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Walking while using a smartphone is becoming a major pedestrian safety concern as people may unknowingly bump into

various obstacles that could lead to severe injuries. In this paper, we propose ObstacleWatch, an acoustic-based obstacle

collision detection system to improve the safety of pedestrians who are engaged in smartphone usage while walking.

ObstacleWatch leverages the advanced audio hardware of the smartphone to sense the surrounding obstacles and infers

fine-grained information about the frontal obstacle for collision detection. In particular, our system emits well-designed

inaudible beep signals from the smartphone built-in speaker and listens to the reflections with the stereo recording of the

smartphone. By analyzing the reflected signals received at two microphones, ObstacleWatch is able to extract fine-grained

information of the frontal obstacle including the distance, angle and size for detecting the possible collisions and to alert

users. Our experimental evaluation under two real-world environments with different types of phones and obstacles shows

that ObstacleWatch achieves over 92% accuracy in predicting obstacle collisions with distance estimation errors at about 2 cm.

Results also show that ObstacleWatch is robust to different sizes of objects and is compatible to different phone models with

low energy consumption.
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1 INTRODUCTION

Due to the increasing popularity of mobile devices in recent years, pedestrians nowadays are more likely to engage

in smartphone related activities while walking, such as texting, watching video, surfing the Internet, and playing

games. This is known as distracted walking [32, 35], which could lead to severe injuries. For example, distracted

pedestrians may unknowingly bump into various objects along the walking path such as trees, trash bin, and

other pedestrian, resulting in various injuries like sprains, concussions, fracture and even death. Existing studies

show pedestrian deaths have increased since 2009 and the distracted walking is becoming a major pedestrian
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safety concern [2, 23]. Indeed, the percentage of pedestrians’ injuries related to mobile phone distraction has

increased from 0.58% in 2004 to 3.67% in 2010 [27]. This trend is likely to continue due to the increasing number

of distracted smartphone users. In addition, there is an increasing number of blind and visually impaired people

who face challenges in interacting with surroundings, especially when walking on the street with obstacles.

To mitigate the risk of smartphone related pedestrian injuries, various infrastructure supports and policies have

been proposed. For example, in Washington D.C., a special "cellphone lane" has been set up to separate pedestrians

who use smartphones while walking from other pedestrians. In Delaware, decals have been installed to prompt

pedestrians to look up at crosswalks and sidewalks of certain busy intersections. Moreover, numerous countries

or states have attempted to pass bills to reduce the accident rate by imposing fines over smartphone related

distracted walking behaviors [23]. On the other hand, the automobile companies are increasingly deploying

various sensors on their vehicles for detecting distracted pedestrians [1, 9, 36].

There are also active research efforts in developing mobile sensing systems to alert distracted pedestrians with

either smartphone built-in or dedicated sensors proposed in resent years. For example, Walksafe [40] utilizes

smartphone front camera to detect the incoming cars when the user is talking on the phone. This system, however,

is not able to detect the surrounding obstacles on the road. Lookup proposed by S. Jain et al. exploits motion

sensors installed on shoes to identify losing steps when user walking through transitions between path and

road [11]. Such an approach requires additional shoes mounted sensors and cannot detect obstacle collisions.

Auto++ [17] utilizes smartphone to passively record acoustic sounds emitted from nearby vehicles to identify the

direction and number of moving cars. This work, however, works only for running vehicles that actively emit

acoustic signals. More recently, Tung et al. proposed a smartphone-based system, BumpAlert [37], which senses

the nearby objects with the camera as well as the built-in speaker and microphone. BumpAlert however only

provides coarse-grained information about the obstacle (i.e., only the distance), which is insufficient to detect the

likelihood of colliding with the obstacle, triggering false alerts that distract users. Although these approaches

improve pedestrian safety in various aspects, they either require additional sensors or can not provide sufficient

information for fine-grained obstacle collision detection.

In this paper, we introduce ObstacleWatch, a smartphone-based obstacle collision detection system to improve

the safety of pedestrians who are engaged in smartphone usage while walking. The system can also be used as

visual assistant to help blind and visually impaired people to avoid obstacle collisions. With only the smartphone

built-in speaker and microphones, ObstacleWatch can effectively detect collisions with the frontal obstacle when

people are using (holding) smartphones while walking. ObstacleWatch achieves accurate collision detection by

sensing the fine-grained information of the frontal obstacle including the size of the obstacle, the distance and

the angle between the walking user and the obstacle.

In particular, our system exploits an acoustic sensing approach that takes advantages of the audio hardware

advancements on smartphones for extracting the fine-grained information of the obstacles. Although nowadays

the high definition audio capabilities supported by smartphones target at audiophiles, such capabilities can be

leveraged to sense the surrounding obstacles with a wider frequency range and a higher sampling frequency at

both the top and the bottom microphones. For example, current smartphones (e.g. Galaxy S5, S8+, and iPhone 7

and 8) have good frequency responses up to 23kHz. Such a high frequency response range has the advantages of

inaudible to human ears and distinguishable from environmental noises. In addition, current smartphones’ OSs

and audio chips support playback and recording at 192kHz sampling frequency, which enables us to accurately

pinpoint the obstacles at sub-centimeter level resolution. Moreover, the dual-microphone equipped on virtually

all smartphones can be leveraged to estimate the relative position between the user and the frontal obstacle for

collision detection.

Our system thus re-uses the smartphone as an acoustic sonar, which emits a well-designed beep signal at the

inaudible frequency band from the build-in speaker and records the signal reflections from the obstacles at both

the top and bottom microphones. Based on the signal reflections, we first locate the closest frontal obstacle and
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extract its fine-grained information. The distance between the obstacle and the user can be estimated based on the

round trip time of the reflected signals. Then, the relative angle between the walking trajectory and the obstacle

is sensed by leveraging the time-difference-of-arrival (TDoA) of the reflected signals to the two microphones

(i.e., the top and bottom microphones) of the smartphone. To obtain an accurate TDoA, we develop an scheme

to mitigate the impact of the human body reflections to improve the accuracy of TDoA estimation. Moreover,

we leverage the fact that the size of the object has direct impact on the signal reflections to infer the object size.

By combining these fine-grained information of the frontal obstacle, our system predicts the likelihood of the

obstacle collision and alerts the user accordingly.

To evaluate the performance of our system, we conduct experiments in both a daily route near supermarket

which represents a relatively open space with multiple types of obstacle, and a daily route of students in a campus

that represents a crowded environment. We evaluate our system using three different types of smartphones

under various experimental settings. Experimental results show that our system is highly effective in detecting

obstacle collisions. The contributions of our work are summarized as follows.

• We develop ObstacleWatch, a smartphone-based obstacle collision detection system to improve the safety

of distracted pedestrians with only the smartphone built-in speaker and microphones.

• Our system is the first to extract fine-grained information of the obstacle for collision detection by taking

advantages of the dual-microphone and the advanced audio hardware on current smartphones. We also

propose a scheme to mitigate the impact of the body reflections to the accuracy of the distance estimation

between the obstacle and the two microphones of the phone.

• Our extensive experimental results show that ObstacleWatch achieves over 92% collision detection accuracy

with about 2 cm distance estimation errors. Results also show that ObstacleWatch is able to work with

different phone models under different real-world environments.

2 RELATED WORKS

In this section, we discuss the research works related to improve walking safety of smartphone users and acoustic

localization. Existing pedestrian safety systems can be divided into two categories: non-acoustic-based systems

and acoustic-based systems.

Non-acoustic Based Pedestrian Safety System. This body of work focuses on sensing surrounding en-

vironments of the pedestrians and provide them with active feedback using motion sensors, cameras, and

infrared [8, 47]. For example, Lookup [11] utilizes shoe-mounted motion sensors to identify the scenario when a

user steps in an intersection based on surface gradient and step motion changes. Walksafe [40] uses smartphone

camera to capture the images of incoming cars and feed into an image classifier to avoid car accident. Tang et al.

exploit a vision-based approach with the back camera of the smartphone to identify the tactile paving deployed

on the street and reduce the risks of distracted walking [34]. TerraFirma [12] introduced by Jain et al. also utilizes

the smartphone camera to recognize the material and texture of ground surface to detect if user is walking in

safe locations. pSafety [18] developed by Lin et al. alert users of potential collisions by detecting if the predicted

area of pedestrians and vehicles are overlapped based on the GPS information. Ishikawa et al. propose a system

to detect road anomaly and recognize avoidance behaviors of pedestrians by measuring azimuth changes from

motion sensors as well as GPS information of the smartphone [10]. Vinayaga et al. design an activity recognition

framework to detect pedestrian distraction using motion sensors such as accelerometers and gyroscopes on

wearable devices [38]. A crowd sensing system to tell whether trail segments are risky to climb by KIM et al.

also makes use of data from accelerometer on smartphones [14]. Liu et al. developed a infrared based system

InfraSee [20], which is able to detect sudden change of ground by measuring the distance of the ground surface

to the infrared sensor on smartphone. Moreover, Riaz et al. proposed a system SightSafety [30], which is a hybrid

system that combines both wireless sensor network and GPS information to avoid vehicle/pedestrian collisions.
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David et al. make a series of studies and design radio based collision avoidance systems to enhance the safety

of the pedestrian [4, 7, 39]. Although the above mentioned research efforts focus on various pedestrian safety

scenarios, none of them consider the possible collisions with obstacles along the walking road.

Acoustic-based Pedestrian Safety System. This category of work aims to sense the surrounding environ-

ment with acoustic signals. For instance, UltraSee [41] is able to detect the sudden changes of the ground when a

user steps off the sidewalk. This is done by augmenting smartphone with ultrasonic sensors to detect abrupt

distance change between the phone and the ground. Li et al. propose an acoustic based system Auto++ [17], which

processes the acoustic signal captured by smartphone microphones to detect approaching cars from different

directions. Auto++ passively records environmental sound and uses machine learning technique to extract

features such as TRF to identify the direction and numbers of approaching cars. It work only for the moving cars

who actively emit acoustic noises. However, in our scenario the static obstacles do not emit any acoustic sound.

More recently, Tung et al. propose a smartphone based solution BumpAlert [37], which estimates the distance

from the user to the nearby objects with smartphone camera, speaker and microphones. BumpAlert however

only provides the distance information, which is insufficient to make accurate collision detection. Moreover,

BumpAlert requires to use camera to further validate the obstacle in front of a user, which imposes additional

energy consumption and may affect the user experience.

Acoustic Localization and Sensing. Acoustic localization systems utilize sound to determine the distance

and direction of the sound source or the reflectors. Such process can be done either actively or passively. Active

localization can be achieved by combining the acoustic signal measurements at various receivers and the geometric

relationships between receivers [46]. Early work proposed by Schau et al. uses an alternative intersecting spheres

method for passive acoustic localization utilizing TDoA among different receivers [31]. Mohan et al. developed

a system consists of sensor arrays to derive location of multiple acoustic sources using a coherence test [22].

System proposed by Liu et al. enables keystroke snooping by localizing the typing sound source, it obtains TDoA

measurements by calculating the cross correlation of received signal in time domain [19]. A driver detection

system presented by Yang et al. distinguishes a driver and a passenger by leveraging car speakers and mobile

microphones [44]. The work proposed by Zhang et al. demonstrated internal phase difference (IPD) can also be

utilized to find the TDoA [45]. In order for such approach to work, a high signal to noise rate is required which is

difficult to acquire in distracted walking scenarios. Acoustic-based ranging system BeepBeep introduced by Peng

et al. estimate the distance between smartphones and by counting samples difference between beeps each device

can get two-way time of flight of the beeps and solve the challenge of synchronization [29].

There are also other related works that use acoustic signal reflection to perform human activities and object

sensing. A sleep monitoring system proposed by Nandakumar et al. [24] utilizes FMCW acoustic signal reflected

from human chest to track the breathing rate of a user. However, the study only focuses on detecting partial

human body movements and requires the phone to be placed at a fix position near the sleeper. FingerIO [25]

uses OFDM acoustic signal reflected from the fingers to localize 2D finger movements and recognize finger

gestures [25]. Although it provides high accuracy for finger tracking, it only works for limited range at about

25cm. Moreover, CovertBand [26] utilizes acoustic signals emitted from the phone to track human body activities

behind the wall. It is however designed for sensing the body movements instead of stationary obstacles such

as the walls and furniture. AIM [21] proposed by Mao et al. provides acoustic imaging of an object by moving

a acoustic emitting device around the object. Their system is inapplicable to obstacle detection scenarios as it

requires to move the phone with pre-defined trajectory around the object. Although the above works all rely on

acoustic signals reflections, they are very limited in obstacle collision detection as they either focus on human

movements instead of stationary objects, or work only with small sensing range at centimeter level, or require

move the mobile devices with pre-defined trajectory.

In addition, a lot of works have been done focus on direction estimation, due to the direction estimation

usually use the time differences of signals arriving on different antennas, these works usually require additional
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or specialized hardwares such as antenna array and directional antenna [13, 28, 33, 43]. Besides TDoA, Doppler

shift is also used to localize moving objects in the existing studies [3, 42]. However, those methods either require

pre-knowledge of the distinctive frequency components or only work with microphone array (i.e., over 4 acoustic

sensors).

3 SYSTEM DESIGN

To detect possible obstacle collisions, we introduce an acoustic sensing approach that leverages the dual-

microphone and the advanced audio hardware on smartphones. In this section, we discuss in detailed design

challenges, system overview, the beep design, and the methods used to extract fine-grained information of the

obstacle for collision detection.

3.1 Design Challenges

Intuitively, we are able to sense the surroundings by analyzing the signal reflections from the obstacles. While

the intuition is simple, there are significant challenges in extracting fine-grained information of the obstacle with

off-the-shelf smartphones.

Lack of Information for Collision Decision. Previous work on smartphone-based acoustic sensing can

only detect the presence of the obstacle and/or the distance between the obstacle and the user [37]. Such coarse-

grained information is insufficient to provide accurate obstacle collusion detection. For example, it lacks of the

walking angle information of the user with respect to the obstacle. Moreover, without taking the obstacle size

information into consideration, existing approach produces a large number of false alerts that distract users.

Body Reflection. During distracted walking, a smartphone user holds the phone in front of his/her body. The

body of the user thus also reflects the emitted acoustic signals. Although such signal reflections will not affect

the obstacle detection, they significantly reduce the accuracy of the estimated distance between the obstacle and

the microphone that is close to user’s body. Without precise time-difference-of-arrival (TDoA) of the reflected

signals to the two microphones of the smartphone, accurate obstacle collision detection could be difficult.

Hardware Limitation. Unlike radar or sonar systems equipped with dedicated ultrasound transmitters and

receiver arrays, the off-the-shelf smartphones are limited by their hardware platform and functionalities. For

example, the smartphones have limited number of microphones and speakers, since they are primarily designed

for voice and music recording and playing. We thus need to carefully design the beep signals and the detection

methods to overcome these limitations.

3.2 Approach Overview

The key idea underlying our obstacle detection system is to infer fine-grained information of the frontal obstacle

based on the signal reflections received at two microphones of the smartphone. As illustrated in Fig. 1, when the

user is holding and using his smartphone while walking, the build-in top speaker keeps sending our designed

inaudible beep signals and the two microphones of phone keep recording the direct propagated beep signals as

well as the signal reflections from the surrounding obstacles. Our system then analyzes the received signals at

two microphones to infer the distance between the user to the closest frontal obstacle, the angle between the

user’s walking path and the obstacle, and the size of the obstacle for obstacle collision detection. The system

alerts the user if a possible collision is detected.

Fig. 2 illustrates our system flow, which consists of four major components: Obstacle Detection, Obstacle Angle

Estimation, Obstacle Size Estimation and Collision Detection. The recorded acoustic signals first pass through

the Obstacle Detection component, which identifies the signal reflections from the closest frontal obstacle and

estimates the distance between the user and the obstacle. In particular, we first filter out all reflections from the

user’s body and the ones caused by parallel objects such as the ground. Then, we focus on the signal reflections
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Fig. 1. Obstacle detection using smartphone.

corresponding to the closest frontal obstacle. We estimate the distance from the user to the obstacle based on the

round trip time of the corresponding reflected signals.

After locating the frontal obstacle, the Obstacle Angle Estimation component analyzes the corresponding

signal reflections to infer the angle between the user’s walking path and the obstacle. Specifically, it calculates

the time-difference-of-arrival (TDoA) of the reflected signals to the two microphones to estimate the angle

information. To improve the accuracy of the angle estimation, we apply a multipath mitigation scheme to remove

the impact of the user body’s reflections, which are mixed with the obstacle’s reflections at the microphone.

In the Obstacle Size Estimation component, we leverage the fact that the size of the object has direct impact

on the signal reflections to infer the size of the obstacle. Particularly, we utilize the widths (in time domain) of

signal reflections corresponding to the frontal obstacle to estimate its size. Finally, our system performs collision

detection based on the inputs of obstacle distance, size, and angle.

Our system provides a collision decision and an alert based on a sequence of detections when the distracted

user moving forward. In particular, for each beep signal, we perform one collision detection. Our system makes a

final decision based on the majority voting of a sequence of detections from multiple beep signals while the user

is walking. In addition, we set the dangerous distance to be 3 meters. The system stays silent and keeps running

in background if no possible collision is discovered, otherwise an alert will arise if a possible collision is within

dangerous distance (i.e., 3 meters).

3.3 Beep Design

In designing the beep sound played through the phone speaker, we primarily consider three factors: beep

frequency band, length, and unobtrusiveness.

Frequency Selection. For object detection systems using radar and sonar technology, the beep signals with

wide frequency bandwidths are adopted to enhance the resolution of range estimation [6]. Usually, the wider the

bandwidths are, the higher the resolution and accuracy could be achieved. By contrast, the smartphone-based

acoustic sensing systems suffer several limitations. First, smartphones have different design purposes other than

sonar systems, and they mainly focus on low frequency range to support human voice communication and

music. Therefore, the available bandwidths are quite limited. According to our experiments shown in Fig. 3, the

frequency response of most smartphones are up to 24kHz, and start to decay quickly after 22-23kHz. Although

we could choose up to 24kHz to maximize our frequency bandwidths, the frequency response after 23kHz is weak

and unreliable. Therefore, we choose the upper bound of our beep signal as 23kHz. Another factor we consider is

that our system is designed to run in background on the smartphone and only alerts the user when a dangerous

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 4, Article 194. Publication date: December 2018.



ObstacleWatch: Acoustic-based Obstacle Collision Detection for Pedestrian Using Smartphone • 194:7

Fig. 2. System Flow.

collision is predicted. Hence for better user experience, the sound signals should be inaudible to human ears so

as to minimize the user distraction. The commonly stated range of human hearing is 20Hz to 20kHz, and the

upper bound decreases rapidly after 15kHz for older adults. Extending our beep signal to low frequency range

could provide us wider frequency bandwidths and better frequency response. However, it will also increases

the annoyance. Besides, the frequency of our signal should be kept apart from the environmental noises such

as human voices and background noises. Therefore, the lower bound of our beep signal is selected at 18kHz,

which enable our beep signal separable from the environmental noise and inaudible to human ears. In summary,

given the tradeoff of all the above factors, our system primarily adopts a 18kHz-23kHz bandwidth beep signal.

Moreover, we design our beep signal as a linear chirp signal, in which the frequency increases with time. We

use a linear chirp signal as it has good autocorrelation property, which enables accurate signal detection under

ambient noises.

Length. The length of the beep signal impacts both the detection time as well as the quality and reliability of

the recorded beep and its reflections. The microphone cannot pick up too short beep signals and their reflections.

However, the system detection delay and the multipath distortions could be severe if the beep signal is too long.

We found empirically that a beep length of 50ms (9600 samples under 192kHz sampling rate) represents a good

tradeoff.

Unobtrusiveness. Finally, we apply a Hanning window on our beep signal. It works as a fade in and out

window to cancel the the mechanical noises caused by huge frequency changes of the sound wave. Between two

consecutive beep signals, an appropriate interval has been planted to avoid the overlap between the beep signal

reflections from obstacles. Based on our experimental observations, obstacles that are 7m away have very week

reflections. Therefore we design the interval to be 7×2/343m/s = 40ms in our experimental setup.

3.4 Obstacle Detection

This step aims to first identify the obstacles. It then calculates the distance between the user and the closest frontal

obstacle. Let’s denote the top microphone and the bottom one asmic1 andmic2, respectively. The basic idea of
identifying the obstacles is to evaluate the correlation between the received signals atmic1 and the original beep

signal. Given the received signals atmick as Rk (t), where k={1,2} represents either the top or bottom microphone

of smartphone, we first apply a bandpass filter to remove the environmental noises and to extract the signal

component (denote as R′
k
(t)) falls into the beep frequency range (i.e., 18kHz - 23kHz). Then, we calculate the
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Fig. 3. Frequency response ofmic1 andmic2 on smartphone.

Fig. 4. Obstacle identification.

correlation between the filtered signal R′
k
(t) and the original beep signal with a moving window. The moving

window size equals to the length of the beep signal and the correlation is calculated based on the matched filter,

a commonly used signal processing technique in radar and sonar system [15]. Basically, we convolve the filtered

signal R′
k
(t) with the transmitted signal, in which

Ck (t) =

∫ tr

t ′
S∗(t ′)R′

k (t + t
′)dt ′, (1)

where S∗(t ′) is the conjugated and time-reversed transmitted beep. We next extract the upper envelop of the

resulted correlation (along time series t ).
Fig. 4 shows such an envelop formic1 when one user standing at one position with obstacles in front of him.

We can observe that each peak in the envelop corresponds to one object that reflects signals. Our next step is to

identify which peaks are corresponding to the obstacles through peak filtering. With only one static envelop, it is

very hard, if not possible, to differentiate the signal reflections between obstacles and other objects, such as the

ground and parallel objects to user’s walking trajectory (e.g., wall and ceiling). To resolve this issue, we leverage

the time series envelop, in which a sequence of envelops will be generated when the user is moving forward. As

shown in Fig. 5, when the user is moving towards the frontal obstacle, the distance between the user and the
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Fig. 5. Moving toward an obstacle.

Fig. 6. Multiple obstacle identification.

obstacle will be reduced. However, the distances from the user body and ground (as well as other parallel objects

like ceiling) to the smartphone are almost remain the same. Based on such an observation, we filter out these

peaks that remain at the same locations (on x or t axis) when a user is moving forward. The rest peaks are then

identified as the ones resulted from obstacle reflections.

To identify peaks, we utilize a non-overlapping moving window (i.e. 0.5ms) where the reflection point with

the highest magnitude within the window is considered as a candidate peak. Because each round of reflection

represents the surrounding environment under current condition, we use the average of correlations within the

target range as thresholdk . The target range is empirically set to 7m since any reflection outside that range is

difficult to discern from noises. To further filter out reflection from insignificant obstacles in the environment,

a coefficient λ is adopted to adjust threshold in our system. If the candidate peak magnitude is larger than the

adjust threshold (i.e., thresholdk × λ) calculated from previous steps, we deem such peak represents an obstacle.

In addition, it is possible that two peaks of two very close objects (in terms of centimeters, say 10cm) are merged

as one peak. In this case, we treat them as one object due to their closeness.
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Fig. 7. Estimation of angle between walking path and obstacle.

In realistic walking environment, there may exist multiple obstacles around the user. As shown in Fig. 6, we

focus on the top-K closest peaks, which represent the closest obstacles around the user. Certainly, including more

peaks could cover more obstacles. However, these far away obstacles are less important and could be covered

latter when the user is moving toward them. In our experiments, we choose the top 5 peaks closest to the user.

We start from analyzing the closest obstacle and detect the possible collision, and then move forward to analysis

the next closest peak. As a result, our system can detect the possible collision with multiple nearby obstacles in

time sequence while the user is moving.

After identifying the obstacle candidates, we next calculate the distance between the user and the obstacle by

counting the number of delayed samples between the time of sending the beep signal and the time the peak is

received. Although we could acquire the time information via system clock or other timer applications, such

timing information is unreliable due to various smartphone CPU loads and software delays [44]. Instead, our

system count the sample delay between the received direct propagated signal and the received signal reflections

from the obstacle. The time point that the signal directly propagates from the phone’s speaker to the microphone

can be identified as the first strongest peak (i.e. the signal transmits directly from the top speaker tomic1 through
the phone body). Considering the top speaker is only several centimeters away from themic1 and the structure-

borne sound propagation speed is much faster than that in the air, we take this time as the beep sending time.

Further, the time point of the signal reflection from the obstacle is already identified in the envelop in the last step.

Given the number of the delayed samples between these two time point asm, the distance D1 (i.e., the distance

from the obstacle tomic1) is calculated asmv/f , whereas the v is the speed of sound and f is the sampling rate.

Assuming the speed of sound is 340m/s, each digital sample represents a distance resolution of 0.18cm and 0.77cm

for the sampling rate of 192kHz and 44.1kHz respectively.

3.5 Obstacle Angle Estimation

The basic idea of obstacle direction/angle estimation is to leverage the dual-microphone on the smartphone. In

particular, the relative angle between the moving direction of the user and the obstacle can be calculated based

on the time-difference-of-arrival (TDoA) of the reflected signals to the two microphones of the smartphone. As

shown in Fig. 7, given the distances between the obstacle to the two microphonesmic1 andmic2 as D1 and D2

respectively, the angle θ can be calculated based on their geometrical relationship as following:

θ = π − arccos(
D2
1 + L

2
mic − D2

2

2 × D1 × Lmic
), (2)
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Fig. 8. Multipath effect onmic2.

Fig. 9. Multipath mitigation method onmic2.

where Lmic is the distance between two microphones on the smartphone.

As we already obtained the distance D1 in the last step, we can use similar way to calculate the D2. However,

the estimation of D2 is less accurate compare to D1 due to the following two reasons. First, as shown in Fig. 8,

the D2 corresponds to the distance to the bottom microphone, which faces backwards to the reflection direction

of the obstacle. Thus, the received reflections from the obstacle are much weaker than these received atmic1.
Second, the bottom microphonemic2 is not only facing the user’s body but also much closer to the user’s body,
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Fig. 10. Reflection of obstacle with different size.

which leads to strong body reflections combined with the weak obstacle reflections to form one peak (i.e., the

peak corresponding to D3 in Fig. 8) instead of two peaks. And such a peak is usually dominated by the strong

body reflections (due to the microphone is facing the body). For example, in Fig. 8, we observe that the location

corresponds to D2 is not an obvious peak and the actual detected peak corresponds to D3. Thus, the resulted D2

based on the peak detection is actually the D3. Therefore, the body reflections have significant impact on the

accuracy of D2 other than the D1.

To improve the accuracy of the D2, we need to mitigate the impacts of the user body reflections. We leverage

the fact that the D3 corresponds to the obstacle reflections that go through the route between the phone and the

user body twice before reachingmic2. Thus, we can deduce the D3 by the distance between the phone and user’s

body to obtain the D2. To obtain the distance between the bottom microphonemic2 and the user body, we look at

the direct propagated beep signal tomic2 and the body reflection based on the direct propagated beep signal, as

shown in Fig. 9. Note that there is no obstacle reflections involved in calculating the distance between the bottom

microphone and the user body. In Fig. 9, we could observe that the first and strongest peak corresponds to the

directly propagated signal (i.e. the beep propagates through the phone’s body from the top speaker tomic2) and
the close following second peak belongs to the body reflection. Therefore, we estimate the distance between the

mic2 and user’s body by counting the number of samples between the first and the second peaks as shown in

Fig. 9. We then can obtain the distance D2 based on D3 and the the distance betweenmic2 and the user body.

Given D1 and D2, the obstacle direction/angle θ is obtained based on the Equation 2.

3.6 Collision Detection

The last piece of information we need for collision detection is the size of the obstacle. To estimate the size of

the obstacle, we leverage the fact that the size of the object has direct impacts on the signal reflections. Fig. 10

shows one example of the impact of obstacle size on the width of the reflection crest. At a given distance, we

observe that a larger obstacle size (e.g., the dustbin) results in a wider crest width. We experimentally validate

such a fact by using obstacles with different size that regularly appear on the road, including human body, signs,
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of crest.

Fig. 13. Walking angle and collision angle under different situation. A: Walking Angle(θ ) < Collision Angle(δ ) and a collision

will happen. B: Walking Angle(θ ) > Collision Angle(δ ) and a collision will not happen.

dustbin, etc. As shown in the Fig. 11, we calculate the radius based on the width of reflection crest onmic1 and
correlate the radius with the ground truth. We find that the correlation is as high as 0.93, which confirms that the

object size can be presented by the crest width. Moreover, the distance between the obstacle and the user also

affects the crest size. We thus performed another study to investigate the relationship between the crest width

and the distance to the obstacle. As shown Fig. 12, the user holds a smartphone and moves toward the obstacle.

We observe that as the user gets closer to the obstacle, i.e. distance decreases, the crest width increases. This is

consistent with our real life experience, when we are getting closer to the obstacle, the reflection surface are

relative larger and we need to make a larger turning angle to avoid collision.

We then need to measure the width of the crest that corresponds to the obstacle. To calculate the crest of one

peak, we utilize the average of correlation within the target range as thresholdk and count the number of samples

within the peak P whose magnitudes are larger than the threshold as crest widthWp .

We transfer the width of the crest to infer the size of an obstacle by estimating the collision angle. As shown in

Fig. 13, we have the shortest path reflection from the center of the obstacle, as D1. We then could further use the

crest width to infer the farthest reflection, i.e. the reflection from the rim of obstacle, as Df , in which
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Df = D1 +
Wp

2
×

v

Fs
, (3)

where v is the sound propagation speed in air and Fs is the sampling frequency. Then a collision angle δ could be

calculated using the included angle of Df and D1, where δ = arccos(
Df

D1
).

After obtaining the distance D1, the walking angle θ , and the collision angle δ which incorporates the obstacle

size information, our system performs obstacle collision prediction. In particular, we compare the walking angle

θ and the collision angle δ , as shown in Fig. 13, if the walking angle θ is smaller or equals to the collision angle δ ,
then a collision will happen, otherwise the pedestrian will avoid the collision with the obstacle, that is

Decisioncoll ision =

{
true if θ <= δ

f alse otherwise
(4)

When the distance between user and obstacle is within the predefined dangerous distance and decreases

gradually, our system will estimate the angle between the user’s walking path and obstacle as walking angle θ .
We then compare this walking angle θ with the collision angle δ based on the radius of obstacle. If the walking

angle θ is smaller or equal to the collision angle δ , a collision decision will be made as true and marked as one

collision decision. If the system get five collision decisions out of nine detections in a time sequence, an alert will

raise to inform the user, otherwise the user will not walk into the obstacle and it is safe. Our system alerts the

user in advance by evaluating the collision possibility when the user is 5 meters away from the obstacle.

4 PERFORMANCE EVALUATION

4.1 Experimental Setup

Experiment Environment. We evaluate our system in two real-world environments including a wide range of

obstacle categories.

Supermarket. The first place of our experiment is a daily commuting route from a supermarket to an apartment

complex with about 500 meters long distance, as shown in Fig. 14. It represents a complex and open environment

with different types of obstacles. The obstacle categories includewalls, dumpsters, board signs, cars and pedestrians.

We show some of these obstacle examples in Fig. 14. They are typical objects with various scales and sizes that

may cause injuries to the users when walking distractedly. We conduct experiment following this path 85 times

over nine weeks.

Campus. The second place we conduct experiment is a campus as shown in Fig. 15. The path we select is a daily

route of students and is as long as 2.1km (1.3 miles), which represents a crowded environment. The path includes

the following popular locations that students frequently visit: A:parking lot, B:running track, C:student gym,

D:library and E:dormitory. There are a number of different obstacles on the path and lots of students walking on

the path, especially during the breaks of classes. We conduct experiment following this path 15 times over two

weeks.

Phones and Beeps Selection.We employ three types of phones including a Samsung Galaxy S5, Samsung

Galaxy Note5 and a Galaxy S8+ for the evaluation. We use S5 and S8+ for the scenario of supermarket and S5 and

Note5 for the campus. These phones differ in both sizes and audio chipsets. In particular, the length of the phone

is 14.1cm for S5, 15.3cm for Note5 and 16.0cm for S8+. The operating systems of these phones are Android 6.0

Marshmallow for S5 and Note5, Android 7.0 Nougat for S8+, which both support stereo recording and playback

with up to 192kHz sampling frequencies. We thus choose 192kHz sampling frequency for our evaluation and

present the corresponding results. Meanwhile, we experiment with two designed beep signals with 18-23KHz and

16-23KHz bandwidths respectively in the supermarket. Considering the average adult hearing range is 20Hz to
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Fig. 14. Experiment path around a supermarket. (A:

Walls; B: Dustbins; C: Donation Boxes; D: Cars; E: Signs)

Fig. 15. Experiment path within a campus. (A: Parking

Lot; B: Running Track; C: Gym; D: Library; E: Dormitory)

16kHz [5], and we only plays the brief beep signals through the top speaker with low volume, we could assume

that our system is transparent to the users.

Data Collection. Our experiments involve several different categories of objects with various sizes. For each

case, the participant walks towards the obstacle and we use camera to record the angle of walking path. We

experience 1299 possible cases that collision could happen including 821 cases around the supermarket and 478

cases on the campus. Around the supermarket, we have 108 cases for the walls category, 312 cases of the dustbins,

157 cases of cars, 136 cases of different signs and 108 cases of pedestrians. On the campus, we have 48 cases of

walls, 96 cases of dustbins, 106 cases of cars and 228 cases of pedestrians.

Metrics. We use the following metrics to evaluate the performance of our collision detection system. True

Positive Rate(TP) is the proportion of collisions that are correctly identified and rise alerts. It represents the alert

accuracy of the collision detection. True Negative Rate(TN) is the proportion of the non-collisions that don’t rise

alerts due to the obstacle sizes and user’s walking direction.

Fig. 16. Overall performance. Fig. 17. Accuracy in supermarket and campus.
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Fig. 18. Accuracy under different fre-

quency band.

Fig. 19. Accuracy facing different ob-

stacles.

Fig. 20. Accuracy using different smart-

phone models.

4.2 Overall Performance

We first evaluate the overall performance of collision detection in both supermarket and campus. Fig. 16 shows

the TP and TN when we test our system after we combine results from both supermarket and campus. We observe

that the TP of our system, which is the rate of our system to successfully detect the collision and rise an alert, is

over 93%. This shows that our system is highly effective and accurate to alert the user of possible collisions if the

user keeps the current walking direction. And the TN of our system is over 92% and shows that our system could

provide alerts of collisions with low false alerts rates.

Next, we compare the performance of our system in supermarket to that of the campus. The supermarket

represents an complex and open space, while the campus environment represent a more crowded environment

with many pedestrians. Fig. 17 shows the comparison between TP and TN in these two environments. We observe

that the TP and the TN of supermarket is 94.6% and 93.2% respectively. With crowded pedestrians in campus, the

TP of our system is slightly reduced to 91.3% and the TN is 89.1%. This is due to the fact that the acoustic signals

are affected by a more crowded environment with many other moving pedestrians. Still, our system provides

over 90% accuracy in detection possible collisions in a more crowded environment.

4.3 Impact of Frequency Band of Beep Signal

Next, under the environment of supermarket, we evaluate the effects of different frequency bands of our beep

signals. Specifically, we compare the performance of two different beep signals with 16-23kHz and 18-23kHz

frequency bands. As 16-23kHz provides wider frequency band than 18-23kHz, it gives us higher resolution and

accuracy in both distance and angle estimations, and results in a better performance in collision decisions. In

addition, the extra 2kHz frequency band that 16-23kHz provides has better frequency response on both of our

test smartphones, this further contributes to the performance of our system. As Fig. 18 shows, the TP of 16-23kHz

frequency band is 94.3%, which is a little bit better than the 93.7% of 18-23kHz. And for TN, 16-23kHz provides

91.4% while 18-23kHz is 92.5%. Overall, both frequency bands could provide satisfactory performance and one

could choose either of them depending on his hearing range. To be noticed, we believe that the 16-23kHz beep

signal played by the top speaker of the smartphone is imperceptible for most people.

4.4 Impact of Obstacles

We further test the performance of our system under different categories of obstacles, these categories are: walls,

dustbins, cars, board signs and human, which represent typical obstacles of different sizes that commonly appear

in real-world for pedestrians. Fig. 19 shows the comparison results between different sizes of obstacles. We

observe that, the larger size the obstacle has, the higher accuracy our system will achieve. The larger obstacles
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usually have more reflection surface areas, and such obstacles are often built with solid materials, which will

produce strong reflections of acoustic signals. One exception is the car, although cars have relative big sizes and

are built with metal or other solid materials, the shapes of the cars vary and could affect the performance of our

system dramatically. For example, the SUVs usually have larger and flatter reflection areas than sedans, and as a

result, our system provides better performance with the SUVs. Another group of obstacles should be noticed is

the human beings. Since the reflections of human bodies are evidently weaker than other objects, therefore it is

more difficult to capture than that of other categories, hence result in a relative lower accuracy.

4.5 Impact of Different Smartphones

As the users of our system may use different phones, we then test the performance of our system using different

smartphone models. Specifically, we use S5, Note5 and S8+ to test our system’s performance on different types of

phones with different sizes, hardwares, and OSs. Fig. 20 shows the TP and TN results under different smartphones.

S8+ has longer distance between its two microphones, which contributes to the estimation of included angle

between the user’s walking path and the obstacle. Also, the frequency response of S8+ on frequency band of our

beep signal, is slightly better than S5 and Note5. It turns out the overall performance on S8+ is a little better than

S5 and Note5. Even though, our system still produces high accuracy and effective detection results with both

phones. Such observations show that our system is robust and compatible to different types of phones.
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Fig. 22. Distance estimation errors from

3m.
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4.6 Accuracy in Obstacle Detection under Different Distances

As the distance between the obstacle and the user plays a significant role in obstacle detection, we further evaluate

how accuracy our system can detect multiple nearby obstacles with different obstacle distances in terms of

obstacle distance estimation. Fig. 21, Fig. 22 and Fig. 23 show the obstacle distance estimation error under three

different obstacle distances ranging from 1.5 meters to 5 meters. As we use both top and bottom microphones for

distance estimation, we denote the distance from the obstacle to the top microphonemic1 as Distance1 and the

distance to the bottom microphonemic2 as Distance2 in the figures. As shown in Fig. 21, our system is highly

accurate in estimating the distance between the user and multiple obstacles. Specifically, Distance1 has 90%

errors at around 1cm; and Distance2 has 90% errors within 2cm. The distance estimation frommic1 has better
accuracy becausemic1 always faces the obstacle, and the corresponding recorded signals are dominated by signal

reflections from the obstacle. However, the recorded signals atmic2 are significantly affected by user body’s

reflections.

We next compare the estimation accuracy under different distances. We observe that the distance estimation

error increases slightly when increasing the obstacle distance. For example, the median error of Distance1 is
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Fig. 25. Radius estimation errors.

increased from 0.25cm to 0.3cm when increasing the obstacle distance from 1.5m to 5m. However, Distance1 is

still at around 1cm with 90% probability and the Distance2 is within 2cm with over 90% chance across different

distances. This observation is consistent with the collision detection performance, in which we can achieve over

90% accuracy in detecting possible collisions of user within 5 meters away from obstacles .

4.7 Accuracy in Angle and Obstacle Radius Estimation

Another important component in our system is obstacle angle estimation, we thus evaluate the accuracy of the

angle estimation between user’s walking path and the obstacle. To be noticed, we derive the angle utilizing

both distance measurements. Thus, the angle estimation result is sensitive to both distance estimation errors. As

shown in Fig. 24, our system achieves a median error of 4 degrees with 80% errors within 8 degrees. Such result

ensures our system to make accurate collision decisions.

We next evaluate the accuracy for the radius of the obstacle estimation, which would further improve the

collision detection accuracy and lower the false alert rate. As shown in Fig. 25, the radius estimation accuracy

has a median error of 3cm with 80% errors within 7cm.

4.8 Obstacle Detection with and without Fine-grained Information

Our system achieves accurate collision detection by sensing the fine-grained information of the obstacle including

the distance from user to obstacle, the angle between the walking path of user and the obstacle and size of the

obstacle. We next compare the performance of our system to the one that uses only the obstacle distance and front

camera [37]. In particular, existing work detects possible collision when obstacles are detected within 4 meters and

there is obstacle captured by the front camera of the phone. Fig. 26 shows the performance comparison between

our system that uses fine-grained information and existing work that uses coarse-grained information. We observe

that coarse-grained based detection results in large false alert, which is as high as 32.1%. In comparison, our

system produces a low false alert which is at around 3.5%. The above result shows that incorporating fine-grained

information of the obstacle size and the walking angle can significantly improve collision detection accuracy.

4.9 Energy Consumption

Finally, we evaluate the energy consumption of our system. We run our system for 30 minutes on different types

of phones (i.e., S5, Note5 and S8+) to evaluate the energy consumption. As shown in Table. 1, on S5, the energy
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Fig. 26. False alert with coarse-grained information and fine-

grained information.

Fig. 27. System energy consumption running on S5, Note5

and S8+ in 30 minutes.

Table 1. Energy Consumption

Energy consumption of ObstacleWatch running for 30 minutes on different phone models.

Phone Battery Capacity Running Time Energy Consumption Percentage

S5 2800mAh 30 minutes 64mAh 2.3%

Note5 3000mAh 30 minutes 66mAh 2.2%

S8+ 3500mAh 30 minutes 50mAh 1.4%

consumption is 64mAh, which is about 2.3% of its total battery capacity, and on Note5, it takes 66mAh to run

for half an hour , which is about 2.2% of total battery capacity of the Note5. While on S8+, our system costs

50mAh for half an hour running and this takes 1.4% of the phone’s battery capacity. As shown in Fig. 27, the

energy cost of S8+ is slightly lower than that of S5 and Note5. Results show that energy burden of our system

is at users’ affordable level, since our system does not run all the time and will only be triggered under the

condition when the user is walking and using the phone at the same time. Another factor could be considered is

that the energy consumption of the sensors on smartphones will fall if various applications are using the same

sensors concurrently [16]. Therefore, when the users are walking with multiple tasks running on their phones,

the percentage of the energy consumption of our system will further decrease.

5 DISCUSSION

5.1 Holding Position of Smartphone

We evaluate our work when user holding the phone vertically, since it is the common holding position adopted

by most smartphone users for daily usage. However, there still exists scenarios where the user may hold the

phone horizontally (i.e., watch videos, play games). Such holding position will give us the opportunity to identify

whether the obstacles are on the left or right side. On the contrary, holding the phone horizontally will reduce

the distance estimation accuracy of our system due to microphone facing direction change. Thus, it is important
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to find the balance between collision detection accuracy and the holding position, which will be included into

future works.

5.2 Other Potential Threats

In this work, we mainly focus on frontal obstacle collision detection to improve pedestrian safety during distracted

walking. Though besides obstacle collision, there exists several other potential threats that might endanger the

user. Those threats include: imperfection of road surface (i.e., gap, hole), ramp on the side walk, other pedestrians

or vehicles from side or back and so on. Without proper handling, such threats can lead to serious consequences.

But they are outside the scope of our work and there are existing work trying to mitigate those threats [11, 12, 34].

5.3 Nearby Devices Interference

Our system can achieve good performance when there is no other interferences within the same environment.

Though it is possible that there are multiple devices transmitting beep signals concurrently nearby during the

obstacle collision detection process. Such interference can be mitigated by decreasing the correlation utilizing

multiple access method (i.e., FDMA) where each device transmits its beep signal at a single frequency band. We

will also incorporate this into future work to improve our system performance under complex environment

scenarios.

6 CONCLUSIONS

In this paper, we design a system called ObstacleWatch that leverages the advanced audio hardware of smartphones

to sense the surrounding obstacles and infers fine-grained information about the frontal obstacle for collision

detection. We find that by sending and recording a well-designed signal beep, the distance and relative position

from the phone user to the obstacle, as well as the size of the obstacle could be estimated by leveraging the

built-in speaker and microphones of the phone. Benefits from these three outputs, a collision decision could be

made and the user can be alerted if there is a collision threat. Our system experimental evaluation demonstrates

that a fine-grained object detecting and collision deciding is viable based on built-in sensors on smartphones in

real-world environment. And the evaluation results show the ObstacleWatch could achieve over 92% accuracy in

detecting obstacle collisions. Results also show that ObstacleWatch is able to work with different phone models

with low energy consumption.
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