and active. It is therefore not pos-
sible to select multiple Keys.

• When working with Keys with differing numbers of vertices, the faces can become
disordered. There are no tools that can be used to specify precise sequence of ver-
tices. This option is actually suitable only for Meshes that have only vertices such
as Halos.

Curve and Surface Keys
As mentioned earlier, Curve and Surface Keys work exactly the same way as Mesh
Keys. For Curves, it is particularly interesting to place Curve Keys in the bevel ob-
ject. Although this animation is not displayed real-time in the 3DWindow, it will be
rendered.

280

Chapter 15. Animation of Deformations

Lattice Keys
As soon as one Key is present in a Lattice, the buttons that are used to determine the
resolution are blocked.

Relative VertexKeys
Relevant to Blender v2.31

Relative Vertex Keys (RVK) works differently inasmuch only the difference between
the reference mesh and the deformed mesh is stored. This allows for blending several
keys together to achieve complex animations.

We will walk through RVK via an example.

We will create a facial animation via RVK. While Absolute Vertex Keys are controlled
with only one IPO curve, Relative Vertex Keys are controlled by one interpolation
curve for every key position, which states ’how much’ of that relative deformation is
used to produce the deformed mesh. This is why relative keys can be mixed (added,
subtracted, etc.).

For facial animation, the base position might be a relaxed position with a slightly
open mouth and eyelids half open. Then keys would be defined for left/right eye-
blink, happy, sad, smiling, frowning, etc.

The trick with relative vertex keys is that only the vertices that are changed between
the base and the key affect the final output during blending. This means it is possible
to have several keys affecting the object in different places all at the same time.

For example, a face with three keys: smile, and left/right eye-blink could be animated
to smile, then blink left eye, then blink right eye, then open both eyes and finally stop
smiling - all by blending 3 keys. Without relative vertex keys 6 vertex keys would
have needed to be generated, one for each target position.

Consider the female head in Figure 15-4:

Figure 15-4. The female head we want to animate.

281

Chapter 15. Animation of Deformations

To add an RVK just press IKEY and select Mesh as for AVK, but, from the pop up
menu select Relative Vertex Keys . This stores the reference Key which will appear
as an yellow horizontal line in the IPO window.

Relative keys are defined by inserting further vertex keys. Each time the IKEY is
pressed and Mesh selected a new horizontal line appears in the IPO window. If frame
number is augmented each time the horizontal lines are placed one above the other.
For easier modelling let’s hide all vertices except those of the face (Figure 15-5).

Figure 15-5. All but the face vertices hidden.

Now move to another frame, say number 5, and add a new Key. A cyan line will
appear above the yellow, which now turns orange. Switch to Edit mode and close the
left eyelid.

When you are done exit from Edit Mode. If you select the reference key you will see
the original mesh. If you select your first RVK you will see the deformed one (Figure
15-6).

282

Chapter 15. Animation of Deformations

Figure 15-6. Left eye closed.

Repeat the step for the right eye. Beware that the newly inserted key is based on the
mesh of the currently active key, so it is generally a good idea to select the reference
key before pressing IKEY.

Then add a smile (Figure 15-7).

283

Chapter 15. Animation of Deformations

Figure 15-7. Smiling.

Your IPO Window will look like Figure 15-8.

284

Chapter 15. Animation of Deformations

Figure 15-8. Keys in the IPO Window.

The vertical order of the Vertex Keys (the blue lines) from bottom to top determines
its corresponding IPO Curve, i.e. the lowest blue key line will be controlled by the
Key1 curve, the second lowest will be controlled by the Key2 curve, and so on.

No IPO is present for the reference mesh since that is the mesh which is used if all
other Keys have an IPO of value 0 at the given frame.

Select Key1 and add an IPO with your favourite method. Make it look like Figure
15-9.

285

Chapter 15. Animation of Deformations

Figure 15-9. The IPO curve of Key 1.

This will make our mesh undeformed up to frame 10, then from frame 10 to frame 20
Key 1 will begin to affect the deformation. From frame 20 to frame 40 Key 1 will com-
pletely overcame the reference mesh (IPO value is 1), and the eye will be completely
closed. The effect will fade out from frame 40 to frame 50.

You can check with ALT-A, or by setting the frame numbers by hand. The second
option is better, unless your computer is really powerful!

Copy this IPO by using the down pointing arrow button in the IPO Window toolbar
(Figure 15-10). Select the Key 2 and paste the curve with the up pointing arrow. Now
both keys will have the same influence on the face and both eyes will close at the
same time.

Figure 15-10. Clipboard buttons.

Panning the Toolbar: It may happen that the toolbar is longer than the window and some
buttons are not shown. You can pan horizontally all toolbars by clicking MMB on them and
dragging the mouse.

Add also an IPO for Key 3 . Let’s make this different (Figure 15-11).

286

Chapter 15. Animation of Deformations

Figure 15-11. All IPOs.

This way the eyes close and she begins to smile, smile is at maximum with eyes
closed, then she smiles ’less’ while the eyes re-open and keeps smiling (Figure 15-12).

Figure 15-12. Sequence.

The IPO Curve for each key controls the blending between relative keys. These curves
should be created in the typical fashion. The final position is determined by adding
all of the effects of each individual IPO Curve.

RVK in Action Window: You can operate with RVK also in the Action (SHIFT-F12), not
IPO, Window (Figure 15-13). The influence of any Key is given via a slider. Marks are
present at Key points (i.e. where the IPO would have a control point).

287

Chapter 15. Animation of Deformations

Figure 15-13. RVK in Action Window.

Values out of [0,1] range: An important part of Relative Keys is the use of additive or
extrapolated positions. For example, if the base position for a face is with a straight mouth,
and a key is defined for a smile, then it is possible that the negative application of that key
will result in a frown. Likewise, extending the IPO Curve above 1.0 will "extrapolate" that
key, making an extreme smile.

Lattice Animation
Relevant to Blender v2.31

Parenting a mesh to a lattice is a nice way to apply deformations to the former while
modelling, but it is also a way to make deformations in time!

You can use Lattices in animations in two ways:

• Animate the vertices with vertex keys (or relative vertex keys);

• Move the lattice or the child object of the lattice.

The first technique is basically nothing new than what contained in the previous two
sections but applied to a lattice which has an object parented to it.

With the second kind you can create animations that squish things between rollers,
or achieve the effect of a well-known space ship accelerating to warp-speed.

Make a space ship and add a lattice around the ship. make the lattice with the pa-
rameters in Figure 15-14.

288

Chapter 15. Animation of Deformations

Figure 15-14. Lattice setup

Select the ship, extend the selection to the lattice (holding SHIFT while selecting),
and press CTRL-P to make the lattice the parent of the ship. You should not see any
deformation of the ship because the lattice is still regular.

For the next few steps it is important to do them in EditMode. So now select the
lattice, enter EditMode, select all vertices (AKEY), and scale the lattice along its x-
axis (press MMB while initiating the scale) to get the stretch you want. The ship’s
mesh shows immediately the deformation caused by the lattice (Figure 15-15).

Figure 15-15. Stretching

Now edit the lattice in EditMode so that the right vertices have an increasing distance
from each other. This will increase the stretch as the ship goes into the lattice. The
right ends vertices I have scaled down so that they are nearly at one point; this will
cause the vanishing of the ship at the end (Figure 15-16).

Select the ship again and move it through the lattice to get a preview of the animation.
Now you can do a normal keyframe animation to let the ship fly through the lattice.

Figure 15-16. Final lattice deformation

Camera tracking: With this lattice animation, you can’t use the pivot point of the object
for tracking or parenting. It will move outside the object. You will need to vertex-parent an
Empty to the mesh for that. To do so, select the Empty, then the mesh, enter EditMode
and select one vertex, then press CTRL-P.

289

Chapter 15. Animation of Deformations

Figure 15-17. Some frames of the resulting animation.

290

Chapter 16. Character Animation

Introduction: Lights, Camera and... ACTION !
As we have seen in the Section called Rigging in Chapter 4 Blender uses Armatures
for character animation. An armature is just like a skeleton which once parented to
our character mesh, will let us define a number of poses for our character along the
timeline of our animation.

An armature is made up of an arbitrary number of bones. The size, position and ori-
entation of every bone in your armature is up to you, and you will find through this
chapter that different situations will require a particular arrangement of bones for
your character to work properly.

As you animate your armature you will find that it is better to organize several re-
lated poses in something called an action, which is more or less the same as in the real
world. When we walk, we can imagine ourselves passing through several instanta-
neous poses as if we were in the frames of a moving picture, the whole process of the
walk is an action in the end. But there are actions and actions. As an animator you
will need to acquire the capability of knowing how to split any natural movement
or action into several simpler actions that will be easier to deal with. Working with
simpler actions commonly saves time and work (and why not: money!) since these
actions are usually reusable.

Once you have set-up your first actions you will be able to combine them using
Blender’s powerful Non Linear Animation (or NLA) editor, giving your character a
living mood and natural manners.

In this chapter we will cover every single detail of Blender’s functionalities related to
Armatures, Actions and the NLA Editor. Furthermore we will see several armature
set-ups that will give you a starting point for your own creations and ideas. Relax
and enjoy.

General Tools
Relevant to Blender v2.31

There are few Blender features which can make your life easier while animating a
character. Let’s see them, before going deep into details.

The auto-key feature can be found in the InfoWindow. When it is enabled, Blender
will automatically set KeyFrames when you move Objects. This is helpful for people
who are not used to explicitly inserting KeyFrames with IKEY. There are two sep-
arate toggles for auto-keying: one for Object Mode and one for Pose Mode. These
two options can be set independently of one another from the Edit Method group of
buttons in the User Preferences Window. (Figure 16-1).

Figure 16-1. Auto key options

Auto Keyframe on Object will set KeyFrames for Objects that are moved in Object
Mode. Users who are familiar with the Blender interface will likely want to leave this
option disabled.

291

Chapter 16. Character Animation

Auto Keyframe on Action sets KeyFrames for transformations done in Pose Mode.
This ensures that you will not lose a pose by forgetting to insert KeyFrames. Even
users who are familiar with the Blender interface may find this to be a useful feature.

It is possible to display different IPOs in different windows. This is especially valu-
able while editing Actions, which have a different IPO for each bone.

Figure 16-2. Pinned Action IPOWindow

You can "pin" an IPO or Action (lock it to the current window) by pressing the pin
icon in the header of the window (Figure 16-2). The contents of the window will stay
there, even when the object is deselected, or another object is selected. Note that the
colour of the IPO block menu will change, along with the background colour of the
IPO Window. These serve as reminders that the window is not necessarily displaying
the IPO of the currently selected object.

The browse menu is still available while a window is pinned. In this case however,
changing the current data will not affect the current object; it merely changes which
data is displayed.

The Armature Object
Relevant to Blender v2.31

The armature Object is the key Object of character animation. It is an object compris-
ing several interconnected or not interconnected "bones". A series of interconnected
bones is an "Inverse Kinematics (IK) Chain" or simply "Chain" of bones. An IK Chain
is something more complex than a standard Parent relation inasmuch not only the
movements of the "Parent" bone are transmitted to the children, but also the move-
ments of the last child of the chain can transmit up in the chain to the parent bone if
an Inverse Kinematics solution is asked for. Bones can be moved as if they were a set
of rigid, undeformable Object with perfect joints. Consider an armature to be like a
skeleton for a living creature. The arms, legs, spine and head are all part of the same
skeleton object.

292

Chapter 16. Character Animation

Figure 16-3. Adding an Armature

To create a new armature, select SPACE>>Add>>Armature from the Toolbox (Figure
16-3). A new bone will appear with its root at the location of the 3D cursor. As you
move the mouse, the bone will resize accordingly. LMB will finalize the bone and
start a new one that is the child of the previous one. In this way you can make a
complete chain. Pressing ESC will cancel the addition of the bone.

You can add another bone to an armature while it is in Edit Mode with
SPACE>>Add>>Armature from the toolbox again. This will start the bone-adding
mode again, and the new bones you create will be a part of the current armature but
will form a separate chain.

You can also extrude bones from existing bones by selecting a bone joint and pressing
EKEY. The newly created bone will be a child of the bone it is extruded from, but not
of its IK chain.

While in Edit Mode, you can perform the following operations to the bones in an
armature.

• Adjusting - Select one or more bone joints and use any of the standard transforma-
tion operations to adjust the position or orientation of any bones in the armature.
Note that IK chains cannot have any gaps between their bones and as such moving
the end point of a bone will move the start point, or root of its child.

You can select an entire IK chain at once by moving the mouse cursor over a joint
in the chain and pressing LKEY. You can also use the boundary select tool (BKEY).

• Deleting - You can delete one or more bones by selecting its start and end points.
When you do this you will notice the bone itself will be drawn in a highlighted
colour. Pressing XKEY will remove the highlighted bones. Note that selecting a
single point is not enough to delete a bone.

• Point Snapping - It is possible to snap bone joints to the grid or to the cursor by
using the snap menu accessible with SHIFT-S.

• Numeric Mode - For more precise editing, pressing NKEY will bring up the numeric
entry box. Here you can adjust the position of the start and end points as well as
the bone’s roll around its own axis.

An easy way to automatically orient the z-axis handles of all selected bones (nec-
essary for proper use of the pose-flipped option) is to press CTRL-N. Remember
to do this before starting to create any animation for the armature.

293

Chapter 16. Character Animation

• Undo - While in Edit Mode, you can cancel the changes you have made in the
current editing session by pressing UKEY. The armature will revert to the state it
was in before editing began.

It is also possible to join two Armatures together into a single Object. To do this,
ensure you are in Object Mode, select both armatures and press CTRL-J.

Naming Bones
Assigning meaningful names to the bones in your armatures is important for several
reasons. First it will make your life easier when editing Actions in the Action Win-
dow. Second, the bone names are used to associate Action channels with bones when
you are attempting to re-use Actions, and third, the names are used when taking
advantage of the automatic pose-flipping feature.

Note that bone names need only be unique within a given armature. You can have
several bones called "Head" so long as they are all in different armatures.

To change the names of one or more bones, select the bones in Edit Mode and switch
to the Editing Context Buttons with F9. A list of all the selected bones should appear
in the Armature Bones Panel (Figure 16-4). Change a bone’s name by SHIFT-LMB
in the bone’s name box and typing a new name.

Figure 16-4. EditButtons for an Armature

It is easier to name the bones by either only editing one bone at a time, or by making
sure the DrawNames option is enabled in the EditButtons F9 (Figure 16-5.

Pose Flipping Conventions: Character armatures are typically axially symmetrical. This
means that many elements are found in pairs, one on the left and one on the right. If you
name them correctly, Blender can flip a given pose around the axis of symmetry, making
animation of walk-cycles much easier.

For every bone that is paired, suffix the names for the left and right with either ".L" and
".R" or ".Left" and ".Right". Bones that lie along the axis of symmetry or that have no twin
need no suffix. Note that the part of the name preceding the suffix should be identical for
both sides. So if there are two hands, they should be named "Hand.R" and "Hand.L".

294

Chapter 16. Character Animation

Parenting and IK chain
To change parenting relationships within the armature, select the bone that should be
the child and switch to the Armature Bones Panel of the Edit Buttons Window. Next
to the bone there should be a menu button labelled Child Of . To make the bone
become the child of another bone, pick the appropriate parent from the list. Note that
this is much easier if the bones have been correctly named. To dissolve a parenting
relationship, choose the blank entry in the list.

Note that the parenting menu only contains the names of valid parents. Bones that
cannot be parents (such as children of the current bone) will not be displayed.

The IK toggle next to each bone with a parent is used to determine if the IK solver
should propagate its effects across this joint. If the IK button is active, the parent’s end
point will be moved to match its child’s start point. This is to satisfy the requirement
that there are no gaps in an IK chain. Deactivating the IK button will not restore the
child’s start point to its previous location, but moving the point will no longer affect
the parent’s end point.

Note: There can be only one IK relation between a Bone and it’s child so only one of the
IK Tog Buttons of the children of a given bone can be set at a time.

Setting Local Axes: To get the best results while animating, it is necessary to ensure
that the local axes of each bone are consistent throughout the armature. This should be
done before any animation takes place.

It is also necessary that when the armature object is in its untransformed orientation in
object Mode, the front of the armature is visible in the front view, the left side is visible
in the left view and so on. You can ensure this by orienting the armature so that the
appropriate views are aligned and pressing CTRL-A to apply size and rotation. Again,
this should be done before any animation takes place.

The orientation of the bones’ roll handles is important to getting good results from the
animation system. You can adjust the roll angle of a bone by selecting it and pressing
NKEY. The exact number that must be entered here depends on the orientation of
the bone.

The z-axis of each bone should point in a consistent direction for paired bones. A
good solution is to have the z-axes point upwards (or forwards, when the bone is
vertically oriented). This task is much easier if the "Draw Axes" option is enabled in
the Armature Panel in the Edit Buttons Window.

295

Chapter 16. Character Animation

The Armature Panel

Figure 16-5. Draw options for Armatures

This panel just contains a few toggle buttons. When the Rest Pos toggle is activated
(Figure 16-5), the armature will be displayed in its rest position. This is useful if it
becomes necessary to edit the mesh associated with an armature after some posing
or animation has been done. Note that the Actions and poses are still there, but they
are temporarily disabled while this button is pressed.

Draw Axes and Draw Names toggle buttons allow the local axes of each bone and its
name to be displayed in the 3D Viewport.

The X-Ray toggle prevents the armature bones from being hidden by your model
when in solid/shaded mode.

Skinning
Relevant to Blender v2.31

Once the Armature - the ’character skeleton’ - is ready it is necessary to parent the
character ’skin’ to it. Skinning is a technique for creating smooth mesh deformations
with an armature. Essentially the skinning is the relationship between the vertices in
a mesh and the bones of an armature, and how the transformations of each bone will
affect the position of the mesh vertices.

When making a child of an armature, several options are presented:

Parent to Bone

In this case, a popup menu appears allowing you to choose which bone should
be the parent of the child(ren) objects. This is great for robots, whose body parts
are separate meshes which are not expected to bend and deform when moving.

Parent to Armature

Choosing this option will deform the child(ren) mesh(es) according to their ver-
tex groups. If the child meshes don’t have any vertex groups, they will be subject
to automatic skinning. Indeed a second menu appears, asking:

• Don’t create groups - does nothing else, automatic skinning is used;

• Name Groups - creates empty vertex groups whose names matches the bone
names, but no vertices are assigned to them;

• Create from closest bone - you want to create and populate automatically
vertex groups.

296

Chapter 16. Character Animation

Parent to Armature Object

Choosing this option will cause the child(ren) to consider the armature to be an
Empty for all intents and purposes.

If you are going for character animation then most of the times you will parent your
character to the Armature using the "Armature" Option. You are strongly advised to
use the Name Groups option. This will provide you with the groups already created,
saving the tedious operations of creating an naming them, and possibly avoiding
typing errors.

The Create from closest bone feature is currently under heavy development. It
will use the "Bone types" which can be defined via the menu right of the IK Tog
Buttons (Figure 16-4) for optimal result.

Currently only the Skinnable and Unskinnable options are working. The first op-
tion makes Vertex Group be created (and populated, if this is asked for) for the given
bone, the second option causes that bone to be ignored in the skinning process.

Note: The current vertex assignment algorithm creates non-optimal vertex groups, hence
it is highly recommended to check each group, one by one.

If a mesh does not have any vertex groups, and it is made the child of an armature,
Blender will attempt to calculate deformation information on the fly. This is very slow
and is not recommended. It is advisable to create and use vertex groups instead.

Weight and Dist: The Weight and Dist settings next to the IK are only used by the
automatic skinning which is a deprecated feature because it requires lot of CPU, produces
slow downs and worse result than other methods.

Vertex Groups

Figure 16-6. Vertex Groups

Vertex groups are necessary to define which bones deform which vertices. A vertex
can be a member of several groups, in which case its deformation will be a weighted
average of the deformations of the bones it is assigned to. In this way it is possible to
create smooth joints.

To add a new vertex group to a mesh, you must be in Edit Mode. Create a new vertex
group by clicking on the Newbutton in the mesh’s Edit Buttons Mesh Tools 1 Panel
(Figure 16-6).

297

Chapter 16. Character Animation

A vertex group can be subsequently deleted by clicking on the Delete button.

Change the active group by choosing one from the pull-down group menu.

Vertex groups must have the same names as the bones that will manipulate them. Both
spelling and capitalization matter. This is why automatic name creation is so useful!
Rename a vertex group by SHIFT-LMB on the name button and typing a new name.
Note that vertex group names must be unique within a given mesh.

Vertices can be assigned to the active group by selecting them and clicking the Assign
button. Depending on the setting of the Weight button, the vertices will receive more
or less influence from the bone. This weighting is only important for vertices that are
members of more than one bone. The weight setting is not an absolute value; rather
it is a relative one. For each vertex, the system calculates the sum of the weights of all
of the bones that affect the vertex. The transformations of each bone are then divided
by this amount meaning that each vertex always receives exactly 100% deformation.

Assigning 0 weight to a vertex will effectively remove it from the active group.

To remove vertices from the current group select them and click the Remove button.

Pressing the Select button will add the vertices assigned to the current group to
the selection set. Pressing the Deselect button will remove the vertices assigned to
the current group from the selection set. This is handy to check which vertices are in
which group.

Weight Painting
Weight painting is an alternate technique for assigning weights to vertices in vertex
groups. The user can "paint" weights onto the model and see the results in real-time.
This makes smooth joints easier to achieve.

To activate weight-painting mode, select a mesh with vertex groups and click on the
weight paint icon (Figure 16-7).

Figure 16-7. Weight Paint Button.

The active mesh will be displayed in Weight-Colour mode. In this mode dark blue
represents areas with no weight from the current group and red represent areas with
full weight. Only one group can be visualized at a time. Changing the active vertex
group in the Edit Buttons will change the weight painting display.

Weights are painted onto the mesh using techniques similar to those used for ver-
tex painting, with a few exceptions. The "colour" is the weight value specified in the
mesh’s Edit Buttons. The opacity slider in the vertex paint Buttons is used to modu-
late the weight. To erase weight from vertices, set the weight to "0" and start painting.

Note: It is quite easy to change the weight since TAB will take you out of Weight Paint
Mode into Edit Mode and Panels will automatically match the Context.

298

Chapter 16. Character Animation

Posemode
Relevant to Blender v2.31

To manipulate the bones in an armature, you must enter Pose Mode. In Pose Mode
you can only select and manipulate the bones of the active armature. Unlike Edit
Mode, you cannot add or delete bones in Pose Mode.

Enter Pose Mode by selecting an armature and pressing CTRL-TAB. Alternatively
you can activate Pose Mode by selecting an armature and clicking on the Pose Mode
menu entry in the Mode Menu of the 3D Window header (Figure 16-8). You can leave
Pose Mode by the same method, or by entering Edit Mode.

Figure 16-8. Pose Mode Menu entry.

In Pose Mode, you can manipulate the bones in the armature by selecting them with
RMB and using the standard transformation keys: RKEY, SKEY and GKEY. You
cannot "grab" (translate) bones that are IK children of another bone, since the IK chain
must stay continuous.

Press IKEY to insert KeyFrames for selected bones.

If you want to clear the posing for one or more bones, select the bones and press ALT-
R to clear rotations, ALT-S to clear scaling and ALT-G to clear translations. Issuing
these three commands with all bones selected will return the armature to its rest
position.

It is frequently convenient to copy poses from one armature to another, or from one
Action to a different point in the same Action. This is where the pose copying tools
in the Armature Menu come into play.

For best results, be sure to select all bones in Edit Mode and press CTRL-N to auto-
orient the bone handles before starting any animation.

Figure 16-9. Pose Mode Button.

299

Chapter 16. Character Animation

To copy a pose, select one or more bones in Pose Mode, select the Armature>>Copy
Current Pose Menu entry in the 3D Window header (Figure 16-9). The transforma-
tions of the selected bones are stored in the copy buffer until needed or until another
copy operation is performed.

To paste a Pose, simply chose the Armature>>Paste Pose Menu entry (Figure 16-9).
If Action auto key framing is active, KeyFrames will be inserted automatically.

To paste a mirrored version of the Pose (if the character was leaning left in the
copied Pose, the mirrored Pose would have the character leaning right), use the
Armature>>Paste Flipped Pose Menu entry (Figure 16-9). Note that if the
armature was not set up correctly, the paste flipped technique may not work as
expected.

Action Window
Relevant to Blender v2.31

An Action is made of one or more Action channels. Each channel corresponds to one
of the bones in the armature, and each channel has an Action IPO associated with it.
The Action Window provides a means to visualize and Edit all of the IPOs associated
with the Action together.

Tip: You can activate the Action Window with SHIFT-F12 (Figure 16-10).

Figure 16-10. Action Window

For every key set in a given Action IPO, a marker will be displayed at the appropriate
frame in the Action Window. This is similar to the "Key" mode in the IPO Window.
For Action channels with constraint IPOs, there will be one or more additional con-
straint channels beneath each Action channel. These channels can be selected inde-
pendently of their owner channels (Figure 16-11).

Figure 16-11. Action Window with a Constraint

A block of Action keys can be selected by either RMB on them or by using the bound-
ary select tool (BKEY). Selected keys are highlighted in yellow. Once selected, the

300

Chapter 16. Character Animation

keys can be moved by pressing GKEY and moving the mouse. Holding CTRL will
lock the movement to whole-frame intervals. LMB will finalize the new location of
the keys, while ESC cancels the Action and returns to previous state.

A block of Action keys can also be scaled horizontally (effectively speeding-up or
slowing-down the Action) by selecting number of keys and pressing SKEY. Moving
the mouse horizontally will scale the block. LMB will finalize the operation.

Delete one or more selected Action keys by pressing XKEY when the mouse cursor
is over the KeyFrame area of the Action Window.

A block of Action keys can be duplicated and moved within the same Action by
selecting the desired keys and pressing SHIFT-D. This will immediately enter grab
mode so that the new block of keys can be moved. Subsequently LMB will finalize
the location of the new keys. ESC will exit grab, but won’t remove duplicates.

You can also delete one or more entire Action or constraint channels (and all associ-
ated keys) by selecting the channels in the left-most portion of the Action Window
(the selected channels will be highlighted in blue). With the mouse still over the left-
hand portion of the window, press XKEY and confirm the deletion. Note that there is
no undo so perform this operation with care. Also note that deleting an Action chan-
nel that contains constraint channels will delete those constraint channels as well.

Baking Actions: If you have an animation that involves constraints and you would like to
use it in the game engine (which does not evaluate constraints, and is not covered in this
Book), you can bake the Action by pressing the BAKEbutton in the Action Window ToolBar.
This will create a new Action in which every frame is a KeyFrame. This Action can be
played in the game engine and should display correctly with all constraints removed. For
best results, make sure that all constraint targets are located within the same armature.

You can actually see the Action IPO associated to a bone in the IPO Window instead
of in the Action Window if you switch to an IPO Window (Figure 16-12). The Action
IPO is a special IPO type that is only applicable to bones. Instead of using Euler angles
to encode rotation, Action IPOs use quaternions, which provide better interpolation
between Poses.

Figure 16-12. Action IPO

Quaternions use a four-component vector. It is generally difficult and unintuitive to
describe the relationships of these quaternion channels to the resulting orientation,
but it is often not necessary. It is best to generate quaternion KeyFrames by manipu-
lating the bones directly, only editing the specific curves to adjust lead-in and lead-
out transitions.

Non Linear Animation
Relevant to Blender v2.31

Non Linear Animation is a technique somewhat akin to RVK used to merge different,
simple, Actions in complex, fluid Actions. The NLA Window gives an overview of
all of the animation in your scene. From here you can edit the timing of all IPOs, as if

301

Chapter 16. Character Animation

they were in the Action Window. Much of the editing functionality is the same as the
Action Window.

You can display the NLAWindow with CTRL-SHIFT-F12 (Figure 16-13).

Figure 16-13. NLA Window

You can also use this window to perform Action blending and other Non-Linear
Animation tasks. You add and move Action Strips in a fashion similar to the Sequence
Editor, and generate blending transitions for them.

In the NLA Window Actions are displayed as a single strip below the object’s strip;
all of the KeyFrames of the Action (constraint channel KeyFrames included) are dis-
played on one line (Figure 16-14). To see an expanded view of the Action, use the
Action Window.

Figure 16-14. Expanded Action in NLA Window

Objects with constraint channels will display one or more additional constraint strips
below the object strip. The constraint strip can be selected independently of its owner
object (Figure 16-15).

Figure 16-15. Expanded Constraint in NLA Window

RMB clicking on object names in the NLA Window will select the appropriate objects
in the 3D Window. Selected object strips are drawn in blue, while unselected ones are
red.

You can remove constraint channels from objects by clicking RMB on the constraint
channel name and pressing XKEY.

Note: Note that only armatures, or objects with IPOs will appear in the NLA Window.

302

Chapter 16. Character Animation

Working with Action Strips
Action strips can only be added to Armature objects. The object does not necessarily
need to have an Action associated with it first.

Add an Action strip to an object by moving the mouse cursor over the object name
in the NLA Window and pressing SHIFT-A and choosing the appropriate Action to
add from the popup menu. Note that you can only have one Action strip per line.

You can select, move and delete Action strips along with other KeyFrames in the
NLA Window.

The strips are evaluated top to bottom. Channels specified in strips later in the list
override channels specified in earlier strips.

You can still create animation on the armature itself. Channels in the local Action on
the armature override channels in the strips. Note that once you have created a chan-
nel in the local Action, it will always override all Actions. If you want to create an
override for only part of the timeline, you can convert the local Action to an Action
strip by pressing CKEY with your mouse over the armature’s name in the NLA Win-
dow. This removes the Action from the armature and puts it at the end of the Action
strip list.

Each strip has several options which can be accessed by selecting the strip and press-
ing NKEY (Figure 16-16). The options available are as follows:

Figure 16-16. NLA Action Strip Options

• StripStart/StripEnd - The first and last fame of the Action strip in the timeline.

• ActionStart/ActionEnd - The range of keys to read from the Action. The end
may be less than the start which will cause the Action to play backwards.

• Blendin/Blendout - The number of frames of transition to generate between this
Action and the one before it in the Action strip list.

• Repeat - The number of times the Action range should repeat. Not compatible
with Use Path setting.

• Stride - The distance (in Blender units) that the character moves in a single cycle
of the Action (usually a walk cycle Action). This field is only needed if Use Path
is specified.

• Use Path - If an armature is the child of a path or curve and has a Stride value,
this button will choose the frame of animation to display based on the object’s
position along the path. Great for walkcycles.

• Hold - If this is enabled, the last frame of the Action will be displayed forever,
unless it is overridden by another Action. Otherwise the armature will revert to its
rest position.

303

Chapter 16. Character Animation

• Add - Specifies that the transformations in this strip should add to any existing
animation data, instead of overwriting it.

Constraints
Relevant to Blender v2.31

Constraints are filters that are applied to the transformations of bones and objects.
This section is actually quite general and does not apply only to character animation
since many other animations can benefit from constraints.

Blender Constraints can provide a variety of services including tracking and IK solv-
ing.

To add a constraint to an object, ensure you are in object Mode and in Object Context
(F7) and that an Object is selected. If you are adding a Constraint to a Bone be sure
to be in Pose Mode rather than Object Mode and select a Bone. The Object Context
Buttons Window will present a Constraints Panel (Figure 16-17). Click on the Add
button. A menu of possible constraints will appear.

Figure 16-17. Constraints Panel.

Once you selected the desired constraint its buttons will appear. A constraint can be
deleted by clicking on the "X" icon next to it. A constraint can be collapsed by clicking
on its orange triangle icon. When collapsed, a constraint can be moved up or down
in the constraint list by clicking on it at choosing Move Up or Move Down from the
popup menu.

For most constraints, a target must be specified in the appropriate field. In this field
you must type in the name of the desired target object. If the desired target is a bone,
first type in the name of the bone’s armature. Another text box will appear allowing
you to specify the name of the bone.

Constraint Types
Several Constraints are possible. All apply to Bones, some also apply to other Objects:

• Copy Location - The constraint forces the Object to have an one or more co-
ordinates (chosen via the three Toggle Buttons) of its location equal to those of
the target (Figure 16-18).

304

Chapter 16. Character Animation

Figure 16-18. Copy Location Constraint.

• Copy Rotation - This constraint copies the global rotation of the target and applies
it to the constraint owner (Figure 16-19).

Figure 16-19. Copy Rotation Constraint.

• Track To - This constraint causes the constraint owner to point one of its axes (by
default the Y-axis) towards the target either in its positive or negative direction,
depending on the selected Radio Buttons. The Object rotation will be computed so
that another one of its axis (by default the Z-axis) will point up, again this can be
changed via the pertinent Radio Buttons. (Figure 16-20).

Figure 16-20. Track To Constraint.

• Locked Track - This constraint causes the constraint owner to point one of its axes
(by default the Y-axis) to point towards the target either in its positive or negative
direction, depending on the selected Radio Buttons. The Object rotation will be
computed so that another one of its axis (by default the Z-axis) direction is fixed,
again this can be changed via the pertinent Radio Buttons.

Actually this means that the Object is rotated around it fixed axis so that the Target
lies on the plane defined by the locked axis and the pointing axis. (Figure 16-21).

Figure 16-21. Lock Track.

• Follow Path - This constraint needs the Target to be a Curve or Path. It causes the
constraint owner to follow the path in time.

By default the Object translates along the curve in 100 frames. You can make the
Object orientation follow the curve with the CurveFollow Toggle Button and by

305

Chapter 16. Character Animation

setting the Radio Buttons below to define which axis should be tangent to the curve
and which should point up. To change the number of frames in which the Path is
followed you need to edit the Curve’s Speed IPO. (Figure 16-22).

Figure 16-22. Follow Path.

• IK Solver (Bone Only) - To simplify animation of multi-segmented limbs (such
as arms and legs) you can add an IK solver constraint. IK constraints can only
be added to bones. Once a target is specified, the solver will attempt to move the
root of the constraint-owning bone to the target, by re-orienting the bone’s parents
(but it will not move the root of the chain). If a solution is not possible, the solver
will attempt to get as close as possible. Note that this constraint will override the
orientations on any of the IK bone’s parents (Figure 16-23).

Figure 16-23. IK Solver Constraint.

Note: If the Target of the IK Constraint is another bone of the same Armature, as is
highly recommended, you must make sure that this bone, usually denominated IK_Tool,
is not the child of any other bone of the IK chain, or weird results will happen.

• Action (Bone Only) - An Action constraint can be used to apply an Action channel
from a different Action to a bone, based on the rotation of another bone or object.
The typical way to use this is to make a muscle bone bulge as a joint is rotated.
This constraint should be applied to the bone that will actually do the bulging; the
target should point to the joint that is being rotated (Figure 16-24).

Figure 16-24. Action Constraint.

The AC field contains the name of the Action that contains the flexing animation.
The only channel that is required in this Action is the one that contains the bulge
animation for the bone that owns this constraint.

306

Chapter 16. Character Animation

The Start and End fields specify the range of motion from the Action.

The Min and Max fields specify the range of rotation from the target bone. The
Action between the start and end fields is mapped to this rotation (so if the bone
rotation is at the Min point, the Pose specified at Start will be applied to the bone).
Note that the Min field may be higher than the Max.

The pulldown menu specifies which component of the rotation is to be considered.

• Null - This is a constraint that does nothing at all; it doesn’t affect the object’s
transformation directly. The purpose of a null constraint is to use it as a separator,
and why this might be necessary will be clarified in the following section (Figure
16-25).

Figure 16-25. Null Constraint.

Constraints Evaluation Rules and Precedence
Constraints can be applied to objects or bones. In the case of constraints applied to
bones, any constraints on the armature object will be evaluated before the constraints
on the bones are considered.

When a specific constraint is evaluated, all of its dependencies will have already been
evaluated and will be in their final orientation/positions. Examples of dependencies
are the object’s parent, its parent’s parents (if any) and the hierarchies of any targets
specified in the constraint.

Within a given object, constraints are executed from top to bottom. Constraints that
occur lower in the list may override the effects of constraints higher in the list. Each
constraint receives as input the results of the previous constraint. The input to the
first constraint in the list is the output of the IPOs associated with the object.

If several constraints of the same type are specified in a contiguous block, the con-
straint will be evaluated once for the entire block, using an average of all the targets.
In this way you can constrain an object to track to the point between two other ob-
jects, for example. You can use a Null constraint to insert a break in a constraint block
if you would prefer each constraint to be evaluated individually.

Looping constraints are not allowed. If a loop is detected, all of the constraints in-
volved will be temporarily disabled (and highlighted in red). Once the conflict has
been resolved, the constraints will automatically re-activate.

Influence
The influence slider next to each constraint is used to determine how much effect the
constraint has on the transformation of the object.

If there is only a single constraint in a block (a block is a series of constraints of the
same type which directly follow one another), an influence value of 0.0 means the
constraint has no effect on the object. An influence of 1.0 means the constraint has
full effect.

If there are several constraints in a block, the influence values are used as ratios. So
in this case if there are two constraints, A and B, each with an influence of 0.1, the
resulting target will be in the centre of the two target objects (a ratio of 0.1:0.1 or 1:1
or 50% for each target).

307

Chapter 16. Character Animation

Influence can be controlled with an IPO. To add a constraint IPO for a constraint, open
an IPO Window and change its type to constraint by clicking on the chain icon. Next
click on the Edit IPO Button next to the constraint you wish to work with. If there is no
constraint IPO associated with the constraint yet, one will be created. Otherwise the
previously assigned IPO will be displayed. At the moment, KeyFrames for constraint
IPOs can only be created and edited in the IPO Window, by selecting the INF channel
and CTRL-LMB in the IPO space.

When blending Actions with constraint IPOs, note that only the IPOs on the arma-
ture’s local Action IPOs are considered. Constraint IPOs on the Actions in the motion
strips are ignored.

Important: In the case of armatures, the constraints IPOs are stored in the current Action.
This means that changing the Action will change the constraint IPOs as well.

Rigging a Hand and a Foot
by Lyubomir Kovachev

Relevant to Blender v2.31

The Hand
Setting up a hand for animation is a tricky thing. The gestures, the movements of
wrists and fingers are very important, they express emotional states of the character
and interact with other characters and objects. That’s why it’s very important to have
an efficient hand set-up, capable of doing all the wrist and fingers motions easily.
Here is how to do it:

Figure 16-26. The Arm model

We’ll use a simple cartoony arm mesh in this tutorial (Figure 16-26).

The following set-up uses one IK solver for the movement of the whole arm and four
other IK solvers, one for each finger. The rotation of the wrist is achieved by a simple
FK bone.

OK. Take a look at the arm mesh and let’s start making the armature.

308

Chapter 16. Character Animation

Figure 16-27. Drawing the armature

Position the 3D cursor in the shoulder, go to front view and add an armature. Make
a chain of three bones - one in the upper arm, the second one in the lower arm and
the third one should fit the palm, ending at the beginning of the middle finger. This
is called a chain of bones. (Figure 16-27).

Figure 16-28. The armature in side view.

309

Chapter 16. Character Animation

Figure 16-29. Placing the armature in side view.

Now change the view to side view and displace the bones so that they fit in the arm
and palm properly (Figure 16-28 and Figure 16-29).

Figure 16-30. Wrist IK solver.

Zoom in the hand and position the cursor at the root of the bone, positioned in the
palm. Add a new bone, pointing right, with the same length as the palm bone. This
will be the IK solver for the arm. (Figure 16-30).

310

Chapter 16. Character Animation

Figure 16-31. Rigging the finger.

Position the 3D cursor at the beginning of the middle finger and in front view start
building a new chain, consisting of four bones (Figure 16-31). Three of them will be
the actual bones in the finger, and the fourth bone will be a null bone - this is a small
bone, pointing to the palm, that will help turning the whole chain to an IK chain later.

Again, change to side view and reshape the bones so that they fit the finger well.
It could be a tricky part and you may also view the scene using the trackball while
reshaping the bones (Figure 16-32).

Figure 16-32. Rigging the finger.

311

Chapter 16. Character Animation

Figure 16-33. Adding the finger IK solver.

Now add the IK solver for this finger chain. Position the 3D cursor at the root of the
null bone and add bone with the length of the other three bones in the finger (Figure
16-33).

Figure 16-34. Rigging the other fingers.

Repeat the same for the creation of the IK chains for the other three fingers. The only
difference with the thumb is that it has two actual bones, instead of three. You can
just copy and paste the chain and just reshape, reshape, reshape... (Figure 16-34).

312

Chapter 16. Character Animation

Figure 16-35. Naming overview.

The time has come for the boring part - naming of the bones. You cannot skip this,
because you’ll need the bone names in the skinning part later. Bones are named as in
Figure 16-35.

Note: The names of the bones of finger 1 and finger 2 are not shown here. They are
identical to the names of the bones of finger 3, only the number changes.

Figure 16-36. Parenting the Thumb.

Now let’s do some parenting.

Select the root thumb bone "ThumbA.R" (Figure 16-36) and in the edit menu click in
the "child of" field and choose "Hand.R". You’ve just parented the thumb bone chain
to the hand bone.

313

Chapter 16. Character Animation

Figure 16-37. Parenting the other fingers.

By repeating the same process parent the following bones (Figure 16-37):

• "Fing1A.R" to "Hand.R"

• "Fing2A.R" to "Hand.R"

• "Fing3A.R" to "Hand.R"

• "IK_thumb.R" to "Hand.R"

• "IK_fing1.R" to "Hand.R"

• "IK_fing2.R" to "Hand.R"

• "IK_fing3.R" to "Hand.R"

Why did we do all this? Why did we parent so much bones to "Hand.R"? Because
when you rotate the hand (i.e. "Hand.R") all the fingers will follow the hand. Other-
wise the fingers will stay still and only the palm will move and you’ll get very weird
results.

Note: No IK tool bone is child of any bone of the chain it controls. All of them are children
of "Hand.R".

314

Chapter 16. Character Animation

Figure 16-38. Setting the IK solver for the wrist. Selecting the bone.

Time to add constraints. Enter pose mode (Figure 16-38) and go in Object Context
(F7). Choose "Hand.R" and add an IK solver constraint to it in the Constraints Panel.
In the OBfield type the object name: "Armature". The bone went to the centre of the
armature, but we’ll fix this now. In the new BOfield, that appeared in the constraint
window, type the bone name "IK_arm.R". This will be the IK solver bone controlling
the arm motion (Figure 16-39).

Figure 16-39. Setting the IK solver for the wrist. Setting the Constraint.

Now by repeating the same procedure:

• select "ThumbNull.R" and add IK solver "IK_thumb.R",

• select "Fing1null.R" and add IK solver "IK_fing1.R",

• select "Fing2null.R" and add IK solver "IK_fing2.R",

• select "Fing3null.R" and add IK solver "IK_fing3.R".

You’re finished with the bone part. In pose mode select different IK solvers and move
them to test the IK chains. Now you can move the fingers, the thumb, the whole arm
and by rotating the "Hand.R" bone you can rotate the whole hand.

So let’s do the skinning now. It’s the part when you tell the mesh how to deform.
You’ll add vertex groups to the mesh. Each vertex group should be named after the

315

Chapter 16. Character Animation

bone that will deform it. If you don’t assign vertex groups, the deformation process
will need much more CPU power, the animation process will be dramatically slowed
down and you’ll get weird results. It’s highly recommended (almost mandatory) that
you use subdivision surfaces meshes for your characters with low vertex count. Oth-
erwise if you use meshes with lots of vertices, the skinning will be much more dif-
ficult. Don’t sacrifice detail, but model economically, use as few vertices as possible
and always use SubSurf.

Parent the Mesh to the Armature, in the Pop-Up select Armature and in the following
select Name Groups. Your Mesh will be enriched by empty Vertex Groups.

Select the arm mesh, enter Edit Mode and switch to Editing (F9) Context. In the Mesh
Tools 1 of the Edit Buttons Window notice the small group of buttons with the word
Group on top. Thanks to the automatic naming feature, you have already created all
the groups you needed. (Figure 16-40).

Figure 16-40. Vertex group names.

Actually the automatic Grouping scheme has created vertex groups also for the "IK"
and "null" bones unless you have set them Unskinnable before. These are useless and
you can safely delete them.

Now let’s do the tricky part: Select the vertex group "ArmHi.R" from the edit but-
tons by clicking on the small button with the white minus sign. Now look at the 3D
window. Select all the vertices that you want to be deformed by the "ArmHi.R" bone.
(Figure 16-41).

316

Chapter 16. Character Animation

Figure 16-41. ArmHi.R vertex group.

Now press the Assign button in the edit buttons window (Figure 16-42). You’ve just
added the selected vertices to the "ArmHi.R" vertex group. These vertices will be
deformed by the "ArmHi.R" bone.

Figure 16-42. Assigning vertices to a group.

Repeat the same steps for the other vertex groups: select vertices and assign them to
the corresponding group. This is a tricky process. Do it carefully. If you’ve assigned
some vertices to a certain group by mistake, don’t worry. Just select the unneeded
vertices and press the Remove button. You can add a vertex to more than one vertex
group. For example the vertices that build joints (of fingers, wrist, elbow, etc.) could
be assigned to the two vertex groups that are situated close to it. You can also assign
vertices to deform with different strength. The default strength is 1.000, but you can
add vertices with strength 0.500 or less. The lower the strength value, the less defor-
mation for that vertex. You can make a vertex deform 75% by one bone and 25% by
another, or 50% by one and 50% by another. It’s all a matter of testing the deformation
until you achieve the result you want. In general if your arm model has half-flexed
joints (as the model in this tutorial you will get good results without using strength
values different than 1.000. My own rule of thumb when modelling a character is:
always model the arms fingers and legs half-flexed, not straight. This is a guarantee
for good deformation.

When you’re finished adding vertices to vertex groups, if you haven’t made any mis-
takes, you’ll have a well set up arm with a hand. Select the armature, enter pose
mode, select the different IK solvers and test the arm and fingers (Figure 16-43).

317

Chapter 16. Character Animation

Figure 16-43. Different Poses.

The Foot
The set-up of legs and feet is maybe the most important thing in the whole rigging
process. Bad foot set-up may lead to the well known "sliding-feet" effect, which is
very annoying and usually ruins the whole animation. A well made complex foot
set-up must be capable of standing still on the ground while moving the body, and
doing other tricky stuff like standing on tiptoe, moving the toes, etc. Now we’re going
to discuss several different foot set-ups that can be used for different purposes.

Figure 16-44. A (wrong) leg rig.

First let’s see how a bad foot set-up looks like (Figure 16-44).

Start building a bone chain of three bones - one for the upper leg, the second one for
the lower leg and the third one for foot. Now move the 3D cursor at the heel joint
and add another bone - this will be the IK solver. Now add that bone as an IK solver
constraint to the foot bone. (Figure 16-45).

318

Chapter 16. Character Animation

Figure 16-45. Assigning the IK constraint.

Figure 16-46. The rig in pose mode.

Test the armature: in pose mode grab the IK solver and move it - it’s moving OK.
Now grab the first bone in the chain (the upper leg) and move it. The foot is moving
too and we don’t want this to happen! (Figure 16-46).

Usually in an animation you’ll move the body a lot. The upper leg bone is parented
to the body and it will be affected by it. So every time you make your character move
or rotate his body, the feet will slide over the ground and go under it and over it.
Especially in a walkcycle, this would lead to an awful result.

319

Chapter 16. Character Animation

Figure 16-47. Adding a toe and some more IK Animation.

Now maybe you think this could be avoided by adding a second IK solver at the toes
(Figure 16-47). Let’s do it. Start a new armature. Add a chain of four bones: upper leg,
lower leg, foot and toes. Add two IK solvers - one for the foot and one for the toes.
Parent the toe IK solver bone to the foot IK solver bone.

Note: The toe IK solver is parented to the Foot IK solver. This latter must not be children
of any other bone in the armature. Be sure of this and, to delete a parent relationship,
remember that you can do so by selecting the empty entry in the Child of: menu. Re-
member to check this for all subsequent examples.

Figure 16-48. Moving the leg.

Test this setup - grab the upper leg bone and move it (Figure 16-48). Well, now the
sliding isn’t so much as in the previous setup, but it’s enough to ruin the animation.

320

Chapter 16. Character Animation

Figure 16-49. Rigging with a null bone.

Start a new armature. Make a chain of three bones - upper leg, lower leg and a null
bone. The null bone is a small bone, that we’ll add the IK solver to. Now position the
3D cursor at the heel and add the foot bone. Now add the foot bone as an IK solver
constraint to the null bone (Figure 16-49). (You can also add another bone as an IK
solver and add a "copy location" constraint to the foot bone, with the IK solver as
target bone.)

Figure 16-50. Rigging with a null bone.

Test this - now it works. When you move the upper leg the foot stands still (Figure
16-50). That’s good. But still not enough. Move the upper leg up a bit more. The leg
chain goes up, but the foot stays on the ground. Well, that’s a shortcoming of this set-
up, but you’re not supposed the raise the body so much and not move the IK solver
up too during animation...

321

Chapter 16. Character Animation

Figure 16-51. Adding the toe.

Again, build a chain of three bones - upper leg, lower leg and null bone. Position the
3D cursor at the heel and add a chain of two bones - the foot bone and a bone for the
toes. Now add an IK solver to the foot bone (Figure 16-51).

Test it. This is a good set-up with a stable, isolated foot and moving toes. But you still
cannot stand on tiptoe with this set-up.

Figure 16-52. Full complete leg rig.

322

Chapter 16. Character Animation

Figure 16-53. Zoom on the foot rig.

Build a chain of three bones - upper leg, lower leg and null bone (name it LegNull)
(Figure 16-52). Starting at the heel point, make a second chain of two bones only - foot
bone (Foot) and a small null bone (FootNull). Position the 3D cursor at the end of the
foot bone and add the toe bone (Toes). From the same point create an IK solver bone
(IK_toes). Now position the 3D cursor at the heel and add another IK solver there
(IK_heel). Finally, starting somewhere near the heel, add a bigger IK solver (IK_foot)
(Figure 16-53).

Now let’s add the constraints. Do the following:

• To the bone "Toes" add a copy location constraint with target bone "IK_toes".

• To "FootNull" - an IK solver constraint (target - "IK_toes").

• To "Foot" - copy location (target - "LegNull").

• To "LegNull" - IK solver (target - "IK_heel").

Well, that’s it. Now test the armature. Grab "IK_foot" and move it up. Now grab
"IK_toes" and move it down. The foot changes its rotation, but it looks like the toes
are disconnected from it. But if you animate carefully you’ll always manage to keep
the toes from going away from the foot. Now return the armature to its initial pose.
Grab "IK_heel" and "LegHi" and move them up. Now the character is standing on his
tiptoes. The foot may appear disconnected from the toes again, but you can fix the
pose by selecting "IK_heel" only and moving it a bit forward or backwards. This setup
may not be the easiest one for animation, but it gives you more possibilities than the
previous set-ups. Usually when you don’t need to make your character stand on
tiptoe, you’re better to stick to some of the easier set-ups. You’ll never make a perfect
set-up. You can just improve, but there will always be shortcomings.

Figure 16-54. Testing the setup.

323

Chapter 16. Character Animation

Rigging Mechanics
Relevant to Blender v2.31

Armatures are great also for rigging mechanical stuff, like robots, WarriorMechs etc.
(Figure 16-55).

Figure 16-55. Four spider-mech legs.

First step is to create the mesh for the arms. We are not here for organic, we are
here for mechanics. So no single mesh thing. The arm/leg/whatever is made of rigid
parts, each part is a single mesh, parts moves/rotates one with respect to the other.

Although Figure 16-55 has four spider-like legs arms, each of which have 5 sections,
it is clearer to explain the tricks with just a single joint arm.

My suggestion is this: make the arm with two equal sections, and the forearm, on
the right, made by just one section. Note the cylinders which represents the shoulder
(left) the elbow (centre) and the wrist (right) (Figure 16-56).

Figure 16-56. The Arm model

The other cylinders in the middle of the arm and forearm are the places where the
piston will be linked to.

324

Chapter 16. Character Animation

Note that it is much easier if the axis of mutual rotation (shoulder, elbow, etc.) are
exactly on grid points. This is not necessary though, if you master well Blender Snap
menu.

Pivot axis
Then add the mechanical axes in the pivot points. Theoretically you should add one
at each joint and two for every piston. For the sake of simplicity here there are only
the two axes for the piston, made with plain cylinders (Figure 16-57).

Figure 16-57. The Arm model with pivot axis.

Note two things:

• It is fundamental that the centre of the mesh is exactly in the middle and exactly
on the axis of rotation of the piston.

• Each axis must be parented to the pertinent arm mesh.

The Armature
Now it is time to set up the armature. Just two bones are enough (Figure 16-58).

325

Chapter 16. Character Animation

Figure 16-58. The Arm model and its armature

To have an accurate movement, the joints must be precisely set on the pivoting axis
(this is why I told you to place such axes on grid points before, so that you can use
the Move Selected To Grid feature).

Name the bones smartly (Arm and Forearm, for example). Parent the Arm Mesh to
the armature, selecting the Bone option and the Arm bone. Do the same with the
forearm mesh and forearm bone.

Parent to Bone: Parent to Bone effectively makes the Object follow the bone without
any deformation. This is what should happen for a robot which is made by undeformable
pieces of steel!

Figure 16-59. The Arm model in Pose Mode

If you switch to Pose Mode you can move your arm by rotating the bones. (Figure 16-
59). You can add an Inverse Kinematics (IK) solver as we did in the previous section
if you like.

326

Chapter 16. Character Animation

Hydraulics

Figure 16-60. Hydraulic piston.

Make a piston with two cylinders, a larger one and a thinner one, with some sort of
nice head for linking to the pivoting points (Figure 16-60).

It is mandatory for the two pieces to have the mesh centre exactly on the respective
pivoting axis.

Place them in the correct position and parent each piston piece to the pertinent mesh
representing the axis. (Figure 16-61).

Figure 16-61. Hydraulic piston on the arm.

If you now rotate the two pieces in the position they should have to form a correct
still image you get a nice piston. (Figure 16-62, left).

327

Chapter 16. Character Animation

Figure 16-62. Hydraulic piston in Pose Mode.

But if you switch to Pose Mode and start moving the Arm/Forearm the piston gets
screwed up... (Figure 16-62, right).

To make a working piston you must make each half piston track the other half piston’s
pivot axis cylinder mesh (Not the other half piston! This would create a constraint
loop). This is why the position of all the mesh centres is so critical (Figure 16-63).

Figure 16-63. Hydraulic piston with mutual tracking.

Select half a piston, select the other half piston’s axis mesh, and, in Object Context
(F7) and Constraints panel add a Track To Constraint. The buttons below X, Y ...
must be appropriately set (Figure 16-64).

Figure 16-64. Track settings.

328

Chapter 16. Character Animation

Note: If you prefer Old Track, remember also to press the PowerTrack button in the Anim
Setting Panel for a nicer result.

Now, if you switch to Pose Mode and rotate your bones the piston will extend and
contract nicely, as it should in reality. (Figure 16-65).

Figure 16-65. Pose Mode for the arm with hydraulics.

The next issue is, since pistons work when pressurised oil is pumped into them, for
a really accurate model we should add some hydraulic hoses. But how to place a
nicely deforming tube going from arm to piston? The two ends should stick to two
rigid bodies reciprocally rotating. This requires IK!

329

Chapter 16. Character Animation

Figure 16-66. Adding a flexible tube.

First add a mesh in the shape of the tube you want to model (Figure 16-66).

Personally I prefer to draw the tube in its bent position as a bevelled curve. This is
done by adding a Bézier curve, adding a Bézier circle, and using the Bézier circle as
BevOb of the Bézier curve. Then convert that to a mesh (ALT-C) to be able to deform
it with an armature.

Figure 16-67. Adding the armature to the tube.

Then add an armature. A couple of bones are enough. This armature should go from
the tube’s ’fixed’ end to the tube’s ’mobile’ end. Add a third bone which will be used
for the Inverse Kinematics solution (Figure 16-67).

Be sure that the armature is parented to the object where the ’fixed’ part of the tube
is, well, fixed. In this case the robot arm. Also add an Empty at the ’mobile’ end of
the tube. (Figure 16-68).

330

Chapter 16. Character Animation

Figure 16-68. The Empty for the IK Animation solution.

Figure 16-69. IK constraint.

Parent the Empty to the ’mobile’ part of the structure. In this case the outer part
of the piston to which the tube is linked. In Pose Mode go to the Object Context and
Constraints Panel. Select the last bone, the one which starts from where the tube ends,
and Add a constraint. Select the IK solver type of constraint and select the newly
created Empty as target Object OB:. (Figure 16-69). You can play with Tolerance:
and Iterations: if you like.

Lastly, parent the tube to the Armature via the ’Armature’ option. Create Vertex
groups if you like. Now if, in Pose Mode, you move the arm, the two parts of the
piston keep moving appropriately, and the Empty follows. This obliges the IK Arma-
ture of the tube to move, to follow the Empty, and, consequently, the Tube to deform
(Figure 16-69).

331

Chapter 16. Character Animation

Figure 16-70. Full robot arm in Pose Mode.

Note: You can use a bone of the Armature, instead of an Empty, as an IK solver, but in
this case you cannot parent the bone to the moving object. You can on the other hand,
use a Copy Location constraint, but this is not as easy since the copy location would move
the end of the armature to the center of the moving object, which is not the right place.

How to setup a walkcycle using NLA
by Claudio ’Malefico’ Andaur

Relevant to Blender v2.31

In this tutorial we will set up a walkcycle and use it with the Path option in the
Blender NLA Editor. Before starting let me tell you that you will need to have a basic
knowledge of the animation tools, (armature set up), in order to follow the text, and
have a lot of patience. It is highly recommended that you read all the preceding NLA
related parts of this Book.

We are going to use a character set up like the one explained in the “Hand and Foot
Rigging tutorial”, that is with foot bones split up from the leg and using an extra null
bone to store the IK solver constraint. For further details please check that section!

Having a rigged character, the first thing we need to do is to define actions:
“WALKCYCLE”, “WAVE_HAND” and “STAND_STILL”. In WALKCYCLE and
STAND_STILL there will be KeyFrames set for almost all control bones while in
“WAVE_HAND” there are KeyFrames only for the arm and hand. This will allow
our character to simultaneously wave its hand while walking.

The main idea behind this is to work on each single movement and later on combin-
ing everything in the NLA window.

The path to success
There are two main ways to animate a walkcycle, first one is to make the character
actually advance through the poses of the cycle and the second one is to make the
character walk in place thus without real displacement.

The latter option, though more difficult to set up, is the best choice for digital anima-
tion and it is our choice for this tutorial.

The whole walkcycle will be an "action" for our armature, so let’s go an create a new
action and switch to "pose mode" to get something like Pose 1 (the so called “contact
pose” in Figure 16-71.

332

Chapter 16. Character Animation

Figure 16-71. Some common poses in a walkcycle.

Note: There are some details to bear in mind at the time of setting up an armature for
walkcycle. If we adopt Blender’s naming convention introduced in the Section called The
Armature Object you will be able to paste flipped poses. Also, before parenting your ar-
mature to your model, be sure their local axis are aligned to the global axis by selecting
them and pressing CTRL-SHIFT-A .

To animate our walking model we will restrict us to animate a few control bones. In
the case of the legs we are going to animate its feet since the IKA solvers will adjust
the leg bones better than us. To ensure that feet will move in fixed distances, please
activate the Grab Grid option in the User Preferences Window View and Controls
buttons before start moving bones, reduce the grid size if needed.

A nice method is to hide, with the relative toggle button, all the bones we are not
going to set KeyFrames for. This way is easier to see the model during animation and
keeps our task simple.

Normally a walkcycle involves four poses, which are commonly known as contact,
recoil, passing and high-point. Take a look at Figure 16-71.

The most important pose is “Contact pose”. Most animators agree every walkcycle
should start by setting up this pose correctly. Here the character covers the widest
distance it’s possible to do in one step. In “Recoil pose”, the character is in its lower
position, with all its weight over one leg. In “High-point pose”, the character is in
its higher position, almost falling forwards. “Passing pose” is more like an automatic
pose in-between recoil and high-point.

The work routine is as follows:

1. Pose the model in contact pose in frame 1.

2. Insert KeyFrames for the control bones of your armature (those you use for
grabbing, mainly IK solvers).

3. Without deselecting them press the "Copy Pose" button. Now the bone’s loca-
tion and rotations have been stored in memory.

4. Go a few frames forward and press "Paste Flip Pose". The flip pose will be
pasted in this frame, so if in the previous frame the left leg was forwards now
it will be backwards, and viceversa.

5. Now once again select your control bones and insert KeyFrames for them.

6. Go a few frames forward again (it is recommendable that you use the same
number of frames as before, an easy choice is to go just 10 frames every ahead
time) and press "Paste Pose", this will paste the initial pose ending the cycle.
This way we have achieved a "Michael Jackson" style walkcycle since our char-
acter never lift its feet up from the ground.

333

Chapter 16. Character Animation

7. To fix it, go to some intermediate position between the first two poses and
move the feet to get something like the Recoil Pose in Figure 16-71, where the
waist reaches its lower position.

8. Insert KeyFrames and copy the pose.

9. Now go to a frame between the last two poses (inverse contact and contact)
and insert the flip pose. Insert the required KeyFrames and we are done.

Tip: If on the contrary you see that the mesh is weirdly deformed, don’t panic!, go to
EditMode for the armature, select all bones and press CTRL-N. This will recalculate the
direction of bones rolls which is what makes the twisting effect.

You should follow the same routine for all the poses you want to include in your
walkcycle. I normally use the contact, recoil, and high point poses and leave Blender
to make the passing pose.

Figure 16-72. Use copy, paste and paste-flip pose buttons to be happy!

Now if you do ALT-A you will see our character walking almost naturally.

It will be very useful to count how many Blender Units (B.U.) are covered with each
step, which can be done counting the grid squares between both feet in Pose 1. This
number is the STRIDE parameter that we are going to use later on in the NLA win-
dow.

Now we will focus on making the character actually advance through the scene.

First of all deselect the walkcycle action for our armature so it stops moving when
pressing ALT-A. To do this, press the little X button besides the action name in the
action window.

Then we will create a PATH object for our hero in the ground plane, trying not to
make it too curved for now (the straighter the better), once done let’s parent the
character’s Armature to the path (a normal parent, not a Follow Path!). If everything
went OK, we will see our character moving stiffly along the path when pressing ALT-
A.

Now go to the NLA window and add the walkcycle action in a channel as an NLA
strip. With the strip selected press N and then push the Use Path button.

Note: It is convenient that at the moment of adding actions in the NLA window, that no
action is selected for the current armature. Why? Because instead of an NLA strip, we’ll
see the individual KeyFrames of the action being inserted in the armature channel and this
KeyFrames will override any prior animation strips we could have added so far. Anyway,

334

Chapter 16. Character Animation

if you do insert an action in this way, you can always convert the KeyFrames into an NLA
strip by pressing CKEY.

Figure 16-73. A nice stroll

Now if you start the animation again some funny things might happen. This is be-
cause we haven’t set the Stride parameter.

This value is the number of Blender Units that should be covered by a single walk-
cycle and it is very important that we estimate it with accuracy. Once calculated we
should enter it in the Stride Num Button which appears if, once you have selected
the strip, you press the NKEY.

If we adjust it well and if the walkcycle was correctly set up, our character should not
"slide" across the path.

One way to estimate the Stride value accurately is to count how many grid squares
there are between the toes of the feet in Pose 1. This value is multiplied by 2 and
by the grid scale (normally 1 grid square = 1 B.U. but this might not be the case,
for instance in this example 2 grid squares = 1 B.U.) to provide the required STRIDE
value.

In the example there are 7.5 squares with GRID=1.0, since the Grid scale is 1.0 we
have: STRIDE = 7.5 x 1.0 x 2 = 15

Figure 16-74. Estimating the STRIDE. Refine the grid if needed!

It’s likely that we want our character to walk faster or slower or even stop for a while.
We can do all this by editing the path’s Speed curve.

Select the path and open an IPO window. There we will see a Speed curve normalized
between 0 and 1 in ordinates (Y axis) and going from frame 1 to the last one in the

335

Chapter 16. Character Animation

X axis. The Y coordinate represents the relative position in the path and the curve’s
slope is the speed of the parented objects. In Edit Mode we will add two points with
the same Y coordinate. This flat part represents a pause in the movement and it goes
from frame 40 to frame 60 in the figure.

The problem here is that when our character stops because of the pause in the curve,
we will see him in a "frozen" pose with a foot on the ground and the other in the air.

Figure 16-75. Having a rest in the walk

To fix this little problem we will use the NLA window. What we have to do is to
insert the “STAND_STILL” action, this is a pose where our character is at rest. I have
defined this action as only one frame by erasing all displacements and rotations of
the bones. (See Clearing Transformations), and then moving a couple of bones to get
a “resting” attitude.

Since the pause is from frame=78 to frame=112 we should insert this "still" action
exactly there for it to perfectly fit the pause. For the animation doesn’t start nor end
briskly we can use the BlendIn and BlendOut options, where we can set the number
of frames used to blend actions and in this way doing a more natural transition be-
tween them. In this way the character will smoothly change its pose and everything
will look fine. If we do use a BlendIn or BlendOut value, to be set in the NKEY di-
alog, then we should start the action BlendIn frames earlier and finish it BlendOut
frames later, because the character should be still moving while changing poses.

We can of course combine different walkcycles in the same path as for instance
change from walking to running in the higher speed zone.

In all these situations we will have to bear in mind that the different effects will be
added from one NLA strip to the precedent strips. So, the best option is to insert the
walkcycle and still strips before any other.

Moving hands while walking
To add actions in the NLA window we have to locate the mouse pointer over the
armature’s channel and press SHIFT-A. A menu with all available actions will pop
up. If we don’t locate the pointer over an armature channel an error message ERROR:
Not an armature" will pop up instead.

So, place the pointer over the armature strip and press SHIFT-A and add the
“WAVE_HAND” action.

As this particular action is just the waving of the left arm to say “hello” during some
point in the walkcycle, we will not use the “Use Path” option but move it in time so it
overlaps the arms KeyFrames from the walkcycle action. Move the pointer over the
strip and press NKEY or just drag it and scale it to your satisfaction.

336

Chapter 16. Character Animation

Figure 16-76. Hey guys!

Since this action is the last to be calculated (remember Blender evaluates actions from
Top to Bottom in the NLA Editor), it will override any KeyFrames defined for the
bones involved in the precedent actions.

Well, there is not much left to say about NLA and armatures. Now it is time for you
to experiment and to show the results of your work to the world. One last recommen-
dation though: it is possible to edit KeyFrames in the NLA window. We can duplicate
frames (SHIFT-D), grab KeyFrames (GKEY) and also erase KeyFrames (XKEY), but
if you do erase KeyFrames be careful because they will be lost forever from the cur-
rently selected action. So be careful and always convert to NLA strip before erasing
anything.

Bye and good luck blenderheads!!

337

Chapter 16. Character Animation

338

Chapter 17. Rendering

Relevant to Blender v2.31

Rendering is the final process of CG (short of postprocessing, of course) and is the
phase in which the image corresponding to your 3D scene is finally created.

The rendering buttons window is accessed via the Scene Context and Render Sub-
context (F10 or the button). The rendering Panels and Buttons are shown in
Figure 17-1.

Figure 17-1. Rendering Buttons.

The rendering of the current scene is performed by pressing the big RENDERbutton in
the Render panel, or by pressing F12. The result of the rendering is kept in a buffer
and shown in its own window. It can be saved by pressing F3 or via the File >>Save
Image menu.

The image is rendered according to the dimensions defined in the Format Panel (Fig-
ure 17-2).

Figure 17-2. Image types and dimensions.

By default the dimensions SizeX and SizeY are 320x256 and can be changed as for
any Num Button. The two buttons below define the aspect ratio of the pixels. This is
the ratio between the X and Y dimensions of the pixel of the image. By default it is
1:1 since computer screen pixels are square, but can be varied if television shorts are
being made since TV pixels are not square. To make life easier the rightmost block of
buttons (Figure 17-3) provides some common presets:

339

Chapter 17. Rendering

Figure 17-3. Image pre-set dimensions.

• PAL 720x576 pixels at 54:51 aspect ratio.

• NTSC720x480 pixels at 10:11 aspect ratio.

• Default Same as PAL, but with full TV options, as explained in the following sec-
tions.

• Preview 640x512 at 1:1 aspect ratio. This setting automatically scales down the
image by 50%, to effectively produce a 320x256 image.

• PC640x480 at 1:1 aspect ratio.

• PAL 16:9 720x576 at 64:45 aspect ratio, for 16:9 widescreen TV renderings.

• PANOStandard panoramic settings 576x176 at 115:100 aspect ratio. More about
’panoramic’ renderings in the pertinent section.

• FULL 1280x1024 at 1:1 aspect ratio.

Rendering by Parts
Relevant to Blender v2.31

It is possible to render an image in pieces, one after the other, rather than all at one
time. This can be useful for very complex scenes, where rendering small sections one
after the other only requires computation of a small part of the scene, which uses less
memory.

By setting values different from 1 in the Xparts and Yparts NumButtons in the Ren-
der Panel (Figure 17-4), you force Blender to divide your image into a grid of Xparts
times Yparts sub-images, which are then rendered one after the other and finally
assembled together.

340

Chapter 17. Rendering

Figure 17-4. Rendering by parts buttons.

Note: Blender cannot handle more than 64 parts.

Panoramic renderings
Relevant to Blender v2.31

To obtain nice panoramic renderings, up to a full 360◦ view of the horizon, Blender
provides an automatic procedure.

If the Xparts is greater than 1 and the Pano button of the Render Panel is pressed
(Figure 17-5), then the rendered image is created to be Xparts times SizeX wide and
SizeY high, rendering each part by rotating the camera as far as necessary to obtain
seamless images.

Figure 17-5. Panorama button.

Figure 17-6 shows a test set up with 12 spheres surrounding a camera. By leaving the
camera as it is, you obtain the rendering shown in Figure 17-7. By setting Xparts to
3 and selecting Pano the result is an image three times wider showing one more full
camera shot to the right and one full to the left (Figure 17-8).

341

Chapter 17. Rendering

Figure 17-6. Panorama test set up.

To obtain something similar without the Panorama option, the only way is to de-
crease the camera focal length. For example Figure 17-9 shows a comparable view,
obtained with a 7.0 focal length, equivalent to a very wide angle, or fish-eye, lens.
Distortion is very evident.

Figure 17-7. Non-panoramic rendering.

Figure 17-8. Panoramic rendering.

342

Chapter 17. Rendering

Figure 17-9. Fish-eye rendering.

To obtain a full 360◦ view some tweaking is necessary. It is known that a focal length
of 16.0 corresponds to a viewing angle of 90◦. Hence a panoramic render with 4
Xparts and a camera with a 16.0 lens yields a full 360◦ view, as that shown in Figure
17-10. This is grossly distorted, since a 16.0 lens is a wide angle lens, and distorts at
the edges.

Figure 17-10. Full 360◦ panorama with 16.0 lenses.

To have undistorted views the focal length should be around 35.0. Figure 17-11 shows
the result for a panorama with 8 Xparts and a camera with a 38.5 lens, corresponding
to a 45◦ viewing angle.

Figure 17-11. Full 360◦ panorama with 38.5 lenses.

The image is much less distorted, but special attention must be given to proportion.
The original image was 320x256 pixels. The panorama in Figure 17-10 is 4 x 320 wide.
To keep this new panorama the same width, the SizeX of the image must be set to 160
so that 8 x 160 = 4 x 320. But the camera viewing angle width occurs for the largest
dimension, so that, if SizeX is kept to 256 the image spans 45◦ vertically but less than
that horizontally, so that the final result is not a 360◦ panorama unless SizeX ≥ SizeY
or you are willing to make some tests.

Antialiasing
Relevant to Blender v2.31

A computer generated image is made up of pixels, these pixels can of course only be
a single colour. In the rendering process the rendering engine must therefore assign
a single colour to each pixel on the basis of what object is shown in that pixel.

This often leads to poor results, especially at sharp boundaries, or where thin lines
are present, and it is particularly evident for oblique lines.

To overcome this problem, which is known as Aliasing, it is possible to resort to an
Anti-Aliasing technique. Basically, each pixel is ’oversampled’, by rendering it as if it
were 5 pixels or more, and assigning an ’average’ colour to the rendered pixel.

343

Chapter 17. Rendering

The buttons to control Anti-Aliasing, or OverSAmple (OSA), are below the rendering
button in the Render Panel (Figure 17-12). By pressing the OSAbutton antialiasing is
activated, by selecting one of the four numeric buttons below it, the level of oversam-
pling (from 5 to 16) is chosen.

Figure 17-12. OSA buttons.

Blender uses a Delta Accumulation rendering system with jittered sampling. The val-
ues of OSA(5, 8, 11, 16) are pre-set numbers that specify the number of samples; a
higher value produces better edges, but slows down the rendering.

Figure 17-13 shows a rendering with OSA turned off and with 5 or 8 OSA samples.

Figure 17-13. Rendering without OSA (left) with OSA=5 (center) and OSA=8
(right).

Output formats
Relevant to Blender v2.31

The file is saved in whichever format has been selected in the pertinent Menu button
in the Format Panel (Figure 17-2). From here you can select many image or animation
formats (Figure 17-14).

344

Chapter 17. Rendering

Figure 17-14. Image and animations formats.

The default image type is Targa , but, since the image is stored in a buffer and then
saved, it is possible to change the image file type after the rendering and before sav-
ing using this menu.

By default Blender renders color (RGB) images (bottom line in Figure 17-2) but Black
and White (BW) and colour with Alpha Channel (RGBA) are also possible.

Beware that Blender does not automatically add the extension to files, hence any .tga
or .png extension must be explicitly written in the File Save window.

Except for the Jpeg format, which yields lossy compression, all the other formats are
more or less equivalent. It is generally a bad idea to use Jpeg since it is lossy. It is
better to use Targa and then convert it to Jpeg for web publishing purposes, keeping
the original Targa.

Anyhow, for what concerns the other formats: TARGA raw is uncompressed Targa,
uses a lot of disk space. PNGis Portable Network Graphics, a standard meant to re-
place old GIF inasmuch as it is lossless, but supports full true colour images. HamX
is a self-developed 8 bits RLE (Run Length Encoded bitmap) format; it creates ex-
tremely compact files that can be displayed quickly. To be used only for the "Play"
option. Iris is the standard SGI format, and Iris + Zbuffer is the same with added
Zbuffer info.

Finally Ftype uses an "Ftype" file, to indicate that this file serves as an example for the
type of graphics format in which Blender must save images. This method allows you
to process ’colour map’ formats. The colourmap data is read from the file and used to
convert the available 24 or 32 bit graphics. If the option "RGBA" is specified, standard
colour number ’0’ is used as the transparent colour. Blender reads and writes (Amiga)
IFF, Targa, (SGI) Iris and CDinteractive (CDi) RLE colormap formats.

For what concerns animations:

• AVI Raw - saves an AVI as uncompressed frames. Non-lossy, but huge files.

• AVI Jpeg - saves an AVI as a series of Jpeg images. Lossy, smaller files but not as
small as you can get with a better compression algorithm. Furthermore the AVI
Jpeg format is not read by default by some players.

• AVI Codec - saves an AVI compressing it with a codec. Blender automatically gets
the list of your available codecs from the operating system and allows you to set
its parameters. It is also possible to change it or change its settings, once selected,
via the Set Codec button which appears (Figure 17-15).

345

Chapter 17. Rendering

Figure 17-15. AVI Codec settings.

For an AVI animation it is also possible to set the frame rate (Figure 17-15) which, by
default, is 25 frames per second.

Rendering Animations
Relevant to Blender v2.31

The rendering of an animation is controlled via the Anim Panel (Figure 17-16).

Figure 17-16. Animation rendering buttons.

The ANIM button starts the rendering. The first and last frames of the animation are
given by the two NumButtons at the bottom (Sta: and End:), and by default are 1
and 250.

By default the 3D scene animation is rendered, to make use of the sequence editor
the Do Sequence Tog Button must be selected.

By default the animation is rendered in the directory specified in the Output
Panel (Figure 17-17). If an AVI format has been selected, then the name will be
####_####.avi where the ’####’ indicates the start and end frame of the animation,
as 4 digit integers padded with zeros as necessary.

346

Chapter 17. Rendering

Figure 17-17. Animation location and extensions.

If an image format is chosen, on the other hand, a series of images named #### ,
(’####’ being the pertinent frame number) is created in the directory. If the file name
extension is needed, this is obtained by pressing the Extensions Tog Button (Figure
17-17).

Complex animations: Unless your animation is really simple, and you expect it to render
in half an hour or less, it is always a good idea to render the animation as separate Targa
frames rather than as an AVI file from the beginning.

This allows you an easy recovery if the power fails and you have to re-start the rendering,
since the frames you have already rendered will still be there.

It is also a good idea since, if an error is present in a few frames, you can make corrections
and re-render just the affected frames.

You can then make the AVI out of the separate frames with Blender’s sequence editor or
with an external program.

Motion Blur
Relevant to Blender v2.31

Blender’s animations are by default rendered as a sequence of perfectly still images.

This is unrealistic, since fast moving objects do appear to be ’moving’, that is, blurred
by their own motion, both in a movie frame and in a photograph from a ’real world
camera’.

To obtain such a Motion Blur effect, Blender can be made to render the current frame
and some more frames, in between the real frames, and merge them all together to
obtain an image where fast moving details are ’blurred’.

Figure 17-18. Motion Blur buttons.

To access this option select the MBLURbutton next to the OSAbutton in the Render
Panel (Figure 17-18). This makes Blender render as many ’intermediate’ frames as
the oversampling number is set to (5, 8, 11 or 16) and accumulate them, one over the
other, on a single frame. The number-button Bf: or Blur Factor defines the length
of the shutter time as will be shown in the example below. Setting the OSAButton

347

Chapter 17. Rendering

is unnecessary since the Motion Blur process adds some antialiasing anyway, but to
have a really smooth image OSAcan be activated too. This makes each accumulated
image have anti-aliasing.

To better grasp the concept let’s assume that we have a cube, uniformly moving 1
Blender unit to the right at each frame. This is indeed fast, especially since the cube
itself has a side of only 2 Blender units.

Figure 17-19 shows a render of frame 1 without Motion Blur, Figure 17-20 shows a
render of frame 2. The scale beneath the cube helps in appreciating the movement of
1 Blender unit.

Figure 17-19. Frame 1 of moving cube without Motion Blur.

Figure 17-20. Frame 2 of moving cube without Motion Blur.

Figure 17-21 on the other hand shows the rendering of frame 1 when Motion Blur is
set and 8 ’intermediate’ frames are computed. Bf is set to 0.5; this means that the 8
’intermediate’ frames are computed on a 0.5 frame period starting from frame 1. This
is very evident since the whole ’blurriness’ of the cube occurs on half a unit before
and half a unit after the main cube body.

348

Chapter 17. Rendering

Figure 17-21. Frame 1 of moving cube with Motion Blur, 8 samples, Bf=0.5.

Figure 17-22 and Figure 17-23 show the effect of increasing Bf values. A value greater
than 1 implies a very ’slow’ camera shutter.

Figure 17-22. Frame 1 of moving cube with Motion Blur, 8 samples, Bf=1.0.

Figure 17-23. Frame 1 of moving cube with Motion Blur, 8 samples, Bf=3.0.

Better results than those shown can be obtained by setting 11 or 16 samples rather
than 8, but, of course, since as many separate renders as samples are needed a Motion
Blur render takes that many times more than a non-Motion Blur one.

349

Chapter 17. Rendering

Better Anti-Aliasing: If Motion Blur is active, even if nothing is moving on the scene,
Blender actually ’jitters’ the camera a little between an ’intermediate’ frame and the next.
This implies that, even if OSA is off, the resulting images have nice Anti-Aliasing. An
MBLUR obtained Anti-Aliasing is comparable to an OSA Anti-Aliasing of the same level,
but generally slower.

This is interesting since, for very complex scenes where a level 16 OSA does not give
satisfactory results, better results can be obtained using both OSA and MBlur. This way
you have as many samples per frame as you have ’intermediate’ frames, effectively giving
oversampling at levels 25,64,121,256 if 5,8,11,16 samples are chosen, respectively.

Depth of Field
Relevant to Blender v2.31

Depth of Field (DoF) is an interesting effect in real world photography which adds a
lot to CG generated images. It is also known as Focal Blur.

The phenomenon is linked to the fact that a real world camera can focus on a subject
at a given distance, so objects closer to the camera and objects further away will be out
of the focal plane, and will therefore be slightly blurred in the resulting photograph.

The amount of blurring of the nearest and furthest objects varies a lot with the focal
length and aperture size of the lens and, if skilfully used, can give very pleasing
effects.

Blender’s renderer does not provide an automatic mechanism for obtaining DoF, but
there are two alternative way to achieve it. One relies solely on Blender’s internals,
and will be described here. The other requires an external sequence plugin and will
be outlined in the Sequence Editor Chapter.

The hack to obtain DoF in Blender relies on skilful use of the Motion Blur effect de-
scribed before, making the Camera move circularly around what would be the aper-
ture of the ’real world camera’ lens, constantly pointing at a point where ’perfect’
focus is desired.

Assume that you have a scene of aligned spheres, as shown on the the left of Figure
17-24. A standard Blender rendering will result in the image on the right of Figure
17-24, with all spheres perfectly sharp and in focus.

Figure 17-24. Depth of Field test scene.

The first step is to place an Empty (SPACE>>Add>>Empty) where the focus will be.
In our case at the center of the middle sphere (Figure 17-25).

350

Chapter 17. Rendering

Figure 17-25. Setting the Focus Empty.

Then, assuming that your Camera is already placed in the correct position, place the
cursor on the Camera (Select the Camera, SHIFT-S>>Curs->Sel) and add a NURBS
circle (SPACE>>ADD>>Curve>>NURBS Circle).

Out of EditMode (TAB) scale the circle. This is very arbitrary, and you might want
to re-scale it later on to achieve better results. Basically, the circle size is linked to
the physical aperture size, or diaphragm, of your ’real world camera’. The larger the
circle the narrower the region with perfect focus will be, and the more blurred near
and far objects will be. The smaller the circle the less evident the DoF blurring will
be.

Now make the circle track the Empty whith a constraint or the old Tracking as in
Figure 17-26. Since the normal to the plane containing the circle is the local z-axis,
you will have to set up tracking correctly so that the local z-axis of the circle points to
the Empty and the circle is orthogonal to the line connecting its centre to the Empty.

Figure 17-26. NURBS circle tracking the focus Empty.

Select the Camera and then the circle and parent the Camera to the circle (CTRL-
P). The circle will be the Path of the Camera so you can either use a normal parent
relationship and then set the circle CurvePath Toggle Button on, or use a Follow
Path Parent relationship.

With the circle still selected, open an IPO window select the Curve IPO type. The only
available IPO is ’Speed’. CTRL-LMB twice at random in the IPO window to add an
IPO with two random points. Then set these points numerically by using NKEY to
Xmin and Ymin to 0, Xmaxand Ymaxto 1. To complete the IPO editing make it cyclic via
the Curve>>Extend Mode>>Cyclic Menu entry. The final result should be as shown
in Figure 17-27.

351

Chapter 17. Rendering

Figure 17-27. Speed IPO for the NURBS circle path.

With these settings we have effectively made the Camera circle around its former
position along the NURBS circle path in exactly 1 frame. This makes the Motion Blur
option take slightly different views of the scene and create the Focal Blur effect in the
end.

There is still one more setting to perform. First select the Camera and then the focal
Empty, and make the Camera track the Empty the way you prefear. The Camera
should now track the Empty, as in Figure 17-28.

Figure 17-28. Camera tracking the focal Empty.

If you press ALT-A now you won’t see any movement because the Camera does
exactly one full circle path in each frame, so it appears to be still, nevertheless the
Motion Blur engine will detect these moves.

The last touch is then to go to the rendering buttons window (F10) and select the
MBLURbutton. You most probably don’t need the OSAbutton active, since Motion Blur
will implicitly do some antialiasing. It is strongly recommended that you set the Mo-
tion Blur factor to 1, since this way you will span the entire frame for blurring, taking
the whole circle length. It is also necessary to set the oversamples to the maximum
level (16) for best results (Figure 17-29).

352

Chapter 17. Rendering

Figure 17-29. Motion Blur settings.

A rendering (F12) will yield the desired result. This can be much slower than a non-
DoF rendering since Blender effectively renders 16 images and then merges them.
Figure 17-30 shows the result, to be compared with the one in Figure 17-24. It must
be noted that the circle has been scaled much less to obtain this picture than has been
shown in the example screenshots. These latter were made with a large radius (equal
to 0.5 Blender units) to demonstrate the technique better. On the other hand, Figure
17-30 has a circle whose radius is 0.06 Blender units.

Figure 17-30. Motion Blur final rendering.

This technique is interesting and with it it’s pretty easy to obtain small degrees of
Depth of Field. For big Focal Blurs it is limited by the fact that it is not possible to
have more than 16 oversamples.

Cartoon Edges
Relevant to Blender v2.31

Blender’s new material shaders, as per version 2.28, include nice toon diffuse and
specular shaders.

By using these shaders you can give your rendering a comic-book-like or manga-
like appearance, affecting the shades of colours, as you may be able to appreciate in
Figure 17-31.

353

Chapter 17. Rendering

Figure 17-31. A scene with Toon materials.

The effect is not perfect since real comics and manga also usually have china ink
outlines. Blender can add this feature as a post-processing operation.

To access this option select the Edge button in the Output Panel of the Rendering
(F10) Buttons (Figure 17-32). This makes Blender search for edges in your rendering
and add an ’outline’ to them.

Figure 17-32. Toon edge buttons.

Before repeating the rendering it is necessary to set some parameters. The Edge Set-
tings opens a window to set these (Figure 17-33).

354

Chapter 17. Rendering

Figure 17-33. Toon edge settings.

In this window it is possible to set the edge colour, which is black by default, and its
intensity, Eint which is an integer ranging from 0 (faintest) to 255 (strongest). The
other buttons are useful if the Unified render is used (see next section).

Figure 17-34 shows the same image as Figure 17-31 but with toon edges enabled, of
black colour and maximum intensity (Eint =255).

Figure 17-34. Scene re-rendered with toon edge set.

The Unified Renderer
Relevant to Blender v2.31

A less well known feature of Blender is the Unified Renderer button in the bottom
right corner of the Rendering Buttons Format Panel (Figure 17-35).

355

Chapter 17. Rendering

Figure 17-35. The Unified Renderer button.

Blender’s default renderer is highly optimized for speed. This has been achieved by
subdividing the rendering process into several passes. First the ’normal’ materials are
handled. Then Materials with transparency (Alpha) are taken into account. Finally
Halos and flares are added.

This is fast, but can lead to less than optimum results, especially with Halos. The Uni-
fied Renderer, on the other hand, renders the image in a single pass. This is slower,
but gives better results, especially for Halos.

Furthermore, since transparent materials are now rendered together with the conven-
tional ones, Cartoon Edges can be applied to them too, by pressing the All button in
the Edge Setting dialog.

If the Unified Renderer is selected an additional group of buttons appears in the
Output Panel (Figure 17-36).

Figure 17-36. Unified Renderer additional buttons.

The Gammaslider is related to the OSA procedure. Pixel oversamples are blended to
generate the final rendered pixel. The conventional renderer has a Gamma=1, but in
the Unified Renderer you can vary this number.

The Post process button makes a dialog box appear (Figure 17-37). From this you
can control three kinds of post processing: the Add slider defines a constant quantity
to be added to the RGB colour value of each pixel. Positive values make the image
uniformly brighter, negative uniformly darker.

356

Chapter 17. Rendering

Figure 17-37. Unified Renderer postprocess submenu.

The Mul slider defines a value by which all RGB values of all pixels are multiplied.
Values greater than 1 make the image brighter, smaller than 1 make the image darker.

The Gammaslider does the standard gamma contrast correction of any paint program.

Preparing your work for video
Relevant to Blender v2.31

Once you have mastered the trick of animation you will surely start to produce won-
derful animations, encoded with your favourite codecs, and possibly you’ll share
them on the Internet with the rest of the community.

But, sooner or later, you will be struck by the desire of building an animation for
Television, or maybe burning you own DVDs.

To spare you some disappointment, here are some tips specifically targeted at Video
preparation. The first and principal one is to remember the double dashed white lines
in the camera view!

If you render for PC then the whole rendered image, which lies within the outer
dashed rectangle will be shown. For Television some lines and some part of the lines
will be lost due to the mechanics of the electron beam scanning in your TV’s cathode
ray tube. You are guaranteed that what is within the inner dashed rectangle in camera
view will be visible on the screen. Everything within the two rectangles may or may
not be visible, depending on the given TV set you watch the video on.

Furthermore the rendering size is strictly dictated by the TV standard. Blender has
three pre-set settings for your convenience:

• PAL 720x576 pixels at 54:51 aspect ratio.

• NTSC720x480 pixels at 10:11 aspect ratio.

• PAL 16:9 720x576 at 64:45 aspect ratio, for 16:9 widescreen TV renderings.

Please note the "Aspect Ratio" stuff. TV screens do not have the square pixels which
Computer monitors have, their pixels are somewhat rectangular, so it is necessary
to generate pre-distorted images which will look bad on a computer but which will
display nicely on a TV set.

Colour Saturation
Most video tapes and video signals are not based on the RGB model but on the YUV
(or YCrCb) model in Europe and YIQ in the USA, this latter being quite similar to the
former. Hence some knowledge of this is necessary too.

The YUV model sends information as ’Luminance’, or intensity (Y) and two ’Cromi-
nance’ signals, red and blue. Actually a Black and White TV set shows only lumi-
nance, while colour TV sets reconstruct colour from Crominances. It is:

Y = 0.299R + 0.587G + 0.114B

U = Cr = R-Y

357

Chapter 17. Rendering

V = Cb = B-Y

Whereas a standard 24 bit RGB picture has 8 bits for each channel, to keep bandwidth
down, and considering that the human eye is more sensitive to luminance than to
crominance, the luminance signal is sent with more bits than the two crominance
signals.

This results in a smaller dynamic of colours, in Video, than that which you are used
to on Monitors. You hence have to keep in mind not all colours can be correctly dis-
played. Rule of thumb is to keep the colours as ’greyish’ or ’unsaturated’ as possible,
this can be roughly converted in keeping the dynamics of your colours within 0.8.

In other words the difference between the highest RGB value and the lowest RGB
value should not exceed 0.8 ([0-1] range) or 200 ([0-255] range).

This is not strict, something more than 0.8 is acceptable, but a RGB=(1.0,0,0) material
will be very ugly.

Rendering to fields

The TV standards prescribe that there should be 25 frames per second (PAL) or 30
frames per second (NTSC). Since the phosphorous of the screen does not maintain
luminosity for very long, this could produce a noticeable flickering. To minimize this
TVs do not represent frames as a Computer does but rather represents half-frames,
or fields at a double refresh rate, hence 50 half frames per second on PAL and 60 half
frames per second on NTSC. This was originally bound to the frequency of power
lines in Europe (50Hz) and the US (60Hz).

In particular fields are "interlaced" in the sense that one field presents all the even
lines of the complete frame and the subsequent field the odd ones.

Since there is a non-negligible time difference between each field (1/50 or 1/60 of a
second) merely rendering a frame the usual way and splitting it into two half frames
does not work. A noticeable jitter of the edges of moving objects would be present.

Figure 17-38. Field Rendering setup.

To optimally handle this issue Blender allows for field rendering. When the Fields
button in the Render Panel is pressed (Figure 17-38), Blender prepares each frame in
two passes. On the first it renders only the even lines, then it advances in time by half a
time step and renders all the odd lines.

358

Chapter 17. Rendering

Figure 17-39. Field Rendering result.

This produces odd results on a PC screen (Figure 17-39) but will show correctly on a
TV set.

One of the two buttons next to the Fields button forces the rendering of Odd fields
first (Odd) and the other disables the half-frame time step between fields (x).

Setting up the correct field order: Blender’s default setting is to produce Even fields
before Odd fields, this complies with European PAL standards. Odd fields are scanned
first on NTSC.

Of course, if you make the wrong selection things are even worse than if no Field render-
ing at all was used.

359

Chapter 17. Rendering

360

Chapter 18. Radiosity

Most rendering models, including ray-tracing, assume a simplified spatial model,
highly optimised for the light that enters our ’eye’ in order to draw the image. You
can add reflection and shadows to this model to achieve a more realistic result. Still,
there’s an important aspect missing! When a surface has a reflective light component,
it not only shows up in our image, it also shines light at surfaces in its neighbourhood.
And vice-versa. In fact, light bounces around in an environment until all light energy
is absorbed (or has escaped!).

Re-irradiated light carries information about the object which has re-irradiated it,
notably colour. Hence not only the shadows are ’less black’ because of re-irradiated
light, but also they tend to show the colour of the nearest, brightly illuminated, object.
A phenomenon often referred to as ’colour leaking’ (Figure 18-1).

Figure 18-1. Radiosity example

In closed environments, light energy is generated by ’emitters’ and is accounted for
by reflection or absorption of the surfaces in the environment. The rate at which en-
ergy leaves a surface is called the ’radiosity’ of a surface. Unlike conventional ren-
dering methods, Radiosity methods first calculate all light interactions in an environ-
ment in a view-independent way. Then, different views can be rendered in real-time.

In Blender, since version 2.28, Radiosity is both a rendering and a modelling tool.
This means that you can enable Radiosity within a rendering or rather use Radiosity
to paint vertex colours and vertex lights of your meshes, for later use.

The Blender Radiosity method
Relevant to Blender v2.31

First, some theory! You can skip to the next section if you like, and come back here if
questions arise.

During the late eighties and early nineties Radiosity was a hot topic in 3D computer
graphics. Many different methods were developed, the most successful of these so-
lutions were based on the "progressive refinement" method with an "adaptive subdi-
vision" scheme. And this is what Blender uses.

To be able to get the most out of the Blender Radiosity method, it is important to
understand the following principles:

361

Chapter 18. Radiosity

• Finite Element Method

Many computer graphics or simulation methods assume a simplification of reality
with ’finite elements’. For a visually attractive (and even scientifically proven) solu-
tion, it is not always necessary to dive into a molecular level of detail. Instead, you
can reduce your problem to a finite number of representative and well-described
elements. It is a common fact that such systems quickly converge into a stable and
reliable solution.

The Radiosity method is a typical example of a finite element method inasmuch
as every face is considered a ’finite element’ and its light emission considered as a
whole.

• Patches and Elements

In the Radiosity universe, we distinguish between two types of 3D faces:

Patches. These are triangles or squares which are able to send energy. For a fast solu-
tion it is important to have as few of these patches as possible. But, to speed things
up the energy is modelled as if it were radiated by the Patch’s centre; the size of the
patches should then be small enough to make this a realistic energy distribution.
(For example, when a small object is located above the Patch centre, all energy the
Patch sends is obscured by this object, even if the patch is larger! This patch should
be subdivided in smaller patches).

Elements. These are the triangles or squares which receive energy. Each Element is
associated with a Patch. In fact, Patches are subdivided into many small Elements.
When an Element receives energy it absorbs part of it (depending on its colour)
and passes the remainder to the Patch, for further radiation. Since the Elements are
also the faces that we display, it is important to have them as small as possible, to
express subtle shadow boundaries and light gradients.

• Progressive Refinement

This method starts with examining all available Patches. The Patch with the most
’unshot’ energy is selected to shoot all its energy to the environment. The Elements
in the environment receive this energy, and add this to the ’unshot’ energy of their
associated Patches. Then the process starts again for the Patch now having the most
unshot energy. This continues for all the Patches until no energy is received any-
more, or until the ’unshot’ energy has converged below a certain value.

• The hemicube method

The calculation of how much energy each Patch gives to an Element is done
through the use of ’hemicubes’. Exactly located at the Patch’s center, a hemicube
(literally ’half a cube’) consist of 5 small images of the environment. For each pixel
in these images, a certain visible Element is color-coded, and the transmitted
amount of energy can be calculated. Especially with the use of specialized
hardware the hemicube method can be accelerated significantly. In Blender,
however, hemicube calculations are done "in software".

This method is in fact a simplification and optimisation of the ’real’ Radiosity for-
mula (form factor differentiation). For this reason the resolution of the hemicube
(the number of pixels of its images) is approximate and its careful setting is impor-
tant to prevent aliasing artefacts.

• Adaptive subdivision

Since the size of the patches and elements in a Mesh defines the quality of the
Radiosity solution, automatic subdivision schemes have been developed to define

362

Chapter 18. Radiosity

the optimal size of Patches and Elements. Blender has two automatic subdivision
methods:

1. Subdivide-shoot Patches. By shooting energy to the environment, and comparing
the hemicube values with the actual mathematical ’form factor’ value, errors can
be detected that indicate a need for further subdivision of the Patch. The results
are smaller Patches and a longer solving time, but a higher realism of the solution.

2. Subdivide-shoot Elements. By shooting energy to the environment, and detecting
high energy changes (gradients) inside a Patch, the Elements of this Patch are sub-
divided one extra level. The results are smaller Elements and a longer solving time
and maybe more aliasing, but a higher level of detail.

• Display and Post Processing

Subdividing Elements in Blender is ’balanced’, that means each Element differs a
maximum of ’1’ subdivide level with its neighbours. This is important for a pleas-
ant and correct display of the Radiosity solution with Gouraud shaded faces. Usu-
ally after solving, the solution consists of thousands of small Elements. By filtering
these and removing ’doubles’, the number of Elements can be reduced significantly
without destroying the quality of the Radiosity solution. Blender stores the energy
values in ’floating point’ values. This makes settings for dramatic lighting situa-
tions possible, by changing the standard multiplying and gamma values.

• Radiosity for Modelling

The final step can be replacing the input Meshes with the Radiosity solution (but-
ton Replace Meshes). At that moment the vertex colours are converted from a
’floating point’ value to a 24 bits RGB value. The old Mesh Objects are deleted and
replaced with one or more new Mesh Objects. You can then delete the Radiosity
data with Free Data . The new Objects get a default Material that allows imme-
diate rendering. Two settings in a Material are important for working with vertex
colours:

VColPaint. This option treats vertex colours as a replacement for the normal RGB
value in the Material. You have to add Lamps in order to see the Radiosity colours.
In fact, you can use Blender lighting and shadowing as usual, and still have a neat
Radiosity ’look’ in the rendering.

VColLight. The vertexcolors are added to the light when rendering. Even with-
out Lamps, you can see the result. With this option, the vertex colours are pre-
multiplied by the Material RGB colour. This allows fine-tuning of the amount of
’Radiosity light’ in the final rendering.

As with everything in Blender, Radiosity settings are stored in a datablock. It is at-
tached to a Scene, and each Scene in Blender can have a different Radiosity ’block’.
Use this facility to divide complex environments into Scenes with independent Ra-
diosity solvers.

Radiosity Rendering
Relevant to Blender v2.31

Let’s assume you have a scene ready, and that you want to render it with the Ra-
diosity Rendering. The first thing to grasp when doing Radiosity is that no Lamps
are necessary, but some meshes with an Emit material property greater than zero are
required, since these will be the light sources.

363

Chapter 18. Radiosity

You can build the test scene shown in Figure 18-1, it is rather easy. Just make a
big cube for the room, give different materials to the side walls, add a cube and a
stretched cube within it, and add a plane with a non-zero Emit value next to the roof,
to simulate the area light (Figure 18-2).

You assign Materials as usual to the input models. The RGB value of the Material
defines the Patch colour. The ’Emit’ value of a Material defines if a Patch is loaded
with energy at the start of the Radiosity simulation. The ’Emit’ value is multiplied
with the area of a Patch to calculate the initial amount of unshot energy.

Emitting faces: Check the number of ’emitters’ on Blender console! If this is zero nothing
interesting can happen. You need at least one emitting patch to have light and hence a
solution.

Figure 18-2. Set-up for Radiosity test.

When assigning materials be sure that all of them have the Radio toggle on to enable
the Shader Panel of the Material subcontext buttons (Figure 18-3).

Figure 18-3. Radiosity enabled material.

364

Chapter 18. Radiosity

Please note that the light emission is governed by the direction of the normals of a
mesh, so the light emitting plane should have a downward pointing normal and the
outer cube (the room) should have the normals pointing inside, (flip them!).

Switch to the Radiosity sub-context of the Shading Context. The Panels, shown in
Figure 18-4, are two: Radio Rendering which governs Radiosity when used as a ren-
dering tool (present case) and Radio Tool , which governs Radiosity as a modelling
tool (next section).

Figure 18-4. Radiosity buttons for radiosity rendering.

The buttons define:

• Hemires: - The hemicube resolution; the color-coded images used to find the El-
ements that are visible from a ’shoot Patch’, and thus receive energy. Hemicubes
are not stored, but are recalculated each time for every Patch that shoots energy.
The ’Hemires’ value determines the Radiosity quality and adds significantly to the
solving time.

• Max Iterations: - The maximum number of Radiosity iterations. If set to zero Ra-
diosity will go on until the convergence criterion is met. You are strongly advised
to set this to some non-zero number, usually greater than 100.

• Mult: , Gamma:- The colourspace of the Radiosity solution is far more detailed than
can be expressed with simple 24 bit RGB values. When Elements are converted to
faces, their energy values are converted to an RGB colour using the Mult and Gamma
values. With the Mult value you can multiply the energy value, with Gammayou can
change the contrast of the energy values.

• Convergence: - When the amount of unshot energy in an environment is lower
than this value, the Radiosity solving stops. The initial unshot energy in an envi-
ronment is multiplied by the area of the Patches. During each iteration, some of the
energy is absorbed, or disappears when the environment is not a closed volume.
In Blender’s standard coordinate system a typical emitter (as in the example files)
has a relatively small area. The convergence value is divided by a factor of 1000
before testing for that reason.

Set the Max Iterations: to 100 and turn to the Scene Context and Render Sub-
context (F10).

Locate the Radio Tog Button (Figure 18-5) in the Render Panel and set it ’on’ to enable
Radiosity, then Render! (F12).

365

Chapter 18. Radiosity

Figure 18-5. Enabling Radiosity in the Rendering Buttons.

The rendering will take more time than usual, in the console you will notice a counter
going up. The result will be quite poor (Figure 18-6, left) because the automatic ra-
diosity render does not do adaptive refinement!

Select all meshes, one after the other, and in EditMode subdivide them at least three
times. The room, which is much bigger than the other meshes, you can even subdi-
vide four times. Set the Max Iterations a bit higher, 300 or more. Try Rendering
again (F12). This time the rendering will take even longer but the results will be much
nicer, with soft shadows and colour leakage (Figure 18-6, right).

Figure 18-6. Radiosity rendering for coarse meshes (left) and fine meshes (right).

Note: In the Radiosity Rendering Blender acts as for a normal rendering, this means that
textures, Curves, Surfaces and even Dupliframed Objects are handled correctly.

Radiosity as a Modelling Tool
Relevant to Blender v2.31

Radiosity can be used also as a Modelling tool for defining Vertices colours and lights.
This can be very useful if you want to make further tweaks to your models, or you
want to use them in the Game Engine. Furthermore the Radiosity Modelling allows
for Adaptive refinement, whereas the Radiosity Rendering does not!

There are few important points to grasp for practical Radiosity Modelling:

Only Meshes in Blender are allowed as input for Radiosity Modelling. This because
the process generates Vertex colours... and so there must be vertices. It is also im-
portant to realize that each face in a Mesh becomes a Patch, and thus a potential

366

Chapter 18. Radiosity

energy emitter and reflector. Typically, large Patches send and receive more energy
than small ones. It is therefore important to have a well-balanced input model with
Patches large enough to make a difference! When you add extremely small faces,
these will (almost) never receive enough energy to be noticed by the "progressive re-
finement" method, which only selects Patches with large amounts of unshot energy.

Non-mesh Objects: Only Meshes means that you have to convert Curves and Surfaces
to Meshes (CTRL-C) before starting the Radiosity solution!

Phase 1: Collect Meshes
All selected and visible Meshes in the current Scene are converted to Patches as soon
as the Collect Meshes button of the Radio Tool Panel is pressed (Figure 18-4). As
a result a new Panel, Calculation , appears. Blender has now entered the Radiosity
Modelling mode, and other editing functions are blocked until the newly created
button Free Data has been pressed. The Phase text above the buttons now says Init
and shows the number of Patches and Elements.

After the Meshes are collected, they are drawn in a pseudo lighting mode that clearly
differs from the normal drawing.

The Radio Tool Panel (Figure 18-7) has three Radio Buttons: Wire, Solid, Gour .
These are three drawmode options independent of the indicated drawmode of a
3DWindow. Gouraud display is only performed after the Radiosity process has
started. Press the Gour button, to have smoother results on curved surfaces.

Figure 18-7. Gourad button

Phase 2: Subdivision limits
Blender offers a few settings to define the minimum and maximum sizes of Patches
and Elements in the Radio Tools and Calculation Panels (Figure 18-8).

367

Chapter 18. Radiosity

Figure 18-8. Radiosity Buttons for Subdivision

Limit Subdivide With respect to the values "PaMax" and "PaMin", the Patches are
subdivided. This subdivision is also automatically performed when a "GO" action
has started.

PaMax, PaMin, ElMax, ElMin The maximum and minimum size of a Patch or El-
ement. These limits are used during all Radiosity phases. The unit is expressed in
0.0001 of the boundbox size of the entire environment. Hence, with default 500 and
200 settings maximum and minimum Patch size 0.05 of the entire model (1/20) and
0.02 of the entire model (1/50).

ShowLim, Z This option visualizes the Patch and Element limits. By pressing the Z
option, the limits are drawn rotated differently. The white lines show the Patch limits,
cyan lines show the Element limits.

Phase 3: Adaptive Subdividing
Last settings before starting the analysis (Figure 18-9).

Figure 18-9. Radiosity Buttons

MaxEl The maximum allowed number of Elements. Since Elements are subdivided
automatically in Blender, the amount of used memory and the duration of the solving
time can be controlled with this button. As a rule of thumb 20,000 elements take up
10 Mb memory.

368

Chapter 18. Radiosity

Max Subdiv Shoot The maximum number of shoot Patches that are evaluated for
the "adaptive subdivision" (described below) . If zero, all Patches with ’Emit’ value
are evaluated.

Subdiv Shoot Patch By shooting energy to the environment, errors can be detected
that indicate a need for further subdivision of Patches. The subdivision is performed
only once each time you call this function. The results are smaller Patches and a
longer solving time, but a higher realism of the solution. This option can also be
automatically performed when the GOaction has started.

Subdiv Shoot Element By shooting energy to the environment, and detecting high
energy changes (frequencies) inside a Patch, the Elements of this Patch are selected
to be subdivided one extra level. The subdivision is performed only once each time
you call this function. The results are smaller Elements and a longer solving time and
probably more aliasing, but a higher level of detail. This option can also be automat-
ically performed when the GOaction has started.

SubSh P The number of times the environment is tested to detect Patches that need
subdivision.

SubSh E The number of times the environment is tested to detect Elements that need
subdivision.

Note: Hemires , Convergence and Max iterations in the Radio Render Panel are still
active and have the same meaning as in Radiosity Rendering.

GOWith this button you start the Radiosity simulation. The phases are:

1. Limit Subdivide. When Patches are too large, they are subdivided.

2. Subdiv Shoot Patch. The value of SubSh P defines the number of times the Sub-
div Shoot Patch function is called. As a result, Patches are subdivided.

3. Subdiv Shoot Elem. The value of SubSh E defines the number of times the Sub-
div Shoot Element function is called. As a result, Elements are subdivided.

4. Subdivide Elements. When Elements are still larger than the minimum size, they
are subdivided. Now, the maximum amount of memory is usually allocated.

5. Solve. This is the actual ’progressive refinement’ method. The mouse pointer
displays the iteration step, the current total of Patches that shot their energy in
the environment. This process continues until the unshot energy in the envi-
ronment is lower than the Convergence value or when the maximum number
of iterations has been reached.

6. Convert to faces. The elements are converted to triangles or squares with ’an-
chored’ edges, to make sure a pleasant not-discontinue Gouraud display is
possible.

This process can be terminated with ESC during any phase.

Phase 4: Editing the solution
Once the Radiosity solution has been computed there are still some actions to take
(Figure 18-10).

369

Chapter 18. Radiosity

Figure 18-10. Radiosity post process.

Element Filter This option filters Elements to remove aliasing artifacts, to smooth
shadow boundaries, or to force equalized colours for the RemoveDoubles option.

RemoveDoubles When two neighbouring Elements have a displayed colour that dif-
fers less than the limit specified in the Lim NumButton, the Elements are joined. The
Lim value used here is expressed in a standard 8 bits resolution; a color range from 0
- 255.

FaceFilter Elements are converted to faces for display. A FaceFilter forces an
extra smoothing in the displayed result, without changing the Element values them-
selves.

Mult: , Gamma:These NumButtons have the same meaning as in Radiosity Rendering.

Add New Meshes The faces of the current displayed Radiosity solution are converted
to Mesh Objects with vertex colours. A new Material is added that allows immediate
rendering. The input-Meshes remain unchanged.

Replace Meshes As previous, but the input-Meshes are removed.

Free Radio Data All Patches, Elements and Faces are freed in Memory. You must
always perform this action after using Radiosity to be able to return to normal edit-
ing.

Radiosity Juicy example
Relevant to Blender v2.31

To get definitely away from dry theory and shows what Radiosity Modelling can
really achieve let’s look at an example.

This will actually show you a true Global Illumination scene, with smoother results
than the ’Dupliverted Spot Lights’ technique shown in the Lighting Chapter to attain
something like Figure 18-11.

370

Chapter 18. Radiosity

Figure 18-11. Radiosity rendered Cylon Raider.

Setting up
We have only two elements in the scene at start up: a Raider (if you remember some
Sci-Fi Movie...) and a camera. The Raider has the default grey material, except for
the main cockpit windows which are black. For this technique, we will not need any
lamps.

The first thing that we will want to add to the scene is a plane. This plane will be
used as the floor in our scene. Resize the plane as shown in Figure 18-12 and place it
just under the Raider. Leave a little space between the plane and the Raider bottom.
This will give us a nice "floating" look.

371

Chapter 18. Radiosity

Figure 18-12. Add a plane

Next, you will want to give the plane a material and select a colour for it. We will try
to use a nice blue. You can use the settings in Figure 18-13 for it.

Figure 18-13. Plane colour

The Sky Dome
We want to make a GI rendering, so the next thing that we are going to add is an
icosphere. This sphere is going to be our light source instead of the typical lamps.
What we are going to do is use its faces as emitters that will project light for us in
multiple directions instead of in one direction as with a typical, single, lamp. This
will give us the desired effect.

372

Chapter 18. Radiosity

To set this up, add an icosphere with a subdivision of 3. While still in EditMode, use
the BKEY select mode to select the lower portion of the sphere and delete it. This will
leave us with our dome. Resize the dome to better fit the scene and match it up with
your plane. It should resemble Figure 18-14.

Figure 18-14. Sky dome.

Next, we want to make sure that we have all the vertices of the dome selected and
then click on the EditButtons (F9) and select Draw Normals . This allows us to see in
which direction the vertices are "emitting". By default it will be outside, so hit the
Flip Normals button, which will change the vertex emitter from projecting outward
to projecting inward in our dome (Figure 18-15).

Figure 18-15. Flipping the normals.

Now that we have created our dome, we need a new material. When you create the
material for the dome change the following settings in the MaterialButtons (F5):

Add = 0.000

Ref = 1.000

Alpha = 1.000

Emit = 0.020

The Emit slider here is the key. This setting controls the amount of light "emitted"
from our dome. 0.020 is a good default. Remember that the dome is the bigger part of
the scene! you don’t want too much light! But you can experiment with this setting
to get different results. The lower the setting here though the longer the "solve" time
later. (Figure 18-16).

373

Chapter 18. Radiosity

Figure 18-16. Sky dome material.

At this point we have created everything that we need for our scene. The next step
will be to alter the dome and the plane from "double-sided" to "single-sided". To
achieve this, we will select the dome mesh and then go back to the EditButtons (F9).
Click the Double Sided button and turn it off (Figure 18-17). Repeat this process for
the Plane.

Figure 18-17. Setting Dome and plane ’single sided’.

The Radiosity solution
Now the next few steps are the heart and soul of Global Illumination. Go to side view
with NUM 3 and use AKEY to select all of the meshes in our scene. Next hold SHIFT
and double click on your camera. We do not want this selected. It should look similar
to Figure 18-18.

374

Chapter 18. Radiosity

Figure 18-18. Selecting all Meshes.

After selecting the meshes, go to camera view with NUM 0 and then turn on shaded
mode with ZKEY so we can see inside our dome.

Now select the Shading Context (F5) and the Radiosity Buttons Sub-context (). In
the Radio Tool Panel, click the Collect Meshes button. You should notice a change
in the colours in your view. It should look similar to Figure 18-19.

Figure 18-19. Preparing the Radiosity solution.

Next, to keep the Raider smooth like our original mesh, we will want to change from
Solid to Gour . This will give our Raider its nice curves back, in the same way Set
Smooth would in the EditButtons. You’ll also need to change the Max Subdiv Shoot
to 1 (Figure 18-20). Do not forget this step!

375

Chapter 18. Radiosity

Figure 18-20. Radiosity settings.

After you have set Gour and Max Subdiv Shoot , click Goand wait. Blender will then
begin calculating the emit part of the dome, going face by face, thus "solving" the ren-
der. As it does this, you will see the scene change as more and more light is added to
the scene and the meshes are changed. You will also notice that the cursor in Blender
changes to a counter much like if it were an animation. Let Blender run, solving the
Radiosity problem.

Letting Blender go to somewhere between 50-500 depending on the scene can do, for
most cases. The solving time depends on you and how long you decide to let it run...
remember you can hit ESC at any time to stop the process. This is an area that can be
experimented with for different results. This can take from 5 to 10 minutes and your
system speed will also greatly determine how long this process takes. Figure 18-21 is
our Raider after 100 iterations.

Figure 18-21. Radiosity solution.

After hitting the ESC key and stopping the solution, click Replace Meshes (or Add
New Meshes) and then Free Radio Data . This finalizes our solve and replaces our
previous scene with the new solved Radiosity scene.

Note: Adding rather than Replacing meshes is a form of Undo. You still have old meshes
and you can re-run Radiosity again! But you must move these new meshes to a new layer
and hide the old layers before rendering!

Now we are ready for F12 and render (Figure 18-22).

376

Chapter 18. Radiosity

Figure 18-22. Rendering of the radiosity solution.

Texturing
There you go folks! You now have a very clean looking render with soft 360 degree
lighting using Radiosity. Very nice... But the next thing we want to do is add textures
to the mesh. So go back to our main screen area.

Now try selecting your mesh and you will notice that it selects not only the Raider
but the plane and dome as well. That is because Radiosity created a new single mesh
through the solution process. To add a texture though, we only want the Raider.

So, select the mesh and then go into EditMode. In EditMode we can delete the dome
and plane since they are no longer needed. You can use the LKEY to select the proper
vertices and press XKEY to delete them. Keep selecting and deleting until you are
left with only the Raider. It should look like in Figure 18-23. If we were to render it
now with F12, we would get just a black background and our Raider. This is nice...
but again, we want textures!

Figure 18-23. The Raider’s mesh.

377

Chapter 18. Radiosity

To add textures to mesh, we must separate out the areas that we are going to apply
materials and textures to. For the Raider, We want to add textures to the wings and
mid-section. To do this select the Raider mesh, and go back into EditMode. Select a
vertex near the edge of the wing and then hit the LKEY to select linked vertices. Do
the same on the other side. Next, click on the mid section of the ship and do the same
thing. Select the areas shown in Figure 18-24. When you have those, hit the PKEY to
separate the vertices selected.

Figure 18-24. Separating the Raider parts to be textured.

We now have our wing section separate and are ready to add the materials and tex-
tures. We want to create a new material for this mesh. To get a nice metallic look, we
can use the settings in Figure 18-25.

Figure 18-25. "Metallic" material.

Time to add the textures. We want to achieve some pretty elaborate results. We will
need two bump-maps to create grooves and two mask for painting and ’decals’.
There are hence four textures for the Raider wings to be created, as shown in Fig-
ure 18-26.

378

Chapter 18. Radiosity

Figure 18-26. Four textures, from upper left corner, clockwise: RaiderBM,
RaiderDI, Markings, Raider.

The textures should be placed in four material channels in the raider top mesh.
’RaiderBM’ and ’RaiderDI’ should be set to a negative Nor (Figure 18-27 bottom -
click Nor twice, it will turn yellow). ’Raider’ should be set up as negative Ref (Figure
18-27 middle).

Which material?: A Mesh coming from a Radiosity solution typically has more than one
material on it. It is important to operate on the right "original" material.

Figure 18-27. Texture set-ups.

The result is the desired metallic plating for the hull of the Raider. Finally the fourth
texture, ’Markings’, is set to Col in the MaterialButtons (Figure 18-27 top). This will
give the Raider its proper striping and insignia. Our raider is quite flat, so the Flat
projection is adequate. Were it a more complex shape some UV mapping would have
been required to attain good results. The material preview for the mesh should look
like Figure 18-28.

379

Chapter 18. Radiosity

Figure 18-28. Complete material preview.

Our textures to won’t show up in the rendering right now (except markings) because
Nor and Ref type texture reacts to lighting, and there is no light source in the scene!
Hence will now need to add a lamp or two, keeping in mind that our ship is still lit
pretty well from the Radiosity solve, so lamps energy should be quite weak. Once
you have your lamps, you try a test render. Experiment with the lamps until you get
the results you like.

The final rendering (Figure 18-11) shows a nice well lit Raider with soft texturing.

380

Chapter 19. Raytracing

TO BE WRITTEN

381

Chapter 19. Raytracing

382

Chapter 20. Particles

Introduction
Relevant to Blender v2.31 TO BE UPDATED

There are three kind of effects which can be linked to an Object, ideally working
during animations but in practice precious even for Stills.

Effects are added to an Object by selecting it, switching to the Object Context and
locating the Effects Tab in the Constraints Panel (F7 or). By pressing the New
Effect button of Figure 20-1 an Effect is added.

Figure 20-1. Animation Buttons Window

The Delete button removes an effect, if one is there, while the drop down list which
appears on the right once an effect is added (Figure 21-1) selects the type of effect.

More than one effect can be linked to a single Object. A row of small buttons, one for
each effect, is created beneath the New Effect button, allowing you to switch from
one to another to change settings.

The three effects are Build , Particles and Wave, the second being the most versatile
and deserving a whole chapter for its own.

Simple Particles
Relevant to Blender v2.31

The particle system of Blender is fast, flexible, and powerful. Every Mesh-object can
serve as an emitter for particles. Halos can be used as particles and with the Du-
pliVert option, so can objects. These dupliverted objects can be any type of Blender
object, for example Mesh-objects, Curves, Metaballs, and even Lamps. Particles can
be influenced by a global force to simulate physical effects, like gravity or wind.

With these possibilities you can generate smoke, fire, explosions, Fireworks or even
flocks of birds. With static particles you can generate fur, grass, and even plants.

A first Particle System
Reset Blender to the default scene, or make a scene with a single plane added from
the top view. This plane will be our particle emitter. Rotate the view so that you get a
good view of the plane and the space above it (Figure 20-2).

383

Chapter 20. Particles

Figure 20-2. The emitter.

Switch to the Effects Tab in the Object Context (F7 or) and click the button NEW
Effect in the middle part of the Panel. Change the dropdown MenuButton from
Build to Particles . The Particle Buttons are now shown (Figure 20-3).

Figure 20-3. The Particle Buttons.

Set the Norm: NumButton to 0.100 with a click on the right part of the button or use
SHIFT-LMB to enter the value from the keyboard.

Play the animation by pressing ALT-A with the mouse over the 3DWindow. You will
see a stream of particles ascending vertically from the four vertices.

Congratulations - you have just generated your first particle-system in a few easy
steps!

To make the system a little bit more interesting, it is necessary to get deeper insight
on the system and its buttons (Figure 20-4):

• The parameter Tot: controls the overall count of particles. On modern speedy
CPUs you can increase the particle count without noticing a major slowdown.

384

Chapter 20. Particles

• The total number of particles specified in the Tot: button are uniformly created
along a time interval. Such a time interval is defined by the Sta: and End: Num-
Buttons, which control the time interval (in frames) in which particles are gener-
ated.

• Particles have a lifetime, they last a given number of frames, from the one they are
produced in onwards, then disappear. You can change the lifetime of the particles
with the Life: NumButton.

• The Norm: NumButton used before made the particles having a starting speed of
constant value (0.1) directed along the vertex normals. To make things more "ran-
dom" you can set the Rand: NumButton to 0.1 too. This also makes the particles
start with random variation to the speed.

• Use the Force: group of NumButtons to simulate a constant force, like wind or
gravity. A Force: Z: value of -0.1 will make the particles fall to the ground, for
example.

Figure 20-4. Particles settings.

This should be enough to get you started, but don’t be afraid to touch some of the
other parameters while you’re experimenting. We will cover them in detail in the
following sections.

Rendering a particle system
Maybe you’ve tried to render a picture from our example above. If the camera was
aligned correctly, you will have seen a black picture with greyish blobby spots on it.
This is the standard Halo-material that Blender assigns a newly generated particle
system.

Position the camera so that you get a good view of the particle system. If you want
to add a simple environment, remember to add some lights. The Halos are rendered
without light, unless otherwise stated, but other objects need lights to be visible.

Go to the Material Buttons (F5) and add a new material for the emitter if none have
been added so far. Click the Button "Halo" from the middle palette (Figure 20-5).

385

Chapter 20. Particles

Figure 20-5. Halo settings

The Material Buttons change to the Halo Buttons. Choose Line , and adjust Lines:
to a value of your choosing (you can see the effect directly in the Material-Preview).
Decrease HaloSize: to 0.30, and choose a color for the Halo and for the lines (Figure
20-5).

You can now render a picture with F12, or a complete animation and see thousands
of stars flying around (Figure 20-6).

Figure 20-6. Shooting stars

Objects as particles
It is very easy to use real objects as particles, it is exactly like the technique described
in the Section called DupliVerts in Chapter 22.

Start by creating a cube, or any other object you like, in your scene. It’s worth thinking
about how powerful your computer is, as we are going to have as many objects, as
Tot: indicates, in the scene. This means having as many vertices as the number of
vertices of the chosen object times the value of Tot: !

Scale the newly created object down so that it matches the general scene scale.

Now select the object, then SHIFT-RMB the emitter and make it the parent of the
cube using CTRL-P. Select the emitter alone and check the option "DupliVerts" in the
Anim Settings Panel of the Object Context (F7). The dupliverted cubes will appear
immediately in the 3DWindow.

386

Chapter 20. Particles

Figure 20-7. Setting Dupliverted Particles.

You might want to bring down the particle number before pressing ALT-A (Figure
20-7).

In the animation you will notice that all cubes share the same orientation. This can be
interesting, but it can also be interesting to have the cubes randomly oriented.

This can be done by checking the option Vect in the particle-parameters, which
causes the dupli-objects to follow the rotation of the particles, resulting in a more
natural motion (Figure 20-7). One frame of the animation is shown in (Figure 20-8).

Original Object: Take care to move the original object out of the camera view, because,
differently than in regular Mesh Dupliverts, in Dupliverted particles it will also be rendered!

Figure 20-8. Dupliverted particles rendering.

Making fire with particles
The Blender particle system is very useful for making realistic fire and smoke. This
could be a candle, a campfire, or a burning house. It’s useful to consider how the
fire is driven by physics. The flames of a fire are hot gases. They will rise because of
their lower density when compared to the surrounding cooler air. Flames are hot and
bright in the middle, and they fade and become darker towards their perimeter.

Prepare a simple set-up for our fire, with some pieces of wood, and some rocks (Fig-
ure 20-9).

387

Chapter 20. Particles

Figure 20-9. Campfire setup.

The particle system

Add a plane into the middle of the stone-circle. This plane will be our particle-emitter.
Subdivide the plane once. You now can move the vertices to a position on the wood
where the flames (particles) should originate.

Now go to the Object Context F7 and add a new particle effect to the plane. The num-
bers given here (Figure 20-10) should make for a realistic fire, but some modification
may be necessary, depending on the actual emitter’s size.

Figure 20-10. Fire particles setup.

Some notes:

• To have the fire burning from the start of the animation make Sta: negative. For
example, try -50. The value of End: should reflect the desired animation length.

• The Life: of the particles is 30. Actually it can stay at 50 for now. We will use this
parameter later to adjust the height of the flames.

• Make the Norm: parameter a bit negative (-0.008) as this will result in a fire that has
a bigger volume at its basis.

• Use a Force: Z: of about 0.200. If your fire looks too slow, this is the parameter
to adjust.

• Change Damp: to 0.100 to slow down the flames after a while.

• Activate the Bspline Button. This will use an interpolation method which gives a
much more fluid movement.

388

Chapter 20. Particles

• To add some randomness to our particles, adjust the Rand: parameter to about
0.014. Use the Randlife: parameter to add randomness in the lifetime of the par-
ticles; a really high value here gives a lively flame.

• Use about 600-1000 particles in total for the animation (Tot:).

In the 3DWindow, you will now get a first impression of how realistically the flames
move. But the most important thing for our fire will be the material.

The fire-material

With the particle emitter selected, go to the Shading Context F5 and add a new Ma-
terial. Make the new material a halo-material by activating the Halo button. Also,
activate HaloTex , located below this button. This allows us to use a texture later.

Figure 20-11. Flames Material.

Give the material a fully saturated red colour with the RGB-sliders. Decrease the
Alpha value to 0.700; this will make the flames a little bit transparent. Increase the
Add slider up to 0.700, so the Halos will boost each other, giving us a bright interior
to the flames, and a darker exterior. (Figure 20-11).

Figure 20-12. Flames Texture.

If you now do a test render, you will only see a bright red flame. To add a touch more
realism, we need a texture. While the emitter is still selected, go to the Texture Panel
and add a new Texture select the Cloud -type for it in the Texture (F6) Buttons. Adjust
the NoiseSize: to 0.600. (Figure 20-12).

Go back to the Material Buttons F5 and make the texture colour a yellow colour with
the RGB sliders on the right side of the material buttons. To stretch the yellow spots
from the cloud texture decrease the SizeY value down to 0.30.

A test rendering will now display a nice fire. But we still need to make the particles
fade out at the top of the fire. We can achieve this with a material animation of the
Alpha and the Halo Size .

389

Chapter 20. Particles

Be sure that your animation is at frame 1 (SHIFT-LEFTARROW) and move the
mouse over the Material Window. Now press IKEY and choose Alpha from the
appearing menu. Advance the frame-slider to frame 100, set the Alpha to 0.0 and
insert another key for the Alpha with IKEY. Switch one Window to an IPO Window.
Activate the Material IPO Type by clicking the pertinent Menu Entry in the IPO
Window header. You will see one curve for the Alpha-channel of the Material
(Figure 20-13).

Note: An animation for a particle material is always mapped from the first 100 frames of
the animation to the lifetime of a particle. This means that when we fade out a material in
frame 1 to 100, a particle with a lifetime of 50 will fade out in that time.

Figure 20-13. Fire Material IPO

Now you can render an animation. Maybe you will have to fine-tune some parame-
ters like the life-time of the particles. You can add a great deal of realism to the scene
by animating the lights (or use shadow-spotlights) and adding a sparks particle-
system to the fire. Also recommended is to animate the emitter in order to get more
lively flames, or use more than one emitter (Figure 20-14).

Figure 20-14. Final rendering.

390

Chapter 20. Particles

A simple explosion
This explosion is designed to be used as an animated texture, for composing it with
the actual scene or for using it as animated texture. For a still rendering, or a slow
motion of an explosion, we may need to do a little more work in order to make it
look really good. But bear in mind, that our explosion will only be seen for half a
second (Figure 20-15).

Figure 20-15. The explosion

As emitter for the explosion I have chosen an IcoSphere. To make the explosion
slightly irregular, I deleted patterns of vertices with the circle select function in Edit
Mode. For a specific scene it might be better to use an object as the emitter, which is
shaped differently, for example like the actual object you want to blow up.

My explosion is composed from two particle systems, one for the cloud of hot gases
and one for the sparks. I took a rotated version of the emitter for generating the
sparks. Additionally, I animated the rotation of the emitters while the particles were
being generated.

The materials

The particles for the explosion are very straightforward halo materials, with a cloud
texture applied to add randomness, the sparks too have a very similar material, see
Figure 20-16 to Figure 20-18.

Figure 20-16. Material for the explosion cloud.

Figure 20-17. Material for the sparks.

391

Chapter 20. Particles

Figure 20-18. Texture for both.

Animate the Alpha-value of the Halo particles from 1.0 to 0.0 at the first 100 frames.
This will be mapped to the life-time of the particles, as is usual. Notice the setting
of Star in the sparks material (Figure 20-17). This shapes the sparks a little bit. We
could have also used a special texture to achieve this, however, in this case using the
Star setting is the easiest option.

The particle-systems

Figure 20-19. Particle system for the cloud

Figure 20-20. Particle system for the sparks

As you can see in Figure 20-19 and Figure 20-20, the parameters are basically the
same. The difference is the Vect setting for the sparks, and the higher setting of Norm:
which causes a higher speed for the sparks. I also set the Randlife: for the sparks to
2.000 resulting in an irregular shape.

392

Chapter 20. Particles

I suggest that you start experimenting, using these parameters to begin with. The
actual settings are dependent on what you want to achieve. Try adding more emitters
for debris, smoke, etc.

Fireworks
A button we have not used so far is the Mult: button. The whole third line of buttons
in the Panel is related to this. Prepare a plane and add a particle system to the plane.

Adjust the parameters so that you get some particles flying into the sky, then increase
the value of Mult: to 1.0. This will cause 100% of the particles to generate child par-
ticles when their life ends. Right now, every particle will generate four children. So
we’ll need to increase the Child: value to about 90 (Figure 20-21). You should now
see a convincing firework made from particles, when you preview the animation
with ALT-A.

Figure 20-21. Particle Multiplication buttons

When you render the firework it will not look very impressive. This is because of the
standard halo material that Blender assigns. Consequently, the next step is to assign
a better material.

Ensure that you have the emitter selected and go to the Shading Context and Material
Buttons (F5). Add a new material with the Menu Button, and set the type to Halo .

Figure 20-22. Firework Material 1

I have used a pretty straightforward halo material; you can see the parameters in
Figure 20-22. The rendered animation will now look much better, yet there is still
something we can do.

While the emitter is selected go to the Editing Context F9 and add a new material
index by clicking on the New button in the Link and Materials Panel (Figure 20-
23).

393

Chapter 20. Particles

Figure 20-23. Adding a second material to the emitter.

Now switch back to the Shading Context. You will see that the material data browse-
has changed colour to blue. The button labelled 2 indicates that this material is used
by two users. Now click on the 2 button and confirm the popup. Rename the Material
to "Material 2" and change the colour of the halo and the lines (Figure 20-24).

Figure 20-24. Material 2

Switch to the particle parameters and change the Mat: button to "2". Render again
and you see that the first generation of particles is now using the first material and
the second generation the second material! This way you can have up to 16 (that’s
the maximum number of material indices) materials for particles.

Further enhancements: Beside changing materials you also can use the material IPOs
to animate material settings of each different material.

Controlling Particles via a Lattice
Blender’s particle system is extremely powerful, and the course of particles can not
only be determined via forces but channelled by a lattice.

Prepare a single square mesh and add a particle system to it with a negative z-force
and the general parameters in Figure 20-25.

394

Chapter 20. Particles

Figure 20-25. Particle settings

This could be good for the smoke of four small fires fire in a windless day, but we
want to twist it! Add a lattice and deform it as in as in Figure 20-26.

Figure 20-26. Lattice settings

Parent the particle emitter to the lattice (CTRL-P). If you now select the particle emit-
ter, switch to Animation buttons (F7) and press RecalcAll you will notice that the
particles follows, more or less, the lattice (Figure 20-27 on the left).

As a further tweak, rotate each horizontal section of the lattice 60 degrees clockwise
in top view, incrementally, as if you were making a screw. After this, recalculate again
the particles. The result is in Figure 20-27 on the right.

395

Chapter 20. Particles

Figure 20-27. Lattice deformation effects

The twist is evident, and of course you can achieve even stronger effects by rotating
the lattice more or by using a lattice with more subdivisions. If you give the emitter
a halo material and you render you will see something like Figure 20-28 on the left.

Figure 20-28. Normal particles, left; Vector particles, centre; and DupliVerted ob-
jects following the particles, right.

If you select the emitter, turn to animation buttons and press the Vect Particle Button
the particles will turn from points to segments, with a length and a direction propor-
tional to the particle velocity. A rendering now will give the result of Figure 20-28 in
the middle.

It you now Duplivert an object to the emitter, by parenting it and by pressing the Du-
plivert button, the DupliVerted objects will have the same orientation of the origi-
nal object if the particles are normal particles, but will be rotated and aligned to the
particle direction if the Particles are set to vert . By selecting the Original Object and
by playing with the Track buttons you can change orientation (Figure 20-28 on the
right).

396

Chapter 20. Particles

Static Particles
Static particles are useful when making objects like fibres, grass, fur and plants.

Try making a little character, or just a ball, to test the static particles. Try for example a
small ’ball of fur’ guy. An emitter is not rendered, so duplicate the mesh (or whatever
object type you used and convert (ALT-C) it into a mesh). A fractal subdivide to the
mesh to get some randomness into it, is usually a good idea. If you end up with mesh
that is too dense, use "Remove Doubles" with an increased limit. Cut out parts with
the circle select where you do not want to have fur.

Now, assign the particle system and, switch on the Static option.

Figure 20-29. Static particle settings

Use these parameters in Figure 20-29. With the combination of Life and Norm you can
control the length of the hair. Use a force in a negative z-direction to let the hair bend.
Check Face to generate the particles, not only on the vertices but also distributed
on the faces. Also check Vect ; this will generate fibre like particles. The Step value
defines how many particles per lifetime are generated. Set this to a lower value to get
smoother curves for the particles, and be sure not to overlook setting the Rand value.

When you now render, you will get very blurred particles. The material used for
static particles is very important, so add a material for the emitter in the Shading
Context (F5).

Figure 20-30. Material settings

I use a very small HaloSize (0.001). In the Number Button you can’t see that, so to
adjust click the button with the LMB while holding SHIFT. Enable the Shaded option
to have the particles influenced by the lights in the scene, and then activate HaloTex .
We are going to use a texture to shape the hairs (Figure 20-30).

397

Chapter 20. Particles

Figure 20-31. Texture Colorband settings

Switch to the Texture sub-context (F6) and add a new Blend type texture. Choose
Lin as sub-type. Activate the Colorband option and adjust the colors as in Figure
20-31. You will get a nice blend, from transparent through to purple and back again
to transparent.

Figure 20-32. Texture settings in the Material buttons

Go back to the Material Buttons sub-context and make sure that Alpha is activated in
the texture mapping output on the right of the Material Buttons. Then use sizeX and
sizeY to shape the halo in the material preview to a small fiber (Figure 20-32).

If your fur is not dense enough, then increase the particle count with Tot or add more
emitters. Also, change the particle parameters for these additional emitters a little so
that you get some variation in the hairs (Figure 20-33).

398

Chapter 20. Particles

Figure 20-33. Final result

Particle Interaction
by Kenneth Styrberg

Relevant to Blender v2.34

Introduction
The Blender particle system allow particles to interact in two ways - force fields and
deflection.

Force fields

There is two variants of force fields: Standard Force field that behaves like a grav-
ity force field and the Vortex field . A vortex field gives more like a tornado effect,
with spiralling particles around the vortex center. Force fields are available for all
object types. Currently a point-based field with a spherical fall-off is implemented.

Force fields can be set to any object. Particles will then be: attracted with a negative
Strength value, or deflected if you use a positive Strength value. There is also a
Fall-off parameter which define how much the strength diminishes by the distance
from object origin.

Deflection

This allows you to set any mesh object as a particle deflector, particles will then
bounce on the surface of the mesh. You can control how much the particles bounce
with the Damping value, add some randomness to the bounce with Rnd Damping and
you can define the percentage of particles which pass through the mesh with the
Permeability parameter.

Note: Make sure that the normals of the mesh surface are facing towards the particles for
correct deflection.

399

Chapter 20. Particles

Interface
The particle interaction settings are controlled via the Particle Interaction panel
in object context (F7).

Figure 20-34. Particle Interaction panel.

Force/Vortex field

• Strength The strength of the field effect

• Fall-off How much the strength diminishes with distance

When adding a force/vortex field to an object, the object will get a small graphic
indicating that there is a particle interaction connected to the object. The force field
will have small grey circles Figure 20-35, and vortex fields will have a spiral drawn
Figure 20-36.

Figure 20-35. Force field indicator.

Figure 20-36. Vortex field indicator.

400

Chapter 20. Particles

The lower section of the panel, Figure 20-34, handle the settings for deflection.

Note: You will not see any extra graphic indicators with deflectors as you do with force
fields.

Deflection parameters

• Damping Controls the amount of bounce that surfaces will have.

0.0 - No damping, particles will have maximum bounce.
1.0 - Maximum damping, particles will not bounce at all.

• Rnd Damping Adds a random element to the bounce. The damping will vary start-
ing from, not around the Damping value. Damping + Rnd Damping .

• Permeability Percentage of particles passing through the mesh.
0.0 - No particles pass through.
1.0 - All particles pass through the deflector.

If you set up a particle deflector you’ll have to make sure sufficient keys are available
for Blender to calculate the collisions with sufficent detail. If you see particles moving
through your deflector or bounce at wrong positions, then there might be problem
with too few keys or your particle/deflector is moving too fast.

Note: You can animate moving deflectors but particles can leak through the mesh if the
deflector moves to fast or if mesh is complicated. This can be partly solved by increasing
the Keys parameter for the particle emitter.

After changing any parameters, you will need to select your particle emitter and go back
to the Effects tab and press RecalcA button. Figure 20-37

More keys means longer calculation times and usage of more memory. See the Section
called Introduction for how to set up particle emitters.

Figure 20-37. Effects panel.

For all parameters for force fields and deflectors, Ipo keys can be inserted. The Ipo
curves is edited as Object Ipo types in the Ipo window. See Chapter 14 for more on
Animation and Ipo .

401

Chapter 20. Particles

Example
Here is a small example demonstrating particle deflectors.

1. Start with default scene with a cube object.
2. In top view, add a Mesh Circle and accept default 32 vertices. Press TAB to exit edit mode. Switch to side view and move circle up 5 units.
3. With circle selected, press S, and scale it down to 0.1 in all directions.
4. Now press F7 and go to the Effects tab. Press NEW Effect and in the Popup-list select Particles . You should see the same picture as in Figure 20-37
5. Increase particle life from default 50 to 100 by changing the Life field to 100. In the force field in the lower section of the tab, set the Force Z to -0.100. If you press ALT-A you should see an animation of particles moving down towards our cube. See Figure 20-38. So far the particles travel straight through without any notice of the cube. This will change!

Figure 20-38. Example frame 40.

6. Now select our cube. With the Effect context still active, go to the Particle Interaction tab and set the Deflector settings as picture Figure 20-39.

Figure 20-39. Example Deflection settings.

7. Now select the circle and press RecalcA in the Effects tab. If you play the animation, ALT-A, you will see the particles bounce off the cube straight up and down. The problem is that the bounce is a bit away from the cube. This is an effect of too few Keys . In the Keys field enter 50, and press RecalcA. Play the animation and the particles will now bounce on the cube, or close enough.
8. Select the cube and tilt it 10 degrees in either direction. Select the circle and recalculate the particles. Now play the animation and you will see the particles bounce in the direction you tilted the cube! Figure 20-40.

Figure 20-40. Example end result.

402

Chapter 21. Other Effects

Introduction
Relevant to Blender v2.31

There are two other kind of effects, besides particles, which can be linked to an Object,
ideally working during animations but in practice precious even for Stills.

These two effects are Build , and Wave, the following sections will describe each of
them in detail.

Build Effect
Relevant to Blender v2.31

The Build effect works on Meshes and causes the faces of the Object to appear, one
after the other, over time. If the Material of the Mesh is a Halo Material, rather than a
standard one, then the vertices of the Mesh, not the faces, appear one after another.

Figure 21-1. Build Effect

Faces, or vertices, appear in the order in which they are stored in memory. This order
can be altered by selecting the Object and pressing CTRL-F out of EditMode. This
causes faces to be re-sorted as a function of their value (Z co-ordinate) in the local
reference of the Mesh.

Reordering: If you create a plane and add the Build effect to see how it works you won’t
be happy. First, you must subdivide it so that it is made up of many faces, not just one.
Then, pressing CTRL-F won’t do much because the Z-axis is orthogonal to the plane. You
must rotate it in EditMode to have some numerical difference between the co-ordinates of
the faces, in order to be able to reorder them.

The Build effect only has two NumBut controls (Figure 21-1):

Len - Defines how many frames the build will take.

Sfra - Defines the start frame of the building process.

Wave Effect
Relevant to Blender v2.31

403

Chapter 21. Other Effects

The Wave effect adds a motion to the Z co-ordinate of the Object Mesh.

Figure 21-2. Wave Control Panel

The wave effect influence is generated from a given starting point defined by the
Sta X and Sta Y Num Buttons. These co-ordinates are in the Mesh local reference
(Figure 21-3).

Figure 21-3. Wave Origin

The Wave effect deformation originates from the given starting point and propagates
along the Mesh with circular wave fronts, or with rectilinear wave fronts, parallel to
the X or Y axis. This is controlled by the two X and Y toggle buttons. If just one button
is pressed fronts are linear, if both are pressed fronts are circular (Figure 21-4).

The wave itself is a gaussian-like ripple which can be either a single pulse or a series
of ripples, if the Cycl button is pressed.

Figure 21-4. Wave front type

The Wave is governed by two series of controls, the first defining the Wave form, the
second the effect duration.

For what concerns Wave Form, controls are Speed , Height , Width and Narrow (Figure
21-5).

Figure 21-5. Wave front controls

404

Chapter 21. Other Effects

The Speed Num Button controls the speed, in Units per Frame, of the ripple.

The Height Num Button controls the height, in Blender Units and along Z, of the
ripple (Figure 21-6).

If the Cycl button is pressed, the Width Num Button states the distance, in Blender
Units, between the topmost part of two subsequent ripples, and the total Wave effect
is given by the envelope of all the single pulses (Figure 21-6).

This has an indirect effect on the ripple amplitude. Being ripples Gaussian in shape,
if the pulses are too next to each other the envelope could not reach the z=0 quote any
more. If this is the case Blender actually lowers the whole wave so that the minimum
is zero and, consequently, the maximum is lower than the expected amplitude value,
as shown in Figure 21-6 at the bottom.

The actual width of each Gaussian-like pulse is controlled by the Narrow Num But-
ton, the higher the value the narrower the pulse. The actual width of the area in which
the single pulse is significantly non-zero in Blender Units is given by 4 over the Nar-
row Value. That is, if Narrow is 1 the pulse is 4 Units wide, and if Narrow is 4 the pulse
is 1 Unit Wide.

Figure 21-6. Wave front characteristics

To obtain a Sinusoidal-like wave: To obtain a nice Wave effect similar to sea waves and
close to a sinusoidal wave it is necessary that the distance between following ripples and
the ripple width are equal, that is the Width Num Button value must be equal to 4 over the
Narrow value.

The last Wave controls are the time controls. The three NumButs define:

Time sta the Frame at which the Wave begins;

Lifetime the number of frames in which the effect lasts;

Damptime is an additional number of frames in which the wave slowly dampens from
the Amplitude value to zero. The Dampening occurs for all the ripples and begins in
the first frame after the Lifetime is over. Ripples disappear over Damptime frames.

Figure 21-7. Wave time controls

405

Chapter 21. Other Effects

406

Chapter 22. Special modelling techniques

Claudio "malefico" Andaur

Introduction
Relevant to Blender v2.31

Once we have overcome the “extrusion modelling fever” and started to look at more
challenging modelling targets, we might start the quest for alternative methods to do
the job. There are a group of modelling techniques in Blender which not only make
our modelling job easier but sometimes make it possible.

These so called “special” modelling techniques involve not only some vertex manip-
ulation but the use of non-intuitive procedures which require a deeper knowledge or
experience from the user than the average beginner.

In this chapter we will describe these techniques in detail and explain their utility in
several modelling applications which could not have been solved any other way.

DupliVerts
Relevant to Blender v2.31

“DupliVerts” are not a rock band nor a dutch word for something illegal (well maybe
it is) but is a contraction for “DUPLIcation at VERTiceS”, meaning the duplication
of a base Object at the location of the Vertices of a Mesh (or even a Particle system).
In other words, when using DupliVerts on a mesh, an instance of the base object is
placed on every vertex of the mesh.

There are actually two approaches to modelling using DupliVerts. They can be used
as an arranging tool, allowing us to model geometrical arrangement of objects (eg:
the columns of a Greek temple, the trees in a garden, an army of robot soldiers, the
desks in a classroom). The object can be of any object type which Blender supports.

The second approach is to use them to model an Object starting from a single part of
it (i.e.: the spikes in a club, the thorns of a sea-urchin, the tiles in a wall, the petals in
a flower).

DupliVerts as an Arranging Tool
All you need is a base object (eg: the “tree” or the “column”) and a mesh with its
vertices following the pattern you have in mind.

I will use a simple scene for the following part. It consists of a camera, the lamps, a
plane (for the floor) and a strange man I modelled after Magritte’s famous character
(Figure 22-1). If you don’t like surrealism you will find this part extremely boring.

407

Chapter 22. Special modelling techniques

Figure 22-1. A simple scene to play with.

Anyway, the man will be my “base Object”. It is a good idea that he will be at the
centre of the co-ordinate system, and with all rotations cleared. Move the cursor to
the base object’s centre, and From Top View add a mesh circle, with 12 vertices or so
(Figure 22-2).

Figure 22-2. The parent mesh can be any primitive.

Out of Edit Mode, select the base Object and add the circle to the selection (order is
very important here). Parent the base object to the circle by pressing CTRL-P. Now,
the circle is the parent of the character (Figure 22-3). We are almost done.

408

Chapter 22. Special modelling techniques

Figure 22-3. The man is parented to the circle.

Figure 22-4. The Animation Buttons

Now select only the circle, switch the Buttons Window to the Object Context (via
or F7) and select the DupliVerts Button in the Anim Settings Panel (Figure 22-4).

409

Chapter 22. Special modelling techniques

Figure 22-5. In every vertex of the circle a man is placed.

Wow, isn’t it great? Don’t worry about the object at the centre (Figure 22-5). It is
still shown in the 3D-views, but it will not be rendered. You can now select the base
object, change (scale, rotate, Edit Mode)1 it and all DupliVerted objects will reflect the
changes. But the more interesting thing to note is that you can also edit the parent
circle.

Note: The base Object is not rendered if DupliVerted on a Mesh but it is rendered if
DupliVerted on a Particle System!

Select the circle and scale it. You can see that the mysterious men are uniformly scaled
with it. Now enter the Edit Mode for the circle, select all vertices AKEY and scale it up
about three times. Leave Edit Mode and the DupliVerted objects will update (Figure
22-6). This time they will still have their original size but the distance between them
will have changed. Not only we can scale in Edit Mode, but we can also delete or add
vertices to change the arrangement of men.

410

Chapter 22. Special modelling techniques

Figure 22-6. Changing the size of the circle in Edit Mode.

Select all vertices in Edit Mode and duplicate them (SHIFT-D). Now scale the new
vertices outwards to get a second circle around the original. Leave Edit Mode, and a
second circle of men will appear (Figure 22-7).

Figure 22-7. A second row of Magritte’s men.

Until now all Magritte’s men were facing the camera, ignoring each other. We can
get more interesting results using the Rot Button next to the DupliVerts button in
the Anim Settings Panel. With this Tog Button active, we can rotate the DupliVerted

411

Chapter 22. Special modelling techniques

objects according to the normals of the parent Object. More precisely, the DupliVerted
Objects axis are aligned with the normal at the vertex location.

Which axis is aligned (X, Y or Z) with the parent mesh normal depends on what is
indicated in the TrackX, Y, Z buttons and the UpX, Y, Z buttons top in the Anim
Settings Panel. Trying this with our surrealist buddies, will lead to weird results
depending on these settings.

The best way to figure out what will happen is first of all aligning the "base" and
"parent" objects’ axis with the World axis. This is done selecting both objects and
pressing CTRL-A, and click the Apply Size/Rot? menu.

Figure 22-8. Show object’s axis to get what you want.

Then make the axis of the base object and the axis and normals in the parent object
visible (Figure 22-8 - in this case, being a circle with no faces, a face must be defined
first for the normal to be visible - actually to exist at all).

Now select the base object (our Magritte’s man) and play a little with the Tracking
buttons. Note the different alignment of the axis with the different combinations of
UpX, Y, Z and TrackX, Y, Z (Figure 22-9, Figure 22-10, Figure 22-11, Figure 22-12).

Figure 22-9. Negative Y Axis is aligned to vertex normal (pointing to the circle’s
412

Chapter 22. Special modelling techniques

center)

Figure 22-10. Positive Y axis is aligned to normal

Figure 22-11. Positive X axis is aligned to normal

413

Chapter 22. Special modelling techniques

Figure 22-12. Positive Z axis is aligned to normal (weird, huh?)

DupliVerts to Model a Single Object
Very interesting models can be made using DupliVerts and a standard primitive.

Starting from a cube in Front View, and extruding a couple of times I have modelled
something which looks like a tentacle when SubSurfs are activated (Figure 22-13).
Then I added an Icosphere with 2 subdivisions.

Figure 22-13. Strange tentacle and SubSurfed version.

I had special care to be sure that the tentacle was located at the sphere centre, and
that both the tentacle axis and the sphere axis were aligned with the world axis as
above (Figure 22-14).

414

Chapter 22. Special modelling techniques

Figure 22-14. Local reference of the tentacle.

Now, I simply make the icosphere the parent of the tentacle. Select the icosphere
alone and made it DupliVert in the Anim Settings Panel (Figure 22-15).

Press the Rot button to rotate the tentacles (Figure 22-16).

Figure 22-15. DupliVerts not rotated.

415

Chapter 22. Special modelling techniques

Figure 22-16. DupliVerts rotated.

Once again to make the tentacle point outwards we have to take a closer look to its
axis. When applying Rot , Blender will try to align one of the tentacle axis with the
normal vector at the parent mesh vertex.

We didn’t care about the Parent circle for Magritte’s men, but here we should care
about the Sphere, and you will soon notice that it is not rendered. You probably
would like to add an extra renderable sphere to complete the model.

You can experiment in Edit Mode with the tentacle, moving its vertices off the centre
of the sphere, but the object’s centre should always be at the sphere’s centre in order
to get a symmetrical figure. However take care not to scale up or down in one axis in
Object Mode since it would lead to unpredictable results in the DupliVerted objects
when applying the Rot button.

416

Chapter 22. Special modelling techniques

Figure 22-17. Our model complete.

Once you’re done with the model and you are happy with the results, you can select
the tentacle and press SHIFT-CTRL-A and click on the Make duplis real ? menu
to turn your virtual copies into real meshes (Figure 22-17).

DupliFrames
Relevant to Blender v2.31

You can consider DupliFrames in two different ways: an arranging or a modelling
tool. In a way, DupliFrames are quite similar to DupliVerts. The only difference is
that with DupliFrames we arrange our objects by making them follow a curve rather
than using the vertex of a mesh.

DupliFrames stands for DUPLIcation at FRAMES and is a very useful modelling
technique for objects which are repeated along a path, such as the wooden sleepers
in a railroad, the boards in a fence or the links in a chain, but also for modelling
complex curve objects like corkscrews, seashells and spirals.

Modelling using DupliFrames
We are going to model a chain with its links using DupliFrames.

First things come first. To explain the use of DupliFrames as a modelling technique,
we will start by modelling a single link. To do this, add in front view a Curve Circle
(Bézier or NURBS, whatever). In Edit Mode, subdivide it once and move the vertices
a little to fit the link’s outline (Figure 22-18).

417

Chapter 22. Special modelling techniques

Figure 22-18. Link’s outline

Leave Edit Mode and add a Surface Circle object (Figure 22-19). NURBS-surfaces are
ideal for this purpose, because we can change the resolution easily after creation, and
if we need to, we can convert them to a mesh object. It is very important that you do
not confuse Curve Circle and Surface Circle. The first one will act as the shape of the
link but it will not let us do the skinning step later on. The second one will act as a
cross section of our skinning.

Figure 22-19. Link’s cross section

Now parent the circle surface to the circle curve (the link’s outline) as a Normal parent
(not a Curve Follow constraint). Select the curve and in the Object Context and Anim
Settings Panel press CurvePath and CurveFollow (Figure 22-20).

418

Chapter 22. Special modelling techniques

Figure 22-20. Curve’s settings: Curve Path and Curve Follow.

It’s probable that the circle surface will appear dislocated. Just select it and press
ALT-O to clear the origin (Figure 22-21).

Figure 22-21. Clearing origin.

If you hit ALT-A the circle will follow the curve. Now you probably will have to
adjust the TrackX, Y, Z and UpX, Y, Z animation buttons, to make the circle go
perpendicular to the curve path (Figure 22-22).

419

Chapter 22. Special modelling techniques

Figure 22-22. Tracking the right axis.

Now select the Surface Circle and go to Anim Settings Panel and press
DupliFrames . A number of instances of the circular cross section will appear along
the curve path (Figure 22-23).

Figure 22-23. DupliFrames!

You can adjust the number of circles you want to have with the DupSta , DupEnd,
DupOn and DupOff buttons. These buttons control the Start and End of the duplica-
tion, the number of duplicates each time and also the Offset between duplications.
If you want the link to be opened, you can try a different setting for DupEnd (Figure
22-24).

420

Chapter 22. Special modelling techniques

Figure 22-24. Values for DupliFrames. Note "DupEnd: 35" will end link before
curve’s end.

To turn the structure into a real NURBS-object, select the Surface Circle and press
CTRL-SHIFT-A. A pop-up menu will appear prompting OK? Make Dupli’s Real
(Figure 22-25).

Figure 22-25. Making Dupli’s Real.

Do not deselect anything. We now have a collection of NURBS forming the outline of
our object, but so far they are not skinned, so we cannot see them in a shaded preview
or in a rendering. To achieve this, we need to join all the rings to one object. Without
deselecting any rings, press CTRL-J and confirm the pop-up menu request. Now,
enter EditMode for the newly created object and press AKEY to select all vertices
(Figure 22-26). Now we are ready to skin our object. Press FKEY and Blender will
automatically generate the solid object. This operation is called “Skinning” and is
fully described in the Section called Skinning in Chapter 9.

421

Chapter 22. Special modelling techniques

Figure 22-26. Skinning the link.

When you leave Edit Mode, you can now see the object in a shaded view. But it is
very dark. To correct this, enter Edit Mode and select all vertices, then press WKEY.
Choose Switch Direction from the menu and leave Edit Mode. The object will now
be drawn correctly (Figure 22-27).

The object we have created is a NURBS object. This means that you can still edit it.
Even more interestingly, you can also control the resolution of the NURBS object via
the Edit Buttons.

Here you can set the resolution of the object using ResolU and ResolV , so you can
adjust it for working with the object in a low resolution, and then set it to a high
resolution for your final render. NURBS objects are also very small in file size for
saved scenes. Compare the size of a NURBS scene with the same scene in which all
NURBS are converted (ALT-C) to meshes.

Finally you can delete the curve we used to give the shape of the link, since we will
not use it anymore.

422

Chapter 22. Special modelling techniques

Figure 22-27. Skinned link.

Arranging objects with DupliFrames
Now we will continue modelling the chain itself. For this, just add a Curve Path (we
could use a different curve but this one gives better results). In Edit Mode, move its
vertices until get the desired shape of the chain (Figure 22-28). If not using a Curve
Path, you should check the button 3D in the Edit Buttons to let the chain be real 3D.

Figure 22-28. Using a curve path to model the chain.
423

Chapter 22. Special modelling techniques

Select the object "Link" we modelled in the previous step and parent it to the chain
curve, again as a normal parent. Since we are using a Curve Path the option
CurvePath in the AnimButtons will be automatically activated, however the
CurveFollow option will not, so you will have to activate it (Figure 22-29).

Figure 22-29. Curve settings.

If the link is dislocated, select it and press ALT-O to clear the origin. Until now we
have done little more than animate the link along the curve. This can be verified by
playing the animation with ALT-A.

Now, with the link selected once again go to the Object Context and Anim set-
tings Panel. Here, activate the option DupliFrames as before. Play with the Dup-
Sta: , DupEnd: and DupOf: NumButtons. Normally we are going to use DupOf: 0
but for a chain, if using DupOf: 0 the links are too close from each other you should
change the value PathLen for the path curve to a lesser value, in the Editing Context
and Curve and Surface Panel and then correspondingly change the DupEnd: value
for the link to that number (Figure 22-30).

Figure 22-30. Adjusting the DupliFrames.

We need it so that the link rotates along the curve animation, so we have each link
rotated 90 degrees with respect to the preceding one in the chain. For this, select the
link and press Axis in the Edit Buttons to reveal the object’s axis. Insert a rotation
keyframe in the axis which was parallel to the curve. Move 3 or 4 frames ahead and
rotate along that axis pressing RKEY followed by XKEY-XKEY (XKEY twice), YKEY-
YKEY, or ZKEY-ZKEY to rotate it in the local X, Y or Z axis (Figure 22-31).

424

Chapter 22. Special modelling techniques

Figure 22-31. Rotating the link.

Open an IPO window to edit the rotation of the link along the path. Press the Ex-
trapolation Mode so the link will continually rotate until the end of the path. You
can edit the IPO rotation curve to make the link rotate exactly 90 degrees every one,
two or three links (each link is a frame). Use NKEY to locate a node exactly at X=2.0
and Y=9.0, which correspond to 90 degrees in 1 frame (from frame 1 to 2).

Now we got a nice chain (Figure 22-32)!

Figure 22-32. Dupliframed chain.

425

Chapter 22. Special modelling techniques

More Animation and Modelling
You are not limited to use Curve Paths to model your stuff. These were used just for
our own convenience, however in some cases there are no need of them.

In Front View add a surface circle (you should know why by now Figure 22-33).
Subdivide once, to make it look more like a square. Move and scale some vertices a
little to give it a trapezoid shape (Figure 22-34).

Figure 22-33. A Surface Circle.

Figure 22-34. Trapezoidal cross-section.

Then rotate all vertices a few degrees. Grab all vertices and displace them some units
right or left in X (but at the same Z location). You can use CTRL to achieve this
precisely. Leave Edit Mode (Figure 22-35).

Figure 22-35. Trapezoidal cross section, rotated and translated.

From now on, the only thing we are going to do is editing IPO animation curves. So
you can call this "Modelling with Animation" if you like. We will not enter Edit Mode
for the surface any more.

Switch to Top View. Insert a KeyFrame for rotation at frame 1, go ahead 10 frames and
rotate the surface 90 degrees over its new origin. Insert one more KeyFrame. Open
an IPO window, and set the rotation IPO to Extrapolation Mode (Figure 22-36).

426

Chapter 22. Special modelling techniques

Figure 22-36. Rotation IPO for the cross section.

Go back to frame 1 and insert a keyframe for Location. Switch to Front View. Go to
frame 11 (just press UPARROW) and move the surface in Z a few grid units. Insert a
new keyframe for Location. In the IPO window set the LocZ to Extrapolation Mode
(Figure 22-37).

Figure 22-37. Translation IPO for the cross section.

Now, of course, go to the Animation buttons and press DupliFrames . You can see
how our surface is ascending in a spiral through the 3D space forming something like
a spring. This is nice, however we want more. Deactivate DupliFrames to continue.

In frame 1 scale the surface to nearly zero and insert a keyframe for Size. Go ahead
to frame 41, and clear the size with ALT-S. Insert a new keyframe for size. This IPO
will not be in extrapolation mode since we don’t want it scales up at infinitum, right
(Figure 22-38)?

427

Chapter 22. Special modelling techniques

Figure 22-38. Size IPO for the cross section.

If you now activate DupliFrames you will see a beautiful outline of a corkscrew (Fig-
ure 22-39). Once again the last steps are: Make Duplis Real, Joining the surfaces, Select
all vertices and skinning, Switch direction of normal if needed and leave Edit Mode
(Figure 22-40).

Figure 22-39. Using a curve path to model the chain.

428

Chapter 22. Special modelling techniques

Figure 22-40. Using a curve path to model the chain.

You can see this was a rather simple example. With more IPO curve editing you can
achieve very interesting and complex models. Just use your imagination.

Modelling with lattices
Relevant to Blender v2.31

A Lattice consists of a non-renderable three-dimensional grid of vertices. Their main
use is to give extra deformation to any child object they might have. These child
objects can be Meshes, Surfaces and even Particles.

Why would you use a Lattice to deform a mesh instead of deforming the mesh itself
in EditMode?

There are a couple of reasons for that:

1. First of all: It’s easier. Since your mesh could have a zillion vertices, scaling,
grabbing and moving them could be a hard task. Instead, if you use a nice
simple lattice your job is simplified to move a couple of vertices.

2. It’s nicer. The deformation you get looks a lot better!

3. It’s fast! You can put all or several of your child objects in a hidden layer and
deform them all at once.

4. It’s a good practice. A lattice can be used to get different versions of a mesh
with minimal extra work and consumption of resources. This leads to an op-
timal scene design, minimizing the amount of modelling job. A Lattice does
not affect the texture coordinates of a Mesh Surface. Subtle changes to mesh
objects are easily facilitated in this way, and do not change the mesh itself.

429

Chapter 22. Special modelling techniques

How does it work?
A Lattice always begins as a 2 x 2 x 2 grid of vertices (which looks like a simple cube).
You can scale it up and down in Object Mode and change its resolution through the
Lattice Panel in the Editing Context Buttons U, V, W .

After this initial step you can deform the Lattice in Edit Mode. If there is a Child
Object, the deformation is continually displayed and modified. Changing the U, V,
Wvalues of a Lattice returns it to a uniform starting position.

Now we are going to see a very simple case in which having a lattice will simplify
and speed up our modelling job.

I have modelled a very simple fork using a plane subdivided couple of times. It looks
really ugly but it’s all I need. Of course it is completely flat from a Side View. Wow,
it is really ugly (Figure 22-41). The only important detail is that it has been subdi-
vided enough to ensure a nice deformation in the Lattice step. You cannot bend a
two vertices segment!

Figure 22-41. An ugly fork.

In Top View, now add a Lattice. Before changing its resolution, scale it up so it com-
pletely envelopes the fork’s width (Figure 22-42). This is very important. Since I want
to keep the lattice vertices count low (it doesn’t make sense it has the same number
of vertices than the mesh, right?) I need to keep resolution low but still set the lattice
to convenient size.

430

Chapter 22. Special modelling techniques

Figure 22-42. A 2x2x2 Lattice.

Adjust the Lattice resolution to complete the fork’s length (Figure 22-43).

Figure 22-43. Use a suitable resolution, but don’t exaggerate.

Now, we are ready for the fun part. Parent the fork to the lattice, by selecting the fork
and the lattice and pressing CTRL-P. Enter Edit Mode for the lattice and start select-
ing and scaling vertices (Figure 22-44). You might want to scale in X or Y axis sepa-
rately to have more control over the lattice depth (to avoid making the fork thicker
or thinner).

431

Chapter 22. Special modelling techniques

Figure 22-44. Deforming the lattice is a pleasure!

Note that if you move the fork up ad down inside the lattice, the deformation will
apply in different parts of the mesh.

Once you’re done in Front View, switch to Side View. Select and move different ver-
tices sections to give the fork the suitable bends (Figure 22-45).

432

Chapter 22. Special modelling techniques

Figure 22-45. Bending things.

You can get rid of the lattice now if you’re not adding any other child object. But
before doing it, you might want to keep your deformations! Just select the fork and
press CTRL-SHIFT-A and click on the Apply Lattice Deform? menu entry.

Mad vertices: On rare occasions, for fairly complex meshes, application of CTRL-SHIFT-
A will look like it has screwed your mesh completely. This is false. Just step in and out of
EditMode (TAB) and the mesh will be back nicely deformed as you expected.

Figure 22-46. A nice fork.

433

Chapter 22. Special modelling techniques

You can use a lattice to model an object following another object’s shape. For instance
take a look at the following scene. I have modelled a bottle, and now I would like to
confine a character inside it. He deserves it (Figure 22-47).

Figure 22-47. Poor guy...

Add a lattice around the character. I didn’t use a too high resolution for the lattice. I
scaled it in X and Y to fit the lattice to the character (Figure 22-48).

Figure 22-48. Bending things.

Parent the character to the lattice, and then scale the lattice again to fit the dimensions
of the bottle (Figure 22-49).

434

Chapter 22. Special modelling techniques

Figure 22-49. Scale the lattice to fit the bottle.

Now enter Edit Mode for the lattice. Press the Outside button in the Lattice Panel
in the Editing Context to switch off the inner vertices of the lattice. We will switch
them on later. Move and scale the vertices in front and side views until the character
perfectly fits the bottle’s shape (Figure 22-50).

435

Chapter 22. Special modelling techniques

Figure 22-50. Edit Lattice so that the poor guy is comfortable in his bottle.

You can select the lattice and do the modelling in one 3D window using Local View
and see the results in another window using Global View to make your modelling
comfortable (Figure 22-51).

436

Chapter 22. Special modelling techniques

Figure 22-51. Claustrophobic?

Hadn’t we used a lattice it would have taken a lot more of vertex picking-and-moving
work to deform the character (Figure 22-52).

Since lattices also supports RVK for vertex animation, quite interesting effects can be
achieved with this tool.

Figure 22-52. Final Render. Believe me, he deserved it!

Lattices can be used in many applications which require a "liquid-like" deformation
of a mesh. Think of a genie coming out of his lamp, or a cartoon character with its
eyes popping out exaggeratedly. And have fun!

437

Chapter 22. Special modelling techniques

Notes
1. and also Object Mode, however scaling in Object Mode could bring up some

problems when applying Rotation to DupliVerts as we will see soon

438

Chapter 23. Volumetric Effects

Relevant to Blender v2.31

Although Blender exhibits a very nice Mist option in the World Settings to give your
images some nice depth, you might want to create true volumetric effects; mists and
clouds and smoke which really looks like they occupy some space.

Figure 23-1 shows a set-up with some columns placed in a ring, with some nice ma-
terials of your choice for the columns and soil, and a World defining sky color.

Figure 23-1. Columns on a plane.

Figure 23-2 shows the relative rendering, whereas Figure 23-3 shows a rendering
with Blender’s built-in Mist. Mist setting in this particular case are: Linear Mist,
Sta=1, Di=20, Hig=5 .

Figure 23-2. A plain rendering.

439

Chapter 23. Volumetric Effects

Figure 23-3. A rendering with built-in Blender Mist.

But we want to create some truly cool, swirling, and most importantly, non-uniform
mist. Blender’s built-in procedural textures (clouds for example) are intrinsically
3D, but are rendered only when mapped onto a 2D surface. We will achieve a
’volumetric’-like rendering by ’sampling’ the texture on a series of mutually parallel
planes. Each of our planes will hence exhibit a standard Blender texture on its 2D
surface, but the global effect will be of a 3D object. This concept will be clearer as the
example proceeds.

With the camera at z=0, looking forward, turn to front view and add a plane in front
of the camera, with its centre aligned with the camera’s viewing direction. In side
view move the plane where you want your volumetric effect to terminate. In our
case somewhere beyond the furthest column. Scale the plane so that it encompasses
the whole of the camera’s field of view (Figure 23-4). It is important to have a camera
pointing along the y axis since we need the planes to be orthogonal to the line of
sight. Anyway, we will be able to move it later on.

Figure 23-4. The plane set-up.

After having checked that we’re at frame 1, let’s place a Loc KeyFrame (IKEY). We
should now move to frame 100, move the plane much nearer to the camera, and set
another Loc KeyFrame. Now, in the Object Context Anim Settings Panel (F7) Press
the DupliFrame button.

440

Chapter 23. Volumetric Effects

The 3D window, in side view, will show something like Figure 23-5. This is not good
because the planes are denser at the beginning and end of the sweep. With the plane
still selected change a window to an IPO window (SHIFT-F6). There will be three
Loc IPOs, only one of which is non-constant. Select it, switch to Edit Mode (TAB)
and select both control points. Now turn them from smooth to sharp with (VKEY)
(Figure 23-6).

Figure 23-5. The Dupliframed plane.

Figure 23-6. Reshaping the Dupliframed Plane IPO.

The planes will now look as in Figure 23-7. Parent the DupliFramed planes to the
camera (select the plane, SHIFT select the camera, CTRL-P). You now have a series
of planes automatically following the camera, always oriented perpendicularly to it.
From now on you could move the camera if you so wish.

441

Chapter 23. Volumetric Effects

Figure 23-7. Reshaping the DupliFramed Plane IPO.

Figure 23-8. Basic Material settings.

Now we must add the Mist material itself. The material should be Shadeless and
cast no shadows to avoid undesired effects. It should have an small Alpha value
(Figure 23-8). A material like this would basically act like Blender’s built in mist,
hence we would have no advantage in the resulting image. The drawback is that
computing 100 transparent layers is very CPU intensive, especially if one desires the
better results of the Unified Renderer.

Quick previews: You can use the DupOff: Num Button in the Anim Settings Panel to
turn off some of the planes and hence have a faster, lower quality preview of what you are
doing. For the final rendering you will then turn DupOff back to 0.

Pay attention to the Alpha value! The fewer planes you use the thinner the mist will be, so
your final rendering will be much more ’Misty’ than your previews!

The truly interesting stuff comes when you add textures. We will need at least two:
One to limit the Mist in the vertical dimension and keep it on the ground; The second
to make it non-uniform and with some varying hue.

As a first texture Add a Blend texture of "linear" type, with a very simple colorband,
going from pure white, Alpha =1 at a position 0.1 to pure white, Alpha =0 at a position

442

Chapter 23. Volumetric Effects

0.9 (Figure 23-9). Add this only to the Alpha channel and as a multiplying (Mul But-
ton) texture (Figure 23-10). To make our mist consistent as the Camera moves, and
the planes follow, we have to set it Global . This will be true also for all other textures
and will make the planes sample a fixed 3D volumetric texture. If you are planning
an animation you will see a static mist, with respect to the scene, while the camera
moves. Whichever other texture setting would show a Mist which is static with re-
spect to the camera, hence being always the same while the camera moves, which is
highly unrealistic.

Figure 23-9. Height limiting texture.

Figure 23-10. Basic Material settings for cloud texture.

Anyway, if you want to have a moving, swirling, changing mist you can do so by
animating the texture, as will be explained later on.

The Blend texture operates on X and Y directions, so if you want it to span vertically
in the Global coordinates you will have to remap it (Figure 23-10). Please note that
the blending from Alpha =1 to the Alpha =0 will occur from global z=0 to global z=1
unless additional offsets and scalings are added. For our aims the standard settings
are OK.

If you now do a rendering, it doesn’t matter where your camera, and planes, are.
The mist will be thick below z=0, non-existent above z=1 and fading in between. If
you’re puzzled by this apparent complexity, think of what you would have got with
a regular Orco (ORiginal COordinate) texture and non-parented planes. If you had
to move the camera, especially in animations, the results would become very poor as
soon as the planes were no longer perpendicular to the camera. You’d end up with
no mist at all if the camera were to become parallel to the planes!

The second texture is the one giving the true edge on the built-in mist. Add a Cloud
texture, make its Noise Size =2, Noise Depth =6 and Hard Noise On (Figure 23-11).
Add colorband to this too, going from pure white with Alpha =1 at Position 0 to a
pale bluish-grey with Alpha =0.8 at a position of about 0.15, to a pinkish hue with
Alpha =0.5 around position 0.2, ending in a pure white, Alpha =0 colour at position
0.3. Of course, you might want to go to a greenish-yellow for swamp mists etc.

443

Chapter 23. Volumetric Effects

Figure 23-11. Cloud texture settings.

Use this texture on both Col and Alpha as a Mul texture, keeping all other settings as
default. If you now render the scene the bases of your columns will now be masked
by a cool mist (Figure 23-12). Please note that the Unified Renderer gives much better
results here.

Figure 23-12. Final rendering.

Note: If you are planning an animation and want your Mist to be animated as if it were
moved by wind, it is this latter texture you must work on. Add a Material texture IPO, be
sure to select the correct texture channel and add some IPO to the OfsX , OfsY and OfsZ
properties.

444

Chapter 24. Sequence Editor

An often underestimated function of Blender is the Sequence Editor. It is a complete
video editing system that allows you to combine multiple video channels and add
effects to them. Even though it has a limited number of operations, you can use these
to create powerful video edits (especially when you combine it with the animation
power of Blender!) And, furthermore, it is extensible via a Plugin system quite alike
the Texture plugins.

Learning the Sequence Editor
Relevant to Blender v2.31

This section shows you a practical video editing example exhibiting most of the Se-
quence Editor built in features. We will put together several Blender made anima-
tions to obtain some stunning effects. One frame of the resulting edited animation is
in Figure 24-1.

Figure 24-1. Final result.

First Animation: two cubes
Let’s start with something simple and see where it leads. Start a clean Blender and
remove the default plane. Split the 3D window and switch one of the views to the
camera view with NUM0. In the top-view, add a cube and move it just outside of the
dotted square that indicates the camera view (Figure 24-2).

445

Chapter 24. Sequence Editor

Figure 24-2. Moving the cube out of the camera view.

We want to create a simple animation of the cube moving into view, rotating once,
and then disappearing. Set the animation end to 61 (set the End: value in the Anim
Panel of the Scene Context, Render Buttons F10) and insert a LocRot KeyFrame on
frame 1 with IKEY and selecting LocRot from the menu which appears. This will
store both the location and the rotation of the cube on this frame.

Go to frame 21 (press UPARROW twice) and move the cube closer to the camera.
Insert another KeyFrame. On Frame 41, keep the cube on the same location but rotate
it 180 degrees and insert another KeyFrame.

Finally on frame 61 move the cube out of view, to the right and insert the last
KeyFrame.

We will need two versions of the animation: one with a solid material and one with
a WireFrame. For the material, we can use a plain white lit by two bright lamps - a
white one and a blue one with an energy value of two (Figure 24-3).

For the WireFrame cube, set the material type to ’Wire’ and change the color to green
(Figure 24-4).

Figure 24-3. A rendering of the solid cube...

446

Chapter 24. Sequence Editor

Figure 24-4. ...and a rendering of the WireFrame cube.

Enter an appropriate filename (for example ’cube_solid.avi’) in the Pics field (first
text button on top) of the Scene Context Render sub-context Output Panel (F10) (Fig-
ure 24-5).

Figure 24-5. Set the animation output filename.

Render the animation with the white solid cube. This will save it to your disk. Save it
as an AVI file. Use AVI Raw if possible, because it yelds an higher quality - compres-
sion should be the last thing in the editing process - otherwise, if short of disk space
use AVI Jpeg or AVI Codec, the first being less compressed and hence often of higher
quality.

Now change the material to the green wire frame, render the animation again, saving
the result as cube_wire.avi.

You now have a ’cube_solid.avi’ and ’cube_wire.avi’ on your hard disk. This is
enought for our first sequence editing.

First Sequence: delayed wireframes
The first sequence will use only the wireframe animation - twice - to create an inter-
esting effect. We will create multiple layers of video, give them a small time offset
and add them together. This will simulate the ’glowing trail’ effect that you see on
radar screens.

447

Chapter 24. Sequence Editor

Start a clean Blender file and change the 3D window to a Sequence Editor window by
pressing SHIFT-F8 or by selecting the Sequence Editor icon from
the window header Window Type Menu.

Add a movie to the window by pressing SHIFT-A and selecting Movie (Figure 24-6)
or by using the Add>>Movie Menu entry. From the File Select Window wich appears
select the wireframe cube animation that you made before.

Figure 24-6. Adding a video strip

After you have selected and loaded the movie file, you will see a blue strip that rep-
resents it. After adding a strip, you are automatically in grab mode and the strip
follows the mouse. The start and end frame are now displayed in the bar.

Take a closer look at the Sequence Editor screen now. Horizontally you see the time
value. Vertically, you see the video ’channels’. Each channel can contain an image, a
movie or an effect. By layering different channels on top of each other and applying
effects, you can mix different sources together. If you select a video strip, its type,
length and filename will be printed at the bottom of the window.

Move your video strip and let it start at frame 1. Place it in channel 1, that is on the
bottom row and press LMB to finalize (Figure 24-7).

448

Chapter 24. Sequence Editor

Figure 24-7. Placing the strip.

Lead-in, Lead-out and stills: You can add lead-in and lead-out frames by selecting the
triangles at the start and end of the strip (they will turn purple) and dragging them out. In
the same way, you can define the ’length’ in frames of a still image.

Duplicate the movie strip with SHIFT-D, place the duplicate in channel 2 and shift
it one frame to the right. We now have two layers of video on top of each other, but
only one will display. To mix the two layers you need to apply an effect to them.

Select both strips and press SHIFT-A. Select ADDfrom the menu that pops up (Figure
24-8). Otherwise use the Add>>Effect>>Add .

Figure 24-8. Mixing two video strips

449

Chapter 24. Sequence Editor

To see what’s happening split the sequence editor window and select the image but-
ton in the header (Figure 24-9). This will activate the automatic preview (Figure 24-
10). If you select a frame in the sequence editor window with the strips, the preview
will be automatically updated (with all the effects applied!).

Figure 24-9. Sequence Editor preview button.

If you press ALT-A in the preview window, Blender will play back the animation.
(Rendering of effects for the first time takes a lot of processing time, so don’t expect
a real-time preview!).

Figure 24-10. Adding a preview window.

Windowless preview: If you do not like the separate render window, switch to the Render
Buttons (F10) and select DispView in the bottom left.

Now it’s time to add some more mayhem to this animation. Duplicate another movie
layer and place it on channel 4. Add it to the existing ADD effect in video channel 3
with a new ADD effect. Repeat this once and you will have four WireFrame cubes in
the preview window (Figure 24-11).

450

Chapter 24. Sequence Editor

Figure 24-11. Sequence with 4 WireFrame cube strips added together.

All the cubes have the same brightness now, but I would like to have a falloff in
brightness. This is easily arranged: open an IPO window somewhere (F6) and select
the sequence icon in its IPO Type Menu (Figure 24-12).

Figure 24-12. Sequence IPO button.

Select the first add strip (the one in channel 3), hold down CTRL and click LMB in
the IPO window on a value of 1. This sets the brightness of this add operation to
maximum. Repeat this for the other two add strips, but decrease the value a bit for
each of them, say to around 0.6 and 0.3 (Figure 24-13).

451

Chapter 24. Sequence Editor

Figure 24-13. Defining the brightness of a layer with an IPO

Depending on the ADD values that you have just set, your result should look some-
thing like what is shown in Figure 24-14.

Figure 24-14. Four WireFrame cubes combined with fading effects.

Now we already have 7 strips and we have only just begun with our sequencing! You
can imagine that the screen can quickly become very crowded indeed. To make your
project more manageable, select all strips (AKEY and BKEY work here, too!), press
MKEY and press ENTER or click on the Make Meta pop up. Otherwise you can use
the Strip>>Make Meta Strip Menu entry. The strips will now be combined into a
meta-strip, and can be copied or moved as a whole.

With the meta strip selected, press NKEY and enter a name, for example
’Wire/Delay’, to better remember what it is (Figure 24-15).

452

Chapter 24. Sequence Editor

Figure 24-15. Named META strip

Second Animation: A delayed solid cube
Now it is time to use some masks. We want to create two areas in which the animation
plays back with 1 frame time difference. This creates a very interesting glass-like
visual effect.

Start by creating a black and white image like the one in Figure 24-16. You can use a
paint program or do it in Blender. The easiest way to do this in Blender is to create a
white material with an emit value of 1 or a shadeless white material on some bevelled
Curve Circles. In this way, you do not need to set up any lamps. Save the image as
mask.tga.

Figure 24-16. Animation mask.

Switch to the sequence editor and move the meta strip that we made before out of
the way (we will reposition it later). Add the animation of the solid cube (SHIFT-
A>>Movie). Next, add the mask image. By default a still image will get a length of 50

453

Chapter 24. Sequence Editor

frames in the sequence editor. Change it to match the length of the cube animation
by RMB and GKEY to dragging out the arrows on the side of the image strip with
the right mouse button.

Now select both strips (hold down SHIFT), press SHIFT-A and add a SUB(subtract)
effect (Figure 24-17).

Figure 24-17. Subtracting the mask from the video.

In the preview window you will now see the effect; the areas where the mask is white
have been removed from the picture (Figure 24-18).

Figure 24-18. Mask subtracted.

This effect is ready now; select all three strips and convert them into a META strip by
pressing MKEY.

454

Chapter 24. Sequence Editor

Now repeat the previous steps, except that you don’t use the SUBeffect but the MUL
(multiply) effect (Figure 24-19). This time you will only see the original image where
the mask image is white. Turn the three strips of this effect into a meta strip again.

Figure 24-19. Mask multiplied.

For the final step I have to combine the two effects together. Move one of the meta
strips above the other one and give it a time offset of one frame. Select both strips
and add an ADD effect (Figure 24-20).

Figure 24-20. Adding the two effects

In the preview window you can now see the result of the combination of the anima-
tion and the mask (Figure 24-21).

455

Chapter 24. Sequence Editor

When you are ready, select the two meta strips and the ADDeffect and convert them
into a new meta strip. (That’s right! You can have meta strips in meta strips!)

Getting into a Meta Strip: To edit the contents of a meta strip, select it and press TAB .
The meta strip will ’explode’ to show its components and the background will turn yellow-
ish/green to indicate that you are working inside a meta strip. Press TAB again to return
to normal editing.

Figure 24-21. Two time-shifted layers.

Third Animation: a tunnel
We want a third ’effect’to further enrich our animation; a 3D ’tunnel’ to be used as a
background effect. This is really simple to create. First save your current work - you
will need it later!

Start a new scene (CTRL-X) and delete the default plane. Switch to front view
(NUM1). Add a 20-vertex circle about 10 units under the z=0 line (the pink line in
your screen) (Figure 24-22).

456

Chapter 24. Sequence Editor

Figure 24-22. Adding a 20-vertex circle.

While still in Edit Mode, switch to side view (NUM3) and snap the cursor to the
origin by locating it roughly at the x,y,z=0 point and pressing SHIFT-S. Select
Curs>>Grid .

We want to turn the circle into a circular tube, or torus. For this, we will use the Spin
function. Go to the Editing Context (F9) and enter a value of 180 in the Degr NumBut-
ton and enter ’10’ in the Steps NumButton in the Mesh Tools Panel. Pressing Spin
will now rotate the selected vertices around the cursor at 180 degrees and in 10 steps
(Figure 24-23).

Figure 24-23. Spinning the circle around the cursor

Leave Edit Mode (TAB). With the default settings, Blender will always rotate and
scale around the object’s center which is displayed as a tiny dot. This dot is yellow
when the object is unselected and pink when it is selected. With the cursor still in
the origin, press the Center Cursor button in the Edit Buttons window to move the
object center to the current cursor location. Now press RKEY and rotate the tube 180
degrees around the cursor.

Now it’s time to move the camera into the tunnel. Open another 3D window and
switch it to the camera view (NUM0). Position the camera in the side view window
to match Figure 24-24, the camera view should now match Figure 24-25.

457

Chapter 24. Sequence Editor

Missing edges: If not all of the edges of the tunnel are showing, you can force Blender to
draw them by selecting All Edges Tog Button in the Mesh Tools 1 Panel of the Editing
Context (F9).

Figure 24-24. Camera inside the tunnel.

Figure 24-25. Camera view of the tunnel interior.

To save ourselves some trouble, I want to render this as a looping animation. I can
then add as many copies of it as I like to the final video compilation.

There are two things to keep in mind when creating looping animations. First, make
sure that there is no ’jump’ in your animation when it loops. For this, you have to be
careful when creating the KeyFrames and when setting the animation length. Create
two KeyFrames: one with the current rotation of the tube on frame 1, and one with a
rotation of 90 degrees (hold down CTRL while rotating) on frame 51. In your anima-
tion frame 51 is now the same as frame 1, so when rendering you will need to leave
out frame 51 and render from 1 to 50.

Please note that the number 90 degrees is not chosen carelessly, but because the tun-
nel is periodic with period 18, hence you must rotate it by a multiple of 18, and 90 is

458

Chapter 24. Sequence Editor

it, to guarantee that frame 51 is exactly the same than frame 1.

Second, to get a linear motion you need to remove the ease-in and ease-out of the
rotation. These can be seen in the IPO Window of the tube after inserting the rotation
KeyFrames. The IPO smoothly starts and end, much like a cosine function. We want
it to be straight. To do so select the rotation curve, enter editmode (TAB) and select
all vertices (AKEY) and press VKEY (’Vector’) to change the curve into a linear one
(Figure 24-26).

Figure 24-26. Tunnel rotation IPO without ease-in and ease-out.

To create a more dramatic effect, select the camera while in camera view mode (Figure
24-27). The camera itself is displayed as the solid square. Press RKEY and rotate it a
bit. If you now play back your animation it should loop seamlessly.

Figure 24-27. Rotate the camera to get a more dramatic effect

For the final touch, add a blue WireFrame material to the tube and add a small lamp
on the location of the camera. By tweaking the lamp’s Dist value (attenuation dis-

459

Chapter 24. Sequence Editor

tance) you can make the end of the tube disappear in the dark without having to
work with mist. (Figure 24-28).

When you are satisfied with the result, render your animation and save it as ’tun-
nel.avi’.

Figure 24-28. A groovy tunnel.

Second Sequence: Using the tunnel as a backdrop
Reload your video compilation Blender file. The tunnel that we made in the last step
will be used as a backdrop for the entire animation. To make it more interesting I
will modify an ADDeffect to change the tunnel into a pulsating backdrop. Prepare a
completely black picture and call it ’black.tga’ (try pressing F12 in an empty Blender
file. Save with F3, but make sure that you have selected the TGA file format in the
Render Buttons window). Add both black.tga and the tunnel animation and combine
them with an ADD effect (Figure 24-29).

460

Chapter 24. Sequence Editor

Figure 24-29. Setting up the backdrop effect.

Now with the ADDeffect selected, open an IPO window and select the Sequence Ed-
itor button in its header. From frame 1-50, draw an irregular line by holding down
CTRL and left-clicking. Make sure that the values are between 0 and 1 (Figure 24-30).

Figure 24-30. Adding randomnes with a irregular Ipo

When you are ready, take a look at the result in a preview screen and change the
animation into a meta strip.

Save your work!

Fourth Animation: a jumping logo
Let’s create some more randomness and chaos! Take a logo (We can just add a text
object) and make it jump through the screen. Again, the easiest way to do this is to

461

Chapter 24. Sequence Editor

add vertices directly into the IPO window (select a LocX, LocY or LocZ channel first),
but this time you may need to be a bit more careful with the minimum and maximum
values for each channel. Don’t worry about the looks of this one too much - the next
step will make is hardly recognizable anyway (Figure 24-31).

Figure 24-31. Jumping logo

Save the animation as ’jumpylogo.avi’.

Fifth Animation: particle bars
Our last effect will use an animated mask. By combining this with the logo of the pre-
vious step, I will achieve a streaking effect that introduces the logo to our animation.
This mask is made by using a particle system. To set one up switch to side view, add
a plane to your scene and while it is still selected switch to the Object Context (F7)
in the Effects Tab of the Constraints Panel. Select New effect and then change
the default effect build to Particles . Change the system’s settings as indicated in
Figure 24-32.

Figure 24-32. Particle system settings.

Press TAB to enter Edit Mode, select all vertices and subdivide the plane twice by
pressing WKEY and selecting Subdivide from the pop-up menu.

462

Chapter 24. Sequence Editor

Next switch to front view and add another plane. Scale it along the X-axis to turn it
into a rectangle (press SKEY and move your mouse horizontally. Then press XKEY
or MMB to scale along the indicated axis only). Give the rectangle a white material
with an emit value of one.

Now you need to change the particles into rectangles by using the dupliverts func-
tion. Select rectangle, then particle emitter and parent them. Select only the plane and
in the Object Context and Anim Settings Panel, select the DupliVerts Button. Each
particle is now replaced by a rectangle (Figure 24-33).

Figure 24-33. DupliVerted rectangles

I now add some mist as a quick hack to give the rectangles each a different shade of
grey. Go to the World Buttons window with F5 to change to Shading Context, then
click on the button and select Add Newin the World Panel. The world settings will
now appear.

By default, the sky will now be rendered as a gradient between blue and black.
Change the horizon colors (HoR, HoG, HoB) to pure black (Figure 24-34).

Figure 24-34. Setting up mist.

To activate rendering of mist activate the Mist button in the middle of the screen.
When using mist, you have to indicate on which distance from the camera it works.
Select the camera, switch to the Editing Context enable ShowMist in the Camera Panel.
Now switch to top view and return to the Shading Context (F5) and World Buttons.
Tweak the Sta: and Di: (Start, Distance, respectively) parameters so that the mist
covers the complete width of the particle stream (Figure 24-34 and Figure 24-35).

463

Chapter 24. Sequence Editor

Figure 24-35. Setting the mist parameters

Set the animation length to 100 frames and render the animation to disk. Call the file
’particles.avi’ (Figure 24-36).

Figure 24-36. Rendered particle rectangles.

Third Sequence: Combining the logo and the particle bars
By now you know the drill: reload your compilation project file, switch to the Se-
quence Editor window and add both ’particles.avi’ and ’logo.avi’ to your project.
Combine them together with a MULeffect. Since the logo animation is 50 frames and
the particles animation is 100 frames, you’ll need to duplicate the logo animation
once and apply a second MULeffect to it (Figure 24-37 and Figure 24-37).

464

Chapter 24. Sequence Editor

Figure 24-37. Use the logo animation twice

Combine these three strips into one meta strip. If you’re feeling brave you can make
a few copies and give them a small time offset just like with the WireFrame cube.

Figure 24-38. The particles animation combined with the logo animation

Sixth Animation: zooming logo
If you would combine all your animations so far you would get a really wild video
compilation, but if this was your company’s presentation you would want to present
the logo in a more recognizable way. The final part of our compilation will therefore
be an animation of the logo that zooms in very slowly. Prepare this one and save it as
’zoomlogo.avi’. Also prepare a white picture and save it as ’white.tga’.

465

Chapter 24. Sequence Editor

We will now use the CROSSeffect to first make a rapid transition from black to white,
then from white to our logo animation. Finally, a transition to black will conclude the
compilation.

Start off by placing black.tga in channel 1 and white.tga in channel 2. Make them both
20 frames long. Select them both and apply a cross effect. The cross will gradually
change the resulting image from layer 1 to layer 2. In this case, the result will be a
transition from black to white (Figure 24-39).

Figure 24-39. Black-white transition.

Next, add a duplicate of white.tga to layer 1 and place it directly to the right of
black.tga. Make it about half as long as the original. Place the logo zoom animation
in layer 2 and add a cross effect between the two. At this point, the animation looks
like a white flash followed by the logo zoom animation (Figure 24-40).

466

Chapter 24. Sequence Editor

Figure 24-40. White-video transition

The last thing that you need to do is to make sure that the animation will have a nice
transition to black at the very end. Add a duplicate of black.tga and apply another
cross effect. When you are ready, transform everything into a meta strip (Figure 24-
41).

Figure 24-41. Video-black transition

Assembling everything so far
We’re at the end of our work! It’s time to add some of the compilations that we have
made so far and see how our work looks. The most important thing to remember
while creating your final compilation is that when rendering your animation, the
sequence editor only ’sees’ the top layer of video. This means that you have to make

467

Chapter 24. Sequence Editor

sure that it is either a strip that is ready to be used, or it should be an effect like ADD
that combines several underlying strips.

The foundation of the compilation will be the fluctuating tunnel. Add a some dupli-
cates of the tunnel meta strip and place them in channel one. Combine them into one
meta strip. Do not worry about the exact length of the animation yet; you can always
duplicate more tunnel strips.

On top of that, place the delayed wireframe cube in channel 2. Add channel 1 to
channel 2 and place the add effect in channel 3 (Figure 24-42).

Figure 24-42. Combining the tunnel and the WireFrame cube

Now we also want to add the solid cube animation. Place it in channel 4, overlapping
with the WireFrame animation in channel 2. Add it to the tunnel animation in layer
one. This is where things are starting to get a little tricky; if you would leave it like
this, the animation in channel 5 (the solid cube together with the tube) would over-
ride the animation in channel 2 (the wireframe cube) and the wireframe cube would
become invisible as soon as the solid cube shows up. To solve this, add channel 3 to
channel 5 (Figure 24-43).

468

Chapter 24. Sequence Editor

Figure 24-43. Combining the tunnel, WireFrame and solid cube.

You will often need to apply some extra add operations to fix missing parts of video.
This will most likely become apparent after you have rendered the final sequence.

Slide the Sequence Editor window a bit to the left and add the meta strip with the
particle/logo animation in it. Place this strip in layer 2 and place an add effect in
layer 3. For some variation, duplicate the WireFrame animation and combine it with
the add in layer 3 (Figure 24-44).

Figure 24-44. Adding the particle/logo animation

Now go to the end of the tunnel animation strip. There should be enough place to put
the logo zoom animation at the end and still have some space left before it (Figure
24-45). If not, select the tunnel strip, press TAB and add a duplicate of the animation
to the end. Press TAB again to leave meta edit mode.

469

Chapter 24. Sequence Editor

Figure 24-45. Adding the logo zoom animation.

If there is still some space left, we can add a copy of the solid cube animation. To get
it to display correctly, you will have to apply two add channels to it: one to combine it
with the particle logo animation and one to combine it with the logo zoom animation
(Figure 24-46).

Figure 24-46. Adding one last detail

Figure 24-47 shows the complete sequence.

470

Chapter 24. Sequence Editor

Figure 24-47. The complete sequence

Conclusion
We are now ready to render our final video composition! To tell Blender to use the
Sequence Editor information while rendering, select the Do Sequence button in the
Render Buttons window. After that, rendering and saving your animation works like
before (be sure not to overwrite any of your AVI of the sequence!).

Sound Sequence Editor
Relevant to Blender v2.31

Since Blender 2.28 there is a (still limited) Audio sequencing toolbox. You can add
WAV files via the SHIFT-A menu and selecting the Sound entry.

A green audio strip will be created. No ’high level’ mixing features are present cur-
rently. You can have as many Audio strips as you wish and the result will be the
mixing of all them.

You can give each strip its own name and Gain (in dB) via the NKEYmenu. This also
let you set a strip to mute or ’Pan’ it; -1 is hard left, +1 is hard right.

A ’Volume’ IPO can be added to the strip in the IPO Window as it is done for effect
strips. The Fac channel is the volume here. IPO frames 1-100 correspond to the whole
sample length, 1.0 is full volume, 0.0 is completely silent.

Blender cannot yet mix the sound in the final product of the Sequence Editor. The
output is therefore a video file, if the ANIM button in the Anim Panel of the Scene Con-
text/Render Sub-context is used as described before, or a separate WAV file, contain-
ing the full audio sequence, in the same directory of the video file and with the same
name but with a .WAV extension. This audio file is created via the MIXDOWNbutton in
the Sequencer button of the Scene Context, Sound Sub-context.

You can mix Video and Audio later on with an external program. The advantage
of using Blender’s sequence editor lies in the easier synchronization attainable by
sequencing frames and sound in the same application.

Sequence Editor Plugins
Relevant to Blender v2.31

As said before Blender is extensible via a plugin system, and two kind of plugins may
be found: Texture and Sequence plugins.

471

Chapter 24. Sequence Editor

Sequence plugins works on strips in a way similar to that of conventional ADD, CROSS
etc. operation. You must have at least a strip selected and press SHIFT-A>>Plugin
or Add>>Effect>>Plugin Menu entry. This opens a File Selection Window in which
you can select the desired plugin.

Plugin functionalities varies so much that it is not possible to describe them here. Dif-
ferently than Texture Plugins Sequence Plugins do not have a Buttons in any Button
Window, but their parameters are usually accessed via NKEY.

472

Chapter 25. Python Scripting

Relevant to Blender v2.31

Blender has a very powerful yet often overlooked feature. It exhibits an internal fully
fledged Python interpreter.

This allows any user to add functionalities by writing a Python script. Python is an
interpreted, interactive, object-oriented programming language. It incorporates
modules, exceptions, dynamic typing, very high level dynamic data types, and
classes. Python combines remarkable power with very clear syntax. It was expressly
designed to be usable as an extension language for applications that need a
programmable interface, and this is why Blender uses it.

Of the two main ways of extending Blender, the other one being binary plugins,
Python scripting is more powerful, versatile yet easier to comprehend and robust.
It is generally preferred to use Python scripting than writing a plugin.

Actually Python scripting had somewhat limited functionalities up to Blender 2.25,
the last of NaN releases. When Open Sourcing Blender many of the new developers
gathered around the Foundation elected to work on it and, together with UI change,
Python API is probably the single part of Blender which got the greatest develop-
ment. A full reorganization of what existed was carried out and many new modules
added.

This evolution is still ongoing and even better integration is expected in forthcoming
Blender versions.

Blender has a Text Window among its windows types accessible via the
button of the Window Type menu or via SHIFT-F11.

The newly opened Text window is grey and empty, with a very simple toolbar (Figure
25-1). From left to right there are the standard Window type selection button and
the Window menu. Then the full screen button, followed by a toggle button which
shows/hides the line numbers for the text and the regular Menu Button.

Figure 25-1. Text Toolbar.

The Menu Button () allows you to select which Text buffer is to be displayed, as
well as allowing you to create a new buffer or load a text file.

If you choose to load a file the Text Window tempoarily becomes a File Selection
Window, with the usual functions. Once a text buffer is in the Text window, this
behaves as a very simple text editor. Typing on the keyboard produces text in the
text buffer. As usual pressing, LMB dragging and releasing LMB selects text. The
following keyboard commands apply:

• ALT-C or CTRL-C - Copy the marked text into the text clipboard;

• ALT-X or CTRL-X - Cut out the marked text into the text clipboard;

• ALT-V or CTRL-V - Paste the text from the clipboard to the cursor in the Text
Window;

• ALT-S - Saves the text as a text file, a File Selection Window appears;

• ALT-O - Loads a text, a File Selection Window appears;

• ALT-F - Pops up the Find toolbox;

• SHIFT-ALT-F or RMB - Pops up the File Menu for the Text Window;

473

Chapter 25. Python Scripting

• ALT-J - Pops up a Num Button where you can specify a linenumber the cursor will
jump to;

• ALT-P - Executes the text as a Python script;

• ALT-U - Undo;

• ALT-R - Redo;

• CTRL-R - Reopen (reloads) the current buffer;

• ALT-M - Converts the content of the text window into 3D text (max 100 chars);

Blender’s cut/copy/paste clipboard is separate from Window’s clipboard. So nor-
mally you cannot cut/paste/copy out from/into Blender. To access your Windows
clipboard use SHIFT-CTRL-C SHIFT-CTRL-V

To delete a text buffer just press the ’X’ button next to the buffer’s name, just as you
do for materials, etc.

The most notable keystroke is ALT-P which makes the content of the buffer being
parsed by the internal Python interpreter built into Blender.

The next section will present an example of Python scripting. Before going on it is
worth noticing that Blender comes with only the bare Python interpreter built in,
and with a few Blender-specific modules, those described in **REF** .

Other usages for the Text window: The text window is handy also when you want to
share your .blend files with the community or with your friends. A Text window can be
used to write in a README text explaining the contents of your blender file. Much more
handy than having it on a separate application. Be sure to keep it visible when saving!

If you are sharing the file with the community and you want to share it under some licence
you can write the licence in a text window.

to have access to the standard Python modules you need a complete working
Python install. You can download this from http://www.python.org. Be sure to
check on http://www.blender.org which is the exact Python version which was
built into Blender to prevent compatibility issues.

Blender must also be made aware of where this full Python installation is. This is done
by defining a PYTHONPATHenvironment variable.

Setting PYTHONPATHon Win95,98,Me

Once you have installed Python in, say, C:\PYTHON22 you must open the file
C:\AUTOEXEC.BAT with your favourite text editor, add a line:

SET PYTHONPATH=C:\PYTHON22;C:\PYTHON22\DLLS;C:\PYTHON22\LIB;C:\PYTHON22\LIB\LIB-
TK

and reboot the system.

Setting PYTHONPATHon WinNT,2000,XP

Once you have installed Python in, say, C:\PYTHON22 Go on the "My Computer" Icon
on the desktop, RMB and select Properties . Select the Advanced tab and press the
Environment Variables button.

Below the System Variables box, (the second box), hit New. If you are not an adminis-
trator you might be unable to do that. In this case hit Newin the upper box.

Now, in the Variable Name box, type PYTHONPATH, in the Variable Value box, type:

474

Chapter 25. Python Scripting

C:\PYTHON22;C:\PYTHON22\DLLS;C:\PYTHON22\LIB;C:\PYTHON22\LIB\LIB-TK

Hit OK repeatedly to exit from all dialogs. You may or may not have to reboot, de-
pending on the OS.

Setting PYTHONPATHon Linux and other UNIXes

Normally you will have Python already there. if not, install it. You will have to dis-
cover where it is. This is easy, just start a Python interactive shell by opening a shell
and by typing python in there. Type the following commands:

>>> import sys
>>> print sys.path

and note down the output, it should look like

[”, ’/usr/local/lib/python2.2’, ’/usr/local/lib/python2.2 /plat-linux2’, ’/usr/local/lib/python2.0/lib-
tk’, ’/usr/lo
cal/lib/python2.0/lib-dynload’, ’/usr/local/lib/python2.0/
site-packages’]

Add this to your favourite rc file as an environment variable setting. For example,
add in your .bashrc the line

export PYTHONPATH=/usr/local/lib/python2.2:/usr/local/lib/
python2.2/plat-linux2:/usr/local/lib/python2.2/lib-tk:/usr
/local/lib/python2.2/lib-dynload:/usr/local/lib/python2.0/
site-packages

all on a single line. Open a new login shell, or logoff and login again.

A working Python example
Relevant to Blender v2.31

Now that you’ve seen that Blender is extensible via Python scripting and that you’ve
got the basics of script handling and how to run a script, before smashing your brain
with the full python API reference let’s have a look at a quick working example.

We will present a tiny script to produce polygons. This indeed duplicates somewhat
the SPACEAdd>>Mesh>>Circle toolbox option, but will create ’filled’ polygons, not
just the outline.

To make the script simple yet complete it will exhibit a Graphical User Interface (GUI)
completely written via Blender’s API.

Headers, importing modules and globals.
The first 32 lines of code are listed in Example 25-1.

475

Chapter 25. Python Scripting

Example 25-1. Script header

001 ##
002 #
003 # Demo Script for Blender 2.3 Guide
004 #
005 ###S68
006 # This script generates polygons. It is quite useless
007 # since you can do polygons with ADD->Mesh->Circle
008 # but it is a nice complete script example, and the
009 # polygons are ’filled’
010 ##
011
012 ##
013 # Importing modules
014 ##
015
016 import Blender
017 from Blender import NMesh
018 from Blender.BGL import *
019 from Blender.Draw import *
020
021 import math
022 from math import *
023
024 # Polygon Parameters
025 T_NumberOfSides = Create(3)
026 T_Radius = Create(1.0)
027
028 # Events
029 EVENT_NOEVENT = 1
030 EVENT_DRAW = 2
031 EVENT_EXIT = 3
032

After the necessary comments with the description of what the script does there is
(lines 016-022) the importing of Python modules.

Blender is the main Blender Python API module. NMesh is the module providing
access to Blender’s meshes, while BGLand Draw give access to the OpenGL constants
and functions and to Blender’s windowing interface, respectively. The math module
is Python’s mathematical module, but since both the ’math’ and the ’os’ modules are
built into Blender you don’t need a full Python install for this!

The polygons are defined via the number of sides they have and their radius. These
parameters have values which must be defined by the user via the GUI hence lines
(025-026) create two ’generic button’ objects, with their default starting value.

Finally, the GUI objects works with, and generates, events. Events identifier are in-
tegers left to the coder to define. It is usually a good practice to define mnemonic
names for events, as is done here in lines (029-031).

Drawing the GUI.
The code responsible for drawing the GUI should reside in a draw function (Example
25-2).

476

Chapter 25. Python Scripting

Example 25-2. GUI drawing

033 ##
034 # GUI drawing
035 ##
036 def draw():
037 global T_NumberOfSides
038 global T_Radius
039 global EVENT_NOEVENT,EVENT_DRAW,EVENT_EXIT
040
041 ########## Titles
042 glClear(GL_COLOR_BUFFER_BIT)
043 glRasterPos2d(8, 103)
044 Text("Demo Polygon Script")
045
046 ######### Parameters GUI Buttons
047 glRasterPos2d(8, 83)
048 Text("Parameters:")
049 T_NumberOfSides = Number("No. of sides: ", EVENT_NOEVENT, 10, 55, 210, 18,
050 T_NumberOfSides.val, 3, 20, "Number of sides of out polygon");
051 T_Radius = Slider("Radius: ", EVENT_NOEVENT, 10, 35, 210, 18,
052 T_Radius.val, 0.001, 20.0, 1, "Radius of the polygon");
053
054 ######### Draw and Exit Buttons
055 Button("Draw",EVENT_DRAW , 10, 10, 80, 18)
056 Button("Exit",EVENT_EXIT , 140, 10, 80, 18)
057

Lines (037-039) merely grant access to global data. The real interesting stuff starts
from lines (042-044). The OpenGL window is initialised, and the current position set
to x=8, y=103. The origin of this reference is the lower left corner of the script window.
Then the title Demo Polygon Script is printed.

A further string is written (lines 047-048), then the input buttons for the parameters
are created. The first (lines 049-050) is a Num Button, exactly like those in the various
Blender Button Windows. For the meaning of all the parameters please refer to the
API reference. Basically there is the button label, the event generated by the button, its
location (x,y) and its dimensions (width, height), its value, which is a data belonging
to the Button object itself, the minimum and maximum allowable values and a text
string which will appear as a help while hovering on the button, as a tooltip.

Lines (051-052) defines a Num Button with a slider, with a very similar syntax. Lines
(055-056) finally create a Draw button which will create the polygon and an Exit
button.

Managing Events.
The GUI is not drawn, and will not work, until a proper event handler is written and
registered (Example 25-3).

Example 25-3. Handling events

058 def event(evt, val):
059 if (evt == QKEY and not val):
060 Exit()
061
062 def bevent(evt):
063 global T_NumberOfSides
064 global T_Radius
065 global EVENT_NOEVENT,EVENT_DRAW,EVENT_EXIT
066

477

Chapter 25. Python Scripting

067 ######### Manages GUI events
068 if (evt == EVENT_EXIT):
069 Exit()
070 elif (evt== EVENT_DRAW):
071 Polygon(T_NumberOfSides.val, T_Radius.val)
072 Blender.Redraw()
073
074 Register(draw, event, bevent)
075

Lines (058-060) define the keyboard event handler, here responding to the QKEY
with a plain Exit() call.

More interesting are lines (062-072), in charge of managing the GUI events. Every
time a GUI button is used this function is called, with the event number defined
within the button as a parameter. The core of this function is hence a "select" structure
executing different codes according to the event number.

As a last call, the Register function is invoked. This effectively draws the GUI and
starts the event capturing cycle.

Mesh handling
Finally, Example 25-4 shows the main function, the one creating the polygon. It is
a rather simple mesh editing, but shows many important points of the Blender’s
internal data structure.

Example 25-4. Script header

076 ##
077 # Main Body
078 ##
079 def Polygon(NumberOfSides,Radius):
080
081 ######### Creates a new mesh
082 poly = NMesh.GetRaw()
083
084 ######### Populates it of vertices
085 for i in range(0,NumberOfSides):
086 phi = 3.141592653589 * 2 * i / NumberOfSides
087 x = Radius * cos(phi)
088 y = Radius * sin(phi)
089 z = 0
090
091 v = NMesh.Vert(x,y,z)
092 poly.verts.append(v)
093
094 ######### Adds a new vertex to the center
095 v = NMesh.Vert(0.,0.,0.)
096 poly.verts.append(v)
097
098 ######### Connects the vertices to form faces
099 for i in range(0,NumberOfSides):
100 f = NMesh.Face()
101 f.v.append(poly.verts[i])
102 f.v.append(poly.verts[(i+1)%NumberOfSides])
103 f.v.append(poly.verts[NumberOfSides])
104 poly.faces.append(f)
105
106 ######### Creates a new Object with the new Mesh
107 polyObj = NMesh.PutRaw(poly)
108

478

Chapter 25. Python Scripting

109 Blender.Redraw()

The first important line here is number (082). Here a new mesh object, poly is created.
The mesh object is constituted of a list of vertices and a list of faces, plus some other
interesting stuff. For our purposes the vertices and faces lists are what we need.

Of course the newly created mesh is empty. The first cycle (lines 085-092) computes
the x,y,z location of the NumberOfSides vertices needed to define the polygon. Being
a flat figure it is z=0 for all.

Line (091) calls the NMesh method Vert to create a new vertex object of co-ordinates
(x,y,z). Such an object is then appended (line 096) in the poly Mesh verts list.

Finally (lines 095-096) a last vertex is added in the centre.

Lines (099-104) now connects these vertices to make faces. It is not required to create
all vertices beforehand and then faces. You can safely create a new face as soon as all
its vertices are there.

Line (100) creates a new face object. A face object has its own list of vertices v (up to
4) defining it. Lines (101-103) appends three vertices to the originally empty f.v list.
The vertices are two subsequent vertices of the polygon and the central vertex. These
vertices must be taken from the Mesh verts list. Finally line (104) appends the newly
created face to the faces list of our poly mesh.

Conclusions
If you create a polygon.py file containing the above described code and load it into a
Blender text window, as you learned in the previous section, and press ALT-P in that
window to run it, you will see the script disappearing and the window turn grey. In
the lower left corner the GUI will be drawn (Figure 25-2).

Figure 25-2. The GUI of our example.

By selecting, for example, 5 vertices and a radius 0.5, and by pressing the Draw button
a pentagon will appear on the xy plane of the 3D window (Figure 25-3).

479

Chapter 25. Python Scripting

Figure 25-3. The result of our example script.

Python Reference
Relevant to Blender v2.31

The Full Python Application Programmer Interface of Blender has a reference docu-
mentation which is a book by itself. For space reason it is not included here.

Here it is :)3

Python Scripts
Relevant to Blender v2.31

There are more than one hundred different scripts for Blender available on the net. As
with plugins, scripts are very dynamic, changing interface, functionalities and web
location fairly quickly, so for an updated list and for a live link to them please refer
to one of the two main Blender sites, www.blender.org4 or www.elysiun.com5.

Notes
1. http://www.python.org

2. http://www.blender.org

3. http://www.blender.org/modules/documentation/228PythonDoc/Blender-
module.html

4. http://www.blender.org/

5. http://www.elysiun.com/

480

Chapter 26. Blender’s Plugins System

by Kent Mein

This section reports an in-depth reference for coding Blender’s Texture and Sequence
plugins.

Writing a Texture Plugin
Relevant to Blender v2.31

In this Section we will write a basic texture plugin and then go through the steps to
use a texture plugin. The basics behind a texture plugin is that you are given some
inputs; position, and normal values as well as some other info. Then you return in-
tensity, colour and/or normal information depending on the type of texture plugin.

All the files necessary to develop plugins as well as a few sample plugins can be
found in the blender/plugins. You can alternately get a bunch of plugins from
http://www.cs.umn.edu/~mein/blender/plugins1

Plugins are supported (loaded/called) in Blender using the dlopen() family of calls.
For those unfamiliar with the dlopen system it allows a program (Blender) to use a
compiled object as if it were part of the program itself, similar to dynamically linked
libraries, except the objects to load are determined at runtime.

The advantage of using the dlopen system for plugins is that it is very fast to access a
function, and there is no overhead in interfacing to the plugin, which is critical when
as (in the case of texture plugins) the plugin can be called several million times in a
single render.

The disadvantage of the system is that the plugin code works just like it is part of
Blender itself, if the plugin crashes, Blender crashes.

The include files found in the plugin/include/ subdirectory of the Blender installa-
tion document the Blender functionality provided to the plugins. This includes the
Imbuf library functions for loading and working with images and image buffers, and
noise and turbulence functions for consistent texturing.

Specification:
Relevant to Blender v2.31

• #include <plugin.h>

Every Blender plugin should include this header file, which contains all of the
structures and defines needed to properly work with Blender.

• char name[]="Tiles";

A character string containing the plugin name, this value will be displayed for the
texture’s title in the Texture Buttons window.

• #define NR_TYPES 2 char stnames[NR_TYPES][16]= {"Square", "Deformed"};

Plugins are allowed to have separate subtypes for minor variations on algorithms
- for example the default clouds texture in Blender has the "Default" and "Color"
subtypes.

NR_STYPES should be defined to the number of subtypes required by your plugin,
and a name for each subtype should be given. Every plugin should have at least 1
subtype and a subtype name.

481

Chapter 26. Blender’s Plugins System

• VarStruct varstr[]= {...};

The varstr contains all of the information Blender needs to display buttons for a
plugin. Buttons for plugins can be numerical for input data, or text for comments
and other information. Plugins are limited to a maximum of 32 variables.

Each VarStruct entry consists of a type, name, range information, and a tool tip.

The type defines the data type for each button entry, and the way to display the
button. For number buttons this value should be a combination (ORed) of INT or
FLO for the number format, and NUM, NUMSLI, or TOG, for the button type. Text
buttons should have a type of LABEL.

The name is what will be displayed on (or beside) the button. This is limited to 15
characters.

The range information consists of three floats that define the default, minimum,
and maximum values for the button. For TOG buttons the minimum is set in the
pressed state, and the maximum is set in the depressed state.

The tip is a string that will be displayed when the mouse is over this button (if the
user has tool tips on). This has a limit of 80 characters, and should be set to the
NULL string ("") if unused.

• typedef struct Cast {...};

The cast structure is used in calling the doit function, and serves as a way to simply
access each plugin’s data values.

The cast should contain, in order, an integer or float for every button defined in the
varstr, including text buttons. Typically these should have the same name as the
button for simple reference.

• float result[8];

The result array is used to pass information to and receive information from the
plugin. The result values are mapped as follows:

Result Index Significance Range

result[0] Intensity value 0.0 to 1.0

result[1] Red color value 0.0 to 1.0

result[2] Green color value 0.0 to 1.0

result[3] Blue color value 0.0 to 1.0

result[4] Alpha color value 0.0 to 1.0

result[5] X normal displacement
value

-1.0 to 1.0

result[6] Y normal displacement
value

-1.0 to 1.0

result[7] Z normal displacement
value

-1.0 to 1.0

The plugin should always return an intensity value. Returning RGB or a normal
are optional, and should be indicated by the doit() return flag "1" (RGB) or "2"
(Normal).

Before the plugin is called, Blender includes the current rendering-normal in re-
sult[5], result[6] and result[7].

482

Chapter 26. Blender’s Plugins System

• float cfra

The cfra value is set by Blender to the current from before every render pass. This
value is an the frame number +/- .5 depending on the field settings.

• plugin_tex_doit prototype

The plugin_tex_doit function should be prototyped for use by the getinfo function.
You do not need to change this line.

• plugin_tex_getversion

This function must be in each plugin for it to be loaded correctly. You should not
change this function.

• plugin_but_changed

This function is used to pass information about what buttons the user changes
in the interface. Most plugins should not need to use this function, only when
the interface allows the user to alter some variable that forces the plugin to do
recalculation (a random hash table for example).

• plugin_init

If needed plugins may use this function to initialize internal data. NOTE: This init
function can be called multiple times if the same plugin texture is copied. Do not
init global data specific to a single instance of a plugin in this function.

• plugin_getinfo

This function is used to communicate information to Blender. You should never
need to change it.

• plugin_tex_doit

The doit function is responsible for returning information about the requested pixel
to Blender.

The Arguments

• int stype

This is the number of the selected subtype, see the NR_TYPES and char stypes
entries above.

• Cast *cast

The Cast structure which contains the plugin data, see the Cast entry above.

• float *texvec

This is a pointer to 3 floats, which are the texture coordinates for which a texture
value is to be returned.

• float *dxt float *dyt

483

Chapter 26. Blender’s Plugins System

If these pointers are non-NULL they point to two vectors (two arrays of three
floats) that define the size of the requested texture value in pixel space. They are
only non-NULL when OSA is on, and are used to calculate proper anti aliasing.

The doit function should fill in the result array and return 0, 1, 2 or 3 depending on
what values have been filled in. The doit function should always fill in an intensity
value. If the function fills in a color value it should return 1, if it fills in a normal
value it should return 2, if it fills in everything it should return 3.

Texture/Material Interaction

Blender is somewhat different from most 3D packages in the logical separation be-
tween textures and materials. In Blender textures are objects that return certain val-
ues, signal generators in fact. Materials control the mapping of textures onto objects,
what is affected, how much, in what way, etc. Properly designed plugins should only
include variables to affect the signal returned not the mapping of it. Buttons to con-
trol scale, range, axis, etc. are best only included when they make the texture easier to
use (in the case of the size button in the Tiles plugin) or they speed up the calculation
(the Intensity/Color/Bump subtypes in the Clouds2 plugin). Otherwise the Material
Buttons make these buttons redundant, and the interface becomes needlessly com-
plex.

Generic Texture Plugin:
Relevant to Blender v2.31

#include "plugin.h"

/* Texture name */
char name[24]= "";

#define NR_TYPES 3
char stnames[NR_TYPES][16]= {"Intens","Color", "Bump"};
/* Structure for buttons,

* butcode name default min max 0
*/

VarStruct varstr[]= {
{NUM|FLO, "Const 1", 1.7, -1.0, 1.0, ""},

};

typedef struct Cast {
float a;

} Cast;

float result[8];
float cfra;
int plugin_tex_doit(int, Cast*, float*, float*, float*);

/* Fixed Functions */
int plugin_tex_getversion(void) {

return B_PLUGIN_VERSION;
}

void plugin_but_changed(int but) { }

void plugin_init(void) { }

void plugin_getinfo(PluginInfo *info) {
info->name= name;

484

Chapter 26. Blender’s Plugins System

info->stypes= NR_TYPES;
info->nvars= sizeof(varstr)/sizeof(VarStruct);

info->snames= stnames[0];
info->result= result;
info->cfra= &cfra;
info->varstr= varstr;

info->init= plugin_init;
info->tex_doit= (TexDoit) plugin_tex_doit;
info->callback= plugin_but_changed;

}

int plugin_tex_doit(int stype, Cast *cast, float *texvec, float *dxt,
float *dyt) {

if (stype == 1) {
return 1;
} if (stype == 2) {
return 2;
}
return 0;

}

Our Modifications:
Relevant to Blender v2.31

The first step is to come up with a game plan. What is this plugin going to do, how
are the users going to interact with it. For this example we will create a simple texture
that creates a simple brick/block pattern.

Now we’ll copy our generic plugin to cube.c and will fill in the gaps.

Its always a good idea to add some comments. First off tell users what the plugin
does, where they can get a copy, who they should contact for bugs/improvements,
and any licensing restrictions on the code. When using comments make sure you use
/* */ style comments. The plugins are in C and some cCcompilers do not accept //
style comments.

/*
Description: This plugin is a sample texture plugin that creates a simple
brick/block pattern with it.

It takes two values a brick size, and a mortar size.
The brick size is the size of each brick.
The mortar size is the mortar size in between bricks.

Author: Kent Mein (mein@cs.umn.edu)
Website: http://www.cs.umn.edu/~mein/blender/plugins
Licensing: Public Domain
Last Modified: Tue Oct 21 05:57:13 CDT 2003

*/

Next we need to fill in the Name, you should really keep this the same as your .c file,
preferably descriptive, less than 23 chars, no spaces, and all lowercase.

char name[24]= "cube.c";

We are going to keep this plugin simple, and only have one type that deals with
intensity. So we need the following:

#define NR_TYPES 1

485

Chapter 26. Blender’s Plugins System

char stnames[NR_TYPES][16]= {"Default"};

For our user interface we are going to allow people to change; The size of the brick
and mortar, as well as the intensity values returned for the brick and mortar. For that
we need to edit the varstr and Cast. The Cast should have a variable for each entry
in varstr.

/* Structure for buttons,
* butcode name default min max Tool tip
*/

VarStruct varstr[]= {
{NUM|FLO, "Brick", .8, 0.1, 1.0, "Size of Cell"},
{NUM|FLO, "Mortar", .1, 0.0, 0.4, "Size of boarder in cell"},
{NUM|FLO, "Brick Int", 1, 0.0, 1.0, "Color of Brick"},
{NUM|FLO, "Mortar Int", 0, 0.0, 1.0, "Color of Mortar"},

};

typedef struct Cast {
float brick,mortar, bricki, mortari;

} Cast;

Now we need to fill in plugin_tex_doit, we basically want to break down our texture
into "cells" which will consist of a brick and the mortar along the bottom edges of
that brick. Then determine if we are in the brick or the mortar. The following code
should do that.

int plugin_tex_doit(int stype, Cast *cast, float *texvec, float *dxt,
float *dyt) {
int c[3];
float pos[3], cube;

/* setup the size of our cell */
cube = cast->brick + cast->mortar;

/* we need to do is determine where we are inside of the current brick. */
c[0] = (int)(texvec[0] / cube);
c[1] = (int)(texvec[1] / cube);
c[2] = (int)(texvec[2] / cube);

pos[0] = ABS(texvec[0] - (c[0] * cube));
pos[1] = ABS(texvec[1] - (c[1] * cube));
pos[2] = ABS(texvec[2] - (c[2] * cube));

/* Figure out if we are in a mortar position within the brick or not. */
if ((pos[0] <= cast->mortar) || (pos[1] <= cast->mortar) ||

(pos[2] <= cast->mortar)) {
result[0] = cast->mortari;

} else {
result[0] = cast->bricki;

}
return 0;

}

One thing to note, the ABS function is defined in a header in plugins/include. There
are some other common functions there as well be sure to take a look at what’s there.

486

Chapter 26. Blender’s Plugins System

Compiling:
Relevant to Blender v2.31

bmake is a simple utility (shell script) to aid in the compilation and development of
plugins, and can be found in the plugins/ sub-directory of the Blender installation
directory. It is invoked by: bmake (plugin_name.c) and will attempt to link the proper
libraries and compile the specified C file properly for your system. If you are trying
to develop plugins on a windows machine bmake may not work for you in that case
you should look into using lcc. You can use the following to compile a plugin with
lcc: Assuming you have your plugins in c:\blender\plugins. Here is an example of
how you would compile the texture plugin sinus.c Open a dos prompt and do the
following:

(Note: You’ll want to make sure the lcc\bin directory is in your path)

cd c:\blender\plugins\texture\sinus
lcc -Ic:\blender\plugins\include sinus.c
lcclnk -DLL sinus.obj c:\blender\plugins\include\tex.def
implib sinus.dll

Writing a Sequence Plugin
Relevant to Blender v2.31

In this Section we will write a basic sequence plugin and then go through the steps
use a sequence plugin. The basics behind a sequence plugin are you are given some
inputs; 1-3 input image buffers as well as some other information and you output a
resulting image buffer.

All the files necessary to develop plugins as well as a few sample plugins can be
found in the blender/plugins directory. You can alternately get a bunch of plugins
from http://www.cs.umn.edu/~mein/blender/plugins2

Specification:
Relevant to Blender v2.31

• #include <plugin.h>

Every Blender plugin should include this header file, which contains all of the
structures and defines needed to properly work with Blender.

• char name[]="Blur";

A character string containing the plugin name, this value will be displayed for the
texture’s title in the Texture Buttons window.

• VarStruct varstr[]= {...};

The varstr contains all of the information Blender needs to display buttons for a
plugin. Buttons for plugins can be numerical for input data, or text for comments
and other information. Plugins are limited to a maximum of 32 variables.

Each VarStruct entry consists of a type, name, range information, and a tool tip.

The type defines the data type for each button entry, and the way to display the
button. For number buttons this value should be a combination (ORed) of INT or
FLO for the number format, and NUM, NUMSLI, or TOG, for the button type. Text
buttons should have a type of LABEL.

487

Chapter 26. Blender’s Plugins System

The name is what will be displayed on (or beside) the button. This is limited to 15
characters.

The range information consists of three floats that define the default, minimum,
and maximum values for the button. For TOG buttons the minimum is set in the
pressed state, and the maximum is set in the depressed state.

The tip is a string that will be displayed when the mouse is over this button (if the
user has tool tips on). This has a limit of 80 characters, and should be set to the
NULL string ("") if unused.

• typedef struct Cast {...};

The cast structure is used in calling the doit function, and serves as a way to simply
access each plugin’s data values.

The cast should contain, in order, an integer or float for every button defined in the
varstr, including text buttons. Typically these should have the same name as the
button for simple reference.

• float cfra

The cfra value is set by Blender to the current from before every render pass. This
value is an the frame number +/- .5 depending on the field settings.

• plugin_seq_doit prototype

The plugin_seq_doit function should be prototyped for use by the getinfo function.
You do not need to change this line.

• plugin_seq_getversion

This function must be in each plugin for it to be loaded correctly. You should not
change this function.

• plugin_but_changed

This function is used to pass information about what buttons the user changes
in the interface. Most plugins should not need to use this function, only when
the interface allows the user to alter some variable that forces the plugin to do
recalculation (a random hash table for example).

• plugin_init

If needed plugins may use this function to initialize internal data. NOTE: This init
function can be called multiple times if the same plugin sequence is copied. Do not
init global data specific to a single instance of a plugin in this function.

• plugin_getinfo

This function is used to communicate information to Blender. You should never
need to change it.

• plugin_seq_doit

The sequence doit function is responsible for applying the plugin’s effect and copy-
ing the final data into the out buffer.

The Arguments

488

Chapter 26. Blender’s Plugins System

• Cast *cast

The Cast structure which contains the plugin data, see the Cast entry above.

• float facf0

The value of the plugin’s IPO curve for the first field offset. If the user hasn’t
made an IPO curve this ranges between 0 and 1 for the duration of the plugin.

• float facf1

The value of the plugin’s IPO curve for the second field offset. If the user hasn’t
made an IPO curve this ranges between 0 and 1 for the duration of the plugin.

• int x int y

The width and height of the image buffers, respectively.

• Imbuf *ibuf1

A pointer to the first image buffer the plugin is linked to. This will always be a
valid image buffer.

• Imbuf *ibuf2

A pointer to the second image buffer the plugin is linked to. Plugins using this
buffer should check for a NULL buffer, as the user may not have attached the
plugin to two buffers.

• Imbuf *out

The image buffer for the plugin’s output.

• Imbuf *use

A pointer to the third image buffer the plugin is linked to. Plugins using this
buffer should check for a NULL buffer, as the user may not have attached the
plugin to three buffers.

ImBuf image structure

The ImBuf structure always contains 32 bits ABGR pixel data.

ImBuf structs are always equal in size, indicated by the passed x and y value.

User Interaction

There is no way for Blender to know how many inputs a plugin expects, so it is
possible for a user to attach only one input to a plugin that expects two. For this
reason it is important to always check the buffers your plugin uses to make sure they
are all valid. Sequence plugins should also include a text label describing the number
of inputs required in the buttons interface.

489

Chapter 26. Blender’s Plugins System

Generic Sequence Plugin:

#include "plugin.h"
char name[24]= "";

/* structure for buttons,
* butcode name default min max 0
*/

VarStruct varstr[]= {
{ LABEL, "In: X strips", 0.0, 0.0, 0.0, ""},

};

/* The cast struct is for input in the main doit function
Varstr and Cast must have the same variables in the same order */

typedef struct Cast {
int dummy; /* because of the ’label’ button */

} Cast;

/* cfra: the current frame */

float cfra;

void plugin_seq_doit(Cast *, float, float, int, int,
ImBuf *, ImBuf *, ImBuf *, ImBuf *);

int plugin_seq_getversion(void) {
return B_PLUGIN_VERSION;

}

void plugin_but_changed(int but) {
}

void plugin_init() {
}

void plugin_getinfo(PluginInfo *info) {
info->name= name;
info->nvars= sizeof(varstr)/sizeof(VarStruct);
info->cfra= &cfra;

info->varstr= varstr;

info->init= plugin_init;
info->seq_doit= (SeqDoit) plugin_seq_doit;
info->callback= plugin_but_changed;

}

void plugin_seq_doit(Cast *cast, float facf0, float facf1, int xo, int yo,
ImBuf *ibuf1, ImBuf *ibuf2, ImBuf *outbuf, ImBuf *use) {
char *in1= (char *)ibuf1->rect;
char *out=(char *)outbuf->rect;

}

490

Chapter 26. Blender’s Plugins System

Our Modifications:
The first step is to come up with a game plan. What is this plugin going to do, how
are the users going to interact with it. For this example we will create a simple filter
that will have a slider for intensity from 0-255. If any of the R,G, or B components of
a pixel in the source image are less then our chosen intensity, it will return black and
alpha, otherwise it will return whatever is in the image. Now we’ll copy our generic
plugin to simpfilt.c and will fill in the gaps.

Its always a good idea to add some comments. First off tell users what the plugin
does, where they can get a copy, who they should contact for bugs/improvments,
and any licensing restrictions on the code. When using comments make sure you use
/* */ style comments. The plugins are in c and some c compilers do not accept //
style comments.

/*
Description: This plugin is a sample sequence plugin that filters out lower
intensity pixels. I works on one strip as input.
Author: Kent Mein (mein@cs.umn.edu)
Website: http://www.cs.umn.edu/~mein/blender/plugins
Licensing: Public Domain
Last Modified: Sun Sep 7 23:41:35 CDT 2003
*/

Next we need to fill in the Name, you should really keep this the same as your .c file.
Preferably descriptive, less than 23 chars, no spaces, and all lowercase.

char name[24]= "simpfilt.c";

The Cast and varstr need to be in sync. We want one slider so we’ll do the following:

varStruct varstr[]= {
{ LABEL, "In: 1 strips", 0.0, 0.0, 0.0, ""},
{ NUM|INT, "Intensity", 10.0, 0.0, 255.0, "Our threshold value"},

};

typedef struct Cast {
int dummy; /* because of the ’label’ but-

ton */
int intensity;

} Cast;

Now we need to fill in plugin_seq_doit. We basically want to loop through each pixel
and if RGB are all less than intensity set the output pixel to: 0,0,0,255 else set it to the
input values for that position.

int x,y;

for(y=0;y cast->intensity) &&
(in1[1] > cast->intensity) &&

(in1[2] > cast->intensity)) {
out[0] = out[1] = out[2] = 0;
out[3] = 255;

} else {
out[0] = in1[0];
out[1] = in1[1];
out[2] = in1[2];
out[3] = in1[3];

}
}

}

491

Chapter 26. Blender’s Plugins System

So we wind up with simpfilt.c

Compiling:
bmake is a simple utility (shell script) to aid in the compilation and development of
plugins, and can be found in the plugins/ sub-directory of the Blender installation
directory. It is invoked by: bmake (plugin_name.c) and will attempt to link the proper
libraries and compile the specified C file properly for your system. If you are trying
to develop plugins on a windows machine, bmake may not work for you. In that case
you should look into using lcc. You can use the following to compile a plugin with
lcc: Assuming you have your plugins in c:\blender\plugins. Here is an example of
how you would compile the sequence plugin sweep.c Open a dos prompt and do the
following: (Note: You’ll want to make sure the lcc\bin directory is in your path).

cd c:\blender\plugins\sequence\sweep
lcc -Ic:\blender\plugins\include sweep.c
lcclnk -DLL sweep.obj c:\blender\plugins\include\seq.def
implib sweep.dll

Notes
1. http://www.cs.umn.edu/~mein/blender/plugins

2. http://www.cs.umn.edu/%7Emein/blender/plugins

492

Chapter 27. Yafray as an Integrated External Renderer

Relevant to Blender v2.34

by Gaurav Nawani

Part 1
Yafray integration is one of the best features added to Blender. The current release
of Blender 2.35 has a very neat integration with Yafray from within Blender, and is
fairly stable to use. Unfortunately, Yafray usage is limited to those who are already
comfortable with the Blender interface or can hack their way through. The first part
of the tutorial deals with the basic steps needed to render from Yafray and later parts
serve as a guide for the rest of the Yafray’s available features.

Interface
Blender has two of its own rendering engines built-in and that includes it’s own
raytracer and an older scan-line rendering engine. Yafray however is a standalone
raytracer. Its functionality is accessed through Blender’s interface by exporting the
scene parameters to a Yafray readable format by one of two options. For the first one
Blender has the required support built-in which allows Blender to use Yafray as a
plug-in, virtually as if Yafray were an inbuilt renderer, and the other option is where
Blender exports the scene data to Yafray format in an XML file called YBtest.xml ,
and then Yafray renders it as a standalone program. Both methods require Yafray to
be first installed on the system and it is assumed that you have both Blender 2.34 and
Yafray 0.07 installed on your system.

The Yafray integration in Blender can be broadly categorized in two parts. One relates
to the interface for light or lamp settings. The other one to the core Yafray rendering
features.

Step-1
It is to be noted that this step might not be necessary for Windows. Before we proceed,
we first need to configure Yafray preferences. Drag down the top menu bar to un-hide
Blender’s User Preferences window. Here click on File Paths button to open up
the Path preferences menu. On the top left part is the YFexport text entry box. Enter
the path where you would like to save the exported blend file in Yafray format (XML
file) while rendering with the second option. This is necessary if you want to save the
exported file and later edit it manually.

Figure 27-1. Path selection in User Preferences menu.

493

Chapter 27. Yafray as an Integrated External Renderer

Step-2
As you are now aware, Blender allows you to choose between its own internal ray-
tracer and Yafray. To use Yafray you first have to instruct Blender. To do that press
F10 for Rendering Options window, now go to the Render tab in the Render Options
window (Figure 27-2). In the Render tab, select Yafray from the Render engine drop
down list (Figure 27-3), by default Blender internal is selected.

Note: Please do not get confused with the Ray button. This has nothing to do with en-
abling Yafray’s ray-tracing. It does not effect in any way the Yafray renderings if Yafray is
chosen as the raytracer from the rendering engine drop down list.

Figure 27-2. The default options in Render Tab.

Notice as soon as you choose Yafray two more tabs appear beside the Render tab
(Figure 27-3). These two extra tabs are Yafray and Yafray GI and these two tabs
have rendering and other features and parameters of Yafray.

Figure 27-3. Yafray raytracer selection and its two sub-tabs.

Now select the Yafray tab from the two new tabs, there will be some functions visi-
ble, right now we are interested in the button named XML(pressed by default) (Figure
27-4). You go ahead and turn it off right now. I will explain why, as I had told earlier
that Blender has two options for rendering with Yafray, either as plug-in interface or
to call Yafray as command line program.

494

Chapter 27. Yafray as an Integrated External Renderer

Figure 27-4. Default Yafray tab with Yafray file export enabled. (XML button).

Figure 27-5. Disabled Yafray export.

Choosing the plug-in or first option (XMLbutton off) allows you to see the rendering
progress in the Render window (Figure 27-6), much like the Blender’s own render-
ing, and this is one of the reasons why Yafray requires and uses more memory than
before. Using the second option which is by default (XMLbutton pressed) active, will
first export the active scene to the YFexport path, which you have set in your File
Paths preferences (the Section called Step-1). The Yafray is then called as a command
line program, and it takes over the processing of the exported XML file, and only
after completion provides the image back to the Render window, so there is no other
interaction in between, save for the textual output in the Blender’s terminal window.

Figure 27-6. The rendering in progress for Yafray XML disabled.
495

Chapter 27. Yafray as an Integrated External Renderer

Step-3
After going through the first two steps you have virtually done every thing to make a
Yafray render. At this time you have your scene ready with lamps of your choice, the
best thing to proceed from here is to press F12 to render. Here is where the problem
crops up for almost everyone. I will explain... Depending on the light settings in your
scene, you either will see a blank screen or will see very faint outlines of the objects in
the scene. Or if your lamps have higher light intensity (value) then you might see the
scene properly. Alternatively, in extreme case, Yafray and Blender do a crash thingy.

In case you came up with black render the chances are good that you can render
through Yafray, all you need now is to adjust the light’s parameters, and you will
have your own Yafray render within minutes.

Points to check for problems

• The first problem for Yafray renders is almost every time a lack of sufficient light in-
tensity in the scene. This is not actually a problem of Yafray, but an implementation
issue from within Blender. So, in this case, you need to increase the light intensity,
or value, of every lamp in the scene (more information in the Section called Part 2).

• If every thing fails you might need to check for the distance value of the lamps,
since the light attenuation falloff is mostly sharper in CG (to reduce computations),
your objects in the scene might appear black because their ray casting distance just
might not be reaching the objects in the scene. You can get around this by adjusting
distance value in the Lamps tab.

• In case of crash please check the elysiun forums for possible answers.

Part 2
Instead of instructing you to modify the settings here and there, I thought it might
be better to explain the Yafray light types one by one. This will enable you to make
informed decisions.

Let there be light... And there was Yafray everywhere
There are five light types used in Blender and of them only four are directly sup-
ported in Yafray. On enabling Yafray raytracer from the Render tab, you initially
see six lamp types (in the lamp options window, F5), of which Yafray makes use
of Blender’s lamp, area, spot and sun. I will come later to the other two lamps listed,
Hemi and Photons later.

496

Chapter 27. Yafray as an Integrated External Renderer

Figure 27-7. The scene.

The scene description: The current scene has two light sources. One is a helper light
(Sun, without shadow and at value .200), which is used to provide non-directional
light to increase the ambiance for the scene. The other is the lamp source (or light
source), which is a placeholder for every light type explained. The lamp positions
are static through out, and Ray Shadow (shadow casting) is enabled for all the lamp
sources that are being used (see Figure 27-8).

497

Chapter 27. Yafray as an Integrated External Renderer

Figure 27-8. The scene as seen in the Viewport.

Note: The suggested uses for the light types defined here are general in the usability
approach. They are not to be taken as the absolute word for lighting your scene. The
lighting varies depending on the scene and the artists own vision for the scene. For best
results experiment with the lights in your scene to find which works best for you.

Important: The mention of render times in the images is rounded off, it is relative and is
used just to give the idea of typical render times for same scene by different lights and
settings.

498

Chapter 27. Yafray as an Integrated External Renderer

Lamp

This is the simplest light source available, in some ways it is like sun, as it is omni-
directional (i.e. shoots light in all directions from the point of its origin) and is spher-
ical in nature. Since it shoots light rays in every direction, that means the ray going
away from the scene will not make any visible changes in the scene, the light rays
will be lost and thus are waste of computation, Although Ray tracers use a variety of
hacks by cutting off the unwanted computations, it is a bit slower than other direc-
tional light sources if bigger parts of the light shot come inside the scene view.

The general use of Lamp is for indoor lighting, like rooms and halls, but it is not
limited to this use, it is also more commonly used as filler light or helper light in the
scene.

Values: When a single lamp is used for the scene in Yafray (through-out the tutorial
when I say Yafray I mean Blender-Yafray), it will generally not provide sufficient
lighting to light up the scene unless it is kept at a higher value. For the sample scene,
the value of Lamp was set at 10 (maximum) but still there seems to be the need for
additional lighting (but we are sticking to it for the sake of understanding). See Figure
27-9.

Figure 27-9. Rendered with Lamp at default settings.

The Lamp will cast sharper shadows at default (zero) radius. The radius setting in
Lamp is used to increase the area size for shooting the light. If the size of Lamp is
bigger than the objects, then the light shot from some parts of the lamp could directly
reach to the parts of the scene where the other part of the lamp casts a shadow. This

499

Chapter 27. Yafray as an Integrated External Renderer

intersection results in the shadow being diluted for that part, thus getting blurred
(also called partial shadows). You can observe this phenomenon in real world (sun
light).

LINK: for more info on shadow dilution or Partial shadows go to Ditto head’s Light
tutorial1.

Figure 27-10. The noise comes when sampling values is low.

The scene above (Figure 27-10) was rendered at radius 2 with a sampling value at
1, as can be seen the scene has grainy partial shadows. The use of samples button
is only to reduce those grains in shadows, the sampling buttons control the number
of samples used in shadow calculations, increasing the sampling results in smoother
shadows. The sampling button is only available in lamp and area light and functions
the same for both.

500

Chapter 27. Yafray as an Integrated External Renderer

Figure 27-11. The increase in sampling to 5 removed the noise.

Area

The Area Light is a directional source. The shape of Area Light can be varied from
square to rectangular from the drop down list in the Lamp tab. Below the shape selec-
tion there is also an option to increase the size of the Area Light .

501

Chapter 27. Yafray as an Integrated External Renderer

Figure 27-12. The basic render from area light at default setting and value of 4.

Values: For Area Lamp you will need lower light intensity values for rendering a
scene with Yafray. The sample scene is lit by light value at 4, it is brighter than the
one rendered by lamp at value 10. This is because it is shooting all the light towards a
direction from a plane while the lamp shoots the light in every direction distributing
energy where it may not be required.

502

Chapter 27. Yafray as an Integrated External Renderer

Figure 27-13. Although the scene looks similar to Figure 27-11 but is brighter and
have better shadows.

Note: One important point to remember is that in the official Build of Blender2.34 using
two or more area lights results in error in the renderings, it is a recognized bug and have
been patched in some development builds.

Spot

The spot is also a directional light source and as the name suggests it provides a
circular spot of light or more appropriately a cone of light. The size of cone can be
controlled by the SpotSi or angle of spotlight beam. The higher the angle the more
nearer it behaves like an area light, but with one major difference. It cannot cast par-
tial shadows. Spot light has a parameter to control the SpotBi or Spot’s edge smooth-
ness only. It can be seen only if the spot light is inside the scene view, otherwise you
will not notice any difference in spot or other lights.

503

Chapter 27. Yafray as an Integrated External Renderer

Figure 27-14. The Spot lamp render with default settings.

504

Chapter 27. Yafray as an Integrated External Renderer

Figure 27-15. Spot lamp with spherical light attenuation.

Notice the increased brightness at the portion nearer to the lamp in the Figure 27-15
while using the Spherical light attenuation (quad is not supported in Yafray). Increase
in the distance value the spherical attenuation also increases in radius, for example
the Figure 27-15 has a default distance value of 20 while Figure 27-16 has the dis-
tance value at 30. The effect looks like that of typical household lamps where the
attenuation is sharper.

Note: The light attenuation in Yafray has only quadratic falloff, while Blender can have
linear, cubic and the mix of these also. That explains relatively sharper light intensity
falloff in Yafray renders.

505

Chapter 27. Yafray as an Integrated External Renderer

Figure 27-16. Spot lamp with Spherical attenuation enabled.

Sun

This is also a directional light source. It tries to emulate sunlight by shooting light of
the same intensity everywhere in the scene without attenuation (Figure 27-17). This
results in the environment being lit up with constant ambiance. Its value must be
kept lower. The sample scene uses a light intensity value of .100. It is obviously good
for out door lights, especially for a sun.

In outdoor scenes, if you do not want sharper shadows you can disable shadow cast-
ing for sun, and use other lamps for shadow generation. But make sure they have
sufficient light intensity to cast a shadow.

506

Chapter 27. Yafray as an Integrated External Renderer

Figure 27-17. The sunlight at value 2. No wonder why this lamp is called Sun.

More lamps?

Hemi - Yafray does not support Blenders implementation of Hemi light internally;
right now it just uses Yafray’s implementation of sun light instead, so you can use
Sun light instead.

Photon - Last of all, the Photon light source or photons lamp button is not to be con-
fused with any light source. It does not cast any shadow or light, it is only used
in Caustics* calculations and requires being placed or directed where you need the
caustic calculation. Photon lamp shoots photons in an area, the photons are used
by Yafray as the specialized ray elements only to calculate the caustics on passing
through the objects like glass or mirrors, which have have the property of bending
light when passed through them, known as total internal reflection. Basically the place-
ment of photon lamp is to allow the user to optimize the rendering. Caustics is one
of the most computation intensive jobs in Ray tracing.

Note: This photon lamp and photons are not to be confused with the photon option in the
GI method. Which is explained in the the Section called Part 3.

507

Chapter 27. Yafray as an Integrated External Renderer

Part 3

GI and other features
Yafray supports Global Illumination*. We have to go back to the Render tab to learn
more about Yafray’s implementation of GI. The first look at the Yafray GI tab and
you might think. Oh! It is so easy, you are right the features available are simplified
for your use. The available options are Method and Quality, lets have a look at them
one by one. The quality is the same for both and is explained later.

Figure 27-18. The Yafray GI tab.

The available Methods of GI

Skydome

While Skydome is simply a method to have lighting from the sky or more appropri-
ately the atmosphere, it does not provides full GI in the true sense, as it does not takes
into account the indirect light bounces on the surfaces of objects. Rather it affects the
light in the scene by the colour of the atmosphere and also the diffusion of light in the
atmosphere is controlled by it. For example in the default scene the colour of atmo-
sphere was set at reddish (chosen just to clearly identify the affect). See Figure 27-19
for how the diffusion effects the scene.

508

Chapter 27. Yafray as an Integrated External Renderer

Figure 27-19. The left part of image have the power of diffusion set at 2 while the
right one at 4.

The colour of the background or atmosphere can be changed in the Word Panel (F8).
You have to enable the world for Skydome to work fully. The Skydome offers no other
features. The Skydome is faster method of GI, while its results may not be physically
more accurate, its results are not too bad to ignore for the speed advantage it offers.

Full

On the other hand, the Full option takes into consideration the reflected and/or re-
fracted light bounces (or indirect light) on neighboring surfaces. This method is a
very close simulation of actual lighting in the real world, and that is why the GI pro-
duces more photo-realistic images than any other method used in CG, that is also
why it requires higher computations and is slower.

509

Chapter 27. Yafray as an Integrated External Renderer

Figure 27-20. Using Full GI increases the time as well as realism.

Notice the difference in realism between the two parts in Figure 27-20.The light
bounces provide enough diffusion in the second part of the image, which lights up
the shadow portion in the scene according to the distance of the surfaces in contact.
While the first part has approximately similar shadow depth through out.

Figure 27-21. The Yafray GI tab. Options for full method are visible.

510

Chapter 27. Yafray as an Integrated External Renderer

Features for Full method of GI

Depth:

This refers to the total number of light bounces for one reflected or diffuse ray. Gener-
ally the depth 3 works best for normal scenes. Increasing the depth results in higher
amounts of calculation per ray.

Cdepth:

The Cdepth is nothing but the bounce depth for caustics, or for the transparent ma-
terials like the glass, gems, liquids etc. Higher computations are required for caustics
calculations, that is why the GI in CG keeps separate the normal lights with photons,
even though in the real world the photons are the actual light particles. For better
quality of caustics you will need to have as much as 3-5 Cdepth or more for detail.

Photon:

This photon button should not be confused with the photon lamp. This is only used
as a helper in global illumination for Yafray and bears no relation with the caustic
photon lamps or caustic photons.

Count:

The count refers to the total number of photons to be made available in the scene for
helper in GI. The number of photons will will vary for the scene, but higher num-
bers in the scene will provide smoother results, again its at your disposal to find
time/quality limit.

Radius:

This refers to the distance within which the photons calculated have higher precision
value to effect the GI, outside which the photons do not effect the scene much. So
the Idea is to optimize the radius to the size of the area where better GI calculation is
required. Keep the radius half the size of area.

MixCount:

This allows you to choose the number of photons which should be kept inside the Ra-
dius. The Radius and Mix Count make up your photon map. The photon-map is noth-
ing but the optimized area for photons used in GI calculation and Yafray sufficiently
processes the sampling and photon gathering on the photons inside the photon-map
and leaves the photons outside the photon-map.

Tune Photons:

This allows the re-use of successful gathering of photons and positions from cache,
which helped in GI calculation on previous render, and only re-compute the other
photons for faster result. It is may not necessarily faster in every rendering but can
provide good speed improvements generally. Due to speed improvement it is good
to use it during test renders once you come close to what you wanted. You can disable
it after you are satisfied with the test renders and want to create the final version of
the image to do the full computation again.

511

Chapter 27. Yafray as an Integrated External Renderer

Quality:

The quality dropdown list allows you to choose the quality level of GI for both the
Skydome and Full GI methods. Quality setting allows control over the number of
samples used to sample in GI. Since its use is automatic by default, it will try to used
maximum value for MultiPasses and samples per pass depending upon the qual-
ity level. If you want, you can disable the AutomaticAA manually and can instruct
Yafray accordingly.

Other features of Yafray

Anti-Aliasing:

The Yafray tab in Rendering options window lists the options for manual control
over anti-aliasing. Press the AutoAA button to un-hide the manual settings.

Figure 27-22. The Yafray tab.

• AAPasses: It is used for the number of passes to be used for Anti-Aliasing. The
higher the passes, the better the results, longer render times also. While using
passes of more than one, every pass samples the total number of samples chosen
in AASamples for every pass, thereby achieving better AA of pixels in noisier ar-
eas. If the results are noisier in a single pass you can increase the number of passes
for better control and also a higher number of samples per pass. Single pass anti-
aliasing with higher sampling, is not necessarily better than lesser samples with
multipass.

• AA Samples: The number of samples per pass. The total AA sampling can be calcu-
lated by multiplying AApasses with AAsamples . In our case for the the final blurred
image for the DoF used below, we have used 4x4=16 anti-aliasing samples.

• Psz: The psz is the >Pixel filter size>, that is used during the Aliasing calculations
for aliasing the overlapping of neighbouring pixels.

• Threshold: This sets the threshold or the maximum brightness difference with the
neighbouring pixel, when this is above the chosen level, extra samples are taken
until the result is below the threshold limit or maximum samples/passes are
reached. Lower threshold means more pixels will be antialiased, so at 0 all pixels
in the render will be anti-aliased, when 1 no anti-aliasing is done.

Raydepth: This effects the maximum number of bounces a reflected/refracted ray can
make. This is only important for glass and mirrors, higher ray depth will improve
the quality of the reflection/refraction in the glasses and or mirror.

512

Chapter 27. Yafray as an Integrated External Renderer

The Depth of filter
Yafray supports the real camera like DoF. The DoF of filer setting can be accessed
easily. First select camera in view port then press F9. You will see a tab along with
the Camera tab named Yafray DoF . In the Camera tab enable Show limits , doing
this will allow you to see a yellow cross on the Show limits line of the camera in
Viewport. The yellow cross is what we need to put at or near the objects we want to
have sharp focus on. That distance can be set by the DoFDist numeric button. The
Aperture setting is the value you need to change to get the required DoF you want.
Normally a setting in between .100 to .500 will suffice for most scenes.

Figure 27-23. Notice the noise on the wooden boards.

How to remove the artifacts in DoF rendered scenes. DoF filter requires more sam-
plings per scene to get the right amount of blurring. To do that you need to disable
Automatic AA in Yafray tab in Render panel. Here try to adjust the AAPasses and AA
Sample accordingly. If you have large aperture settings then you need to have multi-
ple passes plus higher samplings per pass. Increasing anti-aliasing will also increase
the render times.

513

Chapter 27. Yafray as an Integrated External Renderer

Figure 27-24. Increasing the sampling manually, and aperture size solves the prob-
lem.

HDRI or High Dynamic Range Illumination
Yafray has HDRI support. To use this go to World buttons F8. Go to Texture and
Input tab and add a new texture. Then go to texture selection F6 select Texture
type as image, press Load image button, locate the HDR file, select and press En-
ter. Blender will not show the HDRI image in the World tab, however it is loaded
automatically during rendering. You can also increase or reduce the exposure of the
HDRI from the Texture brighteners button in the colour tab in texture window
(F6). The possible exposure settings are -1,0,1, for brightness’ sliders at 0,1,2. This is
because HDRI exposure can be modified in integer values only. For the final step, use
any one of the GI methods. Generally Skydome will work fine.

514

Chapter 27. Yafray as an Integrated External Renderer

Figure 27-25. HDRI render using Uffizi probe. It need more quality level.

Closing comments
I would like to thank eeshlo, to an large extent I was motivated to learn about Yafray
because of him, and thus was able to write this tutorial, and also for his help in solv-
ing my queries. Thanks also goes to Dreamsgate for helping in the editing and sup-
port for this document.

This tutorial is not finished, as there are several aspects which I have not tried my-
self, like caustics, and GI techniques for certain types of renderings. So I call this
tutorial version 1. Later improvements will not necessarily come at regular intervals.
If you have any queries or have some point that I overlooked or misunderstood in
the matter written above. I would be glad to hear from you. Also welcome are the
suggestions for improvements. My mail-id

Glossary for the geeks
Global Illumination: It is a method (algorithm) of computation for light calculation in
the scene which, takes in to account the light bounces from the neighboring surfaces,
along with the normal illumination of direct lights. In Other words GI calculates the
Indirect light also, thus it makes the renders more photo-realistic. Examples of GI

515

methods are Radiosity and Ambient Occlusion in Blender and on a general scale
Radiosity, Ray tracing and Caustics all use different GI algorithms.

Ray tracing: A method in CG which uses an algorithm to calculate the effect of lights
on the surface of objects in the scene. In CG the ray-tracer. works by calculating the
light effect on the scene by tracing the light photons back to the point of origin, from
the scene or the camera. It uses the reverse of what is in real life, the sun shoots pho-
tons and we receive them through reflection/refraction from the objects, the photon
energy is also modified by the objects by absorption or adsorption to form a particu-
lar texture or colour of the object.

The reverse way of ray-tracing is done so as to reduce the amount of calculations, as
it is faster to take just the photons or lights which reach the scene or our eye or the
camera, than calculating everything what is outside the view.

Photon: The photon is also referred as Ray of light. And it is the smallest unit of light
energy.

Caustics: The caustics are referred to as the refraction pattern formed by highly trans-
parent objects such as a glass of fluids which have a certain degree of Total internal
reflection, for example the light falling on a glass filled with wine will form some
strange patterns of different colours and intensity which are referred to as light caus-
tic. The computer method for Caustic calculation is also referred to as photon map-
ping. The photon lamp in Blender/Yafray is for this purpose only.

HDRI: Or High Dynamic Range Illumination. This method is relatively new in GI.
This uses the actual light probe value of a real scene in the real world taken through
with special equipment to produce a 360 view of a scene, and stores the information
of the light from all areas in the scene in a spherically mapped image called HDR. The
renderer uses that information to shoot light from and provides even more photo-
realistic rendering.

Anti aliasing: It is refers to a method to reduce the brightness levels between two
neighboring pixels by overlapping the colours in the difference level to neighboring
pixels. This make the images appear smoother.

Photonmap: An assumed area or bound with-in which more density of photons are
kept for calculations of indirect illumination.

Glossary for the geeks

Global Illumination

It is a method (algorithm) of computation for light calculation in the scene which,
takes in to account the light bounces from the neighboring surfaces, along with
the normal illumination of direct lights. In Other words GI calculates the Indi-
rect light also, thus it makes the renders more photo-realistic. Examples of GI
methods are Radiosity and Ambient Occlusion in Blender and on a general scale
Radiosity, Ray tracing and Caustics all use different GI algorithms.

Ray tracing

A method in CG which uses an algorithm to calculate the effect of lights on the
surface of objects in the scene. In CG the ray-tracer. works by calculating the light
effect on the scene by tracing the light photons back to the point of origin, from
the scene or the camera. It uses the reverse of what is in real life, the sun shoots
photons and we receive them through reflection/refraction from the objects, the
photon energy is also modified by the objects by absorption or adsorption to
form a particular texture or colour of the object.

516

Glossary for the geeks

The reverse way of ray-tracing is done so as to reduce the amount of calculations,
as it is faster to take just the photons or lights which reach the scene or our eye
or the camera, than calculating everything what is outside the view.

Photon

The photon is also referred as Ray of light. And it is the smallest unit of light
energy.

Caustics

The caustics are referred to as the refraction pattern formed by highly transpar-
ent objects such as a glass of fluids which have a certain degree of Total internal
reflection, for example the light falling on a glass filled with wine will form some
strange patterns of different colours and intensity which are referred to as light
caustic. The computer method for Caustic calculation is also referred to as pho-
ton mapping. The photon lamp in Blender/Yafray is for this purpose only.

HDRI

See: High Dynamic Range Illumination

High Dynamic Range Illumination

Or HDRI. This method is relatively new in GI. This uses the actual light probe
value of a real scene in the real world taken through with special equipment
to produce a 360 view of a scene, and stores the information of the light from
all areas in the scene in a spherically mapped image called HDR. The renderer
uses that information to shoot light from and provides even more photo-realistic
rendering.

See Also: HDRI.

Anti aliasing

It is refers to a method to reduce the brightness levels between two neighboring
pixels by overlapping the colours in the difference level to neighboring pixels.
This make the images appear smoother.

Photonmap

An assumed area or bound with-in which more density of photons are kept for
calculations of indirect illumination.

517

Glossary for the geeks

518

Chapter 27. Yafray as an Integrated External Renderer

Notes
1. http://www.blenderman.org/modules.php?name=Content&pa=showpage&pid=33

519

Chapter 27. Yafray as an Integrated External Renderer

520

Chapter 28. From Blender to YafRay Using YableX

Relevant to Blender v2.31

by Manuel Bastioni

What is Yable?
Yable is a Python script, originally devised by Andrea Carbone, allowing to export
the Blender scene in the XML format of YafRay, so to be able to exploit that engine for
highly photorealistic renderings. However, Yable is not a mere "format converter",
but is a true scene processing lab that allows you to assign and change the lights,
materials and environmental settings taking full advantage of YafRay features. From
another point of view we could consider Yable script as a GUI, able to visualize and
manage with great simplicity the large quantity of parameters used by YafRay.

Which Yable?
The first versions of Yable (end of 2002) have been realised entirely by Andrea and,
afterwards, as a result of the success of the script among the users, many different
versions of the script have been issued, to correct bugs and add new features. It is
important to point out the contribution of Alejandro Conty Estévez, Alfredo "Eeshlo"
de Greef, Christoffer Green, Leope, Johnny "guitargeek" Matthews, Jean-Michel "jms"
Soler.

After the official release of Yable 0.30 many non-official patches has been issued,
generically called YableX, and published on the Yable forum on www.Kino3d.com.
For the purpose of this Chapter we have examined all those versions to come up with
a new "official" version and decided to base it on the latest YableX release that, thanks
to modifications carry out by Jms, works with the last release of Blender.

Where to get YableX?
The two main Blender sites, which you should know by now, have links to it,
anyway the last version has been realized by Jms and can be downloaded from
his site Zoo-Blender (http://www.zoo-logique.org/3D.Blender1). I recommend,
however, that you have a look at the official YafRay forum, in the exporters section:
http://www.YafRay.org2

Installing the script
Relevant to Blender v2.31

Yable is a script, that is a simple text file that can be loaded in Blender, hence we
cannot talk properly of an installation. As a matter of fact it is sufficient to load it
in Blender’s Text Window and press ALT-P to launch it. Before doing so we must
anyway pay attention to two fundamental points:

• You need a full Python installation (the right one for your Blender version), down-
loadable at www.python.org;

• You must edit line 81 of the Yable script.

The first is a necessary condition so that the script could find the required Python
modules, while the second is needed to set up the directory in which the settings and
the XML generated from Yable will be saved. Setting, for example, line 81 to:

YABLEROOT = "C:/"

521

Chapter 28. From Blender to YafRay Using YableX

Implies that every time that you export a scene from a file foo.blend , a new folder
called foo will be created in C:/ containing all the elements of the scene. In this way,
even if you close Blender, and then you reopen the file and restart the script, Yable
will be able to retrieve the settings, since it search them in a folder that it has the same
name of the current .blend file.

Note: This automatic naming is very handy, but unfortunately implies also that if we want
to save the .blend file with a different name, you must re-export it from Yable at least
once, so that the settings will be written again. Otherwise you can copy the contents of
the old folder into the new one.

If you want, you can also set up an external viewer that start automatically in order
to show the result of the rendering: If you so desire you must edit line 90, setting the
VIEWERAPPvariable the path to the chosen application.

As said before, all the data will be saved in the directory defined as YABLEROOT, all
except the textures. Is important that all the images used for the scene are in the same
directory, and that such directory will be indicated correctly to Yable, but this is done
at run time in the pertinent Text Button appearing as soon as the script is launched
(Figure 28-1). The full path to the textures is required.

Figure 28-1. Texture Dir setting and startup button.

The Interface
Relevant to Blender v2.31

The functions of Yable have been divided in three main screens, accessible by press-
ing the three upper buttons that you can see in Figure 28-2.

Figure 28-2. Yable header Buttons.

Workflow philosophy.
Once we have created a Blender scene, with objects, materials and lights, we can load
and start the script, possibly splitting the main 3D Viewport in two, and turning one
of the two halves into a Text Window. This way we will be able to see at the same
time the scene and Yable GUI.

The Yable Workflow is as follows:

• Select an object of the scene;

• Go to the Material or Light part of the interface, depending on what you are defin-
ing, and press the Get Selected button. This way Yable retrieves the settings for
the object (if any);

522

Chapter 28. From Blender to YafRay Using YableX

• Edit the attributes. These are completely independent from those of Blender!

• Press the Assign button to assign the parameters you entered to the object. Don’t
forget this step! A button Assign All can be used to assign the data to all selected
objects.

Global Settings
This part of the GUI allows us to access the functions of general scene settings Figure
28-3.

Figure 28-3. Yable headerGeneral Setting Buttons.

• Texture path (Figure 28-3#5) - The path of the texture can be redefined anytime.

• Global Illumination (Figure 28-3#6) - Adds to the scene the global illumination, that
is the simulation of the diffused light, originated in nature as an effect of the infinite
mutual reflections and diffusions between the objects. Its effect is added to that any
possible direct lights.

Path light and Hemi light are finalized to yield of the same effect, but using dif-
ferent algorithms that have advantages and disadvantages, for the description of
which we send back to the specific YafRay Chapter.

523

Chapter 28. From Blender to YafRay Using YableX

Figure 28-4. Yable Global Illumination settings.

Figure 28-4 shows the various options for Hemi or Path light. In the former case
we can set up the colour using the Red, Green and Blue NumButton, or take the
color from the background with the button Use Background color. It is possible to
use this last feature when we use backgrounds based on images, even if the Use
Background Button disappears by setting all the three RGB slider to 0.

In the Path Light case, on the other hand, the background image is used by de-
fault. Another difference between hemi and path light is the Depth parameter, that
is referred to the number of bounces to be considered in the calculation of the ex-
change of reflections between the objects. To get a minimum of radiosity effect it is
necessary to have at least two light interchanges.

Since the Path Light computation is rather complex a Cache option is provided,
allowing to optimize and diminish the rendering times. It basically acts as a pre-
process used to determine the zones of the image that need more samplings; as an
example on a great flat surface we can presume that the diffuse lighting is quite
uniform, and therefore we can carry out less calculations.

Parameters shared by both the global lights are the Power, the QMC, and the Sam-
ples. The Power indicates the power of the luminous emission, while the Samples
indicates the accuracy of the sampling during the rendering: high values improve
the clearness of the light (the hemi light have the tendency to become grainy) but
this increase vary much the times required for calculation. QMC refers to the use
of the Quasi MonteCarlo method for the determination of the zones to compute:
it is based on sequences of quasi random numbers, and accelerates the rendering,
even if, sometimes, it generate granular pattern of the image.

• Background (Figure 28-3#7) - There are four options. Depending on the choice made
some additional buttons appear, almost all are of immediate understanding (Figure
28-5).

Figure 28-5. Background settings.

The Const BkGd , is the easier to use (Figure 28-5 top left): it is an homogenous
colour defined by its RGB values.

The Normal BkGd (Figure 28-5 bottom right) allows us to use an image (the last
version of YafRay supports JPG and TGA); the only parameter is the Power , that
indicates the brilliance of the image.

524

Chapter 28. From Blender to YafRay Using YableX

The HDRI BkGd (Figure 28-5 bottom left) is, perhaps, the one allowing for the max-
imum realism. The HDR (High Dynamic Range) Images, by storing pixel colours
as floating point numbers contain much more data than other formats. Moreover,
they are usually available as probes, that is as full 360 horizontal, 180 vertical back-
grounds. After the we have obtained the appropriate images, is necessary to put
them in the same folder as the textures, to write the name in the Probe Name but-
ton, and to set up the exposure that we want to use (positive means brighter).

Finally the SunSky BkGd (Figure 28-5 top right) uses a sophisticated algorithm for
the simulation of the conditions of Sun light. The position of the sun can be set by
selecting an object in the Blender scene (usually an empty) and pressing the Set
Sun Pos button and confirming. It is important to note that the dimension of the
sun will depend also from the distance between the chosen object and the camera.
A particularly important parameter for the construction of the scene is Turbid ,
that allows us to regulate the value of the density of the atmospheric layers that
envelop the planet: dense layers let to go through only determined wavelengths of
the solar light, hence it changes both the color and the power of the light. The other
buttons control the halo and the spread of the beams. The SunSky background, if
used with Path Light or Hemi Light, is able to emit light in extremely realistic ways.
In the case in which we don’t want to use Global Illumination we can press the Sun
button and Yable will add a Sun type light in the exported scene, that will simulate,
more roughly but faster, the effect of the solar light.

• Fog (Figure 28-3#8) - With the Fog slider we choose the amount of fog present in the
scene (zero by default), while the color is chosen by selecting one of the three Red,
Green and Blue button and by using the single Num Button below them (Figure
28-6).

Figure 28-6. Fog Settings.

• Depth of field (Figure 28-3#9) - This is required to mimic a real camera’s focal blur.
This is a feature that YafRay will render in much shorter times than other rendering
engines, as it is performed as a post-processing operation - however, this means
that it has some shortcomings in the precise accounting of reflections.

The regulation is made by selecting an object whichever in the scene of Blender and
pressing the button Set Focus (Figure 28-7). The point chosen in this way will be
perfectly sharp. With the others two Num Buttons we can regulate the amplitude
of the field depth: Near Blur influences on how much will the objects that are
between the camera and the point of focus be blurred, while Far Blur affects the
objects further than the focus from the camera.

Figure 28-7. Depth of Field Settings.

525

Chapter 28. From Blender to YafRay Using YableX

• Anti-noise Filter (Figure 28-3#10) - This too is a filter applied as post processing. It
works in an iterative manner by taking some points within of a circular area and
assign the same color if their colours differ more than a given threshold.

Figure 28-8. Anti Noise Filter Settings.

The amplitude of the circular area is determined by the Radius parameter (Figure
28-8), while the threshold is given by Max Delta . This is a very useful filter, but
to use with care, because it has also a blurring effect that might compromise the
quality of the result. Higher values of the delta tend to unify all.

• Gamma correction, exposure, resolution (Figure 28-3#11) - A simple group of buttons
that allows you to set the brightness and the gamma of the complete rendering.
The No Buttons exclude completely both post-processes. The Default Button that
bring back the expos Num Button to the default value. The GammaNum Button
allows the regulation of the gamma (Figure 28-9).

Figure 28-9. Resolution Settings.

The resolution Menu Button allows you to choose the dimension of the rendered
image. Pressing it, we can choose between the most common formats:320x240,
480x320, 640x480, 640x512, 768x470, 1024x576, 1024x768 and 1280x960. Choosing
the Custom option, two new buttons are visualized, that allow to set up any reso-
lution.

• Rendering setting (Figure 28-3#12) - This group of buttons allows you to set details
of the exported file and let to launch YafRay directly from Blender (Figure 28-10).

Figure 28-10. Rendering Settings.

The fundamental keys are Export , Render , Filename and Image . The last two are
needed in order to choose the name that will have the XML file and the rendered

526

Chapter 28. From Blender to YafRay Using YableX

image. Export produces only, within the YABLEROOTdirectory all the necessary
XML files while, if used with Render , will also execute YafRay and will produce
the final image; finally, if the button View Output is also selected, at the end of the
rendering Yable will launch also the application specified in VIEWERAPP, in order
to see the result. Note that you must have YafRay in your path to be able to launch
it within Blender.

The Layers button open a new panel for the choice of the layer to export (Figure
28-11).

Figure 28-11. Layer Selection.

The Path button forces the description of the scene to be exported using separate
files (one main file, and sub-files to be saved in suitable folders, subdivided by
materials and meshes). The location of such files will be indicated to YafRay by
with the use of a full path.

To the contrary, the !INC Button will force Yable to produce a "monolithic" file. If
at the moment of the export neither Path or !INC are used, Yable will use automat-
ically the Path option.

Rendering problems: Sometimes, by using different files, Yable incurs in some prob-
lems and may mix the objects created in previous rendering. In such case is worthwhile
to use the single file, that is surely overwritten every time, or to delete the old XMLs.

The Anim Button forces a different XML file to be exported for each frame of
the Blender scene. Once the frames are rendered you can compose them into an
animation by using Blender’s Sequence Editor. The Anim button implies that the
Fr (frame) button is also pressed, which appends to the chosen name for XML and
images files a number suffix that indicates the rendered frame. All the XMLs are
saved in a separate subdirectory named as the blender file with the _MOVIEsuffix.

An example: Suppose our YABLEROOTis C:/bar/ and we are working with the
file robot.blend , when we press Export , Yable will create, first of all, a folder
C:/bar/robot/ ; then, if we have specified the Path option, inside this directory the
main XML file (called robot.xml) will be created, and two folders: Materials and
Meshes , from which YafRay, reading the paths in robot.xml , will draw the data for the
materials and objects.

In the case in which we choose to use the !INC button, no folders will be created within
C:/bar/robot/ , but only a single file robot.xml , that contains all data.

Finally, if the Anim button has been utilized, another folder will be created,
C:/foo/robot/robot_MOVIE/ containing as many XML robot.001.xml ,
robot.002.xml , robot.003.xml ,... as there are frames in the animation.

Note that if the files of the animation are obtained with the Path option, it will be
necessary to copy the Meshes and Materials folders in the robot_MOVIE folder. If
the animation does not include transformations of morphing (as an example RVK), is
safe to leave de-activated the button Update Mesh . Otherwise for every exported frame
every mesh of the scene will be exported too.

527

Chapter 28. From Blender to YafRay Using YableX

The last three buttons are GZ, Time , and alphaTGA : the first enable the creation of
gzipped files, the second let the time employed for the rendering appear on the
YafRay console and the third modifies the XML so that YafRay saves TGA images
with the alpha channel.

• Antialiasing setting (Figure 28-3#13) - AAP Num Button indicates the number of
passes of antialiasing; putting it equal to zero indicates no antialias. AAMSadjust
the number of samplings to use for every AA pass. AAPWadjust the pixel width
parameter, that is the overlap of pixels; the range vary between 0 and 2, and us-
ing high values, we can obtains a better smoothness, even if sometimes too much
accentuate. AAT establishes the value of threshold (AA_threshold) beyond which
the pixel will be processed from the antialiasing: the value can vary between 0 (all
points will be processed) and 1 (no pixel are processed). CPU indicates, if multiple
CPU are present, how many should be used for rendering.

Material Setting
The second GUI panel contains the Material Setting. Here it is possible to assign to
every object the material that will be used in the YafRay rendering. The Materials
assigned with Yable and Blender materials are two different things: the script draws
from the scene only some values, like the UV coordinates and the diffuse color. This
latter only upon request of the user. The rest is all independent; from this point of
view Yable is a sort of laboratory: it not only exports passively the scene, but it allows
us to study and to apply new materials.

Once an object is selected we must press the Get Selected Button: new buttons will
appear; containing YafRay settings if the Object already has them, or empty other-
wise(Figure 28-12).

Figure 28-12. Material Buttons.

• Shader Type (Figure 28-12#14) - This button allows you to choose the Type of Ma-
terial Shader to apply.

The Constant shader is the simplest, characterized only from the Red, Green and
Blu Num Buttons. Crafter is a distinct case: it is an interface used to loading the
Crafter shader, that is a stand alone program for the visual composition of materi-
als. Generic is the more versatile material, and includes also the characteristics of

528

Chapter 28. From Blender to YafRay Using YableX

the others, hence we will describe it deeply, using it like a paradigm for the general
understanding.

• Object Attributes (Figure 28-12#14) - Pressing this button some new buttons ap-
pear (Figure 28-12 on the right). They are very important characteristics, which are
linked to the Object and not to the Material itself. The Cast Shadow toggles if the ob-
ject projects shadows or not. The Caustic IOR button enables the calculation of the
caustics for the light beams that will pass through the object; these will be deflected
according to the value of the refractive index indicated from CausIOR NumButton.
High IOR values produce more sharp caustics (think, as an idea, to the lens that
concentrates the solar beams in a point). The Receive Radio and the Emit Ra-
dio buttons, if pressed, will force the object to participate to the calculation of the
global illumination, receiving and re-emitting energy. The Caustic Tcolor Num
Buttons allows you to specify the transmitted colour, that is the colour assumed
from the light passing through the Object. The Caustic Rcolor Num Buttons, on
the other hand, refers to the light reflected by the Object.

Note: Note that even if we set correctly a material, it will participate to the effects of
caustics and radiosity only if it is illuminated with appropriate lights, like the Path Light,
or the Photon Light.

• Diffuse Colour (Figure 28-12#16) - Is the basic color, and corresponds to the Diffuse
Colour in Blender materials. The Bl button on the side is used take RGB values di-
rectly from the Blender Material. Pressing the button Add Specular Color new
buttons appear similar to those just seen, used to set the specular color. Also in this
case the meaning of this Colour is the same to that of Blender.

• Reflection and Transmission Colours (Figure 28-12#17 and #18) - It is possible to set
the Reflected and Transparency colours of the material. Note that also the trans-
parency is set using the RGB Num Buttons to define a Colour, not just a plain
"alpha" value.

The Transmit parameter does not decide the degree of transparency, but only
which color of the light pass through (or is blocked by) the material. To make
some example, using the black colour we impose that no color passes through the
material, using the red one, we would mean that the object is transparent only
for the red component of the light, using the white we let all the light to pass.
Pressing also the buttons Refl2 and Transm2 which appears we can (and new
RGB Num Buttons are created) define a different behaviour of the material at
grazing light incidence.

• Hardness, Index of Refraction (Figure 28-12#19) - The hard parameter governs the
sharpness of specular highlights exactly as in Blender. The refractive index IOR is
fundamental in transparent objects, and is used in order to calculate the deviation
of the light beams that crosses the material. As a result of this effect, the bodies
immersed in a transparent medium appears to us distorted (think to a paddle im-
mersed in the limpid water). Table 28-1 shows some IORs of common materials:

Table 28-1. Sample IORs

Material IOR

Void 1.0

Air 1.00029

Ice 1.31

529

Chapter 28. From Blender to YafRay Using YableX

Material IOR

Water (at 20C) 1.33

Ethylic Alcohol 1.36

Glycerine 1.473

Glass 1.52

Sapphire 1.77

Diamond 2.417

• Get Selected (Figure 28-12#20) - The Get Selected , to be pressed every time after
you have selected the object and before starting to modify the material.

• Get Selected, Loading and saving the materials (Figure 28-12#21) - The Load Material
and Save Material buttons allows you to save material settings and to quickly
call them back. A name can be given to each material.

• Preview of the material, autosmooth and modulators (Figure 28-12#22) - The
AutoSmooth Button is used to regulate the appearance of the surfaces. Pressing it
an additional Num Button appears that regulated the angle under which the
corner of the two faces is considered smooth, exactly as in Blender.

The Mat preview Button creates a preview of the material using a sample scene.
The tga is saved in the current directory (for example, under Windows, it is saved
in the folder in which the Blender executable resides.) The button phlightprv in-
dicate "Photon Light Preview" and it is used to put a photonic light during the
materials preview.

The Modulators Button allows you to access a separate panel for the composition
of advanced shaders formed by overlying layers. Every layer can be an image or a
procedural texture. Obviously is possible to set the modality with which the layers
must be mixed and also the percentage of transparency.

The panel at the beginning refers to the default modulators, that is used automat-
ically if the Object has UV coordinates and is mapped with an image in Blender.
Unfortunately, because of a bug, these formulations are not maintained by Yable,
that continues to use the default settings. However all the successive layers of mod-
ulators that are added work correctly. In order to add a new component is sufficient
to click on the Others button, and to choose the kind of modulator that we want.
In Figure 28-13 we see (starting from the top left, clockwise) the main panel, the
panel adding new members, the menu Others , before and after the addiction of a
new member:

530

Chapter 28. From Blender to YafRay Using YableX

Figure 28-13. Material Modulators.

It is possible to add an Image layer, a Clouds layer and a Marble one. The first
thing is to assign a name at the modulator created, to do this it will be sufficient to
write something of meaningful in place of GIVE_ME_A_NAME.

If the Modulator is an image it is necessary to insert the name of the image itself:
only the name and extension, without path, which has been defined once for all
before!

The parameters refer, by default, to bump mapping, that is to the relief effect that
will be given to the object: using positive values rises clearer zones and lowers
darker. The various size refer to the scaling of the UV coordinates (the three X, Y,
Z axis may be scaled independently, or all together) while the various buttons Col ,
Spec , Ref , Hard and Trans have the usual meanings and indicates which charac-
teristic, and by how much, is modified. At the end of the settings, press the Ok!
button, to return to the main Material panel. At the end of the procedure the new
added modulator will be in the Menu and can be selected and cancelled anytime,
using the button Del that appear next to the Ok! Canc and Back buttons.

Note: The only type of mapping supported up to now is the UV type. It follow that
the object must possess these coordinates, for which we sends back to the relevant
Section of this Guide. If all is correctly executed, Yable will export automatically (without
the adding of an image type modulator) both the UV coordinates and the used image.
About this image we must pay attention to this: Yable does not use the image loaded
in the texture of Blender’s materials, but the one loaded in the Image Window (that is
the one on which calculations for the positioning of the UV are made). Obviously, the
images must all be in the usual folder specified at the start of the script.

Clouds and Marble Modulators insertion is similar to that for the Images, except
that these panels have few additional, self explanatory, specific parameters for
these two types of procedural texture.

• Assign (Figure 28-12#23) - The Assign button finalizes the material and assigns it
to the object. Don’t forget this! The button Selected All allows you to assign the
settings to more than one selected objects.

Note: Saving a material and Assigning a material are two separate actions. If you
assign it the Object acquires that material, if you save it, it will be available later on.

531

Chapter 28. From Blender to YafRay Using YableX

Light Settings
The lights setting in Yable is made with the same modality of the materials assigna-
tion: a light is selected in Blender, Get Selected is pressed and the characteristics
that we want to to export in YafRay are chosen and assigned definitively with As-
sign .

The type of light used in the scene of Blender do not have any relationship with the
type of light that will be exported: the only parameters that will be surely conserved
are the positional coordinates of the lamp; all the rest, included the pointing direction
can be assigned independently with Yable. In Figure 28-14 we have represented a
point light with the buttons Diffuse and Caustic activated, so to have an example
that include the greater part of the available options.

Figure 28-14. Light GUI Panel.

• Light Types (Figure 28-12#24) - The menu lets us choose between various types
of direct light: Point Light , Spot Ligth , Soft light , Area Light and Photon
Light . Accordingly to the light type the options immediately beneath varies. Fig-
ure 28-15 shows them all.

Figure 28-15. Direct Light Options.

532

Chapter 28. From Blender to YafRay Using YableX

The Point light is a point source that emits light in all the directions. The power
of the lamp is chosen with the Power Num Button, while its colour is set via RGB
Num Buttons and is possible to choose if it must project or not a shadow with the
Cast Shadow Button.

The Spot light is very similar to the Blender spot: the parameters Blend and
Falloff have the same meaning, while Width represents the angular width of the
light cone.

Halo indicates the presence of the halo (volumetric light), by pressing it we add
some new buttons: three Num Buttons for the Halo colour, Res = resolution of the
shadow map, Density = quantity of fog contained in the halo, Blur = blur applied
to shadow map, Samples = number of samplings used in the rendering.

The direction of the Spot is given via a target. We must press the Select Target
button, select an Object to be the target of the spot in the Blender scene and finally
press the Confirm Button to complete the operation.

Both the Point and the Spot light decreases following the physical law of the in-
verse square of the distance.

The Soft light is similar to the Pointlight, with the difference that it produces soft
shadows. Shadows which appear to be too "clean" are one of the disadvantages of
the raytrace engines, but this type of light, using a shadow map, safely resolves the
problem. Besides the usual parameters, the Radius parameter, defines the width of
the transition between shadow and light. The Bias parameter controls the proxim-
ity of the shadow to the object that produces it, while the Resol parameter controls
the resolution of the shadow map: the higher is this parameter the better is the
accuracy of the shadow.

The Sun light simulates the characteristic of the solar light, it seems not to decay
with increasing of the distance (it is an impression due to the enormous power of
the Sun). It is, therefore, a much simple light, in which we can only set up the color,
and whose intensity remains constant.

The Area light is an extended luminous source. While all those already seen emit
light from a point (in reality it corresponds, as an example, to the small filament of
a light bulb), the area light is produced from a whole surface. YafRay admit also
quadrilateral surfaces but Yable is limited to use only squares. The specific param-
eters are Samples , Psamples and Side , they are the number of general samplings,
the number of samplings in the penumbra zone, and the length of the side of the
light casting square.

• Photon Lights (Diffuse and Caustic) (Figure 28-12#25 and #26) - Photonlight is a very
peculiar kind of lamp: it behave in a more realistic way, referring itself to the theory
of the light composed by a bundle of photons. These photons must literally be
"shoot" towards the Objects, so as to calculate their behaviour when they travel
through transparent bodies or are diffused by opaque ones. It is a very complex
calculation, for which is not always desirable that it will be executed on all the
elements of the scene; therefore we can specify it on a material to material and
object by object basys via the parameters Receive and Emit.

Diffuse light: Enabling this button a Photon Light of Diffuse type will be add to the
exported scene, overlapping the corresponding Direct light. The photons of this
light have the capability to be reflected on diffusive surfaces. In this way calcula-
tions of the radiosity ’colour leakage’ will be added in the rendering, to realize a
realistic effect of Global Illumination. This can be done also via Path Light, but a
carefully tuned Photon Light is much faster.

Caustic light: Caustic are concentrations of light caused from the refraction of the
transparent objects. The Photon Light of Caustic type allows you to account for this
phenomenon correctly. Before going ahead, it is necessary to say that if targeted to
objects with inadequate material, this light does not generate any effect. In fact the
scene, to have caustics, must contain a source light A, an opaque object C receiving

533

Chapter 28. From Blender to YafRay Using YableX

the caustics and a transparent object B placed between these two generating the
caustics (Figure 28-16).

Figure 28-16. Caustics setup.

• A must be a caustic photonlight;

• B must have a Material able to produce Caustics (exhibiting at leastassigning at
least Caustic IOR and Caustic Tcolor);

• C must have a Material able to receive the radiosity effects (for this the de-
fault material could be good, because this material export a simple shader that,
without specify the received and emitted values of radiosity leave the choice to
YafRay, that usually hold this values activated. If, indeed, a generic material is
used, we must remember to activate the Reiceve Radio Toggle Button).

The Photon Light of Caustic and Diffuse type have the same parameters. The ar-
rows button is used to impose the same value to more than one variables (for ex-
ample the same color).

The Photons button set the number of photons that will be shot from the lamp,
in common scene a few thousands of photons is enough but, to obtain a better re-
sults in terms of quality is recommended to set 50000 photons or more. The Depth
button defines the number of bounces/transmissions the photons can do before
YafRay ray tracing stops to handle it, and it is a particularly important data, mostly
in the calculation of the Global illumination. 3 is a good value for acceptable re-
sults. Search indicates the numbers of photons that can be used to illuminate a
single point of the Object surface, higher values is used to take in consideration
also zones that receive few photons, with a shaded effect of illumination, while
low value is used to give light only to the points really hit by photons completely,
with more definite and "hard" boundaries. Angle is the angle of the projection cone
with which the photon are shot: high values are used to cover a wide area, but with
power fading when we depart from the center. Fixed is the abbreviation of fixedra-
dius, and represent the radius in which the number of photons defined by Search
must fall in order to consider the point of the surface illuminated. cluster is the
smallest portion of lit surface able to contain a photon. The higher is this num-

534

Chapter 28. From Blender to YafRay Using YableX

ber the larger is the width of the cluster and, consequently, the less defined is the
illumination effect. QMCis, again, the quasi-MonteCarlo method.

Yable Juicy example
Relevant to Blender v2.31

Figure 28-17. Caustics setup.

What you see in (Figure 28-17) is a completely ic image realized by Xavier ’richie’
Ligey, modelled with Blender and rendered with YafRay. The export has been made
with Yable. There is no light at all in the scene, only a Hemi Light with an HDRI
background. Xavier has been so kind as to give us the screenshots of the settings he
has used in Yable.

Figure 28-18 shows the car paint, Figure 28-19 shows the chrome material and Figure
28-20 shows the glass material.

535

Chapter 28. From Blender to YafRay Using YableX

Figure 28-18. Car Paint.

Figure 28-19. Chrome parts.

536

Chapter 28. From Blender to YafRay Using YableX

Figure 28-20. Windshield and other glasses.

A special thank to Alessandro Braccili, who helped me in Yable/YafRay understanding, and
in the writing of this chapter.

Notes
1. http://www.zoo-logique.org/3D.Blender/

2. http://www.yafray.org/

537

Chapter 28. From Blender to YafRay Using YableX

538

Chapter 29. YafRay

by Alejandro Conty Estevez, Chris Williamson, Johnny Matthews.

Introduction
Relevant to Blender v2.31

by Alejandro Conty Estevez,

By the time I started working with YafRay, I was checking out some blender exporters
like BMRT and Lightflow. While I was writing some exporting and shading code, I
began to be interested in how a raytracer could be written. So when the exams season
was in full swing, I became bored (as weird as it may sound) and began to write the
main program structure. Once I got a few test renders, I put it off for a year, till the
next summer. Then, I wrote the XML loader and YafRay, called "noname" by that
moment, began to be an usable program.

Alfredo joined the development almost at the same time. That was of great help.
A month later a lot of necessary stuff, like acceleration, were finished and Alfredo
ported a lot of his code to YafRay. As the famous hemilight.

Then Luis Fernando Ruiz, a friend of mine and classmate joined to give us a good
web site. So we said good bye to that boring plain text web site. We also had the
chance to see YafRay rendering on several computers concurrently when Luciano
Campal wrote his hack to make YafRay able to work in a distributed way thanks to
mosix. It was very exciting when we got access to a 20 computers room for testing.
Things started to look very promising when Andrea came with Yable. An experimen-
tal export script for an experimental renderer that resulted in a very long thread of
cool images at elYsiun. We saw the first nice images done with blender and rendered
with YafRay thanks to him.

We didn’t expect that boom. Neither Alfredo nor me. Of course it was the cool export
script what was catching people, exporting easily from blender to a raytracer. We got
very excited with all that support from the community. I still get impressed by what
people can do with a simple tool like this.

Now more people are getting involved and helping. We begin to have a good
documentation section and resources, most of which have been written by Chris
Williamson. Basically, it’s what you’ll see in this chapter. But he is not the only one.
YafRay is also getting very easy to use from blender thanks to Johnny Matthews. I
think he spends almost every minute writing Extractor: a new export script for
blender. It makes the exporting much more easy by getting all the data directly from
blender with nearly no user interaction.

The current power of Extractor and its fast development point out that this could
be the future official export scheme for exporting from blender. Anyway, efforts are
being made to write a built-in exporter in blender. Alfredo contributed with a lot of
shading compatibility code and did some experiments. So it seems we will be able to
compare both python and built-in solutions at some point.

YafRay started as an experiment and still is. It’s not finished and lacks a lot of features
if you compare it with other render engines. I always think is not good enough and
that it is hard to imagine what do people see in it. Since people like it for some reason,
we now want to really convert it into a full rendering engine that deserves to be called
"renderer". This will take some time to have fun coding. We want to add what YafRay
lacks (particles, effects, etc...) and to improve global illumination. But only Alfredo
De Greef and me are coding YafRay right now, so in order to keep the development
up to an acceptable rate, we should get more people to code, more developers. I hope
this happens sooner or later.

Finally, I want to thank all the blender community that supported this project. All
those beautiful pictures are what really bring people to YafRay. Likewise, thanks to

539

Chapter 29. YafRay

all the people who give ideas and thoughts on the forums to improve YafRay, and to
Juan David G. Cobas for his very appreciated math support.

Installation
Relevant to Blender v2.31

YafRay is available for Linux, Windows and Mac OSX. Download the package suit-
able for your OS at www.yafray.org1.

YafRay for Windows
Run the installer program. It will create a directory called "yafray" on your c:\ drive.
This directory contains the yafray.exe executable and the grammar file which are
used by the loader. Also the installer copies three dll’s into your Windows system
directory. These dll’s are for cygwin support. Finally, a batch file (yafray.bat) is copied
into the Windows directory (we need this file in the PATH).

To run YafRay is easy. Just open a MS-DOS window, go to you working directory
and type "yafray file.xml" or "yafray file.xml.gz". For example, if you want to work
in e:\raytracing\work on an XML file which resides in C:\Docs\xmls named
test.xml , you open a MS-DOS windows and:

c:\windows\>
c:\windows\> e:
e:> cd e:\raytracing\work
e:\raytracing\work> yafray c:\Docs\xmls\test.xml

One or more targa file, the output of the render, will be created in the
e:\raytracing\work directory .

YafRay for Mac OSX
Expand the tarball. (stuffIt expander can expand tarball also). Double click on the
expanded package to run installer. YafRay must be installed on the Root device (the
one on which it has been installed MacOSX), you cannot choose any other disk.

Installed files and location are: /usr/sbin/yafray /usr/etc/gram.yafray

YafRay utilization does not differ noticeably from the three OS, so you can refer to
the previous section.

YafRay has just 2 files ’ /usr/sbin/yafray ’ and ’ /usr/etc/gram.yafray’ . But a com-
mon user cannot usually access these directories via the Mac OSX GUI, so the OS X
Package Manager (OSXPM) can help you to uninstall packages from your disk.

YafRay on Linux
Expand the tarball.

tar xvzf yafray-#.#.#.tar.gz

Go into the newly created directory and configure it for your machine.

./configure

540

Chapter 29. YafRay

Make sure that zlib and jpeg support is enabled. If not, you need install devel pack-
ages for libjpeg and libgz (check your distribution for it).

Build it!

make

If this fails you can try

cd src
make yafray

The executable is yafray and is a command Line program, whose usage is analogous
to the what described In the "Windows" section.

Scene Description Language Overview
Relevant to Blender v2.31

A YafRay Scene description file is an XML file complying to the definitions of this
section. The renderer parses the XML from top to bottom. So if Block1 is referenced
before Block2, it must be defined before Block2 (it must be above it in the XML).

<scene>

<shader type = "generic" name = "Default" >
<attributes>

<color r="0.750000" g="0.750000" b="0.800000" />
<specular r="0.000000" g="0.000000" b="0.000000" />
<reflected r="0.000000" g="0.000000" b="0.000000" />
<transmitted r="0.000000" g="0.000000" b="0.000000" />

</attributes>
</shader>

<transform
m00 = "8.532125" m01 = "0.000000" m02 = "0.000000" m03 = "0.000000"
m10 = "0.000000" m11 = "8.532125" m12 = "0.000000" m13 = "0.000000"
m20 = "0.000000" m21 = "0.000000" m22 = "8.532125" m23 = "0.000000"
m30 = "0.000000" m31 = "0.000000" m32 = "0.000000" m33 = "1.000000"
>
<object name = "Plane" shader_name = "Default" >

<attributes>
</attributes>

<mesh>
<include file = ".\Meshes\Plane.xml" />
</mesh>

</object>
</transform>

<light type="pathlight" name="path" power= "1.000000" depth "2" samples = "16" use_QMC = "on" cache"on" cache_size="0.008000" an-
gle_threshold="0.200000" shadow_threshold="0.200000" >
</light>

<camera name="Camera" resx="1024" resy="576" focal="1.015937" >
<from x="0.323759" y="-7.701275" z="2.818493" />
<to x="0.318982" y="-6.717273" z="2.640400" />
<up x="0.323330" y="-7.523182" z="3.802506" />

</camera>

<filter type="dof" name="dof" focus = "7.97854234329" near_blur "10.000000" far_blur "10.000000" scale "2.000000" >
</filter>

541

Chapter 29. YafRay

<filter type"antinoise" name"Anti Noise" radius = "1.000000" max_delta = "0.100000" >
</filter>

<background type = "HDRI" name = "envhdri" exposure_adjust = "1">
<filename value = "Filename.HDR" />

</background>

<render camera_name = "Camera" AA_passes = "2" AA_minsamples = "2" AA_pixelwidth = "1.500000" AA_threshold = "0.040000"
raydepth = "5" bias = "0.300000" indirect_samples = "1" gamma = "1.000000" ex-

posure = "0.000000" background_name"envhdri" >
<outfile value="butterfly2.tga"/>
<save_alpha value="on"/>

</render>
</scene>

Don’t worry! It’s not as complex as it looks. Concentrate on the bold highlighted tags.

The Tags work similar to HTML tags (also like brackets) each tag must have an oppo-
site closing tag. Two tags together, with settings inside, is one block. A block can tell
the renderer how to shade something, how big to render the image, what the shape
of an object looks like, where it is etc etc.

In the example above, first a shader is defined, then an object (which is wrapped in
its Transform Matrix), then a light is added then a camera, a filter, a background and
finally the render settings (notice the closing </scene> tag).

Shaders
Relevant to Blender v2.31

Base Shaders
These shader blocks determine the BiDirectional Reflectivity Function (BDRF) or Il-
lumination Model that the object is shaded with. Each different base shader type has
various inputs that can receive the outputs from other shader blocks, altering the
surface characteristics.

Constant

A uniformly constant shader

<shader type = "constant" name = "Sphere.mat">
<attributes>

<color r="15.000000" g="15.000000" b="15.000000" />
</attributes>

</shader>

Generic

The most versatile shader

<shader type = "generic" name = "Sphere.mat">
<attributes>

<color r="0.800000" g="0.800000" b="0.800000" />
<specular r="1.000000" g="1.000000" b="1.000000" />
<reflected r="0.000000" g="0.000000" b="0.000000" />

542

Chapter 29. YafRay

<reflected2 r="1.000000" g="1.000000" b="1.000000" />
<transmitted r="0.197183" g="0.197183" b="0.225352" />
<transmitted2 r="1.000000" g="1.000000" b="1.000000" />
<hard value = "25.000000"/>
<IOR value = "1.592105"/>
<min_refle value = "0.200000"/>
<fast_fresnel value = "off"/>

</attributes>
</shader>

Phong

Classic Phong shader

<shader type="phong" name="phongshader">
<attributes>

<environment value="fresnel"/>
<color value="rgb"/>

</attributes>
</shader>

Procedural
These Shading blocks create various procedural patterns with inline values. No in-
puts are needed.

Marble

<shader type="marble" name="Marble" size="4.00" depth="4" hard="off" tur-
bulence="5" sharpness="5.00">

<attributes>
</attributes>

</shader>

• size : Size of the marble effect, lower numbers = less veins, higher numbers = more
veins.

• depth : Controls the number of iterations (number of noise frequencies added to
the swirl).

• hard : Controls the noise type, when set to ’off’ the noise varies smoothly while
setting it to ’on’ will show more abrupt changes in color.

• turbulence : Controls the amount of noise turbulence.

• sharpness : Controls the sharpness of color 1 compared to color 2, the higher
this value, the thinner the color band of color1. This effect is similar to the
soft/sharp/sharper switches of the Blender marble texture, the difference is that it
is more controlable here. The value must be at least 1 or higher.

543

Chapter 29. YafRay

Wood

<shader type="wood" name="Wood" size="5.00" depth="5" hard="off" tur-
bulence="40">

<attributes>
<ringscale_x value="5" />
<ringscale_y value="5" />
</attributes>

</shader>

• size : Size of the wood effect, lower numbers = less wood grain, higher numbers
= more wood grain.

• depth : Controls the number of iterations (number of noise frequencies added to
the swirl).

• hard : Controls the noise type, when set to ’off’ the noise varies smoothly while
setting it to ’on’ will show more abrupt changes in color.

• turbulence : Controls the amount of noise turbulence.

• ringscale_x : Controls the width of the wood rings in the x axis.

• ringscale_y : Controls the width of the wood rings in the y axis.

544

Chapter 29. YafRay

Clouds

<shader type="clouds" name="Clouds" size="5.000" depth="3">
<attributes>
</attributes>

</shader>

• size : Size of the cloud effect.

• depth : Controls the number of iterations (number of noise frequencies added to
the swirl).

Meta Shaders
These allow the modification of other shaders and the building of "chains" of simple
shaders to build a complex shader.

545

Chapter 29. YafRay

Color2float shading block

Takes a color as input and outputs a float

<shader type="color2float" name="c2f" input="input" >
<attributes>
</attributes>

</shader>

• input : Input (color) to convert to float.

Colorband shading block

Builds a color from a value input and a gradient. An unlimited number of modulators
add nodes to the gradient. The shader interpolates the color values of the nodes at
the given input value. In the example below, an input value of 0.12 would generate
a colour between the first and second node, which are black and orange. So a dark
orange would be the result.

<shader type="colorband" name="Colorband" >
<attributes>

<input value="Wood" />
</attributes>
<modulator value="0.00"><color r="0.00" g="0.00" b="0.00" /></modulator>
<modulator value="0.26"><color r="1.00" g="0.36" b="0.00" /></modulator>
<modulator value="0.66"><color r="1.00" g="1.00" b="0.00" /></modulator>
<modulator value="1.00"><color r="1.00" g="1.00" b="1.00" /></modulator>

</shader>

Conetrace block

It can be used to get reflections or transmitted color from environment. But it could
also be used to get blurry ones.

<shader type="conetrace" name="env1" reflect="on/off" angle="number"
samples="number" IOR="number">
<attributes>

<color ... />
</attributes>

</shader>

• reflect : ’on’ will reflect the ray, ’off’ will refract the ray.

• angle : Angle of the cone (around the ray) to be sampled, 0 for a simple sharp
reflection/refraction.

• samples : Number of samples to take inside the cone.

• IOR: Index of Refraction.

• color : Color to filter the incoming light.

546

Chapter 29. YafRay

Spheres with varying levels of blurry reflections and refractions and an HDRI back-
ground.

Coords shading block

Outputs a float based on object coords.

<shader type="coords" name="PosY" coord="Y" >
<attributes>
</attributes>

</shader>

• coord : Coordinate to use, either X, Y or Z.

Clouds shader and coords shader (z) into multiply shader.

Float2color shading block

Takes a float as input and outputs a color.

547

Chapter 29. YafRay

<shader type="float2color" name="f2c" input="input" >
<attributes>
</attributes>

</shader>

• input : Input (float) to convert to color.

Fresnel shading block

Can be used to get realistic reflections/refractions based on the angle of incidence.

<shader type="fresnel" name="fresnel1" reflected="..." transmitted="..."
IOR="number" min_refle="number">
<attributes>
</attributes>

</shader>

• reflected : The input to use as reflected color (usually the conetrace output).

• transmitted : The input to use as transmitted color (usually another conetrace
output).

• IOR: Index of Refraction.

• min_refle : Minimal reflection amount.

Mixing fresnel and conetrace blocks.

HSV shading block

Builds a color from either any inputs or inline values for HSV components.

<shader type="HSV" inputhue="..." inputsaturation="..." inputvalue="..."
hue="number" saturation="number" value="number" >

</shader>

548

Chapter 29. YafRay

As in the RGB color, if the inputs are omitted, inline hue/saturation/value values are
used.

Image shading block

Assigns a bitmap image to the object according to its UV co-ordinates (outputs
Color).

<shader type = "image" name = "bitmap">
<attributes>

<filename value = "c:\filename.tga" />
</attributes>
</shader>

• filename : Path and name of bitmap to apply.

Mix shading block

Mixes x2 inputs in different ways, depending on the mode used.

<shader type="mix" name="mixMode" input1="Colorband0" input2="Colorband" mode="add">
<attributes>
</attributes>

</shader>

• input1 : First input to mix.

• input2 : Second input to mix.

• mode: Possible mix modes (note, some modes output different results depending
on the order of the inputs).

These are: Add, Average, Color Burn, Color Dodge, Darken, Difference, Exclusion,
Freeze, Hard Light, Lighten, Multiply, Negation, Overlay, Reflect, Screen, Soft light,
Stamp, Subtractive.

Multiply shading block

Multiplies (float) input values or input value and const value, outputs a float.

<shader type="mul" name="Multiply" input1="input" input2="null" value="5.30">
<attributes>
</attributes>

</shader>

549

Chapter 29. YafRay

• input1 : First input to multiply.

• input2 : Second input to multiply (if null, input1 is multiplied with the inline
’value’ setting).

• value : Value to multiply if input2 is null.

Multiply shader with wood and marble as input.

RGB shading block

Builds a color from either any inputs or inline values for RGB components.

<shader type="RGB" inputred="..." inputgreen="..." inputblue="..." >
<color ...>

</shader>

If one of the inputs is omitted, then the default color given by "color" tag is used for
that input.

Sin shading block

Generates float values based on sine wave and input.

<shader type="sin" name="Sin" input="input" >
<attributes>
</attributes>

</shader>

550

Chapter 29. YafRay

Wood shader is input for sin, which in turn is an input for the Hue channel of an HSV
shader - the color value of a phong shader.

Renderable Objects
Relevant to Blender v2.31

YafRay currently supports only Mesh Objects. An example of a simple triangular
planar plate is:

<transform
m00 = "0.997525" m01 = "0.070303" m02 = "0.001329" m03 = "0.115816"
m10 = "-0.018745" m11 = "0.284097" m12 = "-0.958612" m13 = "1.522439"
m20 = "-0.067771" m21 = "0.956215" m22 = "0.284711" m23 = "3.272361"
m30 = "0.000000" m31 = "0.000000" m32 = "0.000000" m33 = "1.000000"
>

<object name = "Plane.002" shader_name = "Plane.002.mat" caus_IOR = "1.500000" recv_rad = "on" emit_rad "on"
shadow = "on">
<attributes>

<caus_tcolor r = "1.000000" g = "1.000000" b = "1.000000"/>
<caus_rcolor r = "1.000000" g = "1.000000" b = "1.000000" />

</attributes>
<mesh autosmooth = "30.0" >

<points>
<p x"4.403727" y="-4.403728" z="0.000000" />
<p x="-4.403727" y="-4.403727" z="0.000000" />
<p x="-4.403725" y="4.403728" z="0.000000" />

</points>

<faces>
<f a="0" b="2" c="1" />

</faces>
</mesh>

</object>
</transform>

551

Chapter 29. YafRay

Transform tag
The Transform tag defines the transform matrix for the enclosed object (position,
scale and rotation from the world origin point).

Object tag
The object tag defines the object geometry, it has a series of parameters:

• caus_IOR : Index of Refraction for Caustic Photons.

• recv_rad : Whether to receive radiosity (bounced light generated from Photon
Lights) (’on’ or ’off’).

• emit_rad : Whether to emit radiosity (’on’ or ’off’).

• shadow : Whether or not to cast a shadow (’on’ or ’off’).

• caus_tcolor : The colour to tint transmitted photons (colours the refractive caus-
tics).

• caus_rcolor : The colour to tint reflected photons (colours the reflective caustics).

The Mesh tag:
The key tag within an object definition is the Mesh tag, which defines its geometry:

• autosmooth : Threshold angle for the smoothing algorithm (omit to get ’faceted’
objects).

Within the mesh tag a <points> block defines the vertices of the mesh, while a <faces>
block defines triangular faces by the indices of their three vertices.

Lights
Relevant to Blender v2.31

YafRay provides several kind of lights:

Spot light
This is fairly similar to Blender’s Spot Light

<light type="spotlight" name="spot" power="30.0" size="80" blend="10"
beam_falloff="2" halo="on" res="512" blur="0.0" fog_density="0.20">

<from x="-0.140436" y="4.175604" z="8.336139" />
<to x="-0.140436" y="4.175604" z="0" />
<color r="1" g="1" b="1" />
<fog r="1" g="1" b="1" />

</light>

• size : Angle of the cone (half of Blender’s one!).

• blend and beam_falloff : same as in Blender.

• halo : Whenever to cast volumetic light and shadows or not.

552

Chapter 29. YafRay

• res : Resolution of the shadowmap (only for volumetric shadows by now).

• blur : Blur applied to the volumetric shadows range from 0.0 to 1.0

• fog_density : Amount of fog in the halo.

• samples : Number of samples to use for halo rendering. By default the same as res.
The more samples, the less noise.

• from : Position of the light.

• to : Target of the light.

• color : Color of the light.

• fog : Color of volumetric light.

Point light
This is fairly similar to Blender’s Lamp... but it casts shadows!

<light type = "pointlight" name= "omniLight" power= "1.000000" cast_shadows= "on" >
<from x="6.372691" y="3.340035" z="2.815973" />
<color r="1.000000" g="1.000000" b="0.000000" />

</light>

• power : Light intensity.

• cast_shadows : Whether or not to cast (raytraced) shadows (’on’ or ’off’).

• from : Position of the light.

553

Chapter 29. YafRay

• color : RGB color of the light.

Pointlight, with Hemilight (white dot represents light position).

Sun light
This is again similar to Blender’s Sun... but it casts shadows!

<light type ="sunlight" name="Lamp.001" power="1.000000" cast_shadows="on">
<from x="0.026929" y="-0.071142" z="3.552329" />
<color r="1.000000" g="1.000000" b="1.000000" />

</light>

• power : Intensity of the sunlight.

• cast_shadows : Whether or not to cast shadows (’on’ or ’off’).

• from : Position of the light (direction is automatically towards the origin!)

• color : Color of the light.

554

Chapter 29. YafRay

sunlight, with hemilight to provide some diffuse shading

Soft light

<light type= "softlight" name="softomni" power="1.000000" res="512" ra-
dius="5.000000" bias="0.300000" >

<from x="0.026929" y="-0.071142" z="3.552329" />
<color r="1.000000" g="1.000000" b="1.000000" />

</light>

• power : Intensity of the light.

• res : Resolution of the shadowmap.

• radius : Radius of the blur (between shadowed and non-shadowed areas, creates
the ’soft’ look).

• bias : Bias of the shadow map. ’Closeness’ of the shadow to the object, if you have
shadow that ’leaks’ into areas it shouldn’t, try decreasing the shadow bias.

555

Chapter 29. YafRay

Area light
This is a light shed uniformly by a quadrilateral

<light type "arealight" name"Lamp.001" power="25.000000" samples="64.000000" psam-
ples="64.000000">

<d x = "-2.800729" y = "-0.566380" z = "3.235599" />
<c x = "-0.686398" y = "-1.759042" z = "3.833231" />
<b x = "0.541875" y = "0.418420" z = "3.833231" />

<color r="1.000000" g="1.000000" b="1.000000" />

</light>

• power : Intensity of the light.

• samples : Samples across area light surface.

• psamples : Penumbra prediction (quality of blurred shadow edges).

• a, b, c & d : Positions of the 4 corners of the rectangle that makes up the area
light. (Beware of orientation!)

556

Chapter 29. YafRay

Arealight, with Hemilight (white dot represents light position).

Path Light
This indirect lighting system performs ’global illumination’ by taking light from
background and diffuse objects. It uses either a Monte Carlo raytracing algorithm
(MC), or a Quasi Monte Carlo raytracing algorithm (QMC). The results from either
system can be rendered using an Irradiance Cache.

Since MC uses random sampling the results can be quite noisy. The more samples
you take the less noise you’ll see. Of course this results in a longer render time. QMC
sampling on the other hand produces less noise, but sometimes can result in dis-
cernible patterns in the shading of objects. Both noise and patterns can be reduced
with yafray built-in Anti Noise Filter.

Path Light will produce nice radiosity effects. It can also produce caustics, however,
as the photons that produce the caustics are not focused in a specific direction like
the photon light, the caustic patterns will be softer unless a huge number of samples
are taken.

<light type = "pathlight" name = "path" power = "1.000000" depth = "2" caus_depth = "4" sam-
ples = "16" use_QMC = "on" cache = "on" cache_size = "0.008000" angle_threshold = "0.200000" shadow_threshold = "0.200000">
</light>

• power : Intensity of the light.

• samples : Number of samples to take per pixel to get a quick and dirty preview of
your render, you can set this number low, then raise it to get the final render.

• depth : Number of ray bounces for each sample, at least 2 to get indirect lighting.

• caus_depth : Number of ray bounces when passing through caustic objects.

• use_QMC: Whenever this is set ’on’ will use quasi montecarlo sampling.

• cache : When this is set to on, Yafray will perform a prepass render to generate an
irradiance cache.

• cache_size : The size of the grid in the irradiance cache. Smaller values will mean
a higher resolution irradiance cache (and longer prepass times).

557

Chapter 29. YafRay

• angle_threshold : The angle between surface normals that determine whether
the caching algorithm considers the surface ’flat’, if the surface normal variation is
higher than this, the caching algorithm takes more samples.

• shadow_threshold : The minimum distance from the sample point an object can
be before the caching algorithm takes more samples.

Using the Cached Pathlight

Using the Irradiance Cache feature can be tricky, the results are well worth it, as you
can usually get the same quality image in a fraction of the render time.

The cache size is the size of a grid that the scene is divided up into. As the rays are
shot into the scene, they intersect objects, the point at which the ray intersects the
object will therefore fall into one of the boxes formed by the cache grid. At the time
the ray hits this point the renderer first asks:

1. "Are there any other sample points within this box?" If the answer is no, a sample
is taken, if there are other samples in the box it moves on to the next question:

2. "Are the surface normals of the other samples different to my current point?" (the
angle of difference is defined by "angle_threshold"). If the answer is yes, a sample is
taken, if the surface normals are all the same it moves on to the next question:

3. "Is the Intersection Point close to any other object?" (the distance threshold is de-
fined by "shadow_threshold" and the distance between the intersection point and the
existing sample points plays a part). If the answer is yes, more samples are taken, if
no, the sample point is skipped and the renderer moves on to the next intersection
point.

By doing this, the renderer finds areas of the image that need more samples (areas of
high detail), and areas that need less samples (areas that have low detail, such as flat
walls). Taking samples is the time consuming part of Global Illumination, by only
taking samples where they are necessary the cached pathlight can produce fantastic
images in a comparatively short time.

It does rely on some manual tweaking to find the ’sweet spot’ for the settings for
any given scene. If the cache size is too small, practically every sample point will be
taken anyway, as the answer to question 1 will almost alway be ’no’. On the other
hand if the cache size is too big, the distance in between sample points (which plays
a part in determining whether another object is considered ’close’) will be such that
the answer to question 3 will almost always be ’yes’. Both of these situations will
result in more samples being taken and the render taking longer.

Hemi Light
This indirect lighting system performs what is commonly called an ’Occlusion pass’.
This produces a fast diffuse light in the scene by ignoring objects surface properties
(colour) and just determining whether the point in question is in shadow or not. Be-
cause of this, the Hemilight will not produce colour bleeding between objects (unlike
the pathlight). It uses either a Monte Carlo raytracing algorithm (MC), or a Quasi
Monte Carlo raytracing algorithm (QMC). Since MC uses random sampling the re-
sults can be quite noisy. The more samples you take the less noise you’ll see, of course
this results in longer render time. QMC sampling on the other hand produces less
noise, but sometimes can result in descernable patterns in the shading of objects.
Both noise and patterns can be reduced with yafray built-in Anti Noise Filter.

The Hemilight will assume that the scene is evenly lit, as if a huge sphere surrounded
the scene, lighting it with the color you specify in the ’color’ tag. If you omit the color
tag altogether, the hemilight will sample the render background if available (you
can use this with HDRI backgrounds to get fast and realistic lighting simulations for
compositing into a real scene).

558

Chapter 29. YafRay

<light type="hemilight" name="sky" power= "0.500000" samples = "20" use_QMC = "on">
<color r ="0.800000" g ="0.900000" b ="1.000000" />

</light>

• power : Intensity of the light.

• samples : Number of samples to take. Higher samples will mean a smoother result,
but longer render times.

• use_QMC: Whenever this is set ’on’ will use quasi montecarlo sampling.

• color : Color of the diffuse light.

Hemilight with light blue colour value (model from www.amazing3d.com)

559

Chapter 29. YafRay

Photon light
This is a focused light to produce radiosity and caustics effects.

<light type= "photonlight" name="Lamp.002caus" power = "100.000000" pho-
tons = "50000" depth = "3" search = "100" angle = "15.000000"

mode = "caustic" fixedradius = "0.100000" cluster = "0.010000" use_QMC = "off" >
<from x="6.372691" y="3.340035" z="2.815973" />
<to x="0.285646" y="0.149627" z="1.397566" />
<color r="1.000000" g="1.000000" b="1.000000" />

</light>

• name: Photonlight name.

• power : Scales the effect of the photon light, whether it be caustic or diffuse.

• mode: Sets the photon light to either diffuse, or caustic as detailed below.

• photons : Number of photons to trace, the more photons, the more information to
generate the photonmap from. Generally speaking, you should need less photons
for diffuse photonlights.

• depth : Amount of reflections (bounces) or refractions the photons will perform.

• search : Number of photons to gather while shading. higher values will soften the
effect (when increasing the search, you should also increase the fixedradius).

• fixedradius : Search radius when looking for photons (number of photons looked
for is defined by ’search’.

• cluster : This defines the smallest unit in the photonmap created. The smaller the
number, the finer the photonmap.

560

Chapter 29. YafRay

• use_QMC: Whenever this is set ’on’ will use quasi monte carlo raytracing2.

• from : Position of the light.

• to : Target of the light.

• angle : Similar to size value for the spotlight, angle of the photon ’beam’.

• color : Color of the light.

Photon lights have two modes, "caustic" and "diffuse". In the first mode the light
will draw reflected and transmitted photons, causing light to form caustic patterns
of light that travel through transparent objects (ie objects that have the appropriate
settings in their Object tag. In "diffuse" mode photons are reflected by diffuse surfaces
in random directions to perform "radiosity" or "Global Illumination". In both modes
only indirect light is stored (photons which have bounced at least once), so direct
lighting still has to be done with a normal light.

Why not to work in both modes? You usually put different photon values for caustics
than for radiosity. The needs change so is better to have two different lights for each
task.

Tuning Photonlights

photons

Choose a good value depending on the task, for radiosity you’ll need few photons.
For the caustics it depends on what resolution you want in the shapes.

search, fixed radius and cluster

These settings are closely linked, you need to get the combination of all three settings
right to achieve good looking results. The search setting defines how many photons
to look for from a point, the fixed radius defines how far from that point to look for
the photons. Once the photons have been gathered, the fixed radius area is gridded
up into small ’clusters’, the size of which is defined by the cluster setting. Any pho-
tons within the same cluster are averaged into one result (equivalent to 1 pixel in the
photonmap).

If your diffuse or caustic effects look fractured into geometric shapes, the algorithm
is not finding the required number of photons (search) within the defined radius
(fixed_radius). To fix this you need to make sure there are enough photons within the
search radius to reach the search amount. To achieve this, you could either increase
the total amount of photons (photons), increase the search radius (fixed_radius), or
decrease the amount of photons searched for (search). Increasing the number of pho-
tons will slow down the first pass, you will probably have to add a lot more photons
to see much change . Increasing the search radius will show results quickly but is
also reliant on there being enough photons in the scene initially. large differences be-
tween the fixed_radius and cluster settings (eg high fixed radius and low cluster) will
greatly increase rendering time (which makes sense, as each sample (which will be
large due to the high fixed_radius) is being split into a lot of tiny clusters (because of
the small cluster size). A good rule of thumb is:

fixed_radius/cluster = sqrt(search)

This means that if you are trying for 100 photons (search = 100) then fixed_radius
divided by cluster should equal 10 (sqrt(100)=10) so if we set a cluster size of .01 then
fixed_radius should be around .1 ((10*.01 = .1) = (.1/.01 = 10))

561

Chapter 29. YafRay

Background
Relevant to Blender v2.31

Adds a background image (environment map), colour or sky to your render.

Pathlight and Hemilight can sample the background colour and intensity to simulate
real world lighting.

Normal Image Background

<background type="image" name="envnorm" power="1.000000">
<filename value="C:\directory\image.jpg"/>

</background>

• type - image : Allows you to use a bitmap image of one of the supported texture
formats as a background. The image is mapped around the scene as a sphere, so
the image should be in latitude/longitude format (ratio 2:1).

• name: Background Name.

• Power : Level of brightness of the bitmap. 1.0 is default, greater numbers will in-
crease brightness, lower numbers will decrease brightness.

• filename : Full path and filename of the image, including the file extension.

HDRI Background

<background type = "HDRI" name = "envhdri" exposure_adjust = "0">
<filename value = "C:\directory\image.hdr" />

</background>

• type - HDRI : Allows you to use an HDR image as a background. The HDRI is
mapped around the scene as an angular map, not latitude longitude like the normal
image background.

• name: Background Name.

• exposure_adjust : Similar to ’power’ for a normal image background. 0 is de-
fault, increasing this will brighten the HDR, decreasing will darken (equivalent to
adjusting the f-stop on a physical camera).

• filename : Full path and filename of the HDRI, including the file extension.

Constant Background

<background type="constant" name = "constbackg">
<color r="1.000000" g="1.000000" b="1.000000"/>

</background>

• type - constant : Lets you assign a single colour as the background.

562

Chapter 29. YafRay

• name: Background Name.

• color : r - red value of color (0.000000 - 1.000000) g - green value of color (0.000000
- 1.000000) g - green value of color (0.000000 - 1.000000). 1/1/1 is white, 0/0/0 is
black.

Sun/Sky Background

<background type="sunsky" name ="Sun1" turbidity ="4.000000" add_sun="on" sun_power="1.000000"
a_var="1.000000" b_var="1.000000" c_var="1.000000" d_var="1.000000" e_var="1.000000" >
<from x="-0.007401" y="8.589217" z="3.737965"/>

</background>

• type - sunsky : Lets you assign a realistic sky background with optional sun.

• turbidity : Atmosphere density (eg mist/fog) the lower the number, the less vis-
ible the sky is. A value of 4 is a clear sky.

Camera
Relevant to Blender v2.31

<camera name="Camera" resx="1024" resy="576" focal="1.015937">
<from x="0.323759" y="-7.701275" z="2.818493"/>
<to x="0.318982" y="-6.717273" z="2.640400"/>
<up x="0.323330" y="-7.523182" z="3.802506"/>

</camera>

• Name: Name of the camera.

• resx : Horizontal resolution (rendered image width in pixels).

• resy : Vertical Resolution (rendered image height in pixels).

• res : Resolution of the shadowmap (only for volumetric shadows by now).

• focal : Field of View. Equivalent to lens length in real world camera - 1.093 is
roughly 35mm, 6.25 is roughly 200mm.

• from : Position of the camera.

• to : Target of the camera.

• up : Camera’s ’Up Vector’ - defines what is considered the ’up’ direction of the
camera.

Render
Relevant to Blender v2.31

Outputs an image file, based on the input from a ’Camera’ block.

563

Chapter 29. YafRay

Multiple views: You can have as many camera blocks and/or render blocks within the
same XML, to save out the same view, with different output settings, or several different
views (cameras) at various resolutions, with different backgrounds.

<render camera_name = "Camera" AA_passes = "2" AA_minsamples = "2" AA_pixelwidth = "1.500000" AA_threshold = "0.040000"
raydepth = "5" bias = "0.300000" gamma = "1.000000" exposure = "0.000000" back-

ground_name="background>
<outfile value="C:\yablex\texture sample\texture sample.tga"/> <save_alpha value="on" />

</render>

• AA_passes : Sets the number of anti-alias passes to perform. A value of 0 means no
anti-aliasing is done.

• AA_minsamples : Sets the number of samples per pass.

There are several ways to use these two parameters. You can set ’AA_minsamples’
to a certain number, and set ’AA_passes’ to 1, then after a first render pass all pix-
els which need it will be anti-aliased using the full number of samples set with
’AA_minsamples’. The old method is equivalent to setting ’AA_minsamples’ to 1 and
’AA_passes’ to the number of samples, then all pixels will be continually checked if
they still need extra samples, this is in fact slower for normal raytracing pictures,
but can be faster when rendering with hemi- or path-light. However, due to internal
limitations this doesn’t work well with high sample settings. You can also combine
both methods, check pixels every pass and take more samples per pass at the same
time, for instance for 16 samples total, you could try setting both AA_passes and
AA_minsamples to 4 (4 x 4 = 16).

• AA_pixelwidth : Sets the amount of overlap of pixels used for AA.

The range is 1 to 2 (common choices are 1.5 or 2.0), the higher, the better and smoother
the AA, but depending on your preference you might find the image to look a bit
blurred. A value of 1.0 is equivalent to the old method.

• AA_threshold : Sets the threshold value at which point a pixel is considered for
anti-aliasing.

The range is from 0.0 (anti-alias every pixel) to 1.0 (no anti-aliasing).

Since QMC is used, settings with low sample settings like in the example above can
produce quite good results nevertheless.

Anti-aliasing is also done on the alpha channel.

• save_alpha : To save a rendered targa image with the alpha channel set value ’on’.

Filters
Relevant to Blender v2.31

Anti Noise Filter

<filter type="antinoise" name="Anti Noise" radius = "1.000000" max_delta = "0.100000">
</filter>

564

Chapter 29. YafRay

• type-antinoise : Post processes the rendered image, reducing noise resulting
from too few pathlight, hemilight, or conetraced samples.

• name: Name of the filter

• radius : Amount of blur to apply to the areas considered to have noise.

• max_delta : Tolerance setting for noise. With higher values, more of the image will
be considered ’noise’ and will have the blur applied to them.

Depth of Field Filter

<filter type="dof" name="dof" focus = "12.5" near_blur ="10.000000" far_blur ="10.000000" scale ="2.000000">
</filter>

• type-dof : Post processes the rendered image, using depth information to apply
an out of focus effect.

• name: Name of the filter.

• focus : Distance from the camera that is in focus (objects further away and closer
than this point will be out of focus).

• near_blur : Amount to blur objects in front of the focus point.

• far_blur : Amount to blur objects behind the focus point.

• scale : Scales the area that is in focus. Higher values will decrease the effect of
depth of field as the out of focus areas are pushed away from the focus area.

The Depth of Field filter is a 2D filter, i.e. a post processing technique, and as such,
has advantages and disadvantages. It uses the rendered image, plus a Z Buffer (which
tells the filter how far away each pixel is from the camera) to figure out which pixels
are blurred or not blurred.

Because its a 2D effect it has the advantage of being extremely quick. However there
are a few disadvantages:

Reflections are not blurred correctly. If you look at a reflection, you’ll notice that the
reflection’s blur is based on the distance from the camera of the reflection plane, not
the object in the reflection.

Because the DOF is done on a 2D image, rather than a 3D scene, the blur cannot know
what is behind any given object, therefore often the edges of an extremely blurred
object in the foreground will look smudgy or dirty.

If you keep these limitations in mind, the Depth of Field filter can produce great
looking Depth of Field effects very quickly.

Notes
1. http://www.yafray.org

2. http://www.coala.uniovi.es/wiki/index.php/YafrayGlossaryQMC

565

Chapter 29. YafRay

566

Glossary

A-Z
Active

Blender makes a distinction between selected and active. Only one Object or item
can be active at any given time, for example to allow visualization of data in
buttons.

An active object is one that is in EditMode, or is immediately switchable to Ed-
itMode (usually by TAB). No more than one object is active at any moment.
Typically, the most recent selected object is active.

See Also: Selected.

Actuator

A LogicBrick that acts like a muscle of a lifeform. It can move the object, or also
make a sound.

See Also: LogicBrick, Sensor, Controller.

Alpha

The alpha value in an image denotes opacity, used for blending and antialiasing.

Ambient light

Light that exists everywhere without any particular source. Ambient light does
not cast shadows, but fills in the shadowed areas of a scene.

Anti-aliasing

An algorithm designed to reduce the stair-stepping artifacts that result from
drawing graphic primitives on a raster grid.

AVI

"Audio Video Interleaved". A container format for video with synchronized au-
dio. An AVI file can contain different compressed video and audio-streams.

Back-buffer

Blender uses two buffers in which it draws the interface. This double-buffering
system allows one buffer to be displayed, while drawing occurs on the back-
buffer. For some applications in Blender the back-buffer is used to store color-
coded selection information.

Bevel

Beveling removes sharp edges from an extruded object by adding additional
material around the surrounding faces. Bevels are particularly useful for flying
logos, and animation in general, since they reflect additional light from the cor-
ners of an object as well as from the front and sides.

567

Glossary

Bounding box

A six-sided box drawn on the screen that represents the maximum extent of an
object.

Bump map

A grayscale image used to give a surface the illusion of ridges or bumps. In
Blender bumpmaps are called Nor-maps.

Channel

Some DataBlocks can be linked to a series of other DataBlocks. For example, a
Material has eight channels to link Textures to. Each IpoBlock has a fixed number
of available channels. These have a name (LocX, SizeZ, enz.) which indicates how
they can be applied. When you add an IpoCurve to a channel, animation starts
up immediately.

Child

Objects can be linked to each other in hierarchical groups. The Parent Object in
such groups passes its transformations through to the Child Objects.

See Also: Parent.

Clipping

The removal, before drawing occurs, of vertices and faces which are outside the
field of view.

Controller

A LogicBrick that acts like the brain of a lifeform. It makes decisions to activate
muscles (Actuators), either using simple logic or complex Python scripts.

See Also: LogicBrick, Sensor, Python, Actuator.

DataBlock (or "block")

The general name for an element in Blender’s Object Oriented System.

Doppler effect

The Doppler effect is the change in pitch that occurs when a sound has a veloc-
ity relative to the listener. When a sound moves towards the listener the pitch
will rise. When going away from the listener the pitch will drop. A well known
example is the sound of an ambulance passing by.

Double-buffer

Blender uses two buffers (images) to draw the interface in. The content of one
buffer is displayed, while drawing occurs on the other buffer. When drawing is
complete, the buffers are switched.

568

Glossary

EditMode

The mode for making intra-object graphical changes. Blender has two modes
for making changes graphically. EditMode allows intra-object changes (moving,
scaling rotating, deleting, and other operations on selected vertices of the active
object). By contrast, ObjectMode allows inter-object changes (operations on se-
lected objects).

Switch between EditMode and ObjectMode with Hotkey: TAB.

See Also: ObjectMode, Vertex (pl. vertices).

Extend select

Adds new selected items to the current selection (SHIFT-RMB).

Extrusion

The creation of a three-dimensional object by pushing out a two-dimensional
outline and giving it height, like a cookie-cutter. It is often used to create 3D text.

Face

The triangle and square polygons that form the basis for Meshes or for rendering.

Field

Frames from videos in NTSC or PAL format are composed of two interlaced fields.

FaceSelectMode

Mode to select faces on an object. Most important for texturing objects. Hotkey:
FKEY.

Flag

A programming term for a variable that indicates a certain status.

Flat shading

A fast rendering algorithm that simply gives each facet of an object a single color.
It yields a solid representation of objects without taking a long time to render.
Pressing ZKEY switches to flat shading in Blender.

Fps

Frames per second. All animations, video, and movies are played at a certain
rate. Above ca. 15fps the human eye cannot see the single frames and is tricked
into seeing a fluid motion. In games this is used as an indicator of how fast a
game runs.

569

Glossary

Frame

A single picture taken from an animation or video.

Gouraud shading

A rendering algorithm that provides more detail. It averages color information
from adjacent faces to create colors. It is more realistic than flat shading, but less
realistic than Phong shading or ray-tracing. The hotkey in Blender is CTRL-Z.

Graphical User Interface

The whole part of an interactive application which requests input from the user
(keyboard, mouse etc.) and displays this information to the user. Blender’s GUI
is designed for an efficient modelling process in an animation company where
time equals money. Blender’s whole GUI is done in OpenGL.

See Also: OpenGL.

Hierarchy

Objects can be linked to each other in hierarchical groups. The Parent Object in
such groups passes its transformations through to the Child Objects.

Ipo

The main animation curve system. Ipo blocks can be used by Objects for move-
ment, and also by Materials for animated colors.

IpoCurve

The Ipo animation curve.

Item

The general name for a selectable element, e.g. Objects, vertices or curves.

Lathe

A lathe object is created by rotating a two-dimensional shape around a central
axis. It is convenient for creating 3D objects like glasses, vases, and bowls. In
Blender this is called "spinning".

Keyframe

A frame in a sequence that specifies all of the attributes of an object. The object
can then be changed in any way and a second keyframe defined. Blender au-
tomatically creates a series of transition frames between the two keyframes, a
process called "tweening."

570

Glossary

Layer

A visibility flag for Objects, Scenes and 3DWindows. This is a very efficient
method for testing Object visibility.

Link

The reference from one DataBlock to another. It is a "pointer" in programming
terminology.

Local

Each Object in Blender defines a local 3D space, bound by its location, rotation
and size. Objects themselves reside in the global 3D space.

A DataBlock is local, when it is read from the current Blender file. Non-local
blocks (library blocks) are linked parts from other Blender files.

LogicBrick

A graphical representation of a functional unit in Blender’s game logic. Log-
icBricks can be Sensors, Controllers or Actuators.

See Also: Sensor, Controller, Actuator.

Mapping

The relationship between a Material and a Texture is called the ’mapping’. This
relationship is two-sided. First, the information that is passed on to the Texture
must be specified. Then the effect of the Texture on the Material is specified.

Mipmap

Process to filter and speed up the display of textures.

MPEG-I

Video compression standard by the "Motion Pictures Expert Group". Due to its
small size and platform independence, it is ideal for distributing video files over
the internet.

ObData block

The first and most important DataBlock linked by an Object. This block defines
the Object type, e.g. Mesh or Curve or Lamp.

Object

The basic 3D information block. It contains a position, rotation, size and transfor-
mation matrices. It can be linked to other Objects for hierarchies or deformation.
Objects can be "empty" (just an axis) or have a link to ObData, the actual 3D
information: Mesh, Curve, Lattice, Lamp, etc.

571

Glossary

ObjectMode

The mode for making inter-object graphical changes. Blender has two modes for
making changes graphically. ObjectMode allows inter-object changes (moving,
scaling rotating, deleting and other operations on selected objects). By contrast,
EditMode allows intra-object changes (operations on selected vertices in the ac-
tive object).

Switch between ObjectMode and EditMode with Hotkey: TAB.

See Also: EditMode.

OpenGL

OpenGL is a programming interface mainly for 3D applications. It renders 3D
objects to the screen, providing the same set of instructions on different com-
puters and graphics adapters. Blender’s whole interface and 3D output in the
real-time and interactive 3D graphic is done by OpenGL.

Orthographic view

An orthographic view of an object makes it appear flat and two-dimensional,
like a plan or an elevation. All the points of the object are perpendicular to the
viewing plane, and are projected in parallel.

See Also: Perspective view.

Oversampling

See: Anti-aliasing

Overscan

Video images generally exceed the size of the physical screen. The edge of the
picture may or may not be displayed, to allow variations in television sets. The
extra area is called the overscan area. Video productions are planned so critical
action only occurs in the center safe title area. Professional monitors are capable
of displaying the entire video image including the overscan area.

Parent

An object that is linked to another object, the parent is linked to a child in a
parent-child relationship. A parent object’s coordinates become the center of the
world for any of its child objects.

See Also: Child.

Perspective view

In a perspective view, the further an object is from the viewer, the smaller it
appears.

See Also: Orthographic view.

Pivot

A point that normally lies at an object’s geometric center. An object’s position
and rotation are calculated in relation to its pivot-point. However, an object can
be moved off its center point, allowing it to rotate around a point that lies outside
the object.

572

Glossary

Pixel

A single dot of light on the computer screen; the smallest unit of a computer
graphic. Short for "picture element."

Plug-In

A piece of (C-)code loadable during runtime. This way it is possible to extend
the functionality of Blender without a need for recompiling. The Blender plugin
for showing 3D content in other applications is such a piece of code.

Python

The scripting language integrated into Blender. Python1 is an interpreted, inter-
active, object-oriented programming language.

Quaternions

Instead of using a three-component Euler angle, quaternions use a
four-component vector. It is generally difficult to describe the relationships
of these quaternion channels to the resulting orientation, but it is often not
necessary. It is best to generate quaternion keyframes by manipulating the
bones directly, only editing the specific curves to adjust lead-in and lead-out
transitions.

Render

To create a two-dimensional representation of an object based on its shape and
surface properties (i.e. a picture for print or to display on the monitor).

Rigid Body

Option for dynamic objects in Blender which causes the game engine to take the
shape of the body into account. This can be used to create rolling spheres for
example.

Selected

Blender makes a distinction between selected and active objects. Any number of
objects can be selected at once. Almost all key commands have an effect on selected
objects. Selecting is done with the right mouse button.

See Also: Active, Extend select.

Sensor

A LogicBrick that acts like a sense of a lifeform. It reacts to touch, vision, collision
etc.

See Also: LogicBrick, Controller, Actuator.

Single User

DataBlocks with only one user.

573

Glossary

Smoothing

A rendering procedure that performs vertex-normal interpolation across a face
before lighting calculations begin. The individual facets are then no longer visi-
ble.

Transform

Change a location, rotation, or size. Usually applied to Objects or vertices.

Transparency

A surface property that determines how much light passes through an object
without being altered.

See Also: Alpha.

User

When one DataBlock references another DataBlock, it has a user.

Vertex (pl. vertices)

The general name for a 3D or 2D point. Besides an X,Y,Z coordinate, a vertex can
have color, a normal vector and a selection flag. Also used as controlling points
or handles on curves.

Vertex array

A special and fast way to display 3D on the screen using the hardware graphic
acceleration. However, some OpenGL drivers or hardware doesn’t support this,
so it can be switched off in the InfoWindow.

Wireframe

A representation of a three-dimensional object that only shows the lines of its
contours, hence the name "wireframe."

X, Y, Z axes

The three axes of the world’s three-dimensional coordinate system. In the
FrontView, the X axis is an imaginary horizontal line running from left to right;
the Z axis is a vertical line; and Y axis is a line that comes out of the screen
toward you. In general, any movement parallel to one of these axes is said to be
movement along that axis.

X, Y, and Z coordinates

The X coordinate of an object is measured by drawing a line that is perpendicular
to the X axis, through its centerpoint. The distance from where that line intersects
the X axis to the zero point of the X axis is the object’s X coordinate. The Y and Z
coordinates are measured in a similar manner.

574

Glossary

Z-buffer

For a Z-buffer image, each pixel is associated with a Z-value, derived from the
distance in ’eye space’ from the Camera. Before each pixel of a polygon is drawn,
the existing Z-buffer value is compared to the Z-value of the polygon at that
point. It is a common and fast visible-surface algorithm.

Notes
1. http://www.python.org/

575

Glossary

576

	Blender Documentation Volume I User Guide
	Table of Contents
	Chapter 1. Introduction
	What is Blender?
	Blender's History
	About Free Software and the GPL
	Getting support the Blender community
	Chapter 2. Installation
	Downloading and installing the binary distribution
	Windows
	Quick Install
	Indepth Instructions

	OSX
	Install

	Linux
	Quick Install
	Indepth Instructions

	FreeBSD
	Install

	Irix
	Install

	Solaris
	Install

	Building Blender from source
	Getting the sources
	Get the latest stable source package
	Get the latest sources from CVS

	External libraries needed
	Tools needed
	Building Blender
	Technical support

	Chapter 3. Understanding the interface
	Blender's Interface Concept
	Keyboard and mouse
	The window system
	Window types
	Contexts, Panels and Buttons
	Toolbox
	Screens
	Scenes

	Navigating in 3D Space
	The viewing direction (rotating)
	Translating and Zooming the View
	Perspective and Orthographic Projection
	Draw mode
	Local view
	The layer system

	The vital functions
	Loading files
	Saving files
	Rendering
	User preferences and Themes
	Setting the default scene

	Chapter 4. Your first animation in 30 + 30 minutes
	Warming up
	Building the body
	Let's see what Gus looks like
	Materials and Textures
	Rigging
	Skinning
	Posing
	Gus walks!
	Chapter 5. ObjectMode
	Selecting objects
	Moving (translating) objects
	Rotating objects
	Scaling/mirroring objects
	Transform Properties Panel
	Duplicate
	Parenting (Grouping)
	Tracking
	Other Actions
	Boolean operations
	Chapter 6. Basic Mesh Modelling
	Basic Objects
	EditMode
	Structures: Vertices, Edges and Faces
	Basic Editing
	Mesh Undo

	Smoothing
	Extrude
	The Blade
	The Handle
	The Hilt

	Spin and SpinDup
	Spin
	SpinDup

	Screw
	Warp Tool
	Object Hooks
	Adding hooks
	Using hooks
	EditMode options
	Hooks panel

	Chapter 7. Advanced Mesh Modelling
	CatmullClark Subdivision Surfaces ()
	Weighted creases for subdivision surfaces
	Edge Tools
	Edge/Face select
	Face Loop Splitting
	Knife Tool

	Bevelling Tools
	Symmetrical Modelling
	Proportional Editing Tool
	Noise
	Decimator Tool
	Chapter 8. Meta Objects
	Chapter 9. Curves and Surfaces
	Curves
	Béziers
	NURBS
	Working example

	Surfaces
	Text
	Special Characters

	Extrude Along Path
	Curve Taper
	Curve Deform
	Introduction
	Interface
	Example

	Skinning
	Chapter 10. Materials and Textures
	Diffusion
	Specular Reflection
	Materials in practice
	Material Colors
	The Shaders
	Tweaking Materials

	Ramp Shaders ()
	Raytracing Reflections ()
	Raytraced Transparencies ()
	Multiple Materials
	Special Materials
	Halo Materials
	Lens Flares

	Chapter 11. Textures
	Textures
	Textures from the Material Point of View
	Textures themselves
	ImageTexture

	Environment Maps
	Displacement Maps
	Displacement Maps on Objects
	Interface
	Displacement Map usage
	Example

	Solid and Hollow Glass
	Solid Glass
	Hollow Glass

	UV Editor and FaceSelect
	Introduction
	The UV Editor
	Unwrapping tools
	Editing UV coordinates
	LSCM Unwrap
	Texture Paint
	Rendering and UV coordinates

	Unwrapping Suzanne
	Easy as it "seams"
	Unwrapping the mesh
	Stitching the Map
	Again, please ;)
	Finishing it up
	What now ?

	Texture Plugins
	Chapter 12. Lighting
	Introduction
	Lamp Types ()
	Sun Light
	Hemi Light
	Lamp Light
	Spot Light
	Spot Options
	Spot Buttons

	Ray Shadows
	Buffer Shadows
	Volumetric Light
	Tweaking Light
	Three point light
	Three point light Outdoor
	Area Light
	Global Illumination (and Global Shadowing)

	Chapter 13. The World and The Universe
	The World Background
	Exposure ()
	Mist
	Stars
	Ambient Occlusion
	Chapter 14. Animation of Undeformed Objects
	IPO Block
	Key Frames
	The IPO Curves
	IPO Curves and IPO Keys
	Other applications of IPO Curves
	The Time Ipo
	Path Animation
	Chapter 15. Animation of Deformations
	Absolute Vertex Keys
	Curve and Surface Keys
	Lattice Keys

	Relative VertexKeys
	Lattice Animation
	Chapter 16. Character Animation
	Introduction: Lights, Camera and... ACTION !
	General Tools
	The Armature Object
	Naming Bones
	Parenting and IK chain
	The Armature Panel

	Skinning
	Vertex Groups
	Weight Painting

	Posemode
	Action Window
	Non Linear Animation
	Working with Action Strips

	Constraints
	Constraint Types
	Constraints Evaluation Rules and Precedence
	Influence

	Rigging a Hand and a Foot
	The Hand
	The Foot

	Rigging Mechanics
	Pivot axis
	The Armature
	Hydraulics

	How to setup a walkcycle using NLA
	The path to success
	Moving hands while walking

	Chapter 17. Rendering
	Rendering by Parts
	Panoramic renderings
	Antialiasing
	Output formats
	Rendering Animations
	Motion Blur
	Depth of Field
	Cartoon Edges
	The Unified Renderer
	Preparing your work for video
	Colour Saturation
	Rendering to fields

	Chapter 18. Radiosity
	The Blender Radiosity method
	Radiosity Rendering
	Radiosity as a Modelling Tool
	Phase 1: Collect Meshes
	Phase 2: Subdivision limits
	Phase 3: Adaptive Subdividing
	Phase 4: Editing the solution

	Radiosity Juicy example
	Setting up
	The Sky Dome
	The Radiosity solution
	Texturing

	Chapter 19. Raytracing
	Chapter 20. Particles
	Introduction
	Simple Particles
	A first Particle System
	Rendering a particle system
	Objects as particles
	Making fire with particles
	The particle system
	The firematerial

	A simple explosion
	The materials
	The particlesystems

	Fireworks
	Controlling Particles via a Lattice
	Static Particles

	Particle Interaction
	Introduction
	Interface
	Example

	Chapter 21. Other Effects
	Introduction
	Build Effect
	Wave Effect
	Chapter 22. Special modelling techniques
	Introduction
	DupliVerts
	DupliVerts as an Arranging Tool
	DupliVerts to Model a Single Object

	DupliFrames
	Modelling using DupliFrames
	Arranging objects with DupliFrames
	More Animation and Modelling

	Modelling with lattices
	How does it work?

	Chapter 23. Volumetric Effects
	Chapter 24. Sequence Editor
	Learning the Sequence Editor
	First Animation: two cubes
	First Sequence: delayed wireframes
	Second Animation: A delayed solid cube
	Third Animation: a tunnel
	Second Sequence: Using the tunnel as a backdrop
	Fourth Animation: a jumping logo
	Fifth Animation: particle bars
	Third Sequence: Combining the logo and the particle bars
	Sixth Animation: zooming logo
	Assembling everything so far
	Conclusion

	Sound Sequence Editor
	Sequence Editor Plugins
	Chapter 25. Python Scripting
	A working Python example
	Headers, importing modules and globals.
	Drawing the GUI.
	Managing Events.
	Mesh handling
	Conclusions

	Python Reference
	Python Scripts
	Chapter 26. Blender's Plugins System
	Writing a Texture Plugin
	Specification:
	Generic Texture Plugin:
	Our Modifications:
	Compiling:
	Writing a Sequence Plugin
	Specification:
	Generic Sequence Plugin:
	Our Modifications:
	Compiling:

	Chapter 27. Yafray as an Integrated External Renderer
	Part 1
	Interface
	Step1
	Step2
	Step3
	Points to check for problems

	Part 2
	Let there be light... And there was Yafray everywhere
	Lamp
	Area
	Spot
	Sun
	More lamps?

	Part 3
	GI and other features
	The available Methods of GI
	Skydome
	Full

	Features for Full method of GI
	Depth:
	Cdepth:
	Photon:
	Count:
	Radius:
	MixCount:
	Tune Photons:
	Quality:

	Other features of Yafray
	AntiAliasing:

	The Depth of filter
	HDRI or High Dynamic Range Illumination
	Closing comments

	Glossary for the geeks
	Glossary for the geeks
	Global Illumination
	Ray tracing
	Photon
	Caustics
	HDRI
	High Dynamic Range Illumination
	Anti aliasing
	Photonmap

	Chapter 28. From Blender to YafRay Using YableX
	What is Yable?
	Which Yable?
	Where to get YableX?

	Installing the script
	The Interface
	Workflow philosophy.
	Global Settings
	Material Setting
	Light Settings

	Yable Juicy example
	Chapter 29. YafRay
	Introduction
	Installation
	YafRay for Windows
	YafRay for Mac OSX
	YafRay on Linux

	Scene Description Language Overview
	Shaders
	Base Shaders
	Constant
	Generic
	Phong

	Procedural
	Marble
	Wood
	Clouds

	Meta Shaders
	Color2float shading block
	Colorband shading block
	Conetrace block
	Coords shading block
	Float2color shading block
	Fresnel shading block
	HSV shading block
	Image shading block
	Mix shading block
	Multiply shading block
	RGB shading block
	Sin shading block

	Renderable Objects
	Transform tag
	Object tag
	The Mesh tag:

	Lights
	Spot light
	Point light
	Sun light
	Soft light
	Area light
	Path Light
	Using the Cached Pathlight

	Hemi Light
	Photon light
	Tuning Photonlights
	photons
	search, fixed radius and cluster

	Background
	Normal Image Background
	HDRI Background
	Constant Background
	Sun/Sky Background

	Camera
	Render
	Filters
	Anti Noise Filter
	Depth of Field Filter

	Glossary
	AZ
	Active
	Actuator
	Alpha
	Ambient light
	Antialiasing
	AVI
	Backbuffer
	Bevel
	Bounding box
	Bump map
	Channel
	Child
	Clipping
	Controller
	DataBlock (or "block")
	Doppler effect
	Doublebuffer
	EditMode
	Extend select
	Extrusion
	Face
	Field
	FaceSelectMode
	Flag
	Flat shading
	Fps
	Frame
	Gouraud shading
	Graphical User Interface
	Hierarchy
	Ipo
	IpoCurve
	Item
	Lathe
	Keyframe
	Layer
	Link
	Local
	LogicBrick
	Mapping
	Mipmap
	MPEGI
	ObData block
	Object
	ObjectMode
	OpenGL
	Orthographic view
	Oversampling
	Overscan
	Parent
	Perspective view
	Pivot
	Pixel
	PlugIn
	Python
	Quaternions
	Render
	Rigid Body
	Selected
	Sensor
	Single User
	Smoothing
	Transform
	Transparency
	User
	Vertex (pl. vertices)
	Vertex array
	Wireframe
	X, Y, Z axes
	X, Y, and Z coordinates
	Zbuffer

