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Abstract

A math refresher for the tasks 3D artists and developers face every day, includ-
ing aspects of the geomety of 3D graphics, 3D object representation and geometric
transformations, to wit:

• Coordinate systems
• Elementary algorithms (3D affine geometry of lines, planes, distance and

intersections)
• Vector wizardry (math tricks to speed up things)
• Geometric transforms (rotation, dilation, shear)
• Matrices and some numerical linear algebra (equation solving)
• Interpolation and approximation (splines, NURBS and their relatives)
• Differential geometry of surfaces in a nutshell (coordinate patches, volume

forms and the dreadful Jacobian)
• Whatever you want to know and never dared to ask about 3D math
• Antialiasing (only for render fans)

1 Coordinate systems

Three-dimensional scene description requires mainly using a 3D cartesian coordinate
system. Points in space are uniquely determined by their three cartesian coordinates
(x, y, z).

Other coordinate systems are not so frequently used in 3D graphics. The most
common are cylindrical and spherical coordinates.

The three systems label points with coordinates according to the schema of figure 1.
Each system uses three of the dimensions referred thereto:
cartesian: (x, y, z)
cylindrical: (ρ, φ, z)
spherical: (r, θ, φ)

The equations allowing us to switch from and to other coordinate systems are

Cartesian ↔ Spherical Cartesian ↔ Cylindrical

x = r sin θ cos φ x = ρ cos φ

y = r sin θ sin φ y = ρ sin φ

z = r cos θ z = z

Of greater importance for computer graphics is the usage of homogeneous or pro-
jective coordinates. Ordinary points in space are given four coordinates instead of
three:

(x, y, z) ↔ (x, y, z, w)
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Figure 1: Cartesian, cylindrical and spherical coordinate systems

This introduces an obvious redundancy, so that the same point in 3D has infinitely
many homogeneous coordinates, according to the equivalence

(x, y, z, w) ≡ (x ′, y′, z′, w′) ⇔
⇔ α(x, y, z, w) = (x ′, y′, z′, w′) for some α 6= 0

so that proportional 4-tuples denote the same point. The usual (x, y, z) triple is iden-
tified with the (x, y, z, 1) quadruple, and the quadruple (x, y, z, w) denotes a point
(x/w, y/w, z/w) in ordinary space.

If w = 0, we have a point at infinity; what we actually get with this 4-tuple playing
is a coordinatization of projective 3-space geometry. This is the first advantage of
this representation. No special treatment of points at infinity or parallelism is needed.
Projective transformations are easily transliterated into linear transformations in 4-tuple
space (that is, matrices). Another advantage is that the usual affine transformations get
also a regular treatment as matrix products, as we shall see in 4
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Figure 2: Projective coordinates

2 Vector algebra

2.1 Vector operations

Vectors in 3D space are usually given by their cartesian coordinates, and operations on
vector can be defined in terms of them:
addition (x, y, z) + (x ′, y′, z′) = (x + x ′, y + y ′, z + z ′)
substraction (x, y, z) − (x ′, y′, z′) = (x − x ′, y − y ′, z − z ′)
scaling λ(x, y, z) = (λx, λy, λz)
dot product (x, y, z) · (x ′, y′, z′) = xx ′ + yy ′ + zz ′

norm ‖(x, y, z)‖ =
√

v · v =
√

x2 + y2 + z2

cross product (x, y, z) × (x ′, y′, z′) = (x, y, z) ∧ (x ′, y′, z′) = (yz ′ − zy ′, zx ′ −
xz ′, xy ′ − yx ′)

2.2 Geometric interpretations

The geometric interpretation of these operations can be seen in figure 3. We can see
that the dot product has the alternative interpretation as

v · w = ‖v‖ ‖w‖ cos φ

and the cross product is orthogonal to the factors and has modulus equal to the area of
the parallelogram defined by the factors:

v × w = ‖v‖ ‖w‖ sin φ
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Figure 3: Geometrical interpretation of vector operations

V = u dot (v x w) = det (u, v, w)
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Figure 4: Volume of a cell

From them, we infer that the two products deserve special attention, because they
allow computing the metric elements of a model: distances, angles, surfaces, volumes,
orthogonality and collinearity. Some examples are in order:

• The norm of a vector v = (x, y, z) (its length) is computed through scalar prod-
uct: ‖v‖ =

√
(v · v)

• The distance between two points is the norm of the vector joining them:

P = (x, y, z)

Q = (x ′, y′, z′)

P Q = (x ′ − x, y ′ − y, z ′ − z)

d(P, Q) = ‖P Q‖ =
√

(x ′ − x)2 + (y ′ − y)2 + (z ′ − z)2+

• The angle φ between v and w is

cos φ =
v · w

‖v‖ ‖w‖
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• Two vectors are orthogonal iff v · w = 0
• Two vectors are collinear iff v × w = 0
• A normal vector to the plane defined by v and w is given by v × w

• The volume of the cell defined by the vectors u, v, w is (see figure 4)

det(u, v, w) = u · (v × w) =

∣

∣

∣

∣

∣

∣

u1 u2 u3
v1 v2 v3
w1 w2 w3

∣

∣

∣

∣

∣

∣

This is known as the triple product of the three vectors, or, more mundanely, as
their determinant. Its computation follows well-known rules which we will not
delve in.

2.3 Bases

Given any set of vectors {v1, v2, . . . , vn}, its span is the set of all vectors we can con-
struct as linear combinations of them (using scaling and addition):

< v1, v2, . . . , vn >= {w|w = λ1v1 + λ2v2 + · · · + λnvn})

The set {v1, v2, . . . , vn} is free, or linearly independent, if

λ1v1 + λ2v2 + · · · + λnvn = 0 ⇐ λ1 = λ2 = · · · = λn = 0

or, more mundanely, if no vector of the set can be expressed as a combination of the
others. A free set which spans the whole space in consideration is a basis for it. In
our ordinary 3-space, all bases have three elements e1, e2, e3. Moreover, a basis where
ei · e j = 0 if i 6= is said to be orthogonal; in addition, ei · ei = 1 makes this base
orthonormal.

In an orthonormal base, every vector has a simple and convenient expansion

x = (x · e1)e1 + (x · e2)e2 + (x · e3)e3

3 Affine and projective geometry

In the previous section on vectors we made a passing mention to the distance between
points, and made liberal use of the notation P Q to mean the vector joining P to Q.
Strictly speaking, this is only legitimate if ordinary 3-space (without coordinates) is
given a structure known as affine space. This simply means we are given a way to
translate any point P by any vector v, the result being written as P +v. The translation
+ must satisfy the obvious conditions

1. For every vector v, P → P + v is a 1-to-1 correspondence

2. For every point P, P + 0 = P

3. For every point P and vectors v, w, (P + v) + w = P + (v + w)

6



PSfrag replacements

xv

xu

x3

x2
x1
x0

x(u, v)

w

w − v

w + v

v
v = v0

v ∧ w

u
u2
u1

u = u0

t
θ

r
rv

ru

r2
r1
q
p
φ

φ(t)
n
h

f renet − serret
e2
e1

d
b

x

y

z

Y
X

V = S‖u‖ cos θ

S
S = ‖v‖‖w‖ sin φ = |vxw|

Pleaserewir tethis
P4
P3

P2

P1

P0

P(x, y, z)
P ′(x ′, y′, 1) = (x/z, y/z)

O
N

Ax + By + Cz + D = 0

A2x + B2y + C2z + D = 0
A1x + B1y + C1z + D = 0

5
4
3
2
1
0

(x, y, z) = P0 + u P0 P1

(x, y, z) = P0 + u P0 P1 + vP0 P2

(A, B, C) = P0 P1x P0 P2

θ
φ

Figure 5: Equations of a plane

This properties are so customary in ordinary 3D work that we use them without
even being aware. The existence of a vector P Q joining P to Q is a consequence
of them; the usual coordinatization of space is another. Adding to this the existence
of a scalar product of vectors, concepts of distance, angles and orthogonality can be
defined, and every problem involving metric geometry can be solved analytically.

We give a short account of the usual straight entities in 3D affine geometry: points,
lines, planes. These are the affine or linear manifolds of standard geometry, and can be
defined by systems of linear equations on coordinates.

3.1 Planes

A plane can usually defined in two ways
implicit equation By means of a single linear equation which the points in the plane

satisfy
Ax + By + Cz + D = 0

parametric equation The points of the plane are obtained by sweeping all the possi-
ble values of two real parameters

P = P0 + u P0 P1 + v P0 P2
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Figure 6: Equations of a line

or, in coordinates




x
y
z



 =





x0
y0
z0



 + u





a
b
c



 + v





a′

b′

c′





The vectors (a, b, c) and (a′, b′, c′) are direction vectors of the plane.
Converting between both representations is quite easy: from the implicit equa-

tions it is easy to obtain three (non-collinear) points P0, P1, P2 giving the parametric
equations. Passing from parametric to implicit would require ellimination of the u, v

parameters. But there is a faster way:

(A, B, C) = P0 P1 × P0 P2 = (a, b, c) × (a′, b′, c′)

D = −(A, B, C) · P0

3.2 Lines

Straight lines can be defined by a point and a direction, or by the intersection of two
planes. This gives rise to the possible representations of lines with
implicit equations Two (independent) linear equations givin the line as the intersec-

8



tion of two planes

A1x + B1y + C1z + D1 = 0

A2x + B2y + C2z + D2 = 0

parametric equation Giving the coordinates of points of the line as a parameter u
sweeps all real values





x
y
z



 = P0 + u P0 P1 =





x0
y0
z0



 + u





a
b
c





Again, converting between both representations is easy: the parametric equation
can be put in implicit form by ellimination of the parameter; and from the implicit
form, we get easily two points, or one point and the direction vector

P0 P1 = (A1, B1, C1) × (A2, B2, C2)

3.3 Incidence and metric geometry

With these concepts, and the properties of dot and cross product in mind, we can solve
any problem of elementary 3D analytical geometry. Better than enumerating a boring
list of different cases, we prefer to state some sample problems to give a feeling of the
techniques involved.

For instance, we want to compute the distance between two lines, as shown in
figure 3.3. Both lines r1 and r2 come defined by points Pi and unit direction vectors ui .
A moment’s thought shows that the minimum distance d between two disjoint lines is
realized between points Q1 and Q2 such that the segment Q1 Q2 is orthogonal to both
r1 and r2. To see this more clearly, there are two parallel planes π1 asnd pi2 containing
each line, and Q1 Q2 is perpendicular to them. So

d = ‖Q1 Q2‖ and Q1 Q2 ⊥ u1, u2

So Q1 Q2 = du1 × u2. Now, vector P1 P2 joins points of both lines orthogonal to
Q1 Q2. Then, the dot product with unitary u1×u2 gives the magnitude of the projection
of P1 P2 on Q1 Q2, which is exactly d. We get

d = P1 P2 · u1 × u2 = det(P1 P2, u1, u2)

4 Matrices and geometric transforms

The tasks we can perform until now are quite elementary. For a much powerful man-
agement of geometric objects, we would like to express more complex operations on
shapes. Matrices are the standard way of representing linear operations and computing
their action.

9



PSfrag replacements

xv

xu

x3

x2
x1
x0

x(u, v)

w

w − v

w + v

v
v = v0

v ∧ w

u

u2

u1

u = u0

t
θ

r
rv

ru

r2

r1

q
p
φ

φ(t)
n
h

f renet − serret
e2
e1

d

b

x

y

z

Y
X

V = S‖u‖ cos θ

S
S = ‖v‖‖w‖ sin φ = |vxw|

Pleaserewir tethis
P4
P3

P2

P1

P0
P(x, y, z)

P ′(x ′, y′, 1) = (x/z, y/z)

O

N
Ax + By + Cz + D = 0

A2x + B2y + C2z + D = 0
A1x + B1y + C1z + D = 0

5
4
3
2
1
0

(x, y, z) = P0 + u P0 P1
(x, y, z) = P0 + u P0 P1 + vP0 P2

(A, B, C) = P0 P1x P0 P2

θ
φ

Figure 7: Example of the distance between two lines

An m × n matrix is a rectangular array of numbers like this










a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn











which is more compactly written as (ai j )1≤i≤m,1≤ j≤n or simply as (ai j ) if dimensions
are understood.

Like vectors, matrices can be added and subtracted componentwise. The product
of matrices is given by the rule

A = (ai j ) i = 1 . . .m, j = 1 . . . n

B = (b j k) j = 1 . . . n, k = 1 . . . p

AB = (cik) i = 1 . . .m, k = 1 . . . p

and

cik =
n

∑

j=1

ai j b j k

Note that, even when m = n = p, we have AB = B A, that is, the product of matrices
is noncommutative.
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The transpose of a matrix is obtained by exchanging rows and columns

A = (ai j ) ⇒ AT = (a j i)

A n×n matrix A is regular if there is another n×n matrix such that AB = B A = 1.
We usually write A−1 for the inverse of A.

We will usually restrict ourselves to row vectors and column vectors to refer to
points and vectors, and square matrices (with m = n) to represent linear transforms.
The dimensions of our matrices will be 3 × 3 or 4 × 4 almost exclusively.

Let us start by a translation of (the points of) an object by a vector v = (vx , vy , vz).
This transformation sends a point (x, y, z) to (x ′, y′, z′), where





x ′

y′

z′



 =





x
y
z



 +





vx

vy

vz



 (1)

or, more compactly, P ′ = P + v. We see here that this transformation is not, strictly
speaking, linear: it has independent terms.

What if we want to express analytically a mirror reflection around the XY -plane?
This has the property of changing signs of z-coordinates leaving everything else un-
changed. We need to prescribe these independent coordinate changes by means of
independent equations

x ′ = x

y′ = y

z′ = −z

which lead to




x ′

y′

z′



 =





1 0 0
0 1 0
0 0 −1









x
y
z





As a matter of fact, any linear transformation can be put in matrix form. The recipe
is:

1. take a basis e1, e2, e3

2. apply the transform to the vectors, obtaining f1 = T e1, f2 = T e2, f3 = T e3

3. put the vectors obtained as columns of the matrix.

Another standard transformation is a scaling by a factor λ. Of course, if 0 < λ < 1
this is better called a contraction, while if λ > 1 we have a dilation. And, for λ = −1,
we get a reflection around the origin. We have that every coordinate of a point gets
scaled by λ, so we put





x ′

y′

z′



 =





λ 0 0
0 λ 0
0 0 λ









x
y
z



 (2)

A more interesting case is a rotation, determined by the axis and the angle of rota-
tion. A rotation of angle φ around the z-axis can be computed using the recipe
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1. take as base vectors (1, 0, 0), (0, 1, 0), (0, 0, 1).

2. rotate them, obtaining (cos φ, sin φ, 0), (− sin φ, cos φ, 0), (0, 0, 1)

3. put them as columns of the matrix, resulting in

Rφ =





cos φ sin φ 0
− sin φ cos φ 0

0 0 1





We can check that this is the correct transformation of coordinates:




x ′

y′

z′



 =





cos φ − sin φ 0
sin φ cos φ 0

0 0 1









x
y
z



 (3)

If we rotate an angle θ around the x-axis, we get a different matrix




x ′

y′

z′



 =





1 0 0
0 cos θ − sin θ

0 sin θ cos θ









x
y
z



 (4)

And, if we apply both rotations in order of appearance, we get




x ′

y′

z′



 =





cos φ − sin φ 0
sin φ cos φ 0

0 0 1









1 0 0
0 cos θ − sin θ

0 sin θ cos θ









x
y
z



 (5)

The composition of both rotations is given by the product matrix, which in this case is

R = Rx Rz =





cos φ − sin φ 0
cos θ sin φ cos φ cos θ − sin θ

sin φ sin θ cos φ sin θ cos θ





This does not look like any of the rotations seen before, but it is indeed a rotation
around some axis. How do we know? Because the resultant matrix is orthogonal:

Rt R = RRt = 1

where 1 denotes the identity matrix having 0’s outside the main diagonal and 1’s in it.
Such a matrix represents a length-preserving transformation.

A shear does not preserve lengths. An example of shear is given by




x ′

y′

z′



 =





1 0 sx

0 1 sy

0 0 1









x
y
z



 (6)

This has the effect of shifting the “upper layers” of a cube in a fashion similar to a
sheared deck of cards, as seen in figure 8.
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shear equations
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Figure 8: Shearing a cube
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What if we want to compose a shear with a translation, followed by a rotation? It
gets a bit messy:

X ′ = R(SX + B) = RSX + RB

because of the independent terms in the middle of the product. In general, we will
obtain a transformation of the type

X ′ = AX + B or





x ′

y′

z′



 =





a11 a12 a13
a21 a22 a23
a31 a32 a33









x
y
z



 +





b1
b2
b3



 (7)

Now we can appreciate the advantage of using homogenoeus coordinates. The ordi-
nary affine space can be coordinatized with a unit fourth component, so that equation 7
can be written as

X ′ = AX or









x ′

y′

z′

1









=









a11 a12 a13 b1
a21 a22 a23 b2
a31 a32 a33 b3
0 0 0 1

















x
y
z
1









(8)

All of the preceding transforms can be written this way, and any affine transfor-
mation takes, in homogeneous coordinates, the form of a linear transformation, and
composes by matrix multiplication.

4.1 Projective recap

As a recapitulation, let us see the form that some transformations take in projective
4-coordinates (see figure 4.1).
Translation

T =









1 0 0 tx

0 1 0 ty

0 0 1 tz
0 0 0 1









Reflection

F =









1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1









Shear

S =









1 0 sx 0
0 1 sy 0
0 0 1 0
0 0 0 1









Rotation

S =









cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1








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(b) Reflection
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(d) Rotation
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Figure 9: Determinant as a volume measure

Projection

P =









1 0 0 0
0 1 0 0
0 0 1 0
0 1/d 0 0









4.2 Determinants

Let us consider an arbitary linear transformation like depicted in figure 9. The blue box
becomes distorted by it, becoming a blue parallelepiped. We have made the edges on
the axes fit the base vectors e1, e2, e3, so that the edges corresponding in blue are the
transformed vectors f1 = T e1, f2 = T e2, f3 = T e3.

What is the volume of the blue box? Three facts are obvious
• If two vectors are the same, the volume is zero

V ( f1, f2, f3) = 0 if f1 = f2

• A shear does not change volume (check figure 8).

V ( f1 + f2, f2, f3) = V ( f1, f2, f3)
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• Scaling a vector scales the volume.

V (λ f1, f2, f3) = λV ( f1, f2, f3)

and the like properties are valid for any other functional position of V (·). These happen
to be the properties of the determinant of a matrix, which is defined uniquely (except
for a constant factor) by the properties above. We write

V ( f1, f2, f3) =

∣

∣

∣

∣

∣

∣

f11 f12 f13
f21 f22 f23
f31 f32 f33

∣

∣

∣

∣

∣

∣

=
∑

π∈Sn

sgn(π)

n
∏

i=1

aiπ(i) (9)

The general definition of a determinant, given as third term in formula 9, is of mainly
theoretical interest and gives the value of a determinant for small matrices:

∣

∣

∣

∣

a11 a12
a21 a22

∣

∣

∣

∣

= +a11a22 − a12a21

∣

∣

∣

∣

∣

∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣

∣

∣

∣

∣

∣

= + a11a22a33 + a12a23a31 + a13a21a32

− a11a23a32 − a12a21a33 − a13a22a31

A rearrangement of the definition (9) gives the formula

det(A) =
n

∑

i=1

(−1)i−1det (A1i) (10)

where A1i is A after deletion of its first row and i -th column. This allows recursive
computation of small determinants:

∣

∣

∣

∣

∣

∣

6 3 9
2 3 1
1 2 3

∣

∣

∣

∣

∣

∣

= 6

∣

∣

∣

∣

3 1
2 3

∣

∣

∣

∣

− 3

∣

∣

∣

∣

2 1
1 3

∣

∣

∣

∣

+ 9

∣

∣

∣

∣

2 3
1 2

∣

∣

∣

∣

= 6(9 − 2) − 3(6 − 1) + 9(4 − 3) = 36

For higher orders, this is of no use, and higher-order determinants are better com-
puted by using the defining properties of the function, to wit: a linear combination
of any row can be added to any other row. This allow making zeroes in a column so
that the computation is reduced to a one-less-order determinant by virtue of the expan-
sion (10). A much faster way of applying this recipe is given in the next section.

5 Numerical linear algebra and equation solving

In section 4, we found out that some tasks are quite complex computationally. We
would like to be alleviated of this burden to avoid our programs sink in eternal loops.
Too often we need
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• inverting a matrix
• computing a determinant
• solving a system of linear equations
• finding an orthogonal/orthonormal basis of a linear space
• finding the roots of a polynomial
• finding the solutions of nonlinear equations, or systems of them
• fitting a curve or function to a set of points or other data
Most of these tasks are the subject of numerical linear algebra; we do not care

about the algebraic properties of linear operations, matrices and determinants, but just
like to find a solution, a correct solution, and by a fast method. Tasks not involving ma-
trices in the above list are the subject of numerical analysis in general; again, no fancy
mathematical properties are of interest, but only solving things, fast, and accurately.

5.1 The LU decomposition

This is a beautified form of what we usually call Gaussian elimination: the process of
making zeroes in a matrix by linearly combining rows. This idea takes us eventually
to a matrix in upper triangular form (the U part). If we also reckon the operations
performed, applying them to a blank, brand new unit matrix, we get a lower triangular
matrix (the L part of the beast), and, magically, we come to something like this

A =





1 6 4
2 3 5
8 2 3



 →





1 6 4
0 −9 −3
0 −46 −29



 →





1 6 4
0 −9 −3
0 0 −41/3



 = U

Recording the multipliers in a blank unit matrix




1 0 0
0 1 0
0 0 1



 →





1 0 0
2 1 0
8 0 1



 →





1 0 0
2 1 0
8 46/9 1



 = L

and, magic:
LU = A

The procedure can even be performed in place. The usual library function can be found
in any respectable linear algebra package, and gives, usually, a matrix with the L and
U parts merged in one, and a vector of permutations of rows, used in pivoting for
numerical stability. Then, LU decomposition becomes

P A = LU

where P is a permutation matrix whose effect is permuting the rows of A.
For example, feeding the LU routine of LINPACK with

A =





1 2 3
1 4 −1
2 1 5




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we get

P =





0 0 1
0 1 0
1 0 0



 L =





1.00 0.00 0.00
0.50 1.00 0.00
0.50 0.42 1.00



 U =





2.00 1.00 5.00
0.00 3.50 −3.50
0.00 0.00 2.00





This decomposition has three main uses

5.2 Computing determinants

We get
det(A) = det(P) det(L) det(U)

A permutation matrix has determinant ±1 according to the parity of the permutation.
The lower triangular matrix has obviously det(L) = 1 and we get that, up to a sign,
det(A) is the product of U ’s main diagonal. This allows computing determinants in
time O(n3), which is the usual complexity of the LU decomposition.

5.3 Solving linear equation systems

Now suppose we have a system of linear equations like this

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...

an1x1 + an2x2 + · · · + annxn = bn

better written in matrix form as

AX = B or











a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn











·









x1
x2

xn









=











b1
b2
...

bn











We can use the LU decomposition to advantage:

AX = P−1 LU X = B or LU X = P B (11)

Except for a permutation of independent terms, we can solve equation (11) by forward
substitution and backsubstitution, because from











1 0 0 0
l21 1 . . . 0
...

...
. . .

...

ln1 ln2 . . . 1











·











w1
w2
...

wn











=











b1
b2
...

bn










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we obtain

w1 = b1 (12)

w2 = b2 − l21w1 (13)

w3 = b3 − l31w1 − l32w2 (14)

and, in general

wk = bk −
k−1
∑

j=1

lkj w j (15)

Once we know wi , we do the same trick backwards with U . From










u11 u12 . . . u1n

0 u22 . . . u2n
...

...
. . . . . .

0 0 . . . unn











·









x1
x2
. . .

xn









=









w1
w2
. . .

wn









we write

xn = (1/unn)wn (16)

xn−1 = (1/un−1,n−1)(wn−1 − un−1,nxn) (17)

xn−2 = (1/un−2,n−2)(wn−2 − un−2,nxn − un−2,n−1xn−1) (18)

and, in general

xk = (1/uk)(xk −
k+1
∑

j=n

uk, j w j (19)

and the system is solved.
Note that if a system has to be solved with various sets of b values, the LU de-

composition can be reused, and forwad- and backward substitution is a O(n2) process.
This has direct application to

5.4 Matrix inversion

Applying the processes (12) and (16) to the columns of the identity, we get the columns
of the inverse of A. This is the most effective inversion procedure in practice for non-
sparse matrices.

5.5 Equation solving

What happens when we need to solve a nonlinear equation? Suppose this: you have a
nice surface modelled with a function P(u, v) that gives the position vector of a point
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in the surface as a function of the parameters u, v. And now you are asked to find the
intersection of the surface with the Z -axis.

The intersection would be found by solving

0 = Px (u, v)

0 = Py(u, v)

z = Pz(u, v)

for u, v, z. Think, for instance, that P is a NURBS surface. What can we do?
We better put the system in the form

f (u, v, z) = 0 with f (u, v, z) =
(

Px (u, v)Py(u, v)Pz(u, v) − z
)

In general, this is a difficult problem to be solved by a numerical (iterative) pro-
cedure. Let us try Newton’s method. We start with an initial value of (u, v, z) =
(u0, v0, z0), and we refine it repeatedly by applying the formula

(ui+1, vi+1, zi+1) = (ui , vi , zi ) − D f −1(ui , vi , zi ) f (ui , vi , zi )

Here, D f (ui , vi , zi ) is the matrix of partial derivatives














∂ fx

∂x

∂ fx

∂y

∂ fx

∂z
∂ fy

∂x

∂ fy

∂y

∂ fy

∂z
∂ fz

∂x

∂ fz

∂y

∂ fz

∂z















known as the Jacobian of f evaluated at u i , vi , zi . If you are asking, yes, this is the
same jacobian we will find later in section 8.6. If you are lucky, the succesive points
come closer to a solution of the equation after a few iterations. If you are not. . .

Newton’s method has quadratic convergence if you happen to start close enough to
a solution. This means that you double the number of exact digits of your solution if
things go properly (which, of course, does not happen when you need).

6 Differential geometry in a nutshell

6.1 Curves

A curve in space is given by a parametric representation

t → φ(t)

where φ(t) will be a generic point of the curve, which is swept by varying t within an
interval (the domain of the parameter).

The speed at which we go through the curve is given by φ ′(t), and acceleration by
φ′′(t). The length of a segment of curve is given by the formula

L(t0, t1) =
∫ t1

t0

√

1 + φ′(t)2 dt
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Figure 10: Frenet moving frame

If we put s = L(t0, t), we may use s as the parameter. This has the advantage to make
computations a bit simpler.

The decomposition

φ′(t) =
dφ

dt
= ‖φ′(t)‖T = vT

becomes simply

φ′(s) =
dφ

ds
= ‖φ′(s)‖T = T

where T is a unit tangent vector. As T · T is a constant, 2T ′ · T = 0 and we conclude
that T ′ is orthogonal to T . So it is a normal vector whose module measures the rotation
speed of T , inversely proportional to the radius of curvature. We call it the curvature κ

φ′′(s) = T ′ = κ N

with N a unit normal vector. Putting B = T ×N it is easy to derive that the orthonormal
triad (T, N, B), a function of parameter s named the Frenet f rame, satisfies

T ′ = κ N

N ′ = −κT − τ B

B ′ = τ N

(20)
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Figure 11: Parametric surface

were t is a function that measures how much the curve takes off being planar: the tor-
sion. We call B the binormal vector, and equations (20) are the Frenet-Serret formulas

Note for physicists: surely you noticed that

T ′ = D × T

N ′ = D × N

B ′ = D × B

with D = κ B − τT . Would you prefer to say D = �?

6.2 Surfaces

We will see in section 8 that, apart from triangle or polygon meshes, surfaces can be
represented parametrically by more complex functions like bicubic polynomials. In
general, we may describe a surface by means of a coordinate patch: a vector function
of two parameters (u, v) which gives points of the surface as (u, v) sweep their domain
of values, as shown in figure 11

It is of interest to know how to make computations with this representation. We
can see in the figure that, keeping v fixed and moving u, we obtain a family of curves,
parametrized by the fixed v value; exchanging coordinates another family is obtained,
and we get a network of coordinate curves which cover the whole surface patch.

The vector x(u, v) is a function of two variables. Differentiating partially we get
two tangent vectors

xu =
∂x

∂u

xv =
∂x

∂v

which, togethet with the point x0 = x(u0, v0), define the tangent plane at that point.
The normal at x0 is obtained in the usual way

N = xu × xv (21)
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and can be normalized if necessary.
What about non-coordinate curves? Let us suppose we have a curve in parametrical

form t → φ(t). If it remains in the surface, it should be possible to write

φ(t) = x(u(t), v(t))

The tangent vector to the curve at any point is given by differentiating φ

φ′(t) =
∂x

∂u
u′(t) +

∂x

∂v
v′(t) = xuu′(t) + xvv

′(t)

We can see that these tangent vectors play an important role: they span the set of all
tangent vectors at the given point x0, and they form, indeed, a basis of the tangent plane.
But there is more to it. Look at the shaded rhomb in figure 11. Ignoring curvature, it
is the image of a coordinate rectangle of unit area. What is the area of this surface
element? We know many ways of computing it now. For instance

Area = ‖xu × xv‖

This magnitude measures the factor by which area in the coordinate domain (u, v)

becomes scaled after mapped onto the tangent plane. It is the jacobian of the map
between the plane (u, v) and the surface.

Suppose we have a mass distribution along our surface, given by m(u, v) in (u, v)

coordinates. The total mass of the surface would be
∫

(u,v)∈D
m(u, v)‖xu × xv‖du dv

a double integral which reminds us to take into account the area scaling factor named
jacobian

Jacobians appear whenever we have a transformation between spaces of the same
dimension and we want to compute measures (areas, volumes or lengths).

The arc length of the curve φ(t) can be computed as
∫

‖φ′(t)‖dt =
∫

‖xuu′(t)+xvv
′(t)‖ dt =

∫

√

(xu · xu)u′2 + 2(xu · xv)u′v′ + (xv · xv)v′2 dt

The subradical expression is the first fundamental form or the metric tensor

I (u, v) = Eu2 + 2Fuv + Gv2

where
(

E F
F G

)

=
(

xu · xu xu · xv

xu · xv xv · xv

)

With it, we may perform measurements in terms of surface coordinates (u, v). For
instance, arc length

∫

√

Eu′2 + 2Fu′v′ + Gv′2 dt

or surface area
∫

D

√

EG − F2 dudv

Again, the radical is the jacobian of the mapping from (u, v) to the intrinsic coordinates
of the surface.
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7 Interpolation and approximation

These two problems arise too often in geometrical modelling and graphing.

7.1 Lagrange interpolation formula

We are given n+1 points in space P0, P1, . . . , Pn (usually depicted as functional values
of a real function, see figure 12). We need a function p whose graph touches all the
given points. This is an interpolation problem. The workhorse theorem for solving it
is the standard Lagrange interpolation formula.

Theorem 1 Let n + 1 points in the XY plane P0 = (x0, y0), P1 = (x1, y1), P2 =
(x2, y2), . . . , Pn = (xn, yn) with different abscissae. Then, there is one and only one
polynomial p of degree n satisfying

p(xi) = yi for i = 0, 1, . . . , n

The Lagrange interpolation polynomial can be computed in many ways, one of
which is the explicit formula

p(x) =
n

∑

i=0

yk
ωk(x)

ωk(xk)
(22)

where the ω factors are n-th degree polynomials given by

ωk(x) = (x − x0)(x − x1) · · · (x − xn)/(x − xk) (23)

It is obvious that
ωk(xi)

ωk(xk)
=

{

1 if i = k

0 if i 6= k

because no two x’s are the same. So this gives a solution to our problem.
Formula (22) is not too useful for computation. Coefficients of the interpolating

polynomial are better computed by solving a system of linear equations or by clever
use of simmetries or the choice of the sample points (xi, yi ).

An example: we want to find a quadratic polynomial interpolating the points (−h, y−1), (0, y0)

and (h, y1. Instead of unrolling the nightmare of equation (22), recall that the interpo-
lation process is linear and imagine what would happen if we had the sets of values

y−1 = 1 y0 = 0 y1 = 0

y−1 = 0 y0 = 1 y1 = 0

y−1 = 1 y0 = 0 y1 = 1

In the last case, we need a quadratic function with zeroes at −h and 0, so it has the
form

q1(x) = Cx(x + h)
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(b) Approximation

Figure 12: Interpolation and approximation of point values
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with C chosen to make q1(−1) = 1, so that C = 1/(1 − h). By simmetry, the first
function q−1 will be the mirror reflection of this one, that is q−1 = 1/(1 − h) x(h − x).
And q0 will be an even function by its simmetry, with zeroes in −1, 1, so it will be
(1 − x2) but for a constant factor, normalizing it to be 1 at the origin. Oh, the factor
happens to be 1, so we get

q(x) = y−1
x(x + h)

1 − h
+ y0(1 − x2) + y1

x(h − x)

1 − h

an easier way than going through (22).

7.2 Least squares fitting

A different problem is that of approximation: getting the curve to pass near the given
points in a prescribed sense. This is an ample and difficult problem. The criteria of
nearness are widely varied among applications, and we will see how this is approached
(pun intended) by solution we describe in section 8.

We will restrict ourselves to the humblest, most primitive form of approximation
technique, which is very useful however: least squares fitting. A common application
of approximation techniques is solving an interpolation problem which is overdeter-
mined, so that we have less unknowns than equations.

Let us be given, for instance, a set of points

Pi = (xi , yi)

with i = 1 . . .n, and let n > 4. Suppose you are forced to approximate a curve to
them, but only a cubic polynomial. So you try to minimize

E(a, b, c, d) =
n

∑

i=1

(yi − ax3
i − bx2

i − cxi − d)2

This is at most a quadratic function of the parameters. To make it minimum, the partial
derivatives of E should be zero:

∂ E

∂a
= −2

n
∑

i=1

x3
i (yi − ax3

i − bx2
i − cxi − d) = 0

∂ E

∂b
= −2

n
∑

i=1

x2
i (yi − ax3

i − bx2
i − cxi − d) = 0

∂ E

∂c
= −2

n
∑

i=1

xi(yi − ax3
i − bx2

i − cxi − d) = 0

∂ E

∂d
= −2

n
∑

i=1

(yi − ax3
i − bx2

i − cxi − d) = 0
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Expanding and isolating the coefficients a, b, c, d we get a system
∑

x3
i yi = a

∑

x6
i + b

∑

x5
i + c

∑

x4
i + d

∑

x3
i

∑

x2
i yi = a

∑

x5
i + b

∑

x4
i + c

∑

x3
i + d

∑

x2
i

∑

x1
i yi = a

∑

x4
i + b

∑

x3
i + c

∑

x2
i + d

∑

x1
i

∑

yi = a
∑

x3
i + b

∑

xi + c
∑

x1
i + dn

(24)

or, if you prefer








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x6
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x5
i
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x4
i

∑

x3
i

∑

x5
i

∑

x4
i

∑

x3
i

∑

x2
i

∑

x4
i

∑

x3
i

∑

x2
i

∑

x1
i

∑

x3
i

∑

x2
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∑

xi n

















a
b
c
d









=









∑

x3
i yi

∑

x2
i yi

∑

x1
i yi

∑

yi









(25)

The coefficients a, b, c, d can be recovered from (25)

8 Modelling of curves and surfaces: splines

We are given n + 1 points P0, P1, . . . , Pn , and we would like to construct a curve
passing through these points, with the least possible contortion. This is a problem of
interpolation. Some other times, the points given are merely control points and we
wish the curve to pass near the points, or to pass through some of them without exactly
touching the others. This is a problem of approximation.

In computer graphics, we usually solve this problem by means of pre-canned (pre-
cooked?) functions with a definite set of parameters wich are to be computed to make
the curve fit to our requirements. A set of standard solutions to this problems is at our
disposal:

• Natural splines
• Hermite interpolants
• Bézier curves
• B-splines
• NURBS

8.1 Natural splines

A first approach is trying to interpolate by segments. The curve segment from Pi

to Pi+1 will be a function pi(t) with t ranging in the interval (0, 1). The conditions
will be four

pi(0) = Pi

pi(1) = Pi+1

p′
i(1) = p′

i+1(0)

p′′
i (1) = p′′

i+1(0)
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because each pi is a cubic polynomial. Last two identities are regularity conditions, so
that curvature does not have jumps.

The drawback of this approach is that each of the control points affect all the seg-
ments, forcing a recomputation if we change one single point. And solving each of the
pi coefficients implies solving a linear system of equations.

8.2 Hermite interpolants

A similar approach is Hermite interpolation, in which we prescribe the derivatives (tan-
gents) at the ends of every interval:

pi(0) = Pi

pi(1) = Pi+1

p′
i(0) = Ti

p′
i(1) = Ti+1

This requires specifying the tangents Ti at the control points, which is not always pos-
sible nor convenient. Regularity is lower than with natural splines; those are the prices
of local control.

8.3 Bézier curves

This solution is based in the so-called Bernstein polynomials, which is a family of
polynomials in the range (0, 1) with nice properties of uniform approximation. Given
a function P(u) with u ∈ (0, 1), its n-th Bernstein polynomial Bn(P, u) is given by
the formula

Bn(P, u) =
n

∑

k=0

(

n

k

)

P(k/n) tk(1 − t)n−k (26)

If we are given n + 1 control points, we draw the Bézier curve by using the parametric
expression

Bn(u) =
n

∑

k=0

Pk

(

n

k

)

tk(1 − t)n−k 0 ≤ u ≤ 1 (27)

As usual in interpolation and approximation problems, the Bézier weight functions
(n

k

)

tk(1 − t)n−k constitute a partition of unity

n
∑

k=0

(

n

k

)

tk(1 − t)n−k = 1

which, with positivity, makes the approximation process convex: the Bézier curve lies
within the convex hull of the control points. Plots of the Bézier basis functions are
shown in figure 13.

The most extended use of Bézier curves restricts them to cubic patches with four
control points. It is an easy exercise (do it!) that P0 P1 and P2 P3 determine the tangent
(the speed, in fact) at the ends, and the curve passes through the end control points P0
and P3, as seen in figure 14
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Figure 13: Bézier basis for n = 3 and n = 7
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Figure 14: Bézier curve fitting end control points and with tangents pointing to middle
control points

8.4 B-splines

A problem with standard interpolation techniques is that the whole curve depends on
every control point; changing one of these implies recomputing (and redrawing) all the
solution.

B-splines are a particular set of interpolants without this defficiency. Let us suppose
we have n + 1 control points P0, P1, . . . , Pn . The solution curve will be

P(u) =
n

∑

k=0

Pk Bk,d(u)

where the functions Bk,d are d-order B-splines whose domain of definition and prop-
erties we are about to define.

The Bk,d functions will be constructed on an interval umin, umax divided in n + d
subintervals by points called knots, so that

{umin = u0, u1, u2, . . . , uk + d = umax}

is the domain of the Bk,d . Each such function will be zero except in (uk, uk + d)

(spanning d subintervals of the range) where it will match a polynomial function of
degree d − 1 with positive values. We can see, then, that every value P(u) will be
influenced by d control points.

How are this magic functions constructed? By the Cox-De Boor recursion formula:

Bk,1 =

{

1 if uk ≤ u

0 otherwise

Bk,d =
u − uk

uk+d−1 − uk
Bk,d−1 +

uk+d − u

uk+d − uk+1
Bk+1,d−1

(28)

Despite its impressive appearance, recurrence (28) is quite easy to apply. We can
see an example of what results from it in figure 8.4. We have chosen a knot set
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{0, 2, 3, 6, 7, 8, 11, 13} and constructed by hand (well, almost) the B-splines for that
set until order four (i.e., cubic polynomials). From the plots, B-spline properties are
quite apperent.

In subfigure 15e another interesting property appears: B-splines of any degree con-
stitute a partition of unity, i.e., they are positive functions with unit sum. This is a
crucial property making the interpolation process convex. In figure 8.4 we see the
B-spline curve of degree three with control points

P0 = (0, 0) P1 = (1, 1)

P2 = (0, 2) P3 = (1, 3)

P4 = (0, 4)

This time, we have chosen uniform spacing for knots. We may appreciate how the
curve is contained in the convex hull of the control points, which is a consequence of
the positivity of the B-spline basis, and of its sum being equal to 1.

8.5 NURBS

B-splines can be applied with no changes if we work with projective coordinates, and
we then obtain NURBS (Non-Uniform Rational B-Splines). The resulting formula

P(u) =
∑n

k=0 Pkwk Bk,d(u)
∑n

k=0 wk Bk,d(u)
(29)

in which the denominator can be taken as the homogeneous component of the control
points in projective coordinates, incorporates also weight factors wk to the effect that
the basis functions are now rational functions of the parameter.

The main advantage of this is projective invariance: a non-rational B-spline, trans-
formed by projection, need not be a B-spline anymore. The B-spline of the transformed
control points is not the transformed of the B-spline original curve. This does hold for
rational B-splines, so transforming them reduces to compute with control points only.

8.6 Splines for parametric surfaces

When dealing with surfaces, we may apply the same techniques as for curves verbatim.
Now that we have two parameters, u, v, we need as a basis the tensor produc of spline
bases in each of them. For instance, a surface patch can be interpolated through a net
of control points Pi j by the formula

∑

i, j

Pi j Bi,d(u)B j,d(v)

The partition of unity property holds for the product basis. The same trick applies to
Bézier or NURBS patches.
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Figure 15: Graphs of B-spline functions for a knot set {0, 2, 3, 6, 7, 8, 11, 13}. In 15e
the partition of unity property is checked
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Figure 16: Uniform B-spline 3rd-degree approximation to five control points
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